JP2007107882A - Corrosion estimation method for buried pipe - Google Patents

Corrosion estimation method for buried pipe Download PDF

Info

Publication number
JP2007107882A
JP2007107882A JP2005295804A JP2005295804A JP2007107882A JP 2007107882 A JP2007107882 A JP 2007107882A JP 2005295804 A JP2005295804 A JP 2005295804A JP 2005295804 A JP2005295804 A JP 2005295804A JP 2007107882 A JP2007107882 A JP 2007107882A
Authority
JP
Japan
Prior art keywords
buried
soil
corrosion
cases
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005295804A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ohama
博保 大濱
Kenji Miyata
健司 宮田
Hiroaki Shimizu
宏明 清水
Masako Morita
真子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WATER TECHNOLOGY INST Ltd
WATER TECHNOLOGY INSTITUTE Ltd
Kubota Corp
Original Assignee
WATER TECHNOLOGY INST Ltd
WATER TECHNOLOGY INSTITUTE Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WATER TECHNOLOGY INST Ltd, WATER TECHNOLOGY INSTITUTE Ltd, Kubota Corp filed Critical WATER TECHNOLOGY INST Ltd
Priority to JP2005295804A priority Critical patent/JP2007107882A/en
Publication of JP2007107882A publication Critical patent/JP2007107882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the amount of corrosion of a buried pipeline without performing any on-site survey on the burying environment as to burying points of the pipeline. <P>SOLUTION: Corrosion depths in outer surfaces of cast iron pipes and environmental factors of burying places are measured as to the plurality of burying points with the iron pipes buried therein. The result of the measurement is applied to known ground information to prepare a calculation expression for a corrosiveness evaluation coefficient on the burying environment of a place whose ground information is known. From the calculation expression for the evaluation coefficient and from the burying period of the iron pipes, a corrosion depth estimation expression is prepared capable of calculating the corrosion depth of the outer surfaces of the iron pipes buried in this place. From known ground information on an object place and from information on the burying period of the iron pipes in this place, corrosion depths are estimated of outer surfaces of the iron pipes buried in this place by using the estimation expression. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は土中における埋設管の腐食予測方法に関する。   The present invention relates to a method for predicting corrosion of buried pipes in soil.

水道管として、鋳鉄管が、土中に埋設された状態で使用されている。埋設後にかなりの年数が経過すると、鋳鉄管における土壌に接している表面部分に腐食が起こって、その肉厚が薄くなる。腐食がある程度以上進行して鋳鉄管の肉厚が減少した場合は、その管を新管に更新しなければならない。   As a water pipe, a cast iron pipe is used in a state of being buried in the soil. When a considerable number of years have passed since the burial, corrosion occurs on the surface portion of the cast iron pipe that is in contact with the soil, and the thickness of the cast iron pipe decreases. If corrosion progresses to some extent and the thickness of the cast iron pipe decreases, the pipe must be replaced with a new pipe.

土中に埋設された鋳鉄管の腐食すなわち肉厚の減少の度合いを調査する場合に、管路を全長にわたり開削して実際に肉厚を測定することは、多大な手間を要するため、実際的ではない。このため従来から、管路を全長にわたって開削しなくてもその腐食の度合いを予測できるように、様々な腐食予測手法が用いられている。   When investigating the degree of corrosion, that is, the reduction in wall thickness of cast iron pipes buried in the soil, it is practical to measure the wall thickness by cutting the pipe line over the entire length, which is a lot of work. is not. For this reason, conventionally, various corrosion prediction methods have been used so that the degree of corrosion can be predicted without cutting the pipe over the entire length.

土中に埋設された鋳鉄管の腐食の度合いを予測するためには、その埋設環境すなわち埋設土壌の鋳鉄管に対する腐食性を評価することが必要である。このため、従来においては、たとえば、土壌や地下水などの埋設環境因子を、アメリカのANSI規格やドイツのDIN規格の土壌腐食性評価手法に照らし合わせて、埋設管に対する土壌の腐食性を定性的に判断していた。しかし、この土壌腐食性評価手法は、土壌の腐食性を評価するだけのものであって、埋設管の腐食量を定量的に予測することはできない。   In order to predict the degree of corrosion of the cast iron pipe buried in the soil, it is necessary to evaluate the corrosiveness of the buried environment, that is, the buried soil to the cast iron pipe. For this reason, conventionally, for example, the soil corrosivity of buried pipes has been qualitatively compared with soil environment factors such as soil and groundwater in the light of the US ANSI standard and the German DIN standard soil corrosion evaluation method. I was judging. However, this soil corrosivity evaluation method is only for evaluating the corrosiveness of the soil, and the amount of corrosion of the buried pipe cannot be predicted quantitatively.

埋設管の腐食量を定量的に予測する手法として、特許文献1には、土壌を掘削して管路を長さ方向に沿って部分的に露出させ、この管路を構成する管体の腐食情報や土壌などの埋設環境の情報を収集し、そのデータを解析することで腐食深さの予測式の作成などを行って、その地域の管路の全体における管体の腐食量を予測することが記載されている。しかし、腐食情報と埋設環境情報とを入手する必要があり、特に埋設環境情報はその項目数が10項目程度と多いため、情報の収集に多大なコストと時間とを必要とする。   As a method for quantitatively predicting the amount of corrosion of the buried pipe, Patent Document 1 discloses that the soil is excavated to partially expose the pipe along the length direction, and the pipe constituting the pipe is corroded. Collecting information and information on the embedded environment such as soil, and analyzing the data to create a corrosion depth prediction formula, etc., and predict the amount of corrosion of the pipe in the entire pipeline in the area Is described. However, it is necessary to obtain the corrosion information and the embedded environment information. Especially, since the number of items of the embedded environment information is as large as about 10, the information collection requires a great deal of cost and time.

上述の特許文献1に記載の手法を簡易化した腐食予測手法として、特許文献2には、対象となる地域(たとえば日本全国)に存在する埋設環境の因子を予め複数種類に分類し、これらの複数の因子を用いた腐食量予測式をあらかじめ作成しておき、実際に調査を行うべき管路が埋設されている場所の埋設環境情報を入手したうえで、上記の予測式を利用して腐食量を予測することが記載されている。しかし、この場合は、埋設場所ごとに一部の管体の腐食量を測定したり予測式を作成したりする必要がないという利点はあるが、土壌などの埋設環境の情報を収集することは必要である。また調査地点の埋設環境情報を入手する場合に、腐食性の強い場所や弱い場所を特定することができないため、調査地点数を多くしなければならないことがある。
特開平1−250841号公報 特開2000−148178号公報
As a corrosion prediction method that simplifies the method described in Patent Document 1 described above, Patent Document 2 classifies the embedded environment factors existing in the target region (for example, the whole country of Japan) into a plurality of types in advance, and Prepare the corrosion amount prediction formula using multiple factors in advance, obtain the buried environment information of the place where the pipe to be actually investigated is buried, and then use the above prediction formula to corrode It is described to predict the amount. However, in this case, there is an advantage that it is not necessary to measure the corrosion amount of some pipes or create a prediction formula for each buried place, but collecting information on the buried environment such as soil is not possible. is necessary. In addition, when obtaining the buried environment information of a survey point, it may be necessary to increase the number of survey points because a corrosive place or a weak place cannot be identified.
JP-A-1-250841 JP 2000-148178 A

上述のように従来の手法においては、いずれも調査地点の土壌などの埋設環境の情報を収集することが必要であり、そのために多大なコストと時間とを必要にするという課題がある。   As described above, in the conventional methods, it is necessary to collect information on the buried environment such as the soil of the survey point, and there is a problem that a great deal of cost and time are required for that purpose.

そこで本発明は、このような課題を解決して、管路の埋設箇所について実地での埋設環境の調査を行わずに、その埋設管路の腐食量の予測を行えるようにすることを目的とする。   In view of the above, the present invention aims to solve such problems and to predict the amount of corrosion of a buried pipeline without investigating the actual buried environment of the buried portion of the pipeline. To do.

この目的を達成するため、本発明の埋設管の腐食予測方法は、
鋳鉄管が埋設されている複数の埋設箇所について、鋳鉄管外面の腐食深さと埋設地の環境因子とを測定し、
その測定結果を既知の地盤情報に適用して、地盤情報が既知である場所の埋設環境の腐食性評価係数の計算式を作成し、
この腐食性評価係数の計算式と鋳鉄管の埋設期間とから、その場所に埋設されている鋳鉄管外面の腐食深さを計算可能な腐食深さ予測式を作成し、
対象場所についての既知の地盤情報とその場所における鋳鉄管の埋設期間の情報とから、前記腐食深さ予測式を用いて、その場所に埋設されている鋳鉄管外面の腐食深さを予測するものである。
In order to achieve this object, the buried pipe corrosion prediction method of the present invention comprises:
Measure the corrosion depth of the cast iron pipe outer surface and the environmental factors of the buried site for multiple buried parts where the cast iron pipe is buried,
Applying the measurement results to known ground information, create a calculation formula for the corrosivity evaluation coefficient of the buried environment where the ground information is known,
Create a corrosion depth prediction formula that can calculate the corrosion depth of the outer surface of the cast iron pipe buried at the location from the calculation formula of this corrosive evaluation coefficient and the cast iron pipe burial period,
Predicting the corrosion depth of the outer surface of the cast iron pipe embedded at the location from the known ground information about the target location and the information on the burial period of the cast iron pipe at that location, using the corrosion depth prediction formula It is.

したがって本発明によると、地盤情報が既知である場所の埋設環境の腐食性評価係数の計算式を作成するとともに、この腐食性評価係数の計算式と鋳鉄管の埋設期間とを用いた腐食深さ予測式を作成することで、鋳鉄管路が埋設されている箇所の土壌などの埋設環境を調査しなくても、その箇所の地盤情報を入手するだけで、鋳鉄管の埋設期間がわかれば、その腐食深さを定量的に予測することができる。   Therefore, according to the present invention, a calculation formula for the corrosivity evaluation coefficient of the buried environment in a place where the ground information is known is prepared, and the corrosion depth using the calculation formula of the corrosivity evaluation coefficient and the burial period of the cast iron pipe is used. By creating a prediction formula, without investigating the burial environment such as the soil where the cast iron pipe is buried, just obtaining the ground information of that place, if the burial period of the cast iron pipe is known, The corrosion depth can be predicted quantitatively.

本発明の埋設管の腐食予測方法によると、腐食深さ予測式が下記の式であることが好適である。
η=k×t0.4
ただし、η:鋳鉄管の腐食深さ(mm)、k:埋設環境の腐食性評価係数、t:埋設年数(年)である。
According to the buried pipe corrosion prediction method of the present invention, the corrosion depth prediction formula is preferably the following formula.
η = k × t 0.4
Where η is the corrosion depth (mm) of the cast iron pipe, k is the corrosive evaluation coefficient of the embedded environment, and t is the years of embedment (years).

また本発明の埋設管の腐食予測方法によると、埋設環境の腐食性評価係数の計算式は、地盤情報としての地形分類と表層地質分類と土壌分類とを加味したものであることが好適であり、さらに地盤情報としての海岸線に近い場所であるかどうかを加味したものであることが好適である。   According to the buried pipe corrosion prediction method of the present invention, it is preferable that the calculation formula for the corrosiveness evaluation coefficient of the buried environment is a combination of the topographic classification, surface geological classification, and soil classification as ground information. In addition, it is preferable to consider whether the location is close to the coastline as ground information.

また本発明の埋設管の腐食予測方法によると、埋設環境の腐食性評価係数kの計算式が下記の式であることが好適である。
k=exp(−0.909+0.000σ11+0.049σ12+0.000σ21+0.031σ22+0.265σ23+0.000σ31+0.119σ32+0.274σ33+0.362σ34+0.403σ35+0.613σ36+0.000σ41+0.126σ42+0.268σ43
ただし、
σ11=1[場所が内陸部である場合]or 0[その他の場合]
σ12=1[場所が沿岸部である場合]or 0[その他の場合]
σ21=1[地形が台地・段丘である場合]or 0[その他の場合]
σ22=1[地形が山地、低地などである場合]or 0[その他の場合]
σ23=1[地形が丘陵地、改変地である場合]or 0[その他の場合]
σ31=1[表層地質が変成岩、深成岩である場合]or 0[その他の場合]
σ32=1[表層地質が堆積岩1(未固結の砂、礫、シルトなど)or堆積岩5(固結の生物岩/チャート、珪岩、石灰岩など)or堆積岩6(堆積岩の互層)である場合]or 0[その他の場合]
σ33=1[表層地質が火山岩1(火山灰や火砕流などの堆積物、シラスなど)or火山岩2(火山灰やローム)or火山岩3(白っぽい火山岩類、流紋岩類、凝灰岩類など)or火山岩4(黒っぽい火山岩類、玄武岩類など)である場合]or 0[その他の場合]
σ34=1[表層地質が堆積岩2(未固結の粘土など)or堆積岩3(固結の砂岩、礫岩など)]or 0[その他の場合]
σ35=1[表層地質が表示のないものである場合場合]or 0[その他の場合]
σ36=1[表層地質が堆積岩4(固結の泥岩、頁岩など)である場合]or 0[その他の場合]
σ41=1[土壌が未熟土、赤色土・赤黄色土壌、市街地、乾燥地帯である場合]or 0[その他の場合]
σ42=1[土壌が黒ボク土壌、褐色森林土壌、ポドゾル土壌、グライ土壌、湿地地帯などである場合]or 0[その他の場合]
σ43=1[土壌が黄褐色系褐色森林土壌、低地土壌、泥炭土壌、泥炭地帯である場合]or 0[その他の場合]
である。
Further, according to the buried pipe corrosion prediction method of the present invention, it is preferable that the calculation formula of the corrosive evaluation coefficient k of the buried environment is the following formula.
k = exp (-0.909 + 0.000σ 11 + 0.049σ 12 + 0.000σ 21 + 0.031σ 22 + 0.265σ 23 + 0.000σ 31 + 0.119σ 32 + 0.274σ 33 + 0.362σ 34 + 0.403σ 35 + 0.613σ 36 + 0.000σ 41 + 0.126σ 42 + 0.268σ 43 )
However,
σ 11 = 1 [when the place is inland] or 0 [others]
σ 12 = 1 [when the location is a coastal area] or 0 [other cases]
σ 21 = 1 [if the topography is a plateau / terrace] or 0 [others]
σ 22 = 1 [when topography is mountainous, lowland, etc.] or 0 [other cases]
σ 23 = 1 [if the terrain is a hilly or modified land] or 0 [others]
σ 31 = 1 [when surface geology is metamorphic rock and plutonic rock] or 0 [other cases]
σ 32 = 1 [surface geology is sedimentary rock 1 (unconsolidated sand, gravel, silt, etc.) or sedimentary rock 5 (consolidated biological rock / chart, quartzite, limestone, etc.) or sedimentary rock 6 (alternate layers of sedimentary rock) ] Or 0 [In other cases]
σ 33 = 1 [surface geology is volcanic rock 1 (sediment such as volcanic ash and pyroclastic flow, shirasu, etc.) or volcanic rock 2 (volcanic ash or loam) or volcanic rock 3 (whiteish volcanic rocks, rhyolites, tuffs, etc.) or volcanic rock 4 (If it is dark volcanic rocks, basalts, etc.)] or 0 [other cases]
σ 34 = 1 [surface geology is sedimentary rock 2 (such as unconsolidated clay) or sedimentary rock 3 (such as consolidated sandstone, conglomerate)] or 0 [other cases]
σ 35 = 1 [when surface geology is not displayed] or 0 [other cases]
σ 36 = 1 [when the surface geology is sedimentary rock 4 (consolidated mudstone, shale, etc.)] or 0 [other cases]
σ 41 = 1 [when the soil is immature soil, red / red-yellow soil, urban area, dry area] or 0 [other cases]
σ 42 = 1 [when the soil is black soil, brown forest soil, podzol soil, glai soil, wetland, etc.] or 0 [other cases]
σ 43 = 1 [when the soil is tan brown forest soil, lowland soil, peat soil, peat zone] or 0 [other cases]
It is.

また本発明の埋設管の腐食予測方法によると、任意の地域をメッシュ状に区分けしたデータを作成して、各メッシュのデータに、そのメッシュ内の区域についての埋設環境の腐食性評価係数の情報をもたせることが好適である。   Further, according to the method for predicting corrosion of buried pipes according to the present invention, data obtained by dividing an arbitrary region into a mesh shape is created, and information on the corrosiveness evaluation coefficient of the buried environment for each mesh area is created in each mesh data. It is preferable to have

本発明の他の埋設管の腐食予測方法は、
鋳鉄管が埋設されている複数の埋設箇所について、鋳鉄管外面の腐食深さと埋設地の環境因子とを測定し、
その測定結果を既知の地盤情報に適用して、地盤情報が既知である場所の埋設環境の腐食性評価係数の計算式を作成し、
任意の地域をメッシュ状に区分けしたデータを作成して、各メッシュのデータに、そのメッシュ内の区域についての、前記計算式により計算された埋設環境の腐食性評価係数の情報をもたせるものである。
Other buried pipe corrosion prediction methods of the present invention,
Measure the corrosion depth of the cast iron pipe outer surface and the environmental factors of the buried site for multiple buried parts where the cast iron pipe is buried,
Applying the measurement results to known ground information, create a calculation formula for the corrosivity evaluation coefficient of the buried environment where the ground information is known,
Data is created by dividing an arbitrary area into a mesh shape, and the data of each mesh is given information on the corrosiveness evaluation coefficient of the embedded environment calculated by the above formula for the area in the mesh. .

このようにすると、鋳鉄管の埋設環境の腐食性を定量的に評価した評価マップを作成することができる。   If it does in this way, the evaluation map which evaluated quantitatively the corrosivity of the embedding environment of a cast iron pipe can be created.

以上のように本発明によると、鋳鉄管路が埋設されている箇所の土壌などの埋設環境を調査しなくても、その箇所の地盤情報を入手するだけで、鋳鉄管の埋設期間がわかれば、その腐食深さを定量的に予測することができる。   As described above, according to the present invention, even if the buried environment such as the soil where the cast iron pipe is buried is not investigated, it is only necessary to obtain the ground information of the place if the buried period of the cast iron pipe is known. The corrosion depth can be predicted quantitatively.

本発明においては、まず、腐食深さの予測式を作成する。これは、上記した特許文献2の記載と同様の手法によって行う。
すなわち、たとえば日本全国にわたる各地域において埋設管路の掘削調査を行い、鋳鉄管表面の腐食深さの測定と、埋設環境としての管周囲の土壌の分析とを行う。その調査数は多ければ多いほど良いが、たとえば日本全国にわたって数千箇所程度で調査を行ってデータを得ることができる。表1にその概要を示す。表1において「調査データ」と称するものがそのデータに該当し、これは管体情報と埋設環境情報とに分かれる。管体情報の属性としては、腐食深さ、埋設期間などが代表的である。埋設環境情報の属性としては土壌の分析値が挙げられ、具体的には表1に記載の比抵抗やその他の多数の項目が挙げられる。
In the present invention, first, a prediction formula for the corrosion depth is created. This is performed by the same method as described in Patent Document 2 described above.
That is, for example, excavation surveys of buried pipes are conducted in various regions throughout Japan, and the corrosion depth of the cast iron pipe surface is measured and the soil around the pipes as the buried environment is analyzed. The larger the number of surveys, the better. For example, it is possible to obtain data by conducting surveys at thousands of locations across Japan. Table 1 shows the outline. In Table 1, what is referred to as “investigation data” corresponds to the data, which is divided into tube information and buried environment information. Typical attributes of tube information include corrosion depth and burial period. The attribute of the buried environment information includes an analysis value of soil, and specifically includes the specific resistance shown in Table 1 and many other items.

次に既存の日本全国の地盤情報を用いる。この地盤情報として、たとえば、国土交通省国土地理院発行の国土数値情報を用いることができる。これは、標準1kmメッシュにおける地形、表層地質、土壌の情報などを含むものである。そして、この地盤情報を、属性の名称などから表1に示すように数種類に統合して整理する。   Next, the existing ground information of Japan is used. As this ground information, for example, national land numerical information issued by the Geographical Survey Institute of the Ministry of Land, Infrastructure, Transport and Tourism can be used. This includes information on topography, surface geology, soil, etc. in a standard 1 km mesh. Then, the ground information is integrated and organized into several types as shown in Table 1 based on attribute names and the like.

すなわち、表1において、「地盤情報1」と称するものが、上記の国土地理院発行の国土数値情報の地形、表層地質、土壌の情報に該当する。ただし、国土地理院発行の国土数値情報においては、地形情報は50種類、表層地質情報は85種類、土壌情報は60種類存在するが、表1では、簡単のために、属性の名称などから、たとえば、地形情報は6種類、表層地質情報は13種類、土壌情報は14種類にまとめたものを使用する。その詳細は後述する。地形情報の属性としては、山地、丘陵地、台地などが挙げられる。表層地質情報の属性としては、堆積岩類、火山岩類などが挙げられる。土壌分類としては、グライ土壌、市街地などが挙げられる。   That is, in Table 1, what is referred to as “ground information 1” corresponds to the topographic, surface geology, and soil information of the national land numerical information issued by the Geographical Survey Institute. However, in the national land numerical information published by the Geospatial Information Authority of Japan, there are 50 types of topographic information, 85 types of surface geological information, and 60 types of soil information. In Table 1, for simplicity, from the name of the attribute, For example, 6 types of topographic information, 13 types of surface geological information, and 14 types of soil information are used. Details thereof will be described later. The attributes of the topographic information include mountains, hills, and plateaus. Attributes of surface geological information include sedimentary rocks and volcanic rocks. Examples of soil classification include gly soil, urban areas, and the like.

Figure 2007107882
次に、上記した数千箇所の調査位置について、それぞれの位置に該当する国土数値情報の標準1kmメッシュを割り出し、そのメッシュにおける地形、表層地質、土壌の属性を調べる。
Figure 2007107882
Next, for the above-described thousands of survey positions, a standard 1 km mesh of national land numerical information corresponding to each position is determined, and the topography, surface geology, and soil attributes in the mesh are examined.

また、一般に海に近い場所では鋳鉄管の腐食の進行が速いことから、表1において「地盤情報2」として示すように、海岸線から1kmの範囲を含む標準1kmメッシュに対して沿岸部の属性を与えるとともに、それ以外のメッシュに対して内陸部の属性を与える。   In addition, since the corrosion of cast iron pipes is generally fast at locations close to the sea, as shown in Table 1 as “Ground information 2”, the attributes of the coastal area are set for the standard 1 km mesh including the range of 1 km from the coastline. In addition, the inland attribute is given to other meshes.

そして、上述の特許文献1、2などに記載された予測モデルを用いて、表1の調査データと地盤情報1、2とから、重回帰分析を行い、腐食深さ予測式を作成する。
下記は、具体的に作成された腐食深さ予測式の例を示す。
And using the prediction model described in the above-mentioned patent documents 1 and 2 etc., the multiple regression analysis is performed from the survey data of Table 1 and the ground information 1 and 2, and a corrosion depth prediction formula is created.
The following shows an example of a corrosion depth prediction formula that is specifically created.

η=k×t0.4
ただし、η:鋳鉄管の腐食深さ(mm)、k:埋設環境の腐食性評価係数、t:埋設年数(年)である。
η = k × t 0.4
Where η is the corrosion depth (mm) of the cast iron pipe, k is the corrosive evaluation coefficient of the embedded environment, and t is the years of embedment (years).

上記した重回帰分析の結果によれば、埋設環境の腐食性評価係数kは、下記の式により求められる。
k=exp(−0.909+0.000σ11+0.049σ12+0.000σ21+0.031σ22+0.265σ23+0.000σ31+0.119σ32+0.274σ33+0.362σ34+0.403σ35+0.613σ36+0.000σ41+0.126σ42+0.268σ43
ただし、
σ11=1[場所が内陸部である場合]or 0[その他の場合]
σ12=1[場所が沿岸部である場合]or 0[その他の場合]
σ21=1[地形が台地・段丘である場合]or 0[その他の場合]
σ22=1[地形が山地、低地などである場合]or 0[その他の場合]
σ23=1[地形が丘陵地、改変地である場合]or 0[その他の場合]
σ31=1[表層地質が変成岩、深成岩である場合]or 0[その他の場合]
σ32=1[表層地質が堆積岩1(未固結の砂、礫、シルトなど)or堆積岩5(固結の生物岩/チャート、珪岩、石灰岩など)or堆積岩6(堆積岩の互層)である場合]or 0[その他の場合]
σ33=1[表層地質が火山岩1(火山灰や火砕流などの堆積物、シラスなど)or火山岩2(火山灰やローム)or火山岩3(白っぽい火山岩類、流紋岩類、凝灰岩類など)or火山岩4(黒っぽい火山岩類、玄武岩類など)である場合]or 0[その他の場合]
σ34=1[表層地質が堆積岩2(未固結の粘土など)or堆積岩3(固結の砂岩、礫岩など)]or 0[その他の場合]
σ35=1[表層地質が表示のないものである場合場合]or 0[その他の場合]
σ36=1[表層地質が堆積岩4(固結の泥岩、頁岩など)である場合]or 0[その他の場合]
σ41=1[土壌が未熟土、赤色土・赤黄色土壌、市街地、乾燥地帯である場合]or 0[その他の場合]
σ42=1[土壌が黒ボク土壌、褐色森林土壌、ポドゾル土壌、グライ土壌、湿地地帯などである場合]or 0[その他の場合]
σ43=1[土壌が黄褐色系褐色森林土壌、低地土壌、泥炭土壌、泥炭地帯である場合]or 0[その他の場合]
である。
According to the result of the multiple regression analysis described above, the corrosiveness evaluation coefficient k of the embedded environment can be obtained by the following equation.
k = exp (-0.909 + 0.000σ 11 + 0.049σ 12 + 0.000σ 21 + 0.031σ 22 + 0.265σ 23 + 0.000σ 31 + 0.119σ 32 + 0.274σ 33 + 0.362σ 34 + 0.403σ 35 + 0.613σ 36 + 0.000σ 41 + 0.126σ 42 + 0.268σ 43 )
However,
σ 11 = 1 [when the place is inland] or 0 [others]
σ 12 = 1 [when the location is a coastal area] or 0 [other cases]
σ 21 = 1 [if the topography is a plateau / terrace] or 0 [others]
σ 22 = 1 [when topography is mountainous, lowland, etc.] or 0 [other cases]
σ 23 = 1 [if the terrain is a hilly or modified land] or 0 [others]
σ 31 = 1 [when surface geology is metamorphic rock and plutonic rock] or 0 [other cases]
σ 32 = 1 [surface geology is sedimentary rock 1 (unconsolidated sand, gravel, silt, etc.) or sedimentary rock 5 (consolidated biological rock / chart, quartzite, limestone, etc.) or sedimentary rock 6 (alternate layers of sedimentary rock) ] Or 0 [In other cases]
σ 33 = 1 [surface geology is volcanic rock 1 (sediment such as volcanic ash and pyroclastic flow, shirasu, etc.) or volcanic rock 2 (volcanic ash or loam) or volcanic rock 3 (whiteish volcanic rocks, rhyolites, tuffs, etc.) or volcanic rock 4 (If it is dark volcanic rocks, basalts, etc.)] or 0 [other cases]
σ 34 = 1 [surface geology is sedimentary rock 2 (such as unconsolidated clay) or sedimentary rock 3 (such as consolidated sandstone, conglomerate)] or 0 [other cases]
σ 35 = 1 [when surface geology is not displayed] or 0 [other cases]
σ 36 = 1 [when the surface geology is sedimentary rock 4 (consolidated mudstone, shale, etc.)] or 0 [other cases]
σ 41 = 1 [when the soil is immature soil, red / red-yellow soil, urban area, dry area] or 0 [other cases]
σ 42 = 1 [when the soil is black soil, brown forest soil, podzol soil, glai soil, wetland, etc.] or 0 [other cases]
σ 43 = 1 [when the soil is tan brown forest soil, lowland soil, peat soil, peat zone] or 0 [other cases]
It is.

上記した予測式を用いると、鋳鉄管路が埋設されている箇所の土壌などの埋設環境を調査しなくても、その箇所の地盤情報を入手するだけで、鋳鉄管の埋設期間がわかれば、その腐食深さを定量的に予測することができる。   Using the above prediction formula, without investigating the buried environment such as the soil where the cast iron pipe is buried, just obtaining the ground information of that place, if you know the buried period of the cast iron pipe, The corrosion depth can be predicted quantitatively.

具体的には、上述のように国土交通省国土地理院から発行されている国土数値情報を用いれば、その埋設箇所が標準1kmメッシュのどの部分に該当するかを調べるだけで、そのメッシュについて既知である地盤情報にもとづいて、鋳鉄管の埋設期間を参照して、その腐食深さを予測することができる。   Specifically, using the national land numerical information issued by the Geographical Survey Institute of the Ministry of Land, Infrastructure, Transport and Tourism as described above, it is known about the mesh only by examining which part of the standard 1 km mesh the buried location corresponds to Based on the ground information, the corrosion depth can be predicted with reference to the burial period of the cast iron pipe.

上記のようにした作成した予測式と、上述のように公表されている地盤情報(標準1kmメッシュ)とを用いて、全国各地における鋳鉄管の埋設環境の腐食性を定量的に評価し、評価マップを作成した。評価マップの一例を図1に示す。図1において、太い線は市町村などの行政区画を表し、縦横の線はメッシュを形成するものである。それぞれのメッシュごとに埋設環境の腐食性評価係数kの値が算出されており、図1においては、この腐食性評価係数kの値によってメッシュの色の濃度を変化させている。図1においては、メッシュの色が濃いほど腐食性が強いことを表している。   Using the prediction formula created as described above and the ground information published as described above (standard 1 km mesh), the corrosivity of the cast iron pipe burial environment throughout the country is quantitatively evaluated. Created a map. An example of the evaluation map is shown in FIG. In FIG. 1, thick lines represent administrative divisions such as municipalities, and vertical and horizontal lines form a mesh. The value of the corrosiveness evaluation coefficient k of the embedded environment is calculated for each mesh, and in FIG. 1, the color density of the mesh is changed according to the value of the corrosiveness evaluation coefficient k. In FIG. 1, the darker the mesh color, the stronger the corrosiveness.

このようにメッシュごとにkの値が設定されているため、そのメッシュの場所の管路の埋設年数が分かれば、上式によりその腐食深さを予測することができる。   Thus, since the value of k is set for every mesh, if the years of burying the pipeline at the location of the mesh are known, the corrosion depth can be predicted by the above equation.

図2は、兵庫県について作成した評価マップを示す。この評価マップは本来はkの値を有彩色で表示したものであるが、ここでは特許出願のために無彩色で表示している。このため、腐食性の弱い部分と強い部分とがともに濃く表示されており、これに対し腐食性の強弱が中間の部分が薄く表示されている。   FIG. 2 shows an evaluation map created for Hyogo Prefecture. This evaluation map is originally a k value displayed in a chromatic color, but here it is displayed in an achromatic color for patent application. For this reason, both the weakly corrosive part and the strong part are displayed darkly, while the corrosive strength is displayed lightly in the middle part.

次に本発明の腐食予測方法の精度について検証した。まず、上述の評価マップを参考にして、調査地点を選定した。すなわち、図3に示すように腐食性の強さが同等のメッシュをひとくくりにして5つの地域A〜Eに分割し、それぞれの地域の中で調査地点を3地点とした。これにもとづき、埋設年数の異なる15地点について調査したところ、腐食深さの実測値と予測値との関係は図4のようになり、両者の相関は高かった。   Next, the accuracy of the corrosion prediction method of the present invention was verified. First, the survey points were selected with reference to the above evaluation map. That is, as shown in FIG. 3, the meshes having the same corrosive strength are gathered and divided into five regions A to E, and the survey points are set to three points in each region. Based on this, 15 sites with different years of burial were investigated, and the relationship between the measured value and the predicted value of the corrosion depth was as shown in FIG. 4, and the correlation between the two was high.

このため、本発明の腐食予測方法は精度が高いことがわかった。また本発明の腐食予測方法によると、腐食性の強い地域から弱い地域にわたって、対象地域の腐食性を、最小限の調査地点数によって確認することが可能であった。   For this reason, it turned out that the corrosion prediction method of the present invention has high accuracy. Further, according to the corrosion prediction method of the present invention, it was possible to confirm the corrosiveness of the target area from the strong corrosive area to the weak area with the minimum number of survey points.

なお、図1や図2に示した評価マップは、上記のようにメッシュごとの埋設環境の腐食性評価係数kの値の大小を表したものであるが、このような評価マップは、上述した特許文献1や特許文献2に記載の方法を実施するときにも活用することができる。すなわち、これらの方法を実施するときには、上述のように埋設環境に関する情報を入手することが必要になるが、図示のような評価マップを用いると、埋設環境に関する情報を入手するときの調査地点数の効率的な低減化を図ることができるとともに、調査地点の選定についての確実な根拠付けを行うことができる。   In addition, although the evaluation map shown in FIG.1 and FIG.2 represents the magnitude of the value of the corrosivity evaluation coefficient k of the embedded environment for every mesh as mentioned above, such an evaluation map was mentioned above. It can also be utilized when implementing the methods described in Patent Document 1 and Patent Document 2. In other words, when implementing these methods, it is necessary to obtain information about the buried environment as described above. However, if an evaluation map such as the one shown in the figure is used, the number of survey points when obtaining information about the buried environment is obtained. Can be efficiently reduced, and a reliable basis for selecting survey points can be provided.

本発明にもとづく、鋳鉄管の埋設環境の腐食性についての評価マップの一例を示す図である。It is a figure which shows an example of the evaluation map about the corrosivity of the embedding environment of a cast iron pipe based on this invention. 兵庫県についての評価マップの例を示す図である。It is a figure which shows the example of the evaluation map about Hyogo Prefecture. 本発明にもとづく、鋳鉄管の腐食深さの選定のための診断対象地域の分割例を示す図である。It is a figure which shows the example of a division | segmentation of the diagnosis object area for selection of the corrosion depth of a cast iron pipe based on this invention. 本発明にもとづく鋳鉄管の腐食深さの予測値とその実測値との関係を示すグラフである。It is a graph which shows the relationship between the predicted value of the corrosion depth of the cast iron pipe based on this invention, and its measured value.

Claims (7)

鋳鉄管が埋設されている複数の埋設箇所について、鋳鉄管外面の腐食深さと埋設地の環境因子とを測定し、
その測定結果を既知の地盤情報に適用して、地盤情報が既知である場所の埋設環境の腐食性評価係数の計算式を作成し、
この腐食性評価係数の計算式と鋳鉄管の埋設期間とから、その場所に埋設されている鋳鉄管外面の腐食深さを計算可能な腐食深さ予測式を作成し、
対象場所についての既知の地盤情報とその場所における鋳鉄管の埋設期間の情報とから、前記腐食深さ予測式を用いて、その場所に埋設されている鋳鉄管外面の腐食深さを予測することを特徴とする埋設管の腐食予測方法。
Measure the corrosion depth of the cast iron pipe outer surface and the environmental factors of the buried site for multiple buried parts where the cast iron pipe is buried,
Applying the measurement results to known ground information, create a calculation formula for the corrosivity evaluation coefficient of the buried environment where the ground information is known,
Create a corrosion depth prediction formula that can calculate the corrosion depth of the outer surface of the cast iron pipe buried at the location from the calculation formula of this corrosive evaluation coefficient and the cast iron pipe burial period,
Predict the corrosion depth of the outer surface of the cast iron pipe buried at the location from the known ground information about the target location and the information of the burial period of the cast iron pipe at the location using the corrosion depth prediction formula A method for predicting corrosion of buried pipes.
腐食深さ予測式が下記の式であることを特徴とする請求項1記載の埋設管の腐食予測方法。
η=k×t0.4
ただし、η:鋳鉄管の腐食深さ(mm)、k:埋設環境の腐食性評価係数、t:埋設年数(年)である。
The corrosion prediction method for buried pipes according to claim 1, wherein the corrosion depth prediction formula is the following formula.
η = k × t 0.4
Where η is the corrosion depth (mm) of the cast iron pipe, k is the corrosive evaluation coefficient of the embedded environment, and t is the years of embedment (years).
埋設環境の腐食性評価係数の計算式は、地盤情報としての地形分類と表層地質分類と土壌分類とを加味したものであることを特徴とする請求項1または2記載の埋設管の腐食予測方法。   The method for predicting the corrosion of buried pipes according to claim 1 or 2, wherein the calculation formula for the corrosiveness evaluation coefficient of the buried environment is a combination of topographic classification, surface geological classification and soil classification as ground information. . 埋設環境の腐食性評価係数の計算式は、地盤情報としての海岸線に近い場所であるかどうかを加味したものであることを特徴とする請求項3記載の埋設管の腐食予測方法。   4. The buried pipe corrosion prediction method according to claim 3, wherein the calculation formula of the corrosiveness evaluation coefficient of the buried environment takes into account whether or not the place is near the coastline as ground information. 埋設環境の腐食性評価係数kの計算式が下記の式であることを特徴とする請求項4記載の埋設管の腐食予測方法。
k=exp(−0.909+0.000σ11+0.049σ12+0.000σ21+0.031σ22+0.265σ23+0.000σ31+0.119σ32+0.274σ33+0.362σ34+0.403σ35+0.613σ36+0.000σ41+0.126σ42+0.268σ43
ただし、
σ11=1[場所が内陸部である場合]or 0[その他の場合]
σ12=1[場所が沿岸部である場合]or 0[その他の場合]
σ21=1[地形が台地・段丘である場合]or 0[その他の場合]
σ22=1[地形が山地、低地などである場合]or 0[その他の場合]
σ23=1[地形が丘陵地、改変地である場合]or 0[その他の場合]
σ31=1[表層地質が変成岩、深成岩である場合]or 0[その他の場合]
σ32=1[表層地質が堆積岩1(未固結の砂、礫、シルトなど)or堆積岩5(固結の生物岩/チャート、珪岩、石灰岩など)or堆積岩6(堆積岩の互層)である場合]or 0[その他の場合]
σ33=1[表層地質が火山岩1(火山灰や火砕流などの堆積物、シラスなど)or火山岩2(火山灰やローム)or火山岩3(白っぽい火山岩類、流紋岩類、凝灰岩類など)or火山岩4(黒っぽい火山岩類、玄武岩類など)である場合]or 0[その他の場合]
σ34=1[表層地質が堆積岩2(未固結の粘土など)or堆積岩3(固結の砂岩、礫岩など)]or 0[その他の場合]
σ35=1[表層地質が表示のないものである場合場合]or 0[その他の場合]
σ36=1[表層地質が堆積岩4(固結の泥岩、頁岩など)である場合]or 0[その他の場合]
σ41=1[土壌が未熟土、赤色土・赤黄色土壌、市街地、乾燥地帯である場合]or 0[その他の場合]
σ42=1[土壌が黒ボク土壌、褐色森林土壌、ポドゾル土壌、グライ土壌、湿地地帯などである場合]or 0[その他の場合]
σ43=1[土壌が黄褐色系褐色森林土壌、低地土壌、泥炭土壌、泥炭地帯である場合]or 0[その他の場合]
である。
5. The method for predicting corrosion of a buried pipe according to claim 4, wherein the formula for calculating the corrosivity evaluation coefficient k of the buried environment is the following formula.
k = exp (-0.909 + 0.000σ 11 + 0.049σ 12 + 0.000σ 21 + 0.031σ 22 + 0.265σ 23 + 0.000σ 31 + 0.119σ 32 + 0.274σ 33 + 0.362σ 34 + 0.403σ 35 + 0.613σ 36 + 0.000σ 41 + 0.126σ 42 + 0.268σ 43 )
However,
σ 11 = 1 [when the place is inland] or 0 [others]
σ 12 = 1 [when the location is a coastal area] or 0 [other cases]
σ 21 = 1 [if the topography is a plateau / terrace] or 0 [others]
σ 22 = 1 [when topography is mountainous, lowland, etc.] or 0 [other cases]
σ 23 = 1 [if the terrain is a hilly or modified land] or 0 [others]
σ 31 = 1 [when surface geology is metamorphic rock and plutonic rock] or 0 [other cases]
σ 32 = 1 [surface geology is sedimentary rock 1 (unconsolidated sand, gravel, silt, etc.) or sedimentary rock 5 (consolidated biological rock / chart, quartzite, limestone, etc.) or sedimentary rock 6 (alternate layers of sedimentary rock) ] Or 0 [In other cases]
σ 33 = 1 [surface geology is volcanic rock 1 (sediment such as volcanic ash and pyroclastic flow, shirasu, etc.) or volcanic rock 2 (volcanic ash or loam) or volcanic rock 3 (whiteish volcanic rocks, rhyolites, tuffs, etc.) or volcanic rock 4 (If it is dark volcanic rocks, basalts, etc.)] or 0 [other cases]
σ 34 = 1 [surface geology is sedimentary rock 2 (such as unconsolidated clay) or sedimentary rock 3 (such as consolidated sandstone, conglomerate)] or 0 [other cases]
σ 35 = 1 [when surface geology is not displayed] or 0 [other cases]
σ 36 = 1 [when the surface geology is sedimentary rock 4 (consolidated mudstone, shale, etc.)] or 0 [other cases]
σ 41 = 1 [when the soil is immature soil, red / red-yellow soil, urban area, dry area] or 0 [other cases]
σ 42 = 1 [when the soil is black soil, brown forest soil, podzol soil, glai soil, wetland, etc.] or 0 [other cases]
σ 43 = 1 [when the soil is tan brown forest soil, lowland soil, peat soil, peat zone] or 0 [other cases]
It is.
任意の地域をメッシュ状に区分けしたデータを作成して、各メッシュのデータに、そのメッシュ内の区域についての埋設環境の腐食性評価係数の情報をもたせることを特徴とする請求項1から5までのいずれか1項記載の埋設管の腐食予測方法。   6. The data according to any one of claims 1 to 5, wherein data obtained by dividing an arbitrary region into a mesh shape is created, and the data of each mesh is provided with information on a corrosiveness evaluation coefficient of a buried environment for an area in the mesh. The method for predicting corrosion of buried pipes according to any one of the above. 鋳鉄管が埋設されている複数の埋設箇所について、鋳鉄管外面の腐食深さと埋設地の環境因子とを測定し、
その測定結果を既知の地盤情報に適用して、地盤情報が既知である場所の埋設環境の腐食性評価係数の計算式を作成し、
任意の地域をメッシュ状に区分けしたデータを作成して、各メッシュのデータに、そのメッシュ内の区域についての、前記計算式により計算された埋設環境の腐食性評価係数の情報をもたせることを特徴とする埋設管の腐食予測方法。
Measure the corrosion depth of the cast iron pipe outer surface and the environmental factors of the buried site for multiple buried parts where the cast iron pipe is buried,
Applying the measurement results to known ground information, create a calculation formula for the corrosivity evaluation coefficient of the buried environment where the ground information is known,
Create data by dividing an arbitrary area into a mesh shape, and make each mesh data have information on the corrosiveness evaluation coefficient of the embedded environment calculated by the above formula for the area in the mesh. Corrosion prediction method for buried pipes.
JP2005295804A 2005-10-11 2005-10-11 Corrosion estimation method for buried pipe Pending JP2007107882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295804A JP2007107882A (en) 2005-10-11 2005-10-11 Corrosion estimation method for buried pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295804A JP2007107882A (en) 2005-10-11 2005-10-11 Corrosion estimation method for buried pipe

Publications (1)

Publication Number Publication Date
JP2007107882A true JP2007107882A (en) 2007-04-26

Family

ID=38033872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295804A Pending JP2007107882A (en) 2005-10-11 2005-10-11 Corrosion estimation method for buried pipe

Country Status (1)

Country Link
JP (1) JP2007107882A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298688A (en) * 2007-06-01 2008-12-11 Venture Academia:Kk Method for evaluating corrosion of embedded metal structure and method for creating corrosion risk map
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
JP2016224000A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Estimation method and estimation device
JP2020051801A (en) * 2018-09-25 2020-04-02 株式会社クボタ Underground pipe update period prediction device, underground pipe update period prediction method, program, and computer readable recording medium
WO2021100341A1 (en) * 2019-11-18 2021-05-27 Jfeスチール株式会社 Metal material corrosion amount mapping method, metal material selection method, and metal material corrosion amount mapping device
WO2022070706A1 (en) 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium
WO2023100701A1 (en) 2021-12-01 2023-06-08 株式会社クボタ Buried pipe water leakage incident rate predicting device, buried pipe water leakage incident rate predicting method, and program
WO2024029439A1 (en) * 2022-08-05 2024-02-08 株式会社クボタ Burying environment classification map creation device, burying environment identification device, burying environment classification map creation method, burying environment identification method and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648239B2 (en) * 1988-03-31 1994-06-22 株式会社クボタ Corrosion prediction method for buried pipes
JP2002148178A (en) * 2000-11-13 2002-05-22 Kubota Corp Corrosion estimating method for underground pipe
JP2003215024A (en) * 2001-11-13 2003-07-30 Jfe Engineering Kk Method for predicting amount of corrosion of metallic material due to galvanic corrosion, life predicting method, metallic material, structure designing method, and method for manufacturing metallic material
JP2004184344A (en) * 2002-12-06 2004-07-02 Kubota Corp Diagnostic method of deterioration degree of buried pipe
JP2004310307A (en) * 2003-04-04 2004-11-04 Kubota Corp Earthquake damage estimation method of buried conduit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648239B2 (en) * 1988-03-31 1994-06-22 株式会社クボタ Corrosion prediction method for buried pipes
JP2002148178A (en) * 2000-11-13 2002-05-22 Kubota Corp Corrosion estimating method for underground pipe
JP2003215024A (en) * 2001-11-13 2003-07-30 Jfe Engineering Kk Method for predicting amount of corrosion of metallic material due to galvanic corrosion, life predicting method, metallic material, structure designing method, and method for manufacturing metallic material
JP2004184344A (en) * 2002-12-06 2004-07-02 Kubota Corp Diagnostic method of deterioration degree of buried pipe
JP2004310307A (en) * 2003-04-04 2004-11-04 Kubota Corp Earthquake damage estimation method of buried conduit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298688A (en) * 2007-06-01 2008-12-11 Venture Academia:Kk Method for evaluating corrosion of embedded metal structure and method for creating corrosion risk map
JP2009162705A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel materials buried in soil
JP2016224000A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Estimation method and estimation device
JP2020051801A (en) * 2018-09-25 2020-04-02 株式会社クボタ Underground pipe update period prediction device, underground pipe update period prediction method, program, and computer readable recording medium
JP7133416B2 (en) 2018-09-25 2022-09-08 株式会社クボタ Buried pipe renewal time prediction device, buried pipe renewal time prediction method, program and computer-readable recording medium
WO2022070706A1 (en) 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium
JP7496752B2 (en) 2019-09-30 2024-06-07 株式会社クボタ Buried pipe replacement timing prediction device, buried pipe replacement timing prediction method, program, and computer-readable recording medium
JPWO2021100341A1 (en) * 2019-11-18 2021-12-02 Jfeスチール株式会社 Corrosion amount mapping method of metal material, selection method of metal material and corrosion amount mapping device of metal material
WO2021100341A1 (en) * 2019-11-18 2021-05-27 Jfeスチール株式会社 Metal material corrosion amount mapping method, metal material selection method, and metal material corrosion amount mapping device
JP7151880B2 (en) 2019-11-18 2022-10-12 Jfeスチール株式会社 Metal material corrosion amount mapping method, metal material selection method, and metal material corrosion amount mapping device
US20220390353A1 (en) * 2019-11-18 2022-12-08 Jfe Steel Corporation Metal material corrosion loss mapping method, metal material selection method, and metal material corrosion loss mapping apparatus
WO2023100701A1 (en) 2021-12-01 2023-06-08 株式会社クボタ Buried pipe water leakage incident rate predicting device, buried pipe water leakage incident rate predicting method, and program
WO2024029439A1 (en) * 2022-08-05 2024-02-08 株式会社クボタ Burying environment classification map creation device, burying environment identification device, burying environment classification map creation method, burying environment identification method and program

Similar Documents

Publication Publication Date Title
Crosbie et al. Estimating groundwater recharge and its associated uncertainty: use of regression kriging and the chloride mass balance method
Beyzaei et al. Depositional environment effects on observed liquefaction performance in silt swamps during the Canterbury earthquake sequence
Mabit et al. Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics
Tiwari et al. Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model
JP2007107882A (en) Corrosion estimation method for buried pipe
Mondelli et al. Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil
Toran et al. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, USA
Tame et al. Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK
Buchty-Lemke et al. Floodplain chronology and sedimentation rates for the past 200 years derived from trace element gradients, organic compounds, and numerical modeling
Allen et al. A landfill site selection process incorporating GIS modelling
Guinea et al. Characterization of legacy landfills with electrical resistivity tomography; a comparative study
Matthiesen Detecting and quantifying ongoing decay of organic archaeological remains: A discussion of different approaches
Howard et al. Evaluation of some proximal sensing methods for mapping soils in urbanized terrain, Detroit, Michigan, USA
Attwa et al. Soil Characterization Using Joint Interpretation of Remote Sensing, Resistivity and Induced Polarization Data along the Coast of the Nile Delta
Tucker-Kulesza et al. Site-specific erodibility in claypan soils: Dependence on subsoil characteristics
Ibrahim et al. Correlating Standard Penetration Test (SPT) with Various Soil Properties in Different Kirkuk City Locations: A Case Study Utilizing Inverse Distance Weighted (IDW) for Assessment and Prediction
With et al. A methodology for mapping of quick clay in Sweden
Li et al. Bathymetric modeling of sediments and organic carbon of polluted rivers in southeastern China
Heitkamp et al. Minnesota steel culvert pipe service-life map
Smith et al. Quantifying submarine groundwater discharge and nutrient discharge into Cockburn Sound Western Australia
Stalin et al. Geographic information system for the development of soil suitability map in south Chennai, India
Adeoti et al. Soil Resistivity Measurement for Corrosivity Assessment using Barnes Method.
Hart et al. Depth-to-bedrock mapping in Wisconsin
JP2005351821A (en) Method for estimating corrosion of embedded pipe
VAN RENSSELAER A GIS ANALYSIS OF ENVIRONMENTAL AND ANTHROPOGENIC THREATS TO COASTAL ARCHAEOLOGICAL SITES IN SOUTHERN MONTEREY COUNTY, CALIFORNIA.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A02