JP2007108124A - Freshness sensor - Google Patents
Freshness sensor Download PDFInfo
- Publication number
- JP2007108124A JP2007108124A JP2005301735A JP2005301735A JP2007108124A JP 2007108124 A JP2007108124 A JP 2007108124A JP 2005301735 A JP2005301735 A JP 2005301735A JP 2005301735 A JP2005301735 A JP 2005301735A JP 2007108124 A JP2007108124 A JP 2007108124A
- Authority
- JP
- Japan
- Prior art keywords
- freshness
- reflection spectrum
- measurement object
- data
- image element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明は、主として、生鮮食品のように時間経過に伴って鮮度が低下するものを測定対象物とし、その鮮度を判定するのに用いられる鮮度センサに関するものである。 The present invention mainly relates to a freshness sensor that is used to determine the freshness of a food whose freshness decreases with time, such as fresh food.
従来、生鮮食品の鮮度判定を行う方法としては、生鮮食品からサンプルを採取し、そのサンプルを化学分析して糖質類の化学成分を評価することにより、生鮮食品の鮮度を判定する方法があった。 Conventionally, as a method for determining the freshness of fresh food, there is a method of determining the freshness of fresh food by collecting a sample from fresh food, and chemically analyzing the sample to evaluate the chemical components of carbohydrates. It was.
しかしながら、上記したような従来の鮮度判定にあっては、化学分析を行うことから、分析機器が大掛りにならざるを得ないと共に、判定結果を得るまでに要する時間が長く、生鮮食品を扱う現場でのリアルタイムな鮮度判定を行うことができないという問題点があり、また、サンプルの採取を行うことから、結果的に生鮮食品の一部を傷付けることとなり、全数検査を行うことが困難であった。 However, in the conventional freshness determination as described above, since chemical analysis is performed, the analytical equipment must be large, and it takes a long time to obtain the determination result, and handles fresh food. There is a problem that real-time freshness judgment cannot be performed on site, and since sampling is performed, a part of the fresh food is damaged as a result, and it is difficult to perform 100% inspection. It was.
本発明は、上記従来の状況に鑑みて成されたもので、生鮮食品等の測定対象物の鮮度判定を行うに際し、反射スペクトルの経時変化特性を利用することにより、非破壊的に且つリアルタイムに鮮度判定を行うことができ、装置の小型化や全数検査にも対応することができる鮮度センサを提供することを目的としている。 The present invention has been made in view of the above-described conventional situation, and in performing freshness determination of a measurement object such as fresh food, by utilizing the temporal change characteristic of the reflection spectrum, nondestructively and in real time. It is an object of the present invention to provide a freshness sensor that can perform freshness determination and can cope with downsizing of the apparatus and 100% inspection.
本発明に係わる鮮度センサは、時間経過に伴って鮮度が低下する測定対象物の鮮度センサであって、測定対象物からの反射光を分光して反射スペクトルを形成する分光器と、分光器からの反射スペクトルを受光して電気信号に変換する画像素子と、画像素子からの電気信号を反射スペクトルの測定データとする中央制御装置と、予め取得した測定対象物の反射スペクトルのデータを基準データとして記憶する記憶装置を備え、中央制御装置において測定データと記憶装置からの基準データとに基いて測定対象物の鮮度判定を行う構成としており、上記構成をもって従来の課題を解決するための手段としている。 A freshness sensor according to the present invention is a freshness sensor for a measurement object whose freshness decreases with time, a spectroscope that forms a reflection spectrum by dispersing reflected light from the measurement object, and a spectrometer Element that receives the reflection spectrum of the light and converts it into an electrical signal, a central controller that uses the electrical signal from the image element as measurement data of the reflection spectrum, and data of the reflection spectrum of the measurement object acquired in advance as reference data A storage device is provided, and the central controller determines the freshness of the measurement object based on the measurement data and the reference data from the storage device. The above configuration is a means for solving the conventional problems. .
また、本発明に係わる鮮度センサは、より好ましい実施形態として、測定対象物に対して光を照射する光源を備えたことを特徴とし、さらに、画像素子が、射影演算機能を有する人工網膜LSIであることを特徴とし、さらに、中央制御装置で得た鮮度判定結果を出力する外部出力端子を備えたことを特徴とし、さらに、分光器、画像素子、中央制御装置及び記憶装置を多層の電子基板に設けたことを特徴としている。 In addition, the freshness sensor according to the present invention is characterized in that it includes a light source that irradiates light to a measurement object as a more preferred embodiment, and the image element is an artificial retina LSI having a projection calculation function. And further comprising an external output terminal for outputting a freshness determination result obtained by the central control unit, and further comprising a multilayer electronic substrate comprising the spectroscope, the image element, the central control unit and the storage device. It is characterized in that it was provided.
本発明に係わる鮮度判定方法は、時間経過に伴って鮮度が低下する測定対象物の鮮度を判定する際し、測定対象物からの反射光を分光して反射スペクトルを形成し、この反射スペクトルのデータを測定データとすると共に、予め取得した測定対象物の反射スペクトルのデータを基準データとし、測定データと基準データとに基いて測定対象物の鮮度判定を行うことを特徴としている。 In the freshness determination method according to the present invention, when determining the freshness of a measurement object whose freshness decreases with time, the reflected light from the measurement object is dispersed to form a reflection spectrum. The data is measured data, and the reflection spectrum data of the measurement object acquired in advance is used as reference data, and the freshness of the measurement object is determined based on the measurement data and the reference data.
本発明の鮮度センサは、生鮮食品等の測定対象物から得た反射スペクトルの経時変化特性を利用することにより、測定対象物の鮮度を非破壊的に且つリアルタイムに判定することができ、化学分析を行っていた従来の鮮度判定と比較して、装置の小型化や全数検査にも容易に対応することができる。 The freshness sensor of the present invention can determine the freshness of the measurement object in a non-destructive manner in real time by using the time-dependent change characteristic of the reflection spectrum obtained from the measurement object such as fresh food. Compared with the conventional freshness determination that has been performed, it is possible to easily cope with downsizing of the apparatus and 100% inspection.
また、本発明の鮮度センサは、光源を備えたものとしたことにより、コンパクトな構成であるうえに、測定対象物に照射する光量を一定にして反射スペクトルの形成条件を一定に保つことができ、判定精度を向上させることができる。 In addition, since the freshness sensor of the present invention is provided with a light source, it has a compact structure, and can maintain a constant reflection spectrum formation condition by keeping the amount of light irradiated to the measurement object constant. The determination accuracy can be improved.
さらに、本発明の鮮度センサは、画像素子に射影演算機能を有する人工網膜LSIを採用したことにより、画像処理をアナログ的に行うことで中央制御装置の負荷を減らし、演算処理時間を短縮することができる。 Furthermore, the freshness sensor of the present invention employs an artificial retinal LSI having a projection calculation function in the image element, thereby reducing the load on the central controller and reducing the calculation processing time by performing image processing in an analog manner. Can do.
さらに、本発明の鮮度センサは、外部出力端子を備えたものとしたことにより、外部機器とのインターフェースを容易にし、様々な電子機器に組み込むことを可能にして応用範囲を広げることができる。 Furthermore, since the freshness sensor of the present invention is provided with the external output terminal, the interface with the external device can be facilitated, and can be incorporated into various electronic devices, thereby expanding the application range.
さらに、本発明の鮮度センサは、各機器を多層の電子基板に設けたことにより、装置全体をよりコンパクトにすることができ、携帯電話を含むポータブルな電子端末機器や、冷蔵庫やクーラーボックス等の収容機器などに組み込むことができる。 Furthermore, the freshness sensor of the present invention can make the entire apparatus more compact by providing each device on a multilayer electronic substrate, such as a portable electronic terminal device including a mobile phone, a refrigerator, a cooler box, etc. It can be incorporated into a storage device.
さらに、本発明の鮮度判定方法によれば、生鮮食品等の測定対象物から得た反射スペクトルの経時変化特性を利用することにより、測定対象物の鮮度を非破壊的に且つリアルタイムに判定することができ、化学分析を行っていた従来の鮮度判定と比較して、装置の小型化を図ることができると共に、測定対象物の全数検査にも対応することができる。 Furthermore, according to the freshness determination method of the present invention, the freshness of the measurement object is determined non-destructively and in real time by using the time-dependent change characteristic of the reflection spectrum obtained from the measurement object such as fresh food. Compared with the conventional freshness determination in which chemical analysis is performed, the apparatus can be reduced in size and can also be used for 100% inspection of measurement objects.
図1は、本発明に係わる鮮度センサの一実施例を説明する図である。 FIG. 1 is a diagram for explaining an embodiment of a freshness sensor according to the present invention.
図示の鮮度センサS1は、時間経過に伴って鮮度が低下する測定対象物Mとしており、概略を説明すると、測定対象物Mに光を照射する光源1と、測定対象物Mからの反射光Lを分光して反射スペクトルを形成する分光器2と、分光器2からの反射スペクトルを受光して電気信号に変換する画像素子3と、画像素子3からの電気信号を反射スペクトルの測定データとする中央制御装置(CPU)4と、予め取得した測定対象物Mの反射スペクトルのデータを基準データとして記憶する記憶装置5を備えている。
The illustrated freshness sensor S1 is a measurement object M whose freshness decreases with the passage of time. In brief, the
この鮮度センサS1は、中央制御装置4において測定データと記憶装置5からの基準データとに基いて測定対象物Mの鮮度判定を行うものとなっており、上記構成のほか、中央制御装置4で得た鮮度判定結果を表示する表示装置6と、中央制御装置4で得た鮮度判定結果を出力する外部出力端子7を備えている。
The freshness sensor S1 determines the freshness of the measurement object M on the basis of the measurement data and the reference data from the
光源1としては、一定の光を継続的に発生する照明、又は一定の光を瞬間的に発生するストロボなどを用いることができる。
As the
分光器2は、集光用レンズ8、スリット9aを有するスリット板9及び回析部10で構成してあり、測定対象物Mからの反射光を分光して、近赤外域を含む各波長域(色帯)を順に配列した反射スペクトルを形成する。この反射スペクトルは、結像用レンズ11を経て画像素子3に受光される。
The
画像素子3は、XY方向に多数の画素を配置したものであり、この実施例では射影演算機能を有する人工網膜LSIを用いている。この画像素子3は、反射スペクトルの受光時には、波長(X軸)とスリット幅方向の位置(Y軸)とのマトリックスから成る反射強度密度に比例する光強度が分布した状態となり、各画素毎に光強度を電気信号(電圧)に変換すると共に、上記の射影演算機能により、少なくともY軸方向における電気信号の平均化処理をアナログ的に行うことができる。
The
中央制御装置4は、画像素子3からの電気信号を反射スペクトルの測定データとし、この測定データと記憶装置5からの基準データと比較する。このとき、反射スペクトルの測定データは、波長と反射率との関係を示すパターンであり、基準データとの比較においては、パターン全体又はパターンのうちの特徴的な部分を用いる。
The
したがって、記憶装置5の基準データには、測定データと同様に、波長と反射率との関係を示すパターンが用いられるが、測定データとしてパターンの一部を用いる場合には、基準データとして所定のしきい値を設定することも可能である。
Therefore, a pattern indicating the relationship between the wavelength and the reflectance is used as the reference data of the
また、中央制御装置4は、測定データと基準データとに基いて鮮度判定を行う。より具体的には、パターン認識の結果すなわち測定対象物Mの鮮度を等級化して表示装置6に出力し、表示装置6において数字等の適当な符号を表示する。
Further, the
ここで、時間経過に伴って鮮度が低下する測定対象物Mは主として生鮮食品である。これらの生鮮食品のうち、例えば生肉は、主に青色の波長域の光を吸収すると共に、赤から近赤外に至る波長域に蛍光を発する性質があり、時間経過に伴って反射スペクトルのパターンが変化する。また、野菜などの植物は、クロロフィル(緑色)の反射スペクトルと鮮度とに強い相関があり、図2〜図4に示すように、時間経過に伴って反射スペクトルのパターンが変化する。 Here, the measuring object M whose freshness decreases with the passage of time is mainly fresh food. Among these fresh foods, raw meat, for example, has the property of absorbing light mainly in the blue wavelength range and emitting fluorescence in the wavelength range from red to the near infrared, and the pattern of the reflection spectrum over time. Changes. In addition, plants such as vegetables have a strong correlation between the reflection spectrum of chlorophyll (green) and the freshness, and the pattern of the reflection spectrum changes with time as shown in FIGS.
図2は、キュウリを測定対象物Mとした場合において、時間経過に伴う反射スペクトルのパターンの変化を示すグラフである。この場合、鮮度が良好である初期には、750〜800nmの波長域において高い反射率が得られるが、時間経過とともに同波長域の反射率が低下することが判る。 FIG. 2 is a graph showing changes in the pattern of the reflection spectrum over time when cucumber is used as the measurement object M. FIG. In this case, in the initial stage when the freshness is good, a high reflectance is obtained in the wavelength region of 750 to 800 nm, but it can be seen that the reflectance in the same wavelength region decreases with time.
図3は、バナナを測定対象物Mとした場合において、時間経過に伴う反射スペクトルのパターンの変化を示すグラフである。この場合、鮮度が良好である初期には、550〜800nmの波長域において高い反射率が得られるが、時間経過とともに同波長域の反射率が低下することが判る。 FIG. 3 is a graph showing changes in the pattern of the reflection spectrum over time when a banana is used as the measurement object M. FIG. In this case, in the initial stage when the freshness is good, a high reflectance is obtained in the wavelength region of 550 to 800 nm, but it can be seen that the reflectance in the same wavelength region decreases with time.
図4は、プラムを測定対象物Mとした場合において、時間経過に伴う反射スペクトルのパターンの変化を示すグラフである。この場合、鮮度が良好である初期には、600〜800nmの波長域において高い反射率が得られ、とくに、660nm付近で反射率が低いという特徴があるが、時間経過とともに同波長域の反射率が低下することが判る。 FIG. 4 is a graph showing the change in the pattern of the reflection spectrum with the passage of time when the plum is the measurement object M. In this case, in the initial stage when the freshness is good, a high reflectance is obtained in the wavelength region of 600 to 800 nm, and in particular, the reflectance is low in the vicinity of 660 nm. Can be seen to decrease.
野菜などの植物を測定対象物Mとした場合、上記の如く時間経過に伴って反射率が低下するのは、周知のように次第に表面が黒ずんだ状態になると共に、水分が減少するためである。なお、生肉や生魚等を測定対象物Mとした場合でも、時間経過に伴って反射スペクトルのパターンは変化する。 When plants such as vegetables are used as the measurement object M, the reflectance decreases with the passage of time as described above because the surface gradually becomes dark and the water content decreases as is well known. . Even when raw meat, raw fish, or the like is the measurement object M, the pattern of the reflection spectrum changes with time.
そこで、当該鮮度センサS1では、例えば図2〜図4中に示す初期(一日目)の反射スペクトルのパターンを基準データとして記憶装置5に記憶させておき、実際に測定を行った際に、中央制御装置4において、画像素子3からの反射スペクトルのパターンである測定データと上記の基準データを比較する。これにより、反射率の低下の度合いから測定対象物Mの鮮度を判定することができる。
Therefore, in the freshness sensor S1, for example, an initial (first day) reflection spectrum pattern shown in FIGS. 2 to 4 is stored in the
また、中央制御装置4では、以下の要領で鮮度の等級化を行う。例えば、図4に示すようにプラムが測定対象物Mである場合、反射スペクトルのパターンからA(460〜510nm)、B(570〜650nm)及びC(740〜800nm)の3つの波長領域を選択し、以下の式に基いて水分指数と鮮度指数を求める。
The
水分指数 : (C+A)/10(C−B)
鮮度指数 : (C+B)/10(C−B)
Moisture index: (C + A) / 10 (C-B)
Freshness index: (C + B) / 10 (C-B)
そして、中央制御装置4では、図5に示すように、上記の水分指数及び鮮度指数に基いて、新鮮と評価した場合を等1級とし、鮮度の落ち始めと評価した場合を等2級とし、腐りかけと評価した場合を等3級とし、これらの等級を選択して表示装置6に表示する。
Then, in the
このように、鮮度センサS1は、測定対象物Mからの反射光を分光して反射スペクトルを形成し、この反射スペクトルのデータを測定データとすると共に、予め取得した測定対象物Mの反射スペクトルのデータを基準データとし、測定データと基準データとに基いて測定対象物Mの鮮度判定を行うことから、測定対象物Mの鮮度を非破壊的に且つきわめて短時間で判定することができる。 In this way, the freshness sensor S1 forms a reflection spectrum by splitting the reflected light from the measurement object M, and uses the reflection spectrum data as measurement data, as well as the previously acquired reflection spectrum of the measurement object M. Since the data is used as reference data, and the freshness of the measurement object M is determined based on the measurement data and the reference data, the freshness of the measurement object M can be determined nondestructively and in a very short time.
そして、鮮度センサS1は、化学分析を行っていた従来の鮮度判定と比較すると、大掛りな分析機器が不要になると共に、装置の小型化に対処することが容易であり、また、サンプルを採取する必要もないので、生鮮食品を扱う現場においてリアルタイムに全数検査することも非常に容易である。 The freshness sensor S1 eliminates the need for a large-scale analytical instrument as compared with the conventional freshness determination in which chemical analysis is performed, and it is easy to cope with downsizing of the apparatus, and samples are collected. Therefore, it is very easy to inspect all products in real time at the site where fresh foods are handled.
また、鮮度センサS1は、光源1を備えているので、測定対象物Mに照射する光量を一定にして反射スペクトルの形成条件を一定に保つことができ、これにより判定精度が高いものとなり、さらに、画像素子3に人工網膜LSIを採用してY軸方向における電気信号の平均化処理をアナログ的に行うことから、中央制御装置4の負荷が軽減され、小型で低電力の中央制御装置4を用いても短時間に演算処理時間を行うことができる。
In addition, since the freshness sensor S1 includes the
さらに、鮮度センサS1は、中央制御装置4からの鮮度判定結果を外部出力端子7から外部へ出力することができるので、外部機器とのインターフェースが容易であり、様々な電子機器に組み込んでデータを転送するなど応用範囲を広げることができる。
Further, since the freshness sensor S1 can output the freshness determination result from the
このとき、上記の外部出力端子7は、有線又は無線で外部機器とのインターフェースを行うようにすることができ、また、外部から基準データを記憶装置5に入力するための入力端子を備えたものとすることも可能である。
At this time, the
図6は、本発明に係わる鮮度センサの他の実施例を説明する図である。 FIG. 6 is a diagram for explaining another embodiment of the freshness sensor according to the present invention.
図示の鮮度センサS2は、光源1、分光器2、画像素子3、中央制御装置4、記憶装置5、表示装置6、外部出力端子7及び結像用レンズ11を多層の電子基板に設けた構成になっている。
The illustrated freshness sensor S2 includes a
この実施例では、第1〜第4の基板P1〜P4を備えている。第1基板P1には、光源1と分光器2を構成する集光用レンズ8が設けてある。第2基板P2には、分光器2を構成する回析部10が設けてあり、第1基板P1と第2基板P2との間に、分光器2を構成するスリット板9が配置してある。さらに、第3基板には、結像用レンズ11が設けてあり、第4基板P4には、画像素子3、中央制御装置4、記憶装置5、表示装置6及び外部出力端子7が設けてある。
In this embodiment, first to fourth substrates P1 to P4 are provided. On the first substrate P1, a condensing
上記構成を備えた鮮度センサS2は、先の実施例と同様の作用及び効果を得ることができるうえに、装置全体を一層コンパクトにして汎用性をより高めることができ、具体的には、携帯電話を含むポータブルな電子端末機器や、冷蔵庫やクーラーボックス等の収容機器などに組み込むことが容易である。 The freshness sensor S2 having the above-described configuration can obtain the same operations and effects as those of the previous embodiment, and can further improve the versatility by making the entire apparatus more compact. It can be easily incorporated into portable electronic terminal devices including telephones and storage devices such as refrigerators and cooler boxes.
また、携帯電話に組み込む場合には、その構成の一部を既存のカメラ機能と併用することが可能であり、例えばスリット板9、第2及び第3の基板P2,P3をスライド可能にして、通常の撮影時と鮮度判定時とで切り換えを行うようにしても良い。
In addition, when incorporated in a mobile phone, a part of the configuration can be used in combination with an existing camera function. For example, the
なお、本発明に係わる鮮度センサは、その構成の細部が上記各実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成を適宜変更することができる。 It should be noted that the freshness sensor according to the present invention is not limited to the details of the configuration described above, and the configuration can be changed as appropriate without departing from the gist of the present invention.
M測定対象物
P1〜P4 基板
S1 S2 鮮度センサ
1 光源
2 分光器
3 画像素子
4 中央制御装置
5 記憶装置
7 外部出力端子
M measurement object P1 to P4 Substrate S1
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301735A JP2007108124A (en) | 2005-10-17 | 2005-10-17 | Freshness sensor |
PCT/JP2006/320282 WO2007046280A1 (en) | 2005-10-17 | 2006-10-11 | Freshness sensor |
CNA2006800385525A CN101292149A (en) | 2005-10-17 | 2006-10-11 | Freshness sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301735A JP2007108124A (en) | 2005-10-17 | 2005-10-17 | Freshness sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007108124A true JP2007108124A (en) | 2007-04-26 |
Family
ID=37962376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005301735A Pending JP2007108124A (en) | 2005-10-17 | 2005-10-17 | Freshness sensor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2007108124A (en) |
CN (1) | CN101292149A (en) |
WO (1) | WO2007046280A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096243A1 (en) * | 2011-12-19 | 2013-06-27 | The City University Of New York | Method for detecting degree of spoilage of food |
US9041928B2 (en) | 2011-05-20 | 2015-05-26 | Seiko Epson Corporation | Feature value estimation device and corresponding method, and spectral image processing device and corresponding method |
JP2016133296A (en) * | 2015-01-22 | 2016-07-25 | 三菱電機株式会社 | refrigerator |
WO2017007259A1 (en) * | 2015-07-08 | 2017-01-12 | 피도연 | Food status measuring apparatus, food status measuring module, and smart apparatus comprising same |
US9599511B2 (en) | 2014-11-19 | 2017-03-21 | Panasonic Intellectual Property Management Co., Ltd. | Imaging apparatus comprising coding element and spectroscopic system comprising the imaging apparatus |
US9762874B2 (en) | 2015-01-08 | 2017-09-12 | Panasonic Intellectual Property Management Co., Ltd. | Imaging apparatus comprising image sensor and signal processing circuit |
US9880053B2 (en) | 2014-10-29 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Image pickup apparatus, spectroscopic system, and spectroscopic method |
JP2018096712A (en) * | 2016-12-08 | 2018-06-21 | アクア株式会社 | Freshness/maturation determination device and refrigerator with freshness/maturation determination device |
JP2020051878A (en) * | 2018-09-27 | 2020-04-02 | 東芝ライテック株式会社 | Method for evaluating light source and illumination device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251525B (en) * | 2008-04-09 | 2011-05-04 | 天津商业大学 | Method for computing fruit vegetables residual storage period |
WO2011122584A1 (en) * | 2010-03-29 | 2011-10-06 | 株式会社システムブレイン | Food quality inspection device and method of inspecting food quality |
CN103543153B (en) * | 2013-10-24 | 2017-03-22 | 浙江农林大学 | Fish freshness optical detection device |
PL3295166T3 (en) | 2015-05-13 | 2023-02-20 | Foss Analytical A/S | Method for determining an indication of wholesomeness |
WO2017101083A1 (en) * | 2015-12-17 | 2017-06-22 | 华为技术有限公司 | Device and method for comparing data |
JP6514781B2 (en) * | 2016-02-26 | 2019-05-15 | 京セラ株式会社 | Inspection device and inspection system |
CN107036980B (en) * | 2016-11-10 | 2020-05-22 | Tcl科技集团股份有限公司 | Method for detecting food freshness of refrigerator and refrigerator |
JP6786565B2 (en) * | 2018-10-10 | 2020-11-18 | Ckd株式会社 | Inspection equipment, PTP packaging machine and PTP sheet manufacturing method |
CN109655414B (en) * | 2018-11-27 | 2021-11-02 | Oppo广东移动通信有限公司 | Electronic equipment, information pushing method and related product |
CN109668852B (en) * | 2018-12-25 | 2021-11-02 | Oppo广东移动通信有限公司 | Electronic equipment, information pushing method and related product |
CN109580501B (en) * | 2018-12-25 | 2023-11-07 | 上海理工大学 | Intelligent judging device and method for fresh quality of fruits and vegetables embedded in refrigerator |
CN111999293A (en) * | 2020-07-03 | 2020-11-27 | 中国农业大学 | Fruit and vegetable freshness detection and evaluation method |
CN113763197A (en) * | 2021-09-09 | 2021-12-07 | 李帅 | Digital asset transaction method based on block chain system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0396838A (en) * | 1989-09-08 | 1991-04-22 | Sumitomo Electric Ind Ltd | Measuring instrument for degree of freshness of meat |
JPH0829338A (en) * | 1994-07-19 | 1996-02-02 | Iseki & Co Ltd | Freshness evaluation apparatus for green vegetables |
JP2000339410A (en) * | 1999-05-31 | 2000-12-08 | Mitsubishi Electric Corp | Picture classifying device and picture classification method |
JP2003083883A (en) * | 2001-09-13 | 2003-03-19 | Akagi Suisan Kk | Method and apparatus for meat property inspection of dark-fleshed fish |
JP2005504313A (en) * | 2001-10-01 | 2005-02-10 | ユーディー テクノロジー コーポレーション | Apparatus and method for real-time IR spectroscopy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3181596B2 (en) * | 1995-08-31 | 2001-07-03 | インフラレッド ファイバー システムス,インク. | Handheld infrared spectrometer |
-
2005
- 2005-10-17 JP JP2005301735A patent/JP2007108124A/en active Pending
-
2006
- 2006-10-11 CN CNA2006800385525A patent/CN101292149A/en active Pending
- 2006-10-11 WO PCT/JP2006/320282 patent/WO2007046280A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0396838A (en) * | 1989-09-08 | 1991-04-22 | Sumitomo Electric Ind Ltd | Measuring instrument for degree of freshness of meat |
JPH0829338A (en) * | 1994-07-19 | 1996-02-02 | Iseki & Co Ltd | Freshness evaluation apparatus for green vegetables |
JP2000339410A (en) * | 1999-05-31 | 2000-12-08 | Mitsubishi Electric Corp | Picture classifying device and picture classification method |
JP2003083883A (en) * | 2001-09-13 | 2003-03-19 | Akagi Suisan Kk | Method and apparatus for meat property inspection of dark-fleshed fish |
JP2005504313A (en) * | 2001-10-01 | 2005-02-10 | ユーディー テクノロジー コーポレーション | Apparatus and method for real-time IR spectroscopy |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9041928B2 (en) | 2011-05-20 | 2015-05-26 | Seiko Epson Corporation | Feature value estimation device and corresponding method, and spectral image processing device and corresponding method |
WO2013096243A1 (en) * | 2011-12-19 | 2013-06-27 | The City University Of New York | Method for detecting degree of spoilage of food |
US9880053B2 (en) | 2014-10-29 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Image pickup apparatus, spectroscopic system, and spectroscopic method |
US9599511B2 (en) | 2014-11-19 | 2017-03-21 | Panasonic Intellectual Property Management Co., Ltd. | Imaging apparatus comprising coding element and spectroscopic system comprising the imaging apparatus |
US9762874B2 (en) | 2015-01-08 | 2017-09-12 | Panasonic Intellectual Property Management Co., Ltd. | Imaging apparatus comprising image sensor and signal processing circuit |
JP2016133296A (en) * | 2015-01-22 | 2016-07-25 | 三菱電機株式会社 | refrigerator |
WO2017007259A1 (en) * | 2015-07-08 | 2017-01-12 | 피도연 | Food status measuring apparatus, food status measuring module, and smart apparatus comprising same |
KR101745372B1 (en) * | 2015-07-08 | 2017-06-09 | 피도연 | Food condition measurement apparatus, food condition measurement module and smart apparatus comprising the same |
US10788418B2 (en) | 2015-07-08 | 2020-09-29 | Do Yeon PI | Food state measuring device, food state measuring module, and smart device including the same |
JP2018096712A (en) * | 2016-12-08 | 2018-06-21 | アクア株式会社 | Freshness/maturation determination device and refrigerator with freshness/maturation determination device |
JP2020051878A (en) * | 2018-09-27 | 2020-04-02 | 東芝ライテック株式会社 | Method for evaluating light source and illumination device |
JP7187931B2 (en) | 2018-09-27 | 2022-12-13 | 東芝ライテック株式会社 | Light source evaluation method |
Also Published As
Publication number | Publication date |
---|---|
CN101292149A (en) | 2008-10-22 |
WO2007046280A1 (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007108124A (en) | Freshness sensor | |
Rossel et al. | Using a digital camera to measure soil organic carbon and iron contents | |
Wu et al. | Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals | |
US9590122B2 (en) | Fish eye lens analyzer | |
US9134121B2 (en) | Determining material properties using speckle statistics | |
Li et al. | Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging | |
US10961558B2 (en) | Substance or contamination detection | |
US20180372542A1 (en) | LED Lighting Based Multispectral Imaging System for Color Measurement | |
Cubero et al. | Application for the estimation of the standard citrus colour index (CCI) using image processing in mobile devices | |
JP2022522348A (en) | Equipment and methods for inspecting membranes on substrates | |
JP2018013418A (en) | Wavelength selection method, manufacturing method of object substance content estimation device, and object substance content estimation device | |
JP2012242270A (en) | Feature value estimation device and method thereof, spectroscopic image processing device and method thereof, and computer program | |
JP2013108855A (en) | Discrimination filter design method, discrimination method, discrimination filter set, discrimination device and program | |
US20190369013A1 (en) | Method and apparatus for spectroscopic analysis, implementing infrared and fluorescence multichannel processing of spectral data | |
JP2015180895A (en) | Method for designing discrimination filter, discrimination method, discrimination filter set, discrimination device, and program | |
JP3706914B2 (en) | Component distribution visualization method and component distribution visualization device | |
Lu et al. | Rapid assessment of tomato ripeness using visible/near-infrared spectroscopy and machine vision | |
Dong et al. | A case study of characteristic bands selection in near-infrared spectroscopy: Nondestructive detection of ash and moisture in wheat flour | |
JPWO2014083743A1 (en) | Image measuring apparatus and image measuring method | |
Song et al. | Fruit grading system by reconstructed 3D hyperspectral full-surface images | |
KR100593883B1 (en) | Apparatus for testing lighting device | |
JP2021001777A (en) | Growth state evaluation method and evaluation device for plant | |
CN114965356B (en) | Rapid visual monitoring method for freshness index in green tea storage process | |
Gowen et al. | Hyperspectral imaging | |
EP4303546A1 (en) | Improved instrument monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110323 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111025 |