JP2007108100A - Quantitative method for tungsten bronze - Google Patents
Quantitative method for tungsten bronze Download PDFInfo
- Publication number
- JP2007108100A JP2007108100A JP2005301242A JP2005301242A JP2007108100A JP 2007108100 A JP2007108100 A JP 2007108100A JP 2005301242 A JP2005301242 A JP 2005301242A JP 2005301242 A JP2005301242 A JP 2005301242A JP 2007108100 A JP2007108100 A JP 2007108100A
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- solution
- tungsten bronze
- sample
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
本発明は、タングステンブロンズ中のアルカリ金属を定量する方法に関するものである。 The present invention relates to a method for quantifying alkali metals in tungsten bronze.
タングステンブロンズは、近年、建物や車の窓等に使用する熱線遮蔽材料としての需要が高まっている。熱線遮蔽材料の重要な特性としては、紫外線の吸収率および可視光の透過率があげられる。タングステンブロンズに含まれるアルカリ金属量は上記の特性を大きく左右するものであり、これらの含有量を正確に把握することは極めて重要である。 In recent years, tungsten bronze has been increasingly demanded as a heat ray shielding material used for buildings and car windows. Important characteristics of the heat ray shielding material include ultraviolet absorption and visible light transmission. The amount of alkali metal contained in tungsten bronze greatly affects the above characteristics, and it is extremely important to accurately grasp these contents.
しかし、タングステンブロンズは高耐腐食性といった特性を有するため、通常の酸分解法では試料を溶液化することは非常に困難である。溶解する方法としては過酸化ナトリウム等を用いたアルカリ融解法等(非特許文献1)が提案されている。
上記非特許文献に記載の方法では、融解の際、例えば、900°Cの高温に加熱する必要があるため、アルカリ金属が酸化物の形態で一部揮散し、目的成分をロスしてしまう可能性がある。 In the method described in the above-mentioned non-patent document, it is necessary to heat to a high temperature of, for example, 900 ° C. at the time of melting, so that the alkali metal may partially volatilize in the form of an oxide and the target component may be lost. There is sex.
したがって、本発明は、アルカリ金属が酸化物の形態で一部揮散するのを防止できるタングステンブロンズ中のアルカリ金属を定量する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for quantifying alkali metal in tungsten bronze that can prevent alkali metal from partially evaporating in the form of an oxide.
本発明のタングステンブロンズ中のアルカリ金属の定量方法は、試料であるタングステンブロンズをアルカリ溶液を加えマイクロ波加熱分解法により溶液化した後、試料中のアルカリ金属を定量することを特徴とする。 The method for quantifying alkali metal in tungsten bronze according to the present invention is characterized in that a sample of tungsten bronze, which is a sample, is added with an alkaline solution to form a solution by microwave thermal decomposition, and then the alkali metal in the sample is quantified.
本発明によれば、タングステンブロンズ中のアルカリ金属を損失することなく溶液化することが可能となり、タングステンブロンズ中のアルカリ金属を定量することが可能である。 According to the present invention, the alkali metal in the tungsten bronze can be made into a solution without loss, and the alkali metal in the tungsten bronze can be quantified.
本発明は、これらの問題を解決する方法として、試料であるタングステンブロンズをアルカリ溶液を加えマイクロ波加熱分解法により溶液化することにより、目的成分を損失することなく、定量することを可能とした。 As a method for solving these problems, the present invention makes it possible to quantify without losing the target component by adding an alkaline solution to the tungsten bronze as a sample and making it a solution by the microwave thermal decomposition method. .
本発明によるタングステンブロンズ中のアルカリ金属の定量方法をより詳細に述べると以下のようになる。 The method for quantifying alkali metal in tungsten bronze according to the present invention will be described in detail as follows.
試料をマイクロ波加熱分解用のポリ四フッ化エチレン樹脂製容器に秤量し、10wt%水酸化ナトリウム溶液を10ml加える。次にポリ四フッ化エチレン樹脂製容器をマイクロ波加熱分解装置にセットして密閉し、加熱分解する。その際、より高温で加熱することで分解時間の短縮が図れるが、ポリ四フッ化エチレン製容器が変形しないよう、200°C程度が好ましい。 The sample is weighed into a polytetrafluoroethylene resin container for microwave thermal decomposition, and 10 ml of 10 wt% sodium hydroxide solution is added. Next, the polytetrafluoroethylene resin container is set in a microwave thermal decomposition apparatus, sealed, and thermally decomposed. At this time, although the decomposition time can be shortened by heating at a higher temperature, about 200 ° C. is preferable so that the polytetrafluoroethylene container is not deformed.
以上の方法で試料を分解、溶液化した後、過酸化水素水を5%含んだ硫酸(1+1)溶液を加え酸性とし、水を加えて溶液量を一定の容量に合わせ試料溶液とし、これを適宜希釈した後、フレーム原子吸光法で溶液中の農度を測定する。以上の方法によって、タングステンブロンズ中のアルカリ金属を定量することが可能である。 After the sample is decomposed and made into a solution by the above method, a sulfuric acid (1 + 1) solution containing 5% hydrogen peroxide is added to make the solution acidic, and water is added to adjust the amount of the solution to a constant volume to obtain a sample solution. After diluting appropriately, the farming degree in the solution is measured by flame atomic absorption spectrometry. The alkali metal in tungsten bronze can be quantified by the above method.
本発明により、各種タングステンブロンズ試料中のNa、K、Rb、CsおよびWの定量を行った。以下、実施例に基づき本発明を説明する。
(実施例1)
タングステンブロンズ試料をマイクロ波加熱分解用のポリ四フッ化エチレン樹脂製容器に秤量し、10wt%水酸化ナトリウム溶液を10ml加える。次にポリ四フッ化エチレン樹脂製容器をマイクロ波加熱分解装置にセットして密閉し、加熱分解する。その際、温度が200°Cを超えないように、出力の上限を600W、温度の上限を(IRモニター)200°Cとして、約1時間加熱分解する。放冷後、マイクロ波加熱分解用のポリ四フッ化エチレン樹脂製容器に過酸化水素水を5%含んだ硫酸(1+1)溶液を30ml加える。放冷後、得られた溶液を250mlのフラスコに移し入れ、水を加えて容量を250mlに合わせこれを試料溶液とした。測定条件は下記の表1の通りとし、フレーム原子吸光装置(AAS)およびICP−発光分光分析装置(ICP−AES)を用いて測定を行った。
According to the present invention, Na, K, Rb, Cs and W in various tungsten bronze samples were quantified. Hereinafter, the present invention will be described based on examples.
Example 1
A tungsten bronze sample is weighed into a polytetrafluoroethylene resin container for microwave thermal decomposition, and 10 ml of 10 wt% sodium hydroxide solution is added. Next, a polytetrafluoroethylene resin container is set in a microwave thermal decomposition apparatus, sealed, and thermally decomposed. At that time, thermal decomposition is performed for about 1 hour with the upper limit of output being 600 W and the upper limit of temperature being (IR monitor) 200 ° C. so that the temperature does not exceed 200 ° C. After standing to cool, 30 ml of sulfuric acid (1 + 1) solution containing 5% hydrogen peroxide is added to a polytetrafluoroethylene resin container for microwave thermal decomposition. After cooling, the resulting solution was transferred to a 250 ml flask, water was added to adjust the volume to 250 ml, and this was used as a sample solution. The measurement conditions were as shown in Table 1 below, and measurement was performed using a flame atomic absorption spectrometer (AAS) and an ICP-emission spectroscopic analyzer (ICP-AES).
ただし、フェ−エル流量の単位はml/minである。 However, the unit of the fuel flow rate is ml / min.
定量結果を下記の表2に示す。比較のため、同じ試料を過酸化ナトリウム融解法で溶解し、得られた結果を併記する。結果より、Wについてはどちらの方法においても同等の定量値が得られたのに対し、アルカリ金属の結果は、アルカリ融解法で得られた定量値がマイクロは加熱分解法で得られた定量値より、低値を示す結果となった。このことからもアルカリ融解法では、目的成分であるアルカリ金属を損失していることが考えられる。 The quantitative results are shown in Table 2 below. For comparison, the same sample is dissolved by the sodium peroxide melting method, and the results obtained are also shown. From the results, the same quantitative value was obtained for both methods for W, whereas for alkali metals, the quantitative value obtained by the alkali melting method was the quantitative value obtained by the thermal decomposition method for micro. As a result, a low value was obtained. From this fact, it is considered that the alkali metal as the target component is lost in the alkali melting method.
(実施例2)
分解の際に、用いるアルカリ溶液を10wt%水酸化カリウム溶液を用いた以外は、実施例1と同様の方法で定量を行った。その結果を下記の表3に示す。実施例1と良く一致する結果が得られた。
(Example 2)
In the decomposition, quantification was performed in the same manner as in Example 1 except that a 10 wt% potassium hydroxide solution was used as the alkaline solution to be used. The results are shown in Table 3 below. A result in good agreement with Example 1 was obtained.
(実施例3)
分解の際に、用いるアルカリ溶液を10wt%炭酸ナトリウム溶液を用いた以外は、実施例2と同様の方法で定量を行った。その結果を下記の表4に示す。実施例1および実施例2と良く一致する結果が得られた。
(Example 3)
At the time of decomposition, quantification was performed in the same manner as in Example 2 except that a 10 wt% sodium carbonate solution was used as the alkaline solution to be used. The results are shown in Table 4 below. Results in good agreement with Example 1 and Example 2 were obtained.
(実施例4)
分解の際に、用いるアルカリ溶液を10wt%炭酸カリウム溶液を用いた以外は、実施例2と同様の方法で定量を行った。その結果を下記の表5に示す。上記実施例と良く一致する結果が得られた。
Example 4
At the time of decomposition, quantification was performed in the same manner as in Example 2 except that a 10 wt% potassium carbonate solution was used as the alkaline solution to be used. The results are shown in Table 5 below. The results are in good agreement with the above examples.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301242A JP2007108100A (en) | 2005-10-17 | 2005-10-17 | Quantitative method for tungsten bronze |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301242A JP2007108100A (en) | 2005-10-17 | 2005-10-17 | Quantitative method for tungsten bronze |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007108100A true JP2007108100A (en) | 2007-04-26 |
Family
ID=38034059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005301242A Pending JP2007108100A (en) | 2005-10-17 | 2005-10-17 | Quantitative method for tungsten bronze |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007108100A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543080A (en) * | 2013-10-31 | 2014-01-29 | 洛阳氟钾科技有限公司 | Method for determining tailing composition after decomposition of potassium feldspar |
-
2005
- 2005-10-17 JP JP2005301242A patent/JP2007108100A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543080A (en) * | 2013-10-31 | 2014-01-29 | 洛阳氟钾科技有限公司 | Method for determining tailing composition after decomposition of potassium feldspar |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004198324A (en) | Analytical method for heavy metal contained in soil | |
JP2009014512A (en) | Method for determining quantity of halide in sample containing organic compound | |
JP6416807B2 (en) | Silicon quantitative analysis method | |
Corazza et al. | Microwave-induced combustion of coal for further sulfur determination by inductively coupled plasma optical emission spectrometry or ion chromatography | |
Li et al. | Recycling of aluminum salt cake: Utilization of evolved ammonia | |
Musil et al. | Silver chemical vapor generation for atomic absorption spectrometry: minimization of transport losses, interferences and application to water analysis | |
Costa et al. | Use of factorial design for optimization of microwave-assisted digestion of lubricating oil | |
JP2007108100A (en) | Quantitative method for tungsten bronze | |
JP2011214977A (en) | Method of analyzing metal element in resin material | |
JP4655969B2 (en) | Determination of iron | |
Miranda et al. | Determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Se, and Zn in foodstuffs by atomic spectrometry after sample preparation using a low-cost closed-vessel conductively heated digestion system | |
JP2008082951A (en) | Method for quantitatively determining impurity in ruthenium hydroxide | |
JP7234537B2 (en) | Determination method of aluminum concentration in aluminum-coated powder | |
JP2010197183A (en) | Analysis method of trace element in alloy | |
JP2019066249A (en) | Sample preparation method for elemental impurity measurement | |
JP2005043246A (en) | Method of quantifying heavy metals in fluorocarbon resin | |
JP6919360B2 (en) | How to quantify the amount of silicon in metallic materials | |
JP6436735B2 (en) | Sample preparation method, analysis method, and quality control method | |
KR101454645B1 (en) | Method for quantitative analysis of metals from spent catalyst of exhaust gas consecration system | |
JP2015040789A (en) | Analytical method of zirconium in quartz | |
JP4602070B2 (en) | Sample pretreatment method for arsenic analysis by chemical form | |
JP4559932B2 (en) | Method for analyzing metal impurities | |
JP2010223721A (en) | Method for analysis of impurities in fluorine compound | |
JP6160205B2 (en) | Titanate analysis method | |
JP2010122000A (en) | Method for measuring content of metal ions in sample |