JP2010223721A - Method for analysis of impurities in fluorine compound - Google Patents

Method for analysis of impurities in fluorine compound Download PDF

Info

Publication number
JP2010223721A
JP2010223721A JP2009070722A JP2009070722A JP2010223721A JP 2010223721 A JP2010223721 A JP 2010223721A JP 2009070722 A JP2009070722 A JP 2009070722A JP 2009070722 A JP2009070722 A JP 2009070722A JP 2010223721 A JP2010223721 A JP 2010223721A
Authority
JP
Japan
Prior art keywords
sample
capsule
fluorine compound
alkali metal
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009070722A
Other languages
Japanese (ja)
Inventor
Yoshiharu Suzuki
誉晴 鈴木
Mitsuyoshi Watanabe
光義 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009070722A priority Critical patent/JP2010223721A/en
Publication of JP2010223721A publication Critical patent/JP2010223721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To analyze the impurity components in a fluorine compound up to low concentration with high precision. <P>SOLUTION: At first, the sample of the fluorine compound is metered into the hollow part of an alkali metal salt capsule formed into a cup shape. Then, the opening of the hollow part of the capsule is hermetically closed by an alkali metal salt lumpy lid and the sample is melted by heating the hollow part of the capsule to a heat treatment temperature set to the melting point of the fluorine compound or above and ≤400°C to be subsequently brought to a solution state. The impurities in the resulting solution are quantitatively analyzed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、フッ素化合物中の不純物分析方法に関する。   The present invention relates to a method for analyzing impurities in a fluorine compound.

従来より、フッ素化合物中の不純物を分析する方法が開発されている。不純物の含有量を測定するには、原子吸光分析装置、誘導結合プラズマ(ICP)発光分光分析装置又はICP質量分析装置などが用いられるが、これらの装置を用いて不純物を測定するには、試料を溶液にして装置に供する必要がある。分析しようとするフッ素化合物を溶液にする(「前処理」と称されている)には、(1)乾式灰化法、(2)湿式灰化法、(3)アルカリあるいは酸融解法、(4)酸素フラスコ燃焼法、(5)燃焼ガス吸収法、(6)燃焼ガス吸収法溶液などがある(例えば特許文献1参照)。   Conventionally, methods for analyzing impurities in fluorine compounds have been developed. In order to measure the impurity content, an atomic absorption spectrometer, an inductively coupled plasma (ICP) emission spectrometer, or an ICP mass spectrometer is used. To measure impurities using these apparatuses, a sample is used. It is necessary to make the solution into a device. In order to make the fluorine compound to be analyzed into a solution (referred to as “pretreatment”), (1) dry ashing method, (2) wet ashing method, (3) alkali or acid melting method, ( 4) Oxygen flask combustion method, (5) Combustion gas absorption method, (6) Combustion gas absorption method solution, etc. (see, for example, Patent Document 1).

このうち、アルカリ融解法は、フッ化物として揮発する成分も簡便な操作で高精度且つ低濃度まで分析可能である。例えば、非特許文献1には、フッ素樹脂中のフッ素を簡易に定量するにあたり、アルカリ融解法を採用している。具体的には、ポリテトラフルオロエチレン(PTFE)を試料として使用する場合、まず、炭酸カリウム製のカプセルを作製し、そのカプセルの中空部分(穴)に試料を正確に量り取る。続いて、予め粉砕乾燥した炭酸カリウム粉末をその中空部分の上部まで詰め込む。そして、電気炉で300℃から1時間で600℃まで昇温し、600℃で1時間分解させたのち、カプセルを電気炉から取り出して放冷する。その後、カプセルを1Lのメスフラスコに入れ、水で溶解し、次いで塩酸を加えて中性とし、水で定容にする。   Among these, the alkali melting method can analyze a component that volatilizes as a fluoride with high accuracy and low concentration by a simple operation. For example, Non-Patent Document 1 employs an alkali melting method for easily quantifying fluorine in a fluororesin. Specifically, when polytetrafluoroethylene (PTFE) is used as a sample, first, a capsule made of potassium carbonate is prepared, and the sample is accurately weighed into a hollow portion (hole) of the capsule. Subsequently, potassium carbonate powder that has been pulverized and dried in advance is packed to the top of the hollow portion. Then, the temperature is raised from 300 ° C. to 600 ° C. in one hour in an electric furnace and decomposed at 600 ° C. for one hour, and then the capsule is taken out of the electric furnace and allowed to cool. The capsule is then placed in a 1 L volumetric flask, dissolved in water, then neutralized with hydrochloric acid and made up to volume with water.

特開2005−43246号公報JP-A-2005-43246

日本化学会誌、1973年、No.6、1236−1237頁The Chemical Society of Japan, 1973, No. 6, pp. 1236-1237

しかしながら、フッ素化合物中の不純物成分の分析を行うにあたり、非特許文献1の手法を採用して前処理を施したあとICP発光分光分析装置で分析したところ、満足した結果が得られなかった。その原因は、炭酸カリウム製のカプセルの中空部分に試料を量り取ったあと炭酸カリウム粉末をその中空部分の上部まで詰め込み600℃でフッ素化合物を熱処理するが、600℃という高温で熱処理するため不純物成分の一部が揮発性のフッ化物となり、そのフッ化物が炭酸カリウム粉末の粉粒同士の間に存在する微小隙間を通じてカプセル外に放散したことにあると考えられる。   However, when analyzing the impurity component in the fluorine compound, when the pretreatment was performed using the method of Non-Patent Document 1 and the analysis was performed with an ICP emission spectroscopic analyzer, a satisfactory result was not obtained. The cause is that after weighing the sample in the hollow portion of the capsule made of potassium carbonate, the potassium carbonate powder is packed up to the top of the hollow portion and the fluorine compound is heat-treated at 600 ° C. It is considered that a part of the volatile fluoride became a volatile fluoride, and the fluoride was diffused out of the capsule through a minute gap existing between the powders of the potassium carbonate powder.

本発明はこのような課題を解決するためになされたものであり、フッ素化合物中の不純物成分を高精度で且つ低濃度まで分析可能にすることを主目的とする。   The present invention has been made to solve such problems, and has as its main object to make it possible to analyze an impurity component in a fluorine compound to a low concentration with high accuracy.

本発明者らは、炭酸カリウムのカプセルの中空部分(穴)にフッ素化合物を量り取ったあとこの中空部分を炭酸カリウムの塊状の蓋で覆い、比較的低温(400℃以下)で熱処理してフッ素化合物を溶融させたあと溶液化したところ、フッ素化合物中の不純物を高精度で且つ低濃度まで定量分析を行うことができることを見いだし、本発明を完成するに至った。   The inventors measured the fluorine compound in the hollow portion (hole) of the capsule of potassium carbonate, and then covered the hollow portion with a bulky lid of potassium carbonate, and heat-treated at a relatively low temperature (400 ° C. or lower). When the compound was melted and then made into a solution, it was found that impurities in the fluorine compound could be quantitatively analyzed with high accuracy and low concentration, and the present invention was completed.

本発明のフッ素化合物中の不純物の分析方法は、コップ状に形成されたアルカリ金属塩のカプセルの中空部分にフッ素化合物の試料を量り取り、その中空部分の開口をアルカリ金属塩の塊状の蓋で密閉し、前記フッ素化合物の融点以上400℃以下に設定された熱処理温度まで昇温して前記試料を融解させたあと溶液化し、その溶液中の不純物を定量分析するものである。   According to the method for analyzing impurities in a fluorine compound of the present invention, a sample of a fluorine compound is weighed into a hollow portion of a cup-shaped alkali metal salt capsule, and the opening of the hollow portion is covered with a lump of alkali metal salt. The sample is sealed, heated to a heat treatment temperature set to a melting point of the fluorine compound and not higher than 400 ° C., and the sample is melted to form a solution, and impurities in the solution are quantitatively analyzed.

本発明の分析方法では、熱処理温度を低温(フッ素化合物の融点以上400℃以下)に設定するため、従来のように高温(600℃)まで加熱する場合と比べて、フッ素化合物中の不純物が例えばフッ化物などの揮発成分に変わるのではなく、不純物成分とアルカリ金属との不揮発性の酸化物に変わる。また、従来のようにカプセルの開口をアルカリ金属塩の粉末で覆うのではなく、アルカリ金属塩の塊状の蓋で覆うため、カプセルの中空部分がしっかりと密閉される。こうしたことから、不純物成分の一部が揮発成分となってカプセル外に放散してしまうのを有効に防止することができ、ひいては不純物を高精度で且つ低濃度まで分析することが可能となる。   In the analysis method of the present invention, since the heat treatment temperature is set to a low temperature (from the melting point of the fluorine compound to 400 ° C. or less), the impurities in the fluorine compound are, for example, less than that in the conventional heating to a high temperature (600 ° C.). Instead of a volatile component such as fluoride, it changes to a non-volatile oxide of an impurity component and an alkali metal. Further, since the opening of the capsule is not covered with an alkali metal salt powder as in the prior art, but is covered with an alkali metal salt lump, the hollow portion of the capsule is tightly sealed. For this reason, it is possible to effectively prevent a part of the impurity component from becoming a volatile component and dissipating out of the capsule. As a result, the impurity can be analyzed with high accuracy and to a low concentration.

カプセル作製手順の説明図である。It is explanatory drawing of a capsule preparation procedure. 不純物分析の熱処理工程での時間と加熱温度との関係を示すグラフである。It is a graph which shows the relationship between the time in the heat treatment process of impurity analysis, and heating temperature.

本発明の不純物分析方法において、フッ素化合物としては、例えばポリテトラフルオロエチレン(PTFE、融点327℃)、ポリフッ化ビニリデン(PVDF、融点171℃)、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル共重合体(PFA、融点310℃)、テトラフルオロエチレン−エチレン共重合体(ETFE、融点270℃)などのフッ素樹脂のほか、パーフルオロアルカンスルホン酸やパーフルオロカルボン酸などが挙げられる。   In the impurity analysis method of the present invention, examples of the fluorine compound include polytetrafluoroethylene (PTFE, melting point 327 ° C.), polyvinylidene fluoride (PVDF, melting point 171 ° C.), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA, In addition to fluorine resins such as a melting point of 310 ° C. and a tetrafluoroethylene-ethylene copolymer (ETFE, melting point of 270 ° C.), perfluoroalkanesulfonic acid, perfluorocarboxylic acid, and the like can be given.

本発明の不純物分析方法において、不純物としては、特に限定するものではないが、例えば、ケイ素化合物、ホウ素化合物、硫黄化合物、ハロゲン化合物などが挙げられる。このうち、ケイ素化合物やホウ素化合物は、従来、分析中に揮発性のフッ化物となりやすく精度よく分析するのが困難とされていた化合物であるため、本発明を適用する意義が高い。   In the impurity analysis method of the present invention, the impurities are not particularly limited, and examples thereof include silicon compounds, boron compounds, sulfur compounds, and halogen compounds. Among these compounds, silicon compounds and boron compounds are compounds that have been conventionally considered to be volatile fluorides during analysis and difficult to analyze with high precision, and therefore, the significance of applying the present invention is high.

本発明の不純物分析方法において、カプセルの原料となるアルカリ金属塩のアルカリ金属成分としては、リチウム、ナトリウム、カリウムなどが挙げられ、アルカリ金属と塩を形成する酸成分としては炭酸塩、硫酸塩、硝酸塩、塩酸塩などが挙げられる。アルカリ金属塩としては、炭酸ナトリウムや炭酸カリウムが好ましく、炭酸カリウムがより好ましい。   In the impurity analysis method of the present invention, examples of the alkali metal component of the alkali metal salt used as the raw material of the capsule include lithium, sodium, potassium, etc., and the acid component that forms a salt with the alkali metal includes carbonate, sulfate, Examples thereof include nitrates and hydrochlorides. As an alkali metal salt, sodium carbonate and potassium carbonate are preferable, and potassium carbonate is more preferable.

本発明の不純物分析方法において、アルカリ金属塩のカプセルとその蓋を作製するには、例えば、三次元形状のアルカリ金属塩の中実体(中身が詰まっている形態)を作製し、その中実体にコルクボーラー又はその類似器具で穴を開け、くり抜いた部分を蓋として用いることができる。あるいは、アルカリ金属塩のカプセルと蓋とをそれぞれ金型を利用して精度よく作製してもよい。   In the impurity analysis method of the present invention, in order to produce an alkali metal salt capsule and its lid, for example, a solid body of an alkali metal salt having a three-dimensional shape (a form in which the contents are packed) is produced, A hole can be made with a cork borer or similar device, and the hollowed portion can be used as a lid. Alternatively, each of the alkali metal salt capsule and the lid may be prepared with high precision using a mold.

本発明の不純物分析方法において、熱処理温度は、測定対象の不純物が不揮発性の成分になるようにフッ素化合物の融点以上400℃以下で適宜設定すればよい。例えば、不純物としてホウ素化合物が含まれている場合には、熱処理により不揮発性のホウ素とアルカリ金属との酸化物(例えばアルカリ金属がカリウムの場合にはK2SiO3 など)になり、不純物としてケイ素化合物が含まれている場合には、熱処理により不揮発性のケイ素とアルカリ金属との酸化物(例えばアルカリ金属がカリウムの場合にはK247 など)になる。なお、熱処理温度としてフッ素化合物の融点を採用した場合には、400℃近辺の温度を採用した場合に比べて、フッ素化合物が融解しきるまでに時間を要したり不純物が不揮発性の成分に変わるのに時間を要したりするものの、本発明の効果すなわち不純物を高精度で且つ低濃度まで分析することができるという効果を奏する。また、不純物のほぼ全量を不揮発性の成分に変換させるためには、熱処理温度まで昇温したあと該熱処理温度で保持することが好ましい。こうすれば、分析精度がより高くなる。ここで、熱処理温度で保持する時間は、測定対象の不純物に応じて適宜設定すればよいが、例えば10〜120分の間で設定すればよい。熱処理温度まで昇温する場合には、その昇温速度を1〜2℃/minの低速とするのが好ましい。急激に昇温すると不純物が不揮発成分に変わるほかに不純物の一部がフッ素化して揮発成分に変わるおそれがあり、その場合にはカプセルが蓋で密閉されているとはいえ、揮発成分がカプセル外に放散する可能性があるからである。 In the impurity analysis method of the present invention, the heat treatment temperature may be appropriately set between the melting point of the fluorine compound and 400 ° C. or less so that the impurity to be measured becomes a non-volatile component. For example, when a boron compound is included as an impurity, it becomes a non-volatile boron and alkali metal oxide (for example, K 2 SiO 3 when the alkali metal is potassium) by heat treatment, and silicon as the impurity. When the compound is contained, it becomes non-volatile silicon and alkali metal oxide (for example, K 2 B 4 O 7 when the alkali metal is potassium) by heat treatment. Note that when the melting point of the fluorine compound is adopted as the heat treatment temperature, it takes time until the fluorine compound is completely melted or the impurities are changed to non-volatile components as compared with the case where a temperature around 400 ° C. is adopted. However, the effect of the present invention, that is, the effect that impurities can be analyzed with high accuracy and low concentration is obtained. In order to convert almost the entire amount of impurities into a non-volatile component, it is preferable that the temperature is raised to the heat treatment temperature and then maintained at the heat treatment temperature. In this way, the analysis accuracy becomes higher. Here, the holding time at the heat treatment temperature may be appropriately set according to the impurity to be measured, but may be set, for example, for 10 to 120 minutes. When the temperature is raised to the heat treatment temperature, the rate of temperature rise is preferably a low rate of 1 to 2 ° C./min. If the temperature rises suddenly, impurities may turn into non-volatile components, and some of the impurities may be fluorinated to turn into volatile components. In this case, the volatile components are outside the capsule, even though the capsule is sealed with a lid. This is because there is a possibility of being dissipated.

本発明の不純物分析方法において、熱処理したあと溶液化するには、熱処理温度からそのまま放冷したあと純水に溶解して溶液化してもよいが、その場合には、熱処理温度が400℃以下のため、試料中に未燃成分(煤など)が残っていることがある。こうした未燃成分が溶液中に混入すると、分析装置に悪影響を及ぼすことがある。例えば、ICP発光分光分析装置などのように分析時にノズルから溶液を噴霧する装置の場合には、ノズルが未燃成分によって詰まるおそれがある。こうしたことから、試料を熱処理温度で処理したあと、アルカリ金属塩の融点以上(例えば900℃以上)に加熱してカプセル及び蓋を融解させ、その後放冷して純水に溶解して溶液化することが好ましい。こうすれば、試料中のフッ素化合物は完全に燃焼するため、未燃成分による分析装置への悪影響を防止することができる。このようにアルカリ金属塩の融点以上になるように昇温する場合には、昇温速度を10℃/min以上、例えば15〜20℃/minの高速としてもよい。こうすれば、分析時間を短くすることができる。   In the impurity analysis method of the present invention, in order to form a solution after heat treatment, the solution may be left to cool as it is from the heat treatment temperature and then dissolved in pure water to form a solution. In this case, the heat treatment temperature is 400 ° C. or lower. Therefore, unburned components (such as soot) may remain in the sample. If such unburned components are mixed in the solution, the analyzer may be adversely affected. For example, in the case of an apparatus that sprays a solution from a nozzle at the time of analysis, such as an ICP emission spectroscopic analysis apparatus, the nozzle may be clogged with unburned components. For this reason, after the sample is treated at the heat treatment temperature, it is heated to a temperature higher than the melting point of the alkali metal salt (for example, 900 ° C. or higher) to melt the capsule and lid, and then left to cool and dissolve in pure water to form a solution. It is preferable. By doing so, the fluorine compound in the sample is completely combusted, so that it is possible to prevent the unburned component from adversely affecting the analyzer. Thus, when raising the temperature to be equal to or higher than the melting point of the alkali metal salt, the rate of temperature rise may be 10 ° C./min or higher, for example, 15 to 20 ° C./min. By doing so, the analysis time can be shortened.

本発明の不純物分析方法において、溶液化したあとの分析は、従来と同様、原子吸光分析装置、ICP発光分析装置、ICP質量分析装置などを利用して行うことができる。   In the impurity analysis method of the present invention, the analysis after the solution is made can be performed using an atomic absorption analyzer, an ICP emission analyzer, an ICP mass spectrometer, or the like, as in the past.

[実施例]
まず、炭酸カリウム製のカプセルとその蓋を作製した。カプセル作製手順を図1に示す。白金ルツボに炭酸カリウム粉末を入れ、加熱溶融した。溶融した炭酸カリウムを有底筒型の黒鉛ルツボに入れて放冷し、外径10mm、高さ18mmで中実の炭酸カリウム円柱体を取り出した。この炭酸カリウム円柱体をコルクボーラーで加工して直径6mm、深さ15mmの穴を開け、カプセルが完成した。このとき、コルクボーラーの中空筒状の差込部には、抜き取った炭酸カリウムの塊が残っているため、この塊を加工してカプセルの穴の蓋とした。なお、蓋は、穴の直径よりもやや大きめのコルクボーラーを用いて別の炭酸カリウム円柱体から塊を抜き取り、その塊を加工して作製してもよい。
[Example]
First, a capsule made of potassium carbonate and its lid were prepared. The capsule manufacturing procedure is shown in FIG. Potassium carbonate powder was placed in a platinum crucible and melted by heating. The molten potassium carbonate was put into a bottomed cylindrical graphite crucible and allowed to cool, and a solid potassium carbonate cylinder having an outer diameter of 10 mm and a height of 18 mm was taken out. This potassium carbonate cylinder was processed with a cork borer to make a hole with a diameter of 6 mm and a depth of 15 mm, thereby completing a capsule. At this time, since the extracted potassium carbonate lump remains in the hollow cylindrical insertion part of the cork borer, this lump was processed to form a lid for the capsule hole. The lid may be produced by extracting a lump from another potassium carbonate cylinder using a cork borer slightly larger than the diameter of the hole and processing the lump.

次に、試料中のケイ素及びホウ素の定量分析を行った。試料として、市販されているフッ素樹脂(試料Aという)を用意した。また、試料Aに所定量のケイ素とホウ素を加えたものを用意し、これを試料A+とした。具体的には、試料A+は、ケイ素標準溶液(例えばSPEX社製PLSI9−2Y Si1000mg/L)とホウ素標準溶液(例えばSPEX社製PLB9−2Y B1000mg/L)を、試料Aに対してケイ素及びホウ素がそれぞれ100μg/gとなるように添加して調製した。そして試料A及び試料A+について、以下の手順にしたがってケイ素及びホウ素の定量分析を行った。なお、以下には試料Aについて説明するが、試料A+についても同様である。 Next, quantitative analysis of silicon and boron in the sample was performed. A commercially available fluororesin (referred to as sample A) was prepared as a sample. Also, providing a plus silicon and boron a predetermined amount of the sample A, which was used as a sample A +. Specifically, a sample A + is obtained by using a silicon standard solution (for example, PLSI9-2Y Si 1000 mg / L manufactured by SPEX) and a boron standard solution (for example PLB9-2Y B 1000 mg / L manufactured by SPEX) with silicon and Boron was prepared by adding 100 μg / g. Sample A and sample A + were subjected to quantitative analysis of silicon and boron according to the following procedure. The sample A will be described below, but the same applies to the sample A + .

まず、0.2gの試料Aをカプセルの穴に量り取り、その穴の開口を蓋で密閉した。次いで、そのカプセルごと白金ルツボに入れて電気炉で熱処理温度400℃まで徐々に昇温し、400℃で30分保持した。これにより、試料Aは融解した。このときの昇温速度は1時間あたり100℃(約1.7℃/min)とした。その後、900℃まで急激に昇温し、900℃で30分保持した。これにより、白金ルツボ内で炭酸カリウム製のカプセル及び蓋が融解した。このときの昇温速度は30分で500℃(約17℃/min)とした。なお、熱処理工程での時間と加熱温度との関係を図2に示す。放冷後、白金ルツボごとテフロンビーカーに入れて純水を加え、白金ルツボの内容物を純水に溶かして溶液とした。白金ルツボを純水で洗いながら取り出し、その洗浄液も先の溶液に合わせ、そこに塩酸7mLを加えた。塩酸を加えた溶液を80〜90℃に加熱して炭酸ガスを抜いた後、PMP(ポリメチルペンテン)製メスフラスコ(100mL)に移し、純水で定容にした。得られた溶液を用いてICP発光分光分析法により、ケイ素およびホウ素を定量した。試料A及び試料A+の定量分析の結果を表1に示す。 First, 0.2 g of sample A was weighed into a capsule hole, and the opening of the hole was sealed with a lid. Next, the capsules were placed in a platinum crucible, gradually heated to a heat treatment temperature of 400 ° C. in an electric furnace, and held at 400 ° C. for 30 minutes. Thereby, sample A melted. The heating rate at this time was 100 ° C. per hour (about 1.7 ° C./min). Then, it heated up rapidly to 900 degreeC and hold | maintained at 900 degreeC for 30 minutes. This melted the capsule and lid made of potassium carbonate in the platinum crucible. The heating rate at this time was 500 ° C. (about 17 ° C./min) in 30 minutes. Note that the relationship between the time in the heat treatment step and the heating temperature is shown in FIG. After allowing to cool, the platinum crucible was placed in a Teflon beaker and pure water was added, and the contents of the platinum crucible were dissolved in pure water to obtain a solution. The platinum crucible was taken out while washing with pure water, the washing solution was also combined with the previous solution, and 7 mL of hydrochloric acid was added thereto. The solution to which hydrochloric acid was added was heated to 80 to 90 ° C. to remove carbon dioxide, and then transferred to a volumetric flask (100 mL) made of PMP (polymethylpentene) and made up to volume with pure water. Silicon and boron were quantified by ICP emission spectrometry using the obtained solution. Table 1 shows the results of quantitative analysis of sample A and sample A + .

Figure 2010223721
Figure 2010223721

表1に示す添加回収率は、試料A+を調製する際に試料Aに添加した所定量のケイ素とホウ素の回収率を表し、表1の欄外に示す式により算出したものである。この添加回収率が100%に近いほど精度が高いことになるが、ここではケイ素及びホウ素の添加回収率はともに96%であったため、高精度な分析結果が得られたと判断した。また、別途、定量下限を求めた。定量下限は、ブランク試験を4回繰り返し行い、その標準偏差の10倍とした。なお、ブランク試験とは、空試験値を得るために試料を用いないで、試料を用いたときと同様の操作を行う試験をいう。その結果、ケイ素は9.7μg/g、ホウ素は2.3μg/gであった。つまり、定量下限は、0.0003〜0.001重量%であり、低濃度の不純物の定量分析が可能なことがわかった。これらの結果から、試料Aのホウ素及びケイ素の定量結果も、高精度で低濃度まで分析された結果であるといえる。なお、試料Aとは異なる市販のフッ素樹脂からなる試料Bについても定量分析を行った。その結果を表2に示す。 The addition recovery rate shown in Table 1 represents the recovery rate of a predetermined amount of silicon and boron added to Sample A when preparing Sample A +, and was calculated by the formula shown in the margin of Table 1. The closer this addition recovery rate is to 100%, the higher the accuracy. However, since the addition recovery rates of silicon and boron were both 96%, it was judged that a highly accurate analysis result was obtained. Separately, the lower limit of quantification was determined. The lower limit of quantification was set to 10 times the standard deviation by repeating the blank test four times. In addition, a blank test means the test which does not use a sample in order to obtain a blank test value, but performs the same operation as when a sample is used. As a result, silicon was 9.7 μg / g and boron was 2.3 μg / g. That is, the lower limit of quantification is 0.0003 to 0.001% by weight, and it was found that quantitative analysis of low concentration impurities is possible. From these results, it can be said that the results of quantitative determination of boron and silicon in Sample A were also analyzed to a low concentration with high accuracy. In addition, the quantitative analysis was performed also about the sample B which consists of a commercially available fluororesin different from the sample A. FIG. The results are shown in Table 2.

Figure 2010223721
Figure 2010223721

[比較例]
試料A及び試料A+について、非特許文献1の手順にしたがってケイ素及びホウ素の定量分析を行った。なお、以下には試料Aについて説明するが、試料A+についても同様である。まず、炭酸カリウム製のカプセルの穴に試料Aを入れ、予め粉砕乾燥した炭酸カリウム粉末を穴の上部まで詰め込んだ。そして、電気炉で300℃から1時間で600℃まで昇温し、600℃で1時間保持したのち、カプセルを電気炉から取り出して放冷した。その後、カプセルをメスフラスコに入れ、純水で溶解し、次いで塩酸を加えて中性とし、純水で定容にした。この溶液を用いてICP発行分光分析法により、ケイ素及びホウ素を定量分析した。そして、試料Aと試料A+の分析結果から実施例と同様にして添加回収率を求めたところ、90%未満であった。これは、熱処理温度が600℃という高温のため、ケイ素化合物は熱処理時にケイ酸カリウムのほかに揮発性のフッ化ケイ素(SiF4)となり、ホウ素化合物は熱処理時にホウ酸カリウムのほかに揮発性のフッ化ホウ素(BF3)となって、試料を覆っている炭酸カリウム粉末の微小な隙間からカプセル外へ放散したことが原因と考えられる。また、実施例と同様にして定量下限を求めたところ、0.01重量%以下となった。このことから、実施例は、比較例に比べて、高精度で且つ低濃度まで定量分析が可能なことがわかった。
[Comparative example]
Sample A and sample A + were subjected to quantitative analysis of silicon and boron according to the procedure of Non-Patent Document 1. Note that the following will be described for Sample A, same is true for samples A +. First, sample A was put into a hole of a capsule made of potassium carbonate, and potassium carbonate powder that had been crushed and dried in advance was packed up to the top of the hole. Then, the temperature was raised from 300 ° C. to 600 ° C. in 1 hour in an electric furnace and held at 600 ° C. for 1 hour, and then the capsule was taken out of the electric furnace and allowed to cool. Thereafter, the capsule was put into a measuring flask, dissolved with pure water, then neutralized by adding hydrochloric acid, and made up to volume with pure water. Using this solution, silicon and boron were quantitatively analyzed by ICP emission spectroscopy. And when the addition recovery rate was calculated | required like the Example from the analysis result of sample A and sample A + , it was less than 90%. This is because the heat treatment temperature is 600 ° C., the silicon compound becomes volatile silicon fluoride (SiF 4 ) in addition to potassium silicate during heat treatment, and the boron compound is volatile in addition to potassium borate during heat treatment. The cause is considered to be boron fluoride (BF 3 ), which was released out of the capsule through a minute gap of the potassium carbonate powder covering the sample. Further, when the lower limit of quantification was determined in the same manner as in the example, it was 0.01% by weight or less. From this, it was found that the example can be quantitatively analyzed with higher accuracy and lower concentration than the comparative example.

本発明は、フッ素樹脂などのフッ素化合物中の不純物を分析するために用いられる。   The present invention is used for analyzing impurities in a fluorine compound such as a fluororesin.

Claims (5)

フッ素化合物中の不純物を分析する方法であって、
コップ状に形成されたアルカリ金属塩のカプセルの中空部分にフッ素化合物の試料を量り取り、その中空部分の開口をアルカリ金属塩の塊状の蓋で密閉し、前記フッ素化合物の融点以上400℃以下に設定された熱処理温度まで昇温して前記試料を融解させたあと溶液化し、その溶液中の不純物を定量分析する、
フッ素化合物中の不純物分析方法。
A method for analyzing impurities in a fluorine compound,
A sample of the fluorine compound is weighed in the hollow portion of the capsule of the alkali metal salt formed in a cup shape, and the opening of the hollow portion is sealed with an alkali metal salt lump so that the melting point of the fluorine compound is not lower than 400 ° C. Raise the temperature to the set heat treatment temperature and melt the sample, then turn it into a solution and quantitatively analyze the impurities in the solution.
Method for analyzing impurities in fluorine compounds.
前記試料を融解させたあと、アルカリ金属塩の融点以上に加熱して前記カプセル及び前記蓋を融解させ、その後放冷して純水に溶解して溶液化する、
請求項1に記載の不純物分析方法。
After melting the sample, the capsule and the lid are melted by heating above the melting point of the alkali metal salt, and then allowed to cool and dissolved in pure water to form a solution.
The impurity analysis method according to claim 1.
前記熱処理温度まで昇温したあと該熱処理温度で10〜120分保持する、
請求項1又は2記載の不純物分析方法。
After raising the temperature to the heat treatment temperature, hold at the heat treatment temperature for 10 to 120 minutes.
The impurity analysis method according to claim 1 or 2.
前記フッ素化合物は、不純物としてケイ素化合物又はホウ素化合物を含む、
請求項1〜3のいずれか1項に記載の不純物分析方法。
The fluorine compound includes a silicon compound or a boron compound as impurities.
The impurity analysis method according to claim 1.
前記アルカリ金属塩は、炭酸カリウムである、
請求項1〜4のいずれか1項に記載の不純物分析方法。
The alkali metal salt is potassium carbonate.
The impurity analysis method according to claim 1.
JP2009070722A 2009-03-23 2009-03-23 Method for analysis of impurities in fluorine compound Pending JP2010223721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070722A JP2010223721A (en) 2009-03-23 2009-03-23 Method for analysis of impurities in fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070722A JP2010223721A (en) 2009-03-23 2009-03-23 Method for analysis of impurities in fluorine compound

Publications (1)

Publication Number Publication Date
JP2010223721A true JP2010223721A (en) 2010-10-07

Family

ID=43041073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070722A Pending JP2010223721A (en) 2009-03-23 2009-03-23 Method for analysis of impurities in fluorine compound

Country Status (1)

Country Link
JP (1) JP2010223721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728288A (en) * 2014-01-10 2014-04-16 福建医科大学 Method for oxidizing terephthalic acid to enhance fluorescence by employing nanometer copper oxide to catalyze hydrogen peroxide
CN106198394A (en) * 2016-06-29 2016-12-07 中国电建集团贵阳勘测设计研究院有限公司 A kind of microcosmic judges the method for aggregate basic active

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728288A (en) * 2014-01-10 2014-04-16 福建医科大学 Method for oxidizing terephthalic acid to enhance fluorescence by employing nanometer copper oxide to catalyze hydrogen peroxide
CN106198394A (en) * 2016-06-29 2016-12-07 中国电建集团贵阳勘测设计研究院有限公司 A kind of microcosmic judges the method for aggregate basic active

Similar Documents

Publication Publication Date Title
Zhu et al. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy
CN104280367A (en) Method for efficiently and accurately detecting content of silicon dioxide in quartz sand
JP3768442B2 (en) Analytical sample preparation method and element quantification method
Arain et al. Preconcentration and determination of manganese in biological samples by dual-cloud point extraction coupled with flame atomic absorption spectrometry
JP2010223721A (en) Method for analysis of impurities in fluorine compound
JP2018066627A (en) Pretreatment equipment for elementary analysis and elementary analysis system, and pretreatment method for elementary analysis and elementary analysis method
TW201432795A (en) Methods of forming and analyzing doped silicon
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP2019066249A (en) Sample preparation method for elemental impurity measurement
CN104155267A (en) Method for chemically analyzing content of boron nitride in nickel-based powder material
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
JP6217932B2 (en) Method for quantifying the amount of SiO2 contained in a Cu metal material
Dobrowolski Determination of selenium in soils by slurry-sampling graphite-furnace atomic-absorption spectrometry with polytetrafluoroethylene as silica modifier
JP4559932B2 (en) Method for analyzing metal impurities
JP2009186197A (en) Chemical treatment method for chlorosilanes
JP2005340298A (en) Method for analyzing dopant
CN104458369A (en) Method for preparing titanium oxide solution sample for plasma spectrum method detection
JP2010210540A (en) Method for quantifying inorganic component in heat ray shielding ink
JP2004271202A (en) Method for quantifying volatile element in sample containing organic material
JPS622259B2 (en)
JP2020034339A (en) Quantitative method of aluminum density in aluminum coating powder
JP2011038843A (en) Method for analyzing metal in silicon polishing slurry and for analyzing metal in slurry after polishing
Zhang et al. Rapid sample preparation with multi-channel focused infrared micro-ashing prior to determination of chromium in gelatin capsules by electrothermal atomic absorption spectrometry