JP2003215024A - Method for predicting amount of corrosion of metallic material due to galvanic corrosion, life predicting method, metallic material, structure designing method, and method for manufacturing metallic material - Google Patents
Method for predicting amount of corrosion of metallic material due to galvanic corrosion, life predicting method, metallic material, structure designing method, and method for manufacturing metallic materialInfo
- Publication number
- JP2003215024A JP2003215024A JP2002328266A JP2002328266A JP2003215024A JP 2003215024 A JP2003215024 A JP 2003215024A JP 2002328266 A JP2002328266 A JP 2002328266A JP 2002328266 A JP2002328266 A JP 2002328266A JP 2003215024 A JP2003215024 A JP 2003215024A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- amount
- metal
- predicting
- metal material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、異種金属接触腐食
による金属材の腐食量予測及び寿命予測方法、金属材、
構造物の設計方法及び金属材の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of predicting the amount of corrosion and life of a metal material due to contact corrosion of different metals, a metal material,
The present invention relates to a method of designing a structure and a method of manufacturing a metal material.
【0002】[0002]
【従来の技術】2種の異なる金属が接触する部位を有す
る構造物において、2種の金属のうち卑な金属部が優先
的に腐食される現象は異種金属接触腐食と呼ばれ、しば
しば構造物を著しく損傷する。この異種金属接触腐食に
ついて、海水などに浸漬された環境ではこのような腐食
速度を計測し、解析した例がある。2. Description of the Related Art In a structure having a portion where two different kinds of metals come into contact with each other, a phenomenon in which a base metal part of the two kinds of metals is preferentially corroded is called a dissimilar metal contact corrosion and is often called a structure. Seriously damage. There is an example of measuring and analyzing the corrosion rate of such dissimilar metal contact corrosion in an environment immersed in seawater or the like.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、大気環
境における異種金属接触腐食の腐食速度を計測する技術
は従来なかった。腐食における大気環境とは、異種金属
上に形成される薄い水膜環境であり、浸漬環境のように
全体が水溶液に浸っていないため、電気化学的なモデル
を構成することが困難であり、上述のような海水中のモ
デルを直接適用することができなかった。このため、大
気環境における異種金属接触腐食の腐食速度を求めるこ
とは専ら経験やノウハウに依存しており、定量的に求め
ることはできなかった。However, there has been no conventional technique for measuring the corrosion rate of contact corrosion of dissimilar metals in the atmospheric environment. The atmospheric environment in corrosion is a thin water film environment formed on a dissimilar metal, and since the whole is not immersed in an aqueous solution like an immersion environment, it is difficult to construct an electrochemical model. The model in seawater could not be applied directly. Therefore, it is impossible to quantitatively obtain the corrosion rate of the contact corrosion of dissimilar metals in the atmospheric environment because it depends exclusively on experience and know-how.
【0004】本発明は、上記のような課題を解決するた
めになされたものであり、異種金属接触腐食を高精度に
予測することを可能にした異種金属接触腐食による金属
材の腐食量及び寿命予測方法、それ関連した金属材、構
造物の設計方法及び金属材の製造方法を提供することを
目的とする。The present invention has been made in order to solve the above-mentioned problems, and it is possible to predict the corrosion of dissimilar metal contacts with high accuracy, and the corrosion amount and life of the metal material due to the contact corrosion of dissimilar metals. An object of the present invention is to provide a prediction method, a related metal material, a structure design method, and a metal material manufacturing method.
【0005】[0005]
【課題を解決するための手段】(1)本発明の一つの態様
に係る異種金属接触による金属材の腐食量予測方法は、
絶縁材を介して接合された2種の金属片を外部接触させ
たときに流れる電流及びその経時的な推移を計測する工
程と、前記工程において計測された電流の経時的な推移
に基づいて、前記2種の金属片の内、卑な金属の腐食の
進行を予測する工程とを有する。なお、本発明における
金属材とは、部品、部材、及び部品・部材に適用しよう
とする金属材料を含むものである。(1) A method for predicting the amount of corrosion of a metal material due to the contact of dissimilar metals according to one aspect of the present invention,
Based on the step of measuring the current flowing when the two kinds of metal pieces joined via an insulating material are brought into external contact and the time-dependent transition thereof, and the time-dependent transition of the current measured in the step, Of the two kinds of metal pieces, a step of predicting the progress of corrosion of a base metal is included. The metallic material in the present invention includes a metallic material to be applied to a component, a member, and a component / member.
【0006】(2)本発明の他の態様に係る異種金属接触
による金属材の腐食量予測方法は、上記(1)の腐食量
予測方法において、貴な金属の面積が異なる複数の前記
2種の金属片を用意しておいて、各2種の金属片につい
て外部に流れる電流を計測し、その内の最大の電流を、
前記2種の金属片を外部接触させたときに流れる電流と
する。(2) A method of predicting the amount of corrosion of a metal material due to contact between different metals according to another aspect of the present invention is the same as the method of predicting the amount of corrosion of (1) above, in which a plurality of the two kinds of noble metals having different areas are used. Prepare the metal pieces of, and measure the current flowing to the outside for each of the two kinds of metal pieces, and find the maximum current among them.
The current flows when the two types of metal pieces are brought into external contact.
【0007】(3)本発明の他の態様に係る異種金属接触
による金属材の腐食量予測方法は、複数の実環境におい
て、絶縁材を介して接合された2種の金属片を外部接触
させたときに流れる電流及びその経時的な推移を計測す
る第1の工程と、前記第1の工程において計測された電
流の経時的な推移に基づいて、前記2種の金属片の内、
複数の実環境における卑な金属の腐食の進行を予測する
第2の工程と、前記複数の実環境において、前記2種の
金属片の近傍又は周囲の環境因子を測定する第3の工程
と、前記複数の実環境における環境因子と前記腐食の進
行の予測とに基づいて、前記環境因子における腐食の進
行を予測する第4の工程とを有する。(3) A method of predicting the amount of corrosion of a metal material by contacting different kinds of metals according to another aspect of the present invention is to bring two kinds of metal pieces joined together through an insulating material into external contact in a plurality of actual environments. Of the two kinds of metal pieces based on the first step of measuring the current flowing when the electric current flows and its time course, and the time course of the current measured in the first step,
A second step of predicting the progression of base metal corrosion in a plurality of real environments; and a third step of measuring environmental factors near or around the two kinds of metal pieces in the plurality of real environments, A fourth step of predicting the progress of corrosion in the environmental factors based on the environmental factors in the plurality of actual environments and the prediction of the progress of corrosion.
【0008】(4)本発明の他の態様に係る異種金属接触
による金属材の腐食量予測方法は、上記(3)の腐食量
予測方法において、前記環境因子が複数ある場合に、前
記環境因子と腐食量との相関係数が相対的に大きなもの
を支配的環境因子とし、前記第4の工程においては前記
支配的環境因子における腐食の進行を予測する。(4) A method for predicting the amount of corrosion of a metal material due to contact between different metals according to another aspect of the present invention, wherein in the method for predicting the amount of corrosion in (3) above, when there are a plurality of environmental factors, the environmental factors The one having a relatively large correlation coefficient between the corrosion amount and the corrosion amount is set as a dominant environmental factor, and the progress of corrosion in the dominant environmental factor is predicted in the fourth step.
【0009】(5)本発明の他の態様に係る異種金属接触
による金属材の腐食量予測方法は、上記(3)又は
(4)の腐食量予測方法において、対象となる実構造物
又はその実構造物を模擬した構造物(以下実構造物等と
いう)の中又はその表面に設けられる基準位置、又は前
記実構造物等の外に設けられた基準位置で計測した腐食
量を基準値とし、前記実構造物等における各部位で測定
した腐食量と、前記基準値との比を部位係数としたとき
に、前記基準値と所定の環境因子との対応関係と前記部
位係数とに基づき、前記測定地域とは異なる地域におけ
る前記実構造物等の各部位の腐食量を求める。(5) A method for predicting the amount of corrosion of a metal material due to the contact between different metals according to another aspect of the present invention is the method for predicting the amount of corrosion of a metal material as described above in (3) or (4), in which the target real structure or its actual structure As a reference value, the corrosion amount measured at a reference position provided in or on the surface of a structure simulating the structure (hereinafter referred to as an actual structure or the like), or a reference position provided outside the actual structure or the like, Corrosion amount measured at each site in the actual structure and the like, when the ratio of the reference value is the site coefficient, based on the site coefficient and the correspondence between the reference value and a predetermined environmental factor, The amount of corrosion of each part such as the actual structure in an area different from the measurement area is calculated.
【0010】(6)本発明の他の態様に係る異種金属接
触による金属材の腐食量予測方法は、上記(5)の腐食
量予測方法において、前記所定の環境因子を飛来海塩量
とする。(6) In the method of predicting the amount of corrosion of a metal material caused by the contact between different metals according to another aspect of the present invention, in the method of predicting the amount of corrosion of (5), the predetermined environmental factor is the amount of incoming sea salt. .
【0011】(7)本発明の他の態様に係る異種金属接
触による金属材の腐食量予測方法は、上記(3)乃至
(6)の腐食量予測方法において、前記環境因子の計測
は、少なくとも1ヶ月とする。(7) In the method of predicting the amount of corrosion of a metal material due to the contact between different metals according to another aspect of the present invention, in the method of predicting the amount of corrosion of the above (3) to (6), the measurement of the environmental factor is at least 1 month
【0012】(8)本発明の他の態様に係る異種金属接
触による金属材の腐食量予測方法は、上記(3)乃至
(7)の腐食量予測方法において、前記環境因子は、飛
来海塩量、温度、湿度、日光照射量又はSOxである。(8) A method of predicting the amount of corrosion of a metal material due to the contact between different metals according to another aspect of the present invention is the method of predicting the amount of corrosion of any of the above (3) to (7), wherein the environmental factor is flying sea salt. Amount, temperature, humidity, sunlight dose or SOx.
【0013】(9)本発明の他の態様に係る異種金属接
触による金属材の腐食量予測方法は、上記(3)乃至
(8)の腐食量予測方法において、腐食量の予測に際し
て、予め評価する地域を類似する環境の地域に区分して
から実行する。(9) A method for predicting the amount of corrosion of a metal material caused by contact between different metals according to another aspect of the present invention, wherein the method for predicting the amount of corrosion in any of the above (3) to (8) is preliminarily evaluated when predicting the amount of corrosion. Execute this after dividing the area to be divided into areas with similar environment.
【0014】(10)本発明の他の態様に係る異種金属
接触による金属材の腐食量予測方法は、環境因子と異種
金属接触腐食による金属材の腐食の進行との関係を示す
データを予め求めておいて、前記データと、対象となる
実構造物の施工予定地域の環境因子とに基づいて、前記
実構造物等における異種金属接触腐食による金属材の腐
食量を予測する。(10) In the method of predicting the amount of corrosion of a metal material caused by contact with different metals according to another aspect of the present invention, data indicating the relationship between environmental factors and the progress of corrosion of the metal material caused by contact corrosion of different metals is obtained in advance. In advance, the corrosion amount of the metal material due to the contact corrosion of dissimilar metals in the actual structure or the like is predicted based on the data and the environmental factors in the planned construction area of the target actual structure.
【0015】(11)本発明の他の態様に係る異種金属
接触腐食による金属材の腐食量予測方法は、上記(1
0)の腐食量予測方法において、各地域における各種の
異種金属接触腐食による金属材の腐食量の予測値をデー
タベース化しておく。(11) A method for predicting the amount of corrosion of a metal material due to contact corrosion of dissimilar metals according to another aspect of the present invention is described in (1) above.
In the corrosion amount prediction method of 0), the predicted value of the corrosion amount of the metal material due to the contact corrosion of different kinds of metals in each area is made into a database.
【0016】(12)本発明の他の態様に係る異種金属
接触腐食による金属材の寿命予測方法は、上記(1)乃
至(11)の何れかに記載の記載の金属材の腐食量予測
方法に予測された腐食量に基づいて金属材の寿命を予測
する。(12) A method for predicting the life of a metal material due to corrosion of a dissimilar metal contact according to another aspect of the present invention is the method for predicting the corrosion amount of a metal material according to any one of (1) to (11) above. Predict the life of metallic materials based on the amount of corrosion predicted in.
【0017】(13)本発明の他の態様に係る異種金属
接触腐食による金属材の寿命予測方法は、上記(12)
の寿命予測方法において、2種類の金属の接合構造に対
応した減肉量を算出して寿命予測を行う。(13) A method of predicting the life of a metal material by contact corrosion of dissimilar metals according to another aspect of the present invention is described in (12) above.
In the method of predicting the service life, the service life is predicted by calculating the amount of metal thinning corresponding to the joint structure of two kinds of metals.
【0018】(14)本発明の他の態様に係る金属材
は、上記(12)又は(13)の寿命予測方法により寿
命が予測された1組の金属材からなり、各部位の腐食の
進行を予測した際のデータが添付されたものである。(14) A metal material according to another aspect of the present invention comprises a set of metal materials whose life is predicted by the life prediction method of (12) or (13) above, and the progress of corrosion of each part. The data at the time of forecasting is attached.
【0019】(15)本発明の他の態様に係る金属材
は、上記(14)の金属材において、前記データ又はそ
れを示す記号が付記されてなるものである。(15) A metal material according to another aspect of the present invention is the metal material according to the above (14), to which the data or a symbol indicating the data is added.
【0020】(16)本発明の他の態様に係る金属材
は、上記(14)又は(15)の金属材において、前記
データ又はそれに関連するデータが電子情報として納入
先に送付される。(16) In the metal material according to another aspect of the present invention, in the metal material according to (14) or (15), the data or data related thereto is sent to the delivery destination as electronic information.
【0021】(17)本発明の他の態様に係る構造物の
設計方法は、上記(11)又は(12)の寿命予測方法
により腐食の進行が予測された1組以上の金属材から、
実構造に適用するための金属材を選定する。(17) A method of designing a structure according to another aspect of the present invention is a method for designing a structure from one or more sets of metal materials whose corrosion progress is predicted by the life prediction method of (11) or (12) above.
Select a metal material to be applied to the actual structure.
【0022】(18)本発明の他の態様に係る金属材の
製造方法は、上記(17)の構造物の設計方法により設
計された金属材を製造する。(18) In the method for manufacturing a metal material according to another aspect of the present invention, the metal material designed by the method of designing a structure according to (17) above is manufactured.
【0023】[0023]
【発明の実施の形態】実施形態1.図2は異種金属接触
腐食の現象を説明するための図である。貴な金属S1と
卑な金属S2とが接触すると、両者の間には図示のよう
な電位分布が生じる。貴な金属S1と卑な金属S2との
上にそれらを跨るようにして水膜10が形成されると、
電流回路が形成されることになり、貴な金属S1と卑な
金属S2との間には図示のような分布の電流が流れるこ
とになる。この電流が流れることによって、2種の金属
のうち卑な金属部S2が腐食され、その腐食量は貴な金
属S1に流れる電流(異種金属腐食電流)に依存するこ
とが海水モデルの例から知られている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 2 is a diagram for explaining the phenomenon of contact corrosion of dissimilar metals. When the noble metal S1 and the base metal S2 come into contact with each other, a potential distribution as shown in the figure occurs between the two. When the water film 10 is formed on the noble metal S1 and the base metal S2 so as to extend over them,
A current circuit is formed, and a current having a distribution as illustrated flows between the noble metal S1 and the base metal S2. It is known from the example of the seawater model that the base metal part S2 of the two kinds of metals is corroded by the flow of this current, and the amount of corrosion depends on the current (dissimilar metal corrosion current) flowing in the noble metal S1. Has been.
【0024】図1は図2の異種金属接触腐食の現象を利
用したセンサの構成図である。貴な金属S1と卑な金属
S2との間に絶縁部材11を挿入して、金属S1とS2
との間で電流が直接流れないようにする。この絶縁部材
11は金属S1,S2間を絶縁するためのものであり、
出来るだけ薄いことが望ましい。また、貴な金属S1と
卑な金属S2との間に電流計(ガルバニック電流計)1
2を接続して両者を外部接触させたときに流れる電流を
計測する。図1の説明から明らかなように、金属S1と
S2との間に流れる電流を計測するのが望ましいわけで
あるが、それは計測できないので、上記のように金属S
1とS2との間に絶縁部材10を挿入し、そこに流れる
電流を電流計(ガルバニック電流計)12に流すように
しており、金属S1とS2とを跨るようにして水膜10
が形成されると、電流計(ガルバニック電流計)12に
電流(異種金属腐食電流)が流れる。FIG. 1 is a block diagram of a sensor utilizing the phenomenon of contact corrosion of dissimilar metals in FIG. By inserting the insulating member 11 between the noble metal S1 and the base metal S2,
Prevent current from flowing directly between and. The insulating member 11 is for insulating between the metals S1 and S2,
It is desirable to be as thin as possible. In addition, an ammeter (galvanic ammeter) 1 is provided between the noble metal S1 and the base metal S2.
2 is connected and the current flowing when both are brought into external contact is measured. As is clear from the description of FIG. 1, it is desirable to measure the current flowing between the metals S1 and S2, but since it cannot be measured, the metal S
1 and S2, an insulating member 10 is inserted, and an electric current flowing therethrough is made to flow to an ammeter (galvanic ammeter) 12, and the water film 10 is arranged so as to straddle the metals S1 and S2.
When is formed, a current (dissimilar metal corrosion current) flows through the ammeter (galvanic ammeter) 12.
【0025】図3は図1のセンサにおいて貴な金属S1
の面積(長さ)と異種金属腐食電流との関係を求めるた
めに用意された複数の面積(長さ)のものS1a乃至S
1cの説明図である。図3に示された貴な金属S1の複
数の面積(長さ)のものS1a乃至S1cのそれぞれに
ついて電流計12に流れる電流を計測することにより、
貴な金属S1に流れる異種金属腐食電流の分布(最大電
流imax、長さl)を求める。なお、本実施形態1にお
いては貴な金属S1a乃至S1cの幅Aは一定であるか
ら面積と長さとは同義である。FIG. 3 shows the precious metal S1 in the sensor of FIG.
Of a plurality of areas (lengths) prepared in order to obtain the relationship between the area (length) and the corrosion currents of dissimilar metals S1a to S1
It is explanatory drawing of 1c. By measuring the current flowing through the ammeter 12 for each of the plurality of areas (lengths) S1a to S1c of the noble metal S1 shown in FIG.
The distribution (maximum current imax, length 1) of the dissimilar metal corrosion current flowing in the noble metal S1 is obtained. In the first embodiment, since the width A of the noble metals S1a to S1c is constant, the area and the length are synonymous.
【0026】図4は貴な金属の面積(長さ)と異種金属
腐食電流との関係を示した特性図である。同図に示され
るように、金属の面積(長さ:l)が所定値以上になる
と、異種金属腐食電流は飽和して最大値が一定値になる
(この異種金属腐食電流の最大値は図1の斜線部の面積
に相当する)。卑な金属S2の腐食量はその最大値に依
存するので、図1のセンサの貴な金属S1の面積(長
さ)は所定の面積(長さ)以上であればよいことが分か
る。FIG. 4 is a characteristic diagram showing the relationship between the area (length) of noble metal and the corrosion current of different metals. As shown in the figure, when the area (length: l) of the metal exceeds a predetermined value, the dissimilar metal corrosion current saturates and the maximum value becomes constant (the maximum value of this dissimilar metal corrosion current is (Corresponding to the shaded area of 1). Since the corrosion amount of the base metal S2 depends on its maximum value, it can be seen that the area (length) of the noble metal S1 in the sensor of FIG. 1 may be a predetermined area (length) or more.
【0027】図5は図4の特性の経時的な変化を示した
特性図である。図1のセンサの上に形成される水膜10
は、時間の経過に従って腐食生成物が生じるとその伝導
率が低くなり異種金属腐食電流の最大値(imax)は時
間の経過に従って小さくなる。FIG. 5 is a characteristic diagram showing changes in the characteristics of FIG. 4 with time. Water film 10 formed on the sensor of FIG.
When the corrosion product is generated over time, the conductivity thereof becomes low, and the maximum value (imax) of the dissimilar metal corrosion current becomes small over time.
【0028】図6は経時年数(暴露時間)と図5の異種
金属腐食電流の最大値との関係を示した特性図である。
図5の最大値を経時的にプロットし、それを適当な線型
モデル(回帰式)に変換することにより、経過年数と異
種金属腐食電流の最大値との関係を示した特性式を得る
ことができる。このようにして図6の特性図が得られ、
将来に亘る異種金属腐食電流の最大値の予測値が求めら
れる。FIG. 6 is a characteristic diagram showing the relationship between the number of years (exposure time) and the maximum value of the different metal corrosion currents of FIG.
By plotting the maximum value of FIG. 5 over time and converting it into an appropriate linear model (regression equation), a characteristic expression showing the relationship between the elapsed years and the maximum value of the dissimilar metal corrosion current can be obtained. it can. In this way, the characteristic diagram of FIG. 6 is obtained,
A predicted value for the maximum value of corrosion currents of dissimilar metals over the future is required.
【0029】図7は経過年数と腐食量との関係を示した
特性図である。ここでは、異種金属腐食電流の最大値に
基づいて腐食量を算出しているが、その算出に際しては
次のような処理を行う。FIG. 7 is a characteristic diagram showing the relationship between the elapsed years and the amount of corrosion. Here, the amount of corrosion is calculated based on the maximum value of the corrosion currents of different metals, but the following process is performed in the calculation.
【0030】imaxは経時的に減少し、
imax=atb …(1)
但し、a,bは経時的に測定されたimaxから決定され
る定数であり、
−1≦b<0
である。また、電気量Cは、
C=∫imax (t) dt=a/(b+1)×t(b+1) …(2)
で与えられる。Imax decreases with time, imax = at b (1) where a and b are constants determined from imax measured with time, and −1 ≦ b <0. Further, the quantity of electricity C is given by C = ∫imax (t) dt = a / (b + 1) × t (b + 1) (2)
【0031】ファラデー(Faraday)の法則を用いて、 ΔW=M/n・C/F ΔW:質量減量(腐食量) M:原子量 n:価数 F:ファラデー定数=96485[C/g] で求められる。 ΔWは経時的に増加し、 ΔW(t)=M/n・C/F=(M/nF)×a/(b+1)×t(b+1) …(3) の数式で表される。Using Faraday's law, ΔW = M / n · C / F ΔW: mass loss (corrosion amount) M: atomic weight n: valence F: Faraday constant = 96485 [C / g] To be ΔW increases with time, and is expressed by the following formula: ΔW (t) = M / n · C / F = (M / nF) × a / (b + 1) × t (b + 1) (3) It
【0032】以上のようにしてΔW:質量減量、即ち腐
食量を求めることにより、将来に亘る腐食量の予測値が
求められる。この腐食量の予測値により、貴な金属S1
と卑な金属S2との接合構造における寿命予測が可能に
なっている。By obtaining ΔW: mass loss, that is, the amount of corrosion as described above, a predicted value of the amount of corrosion in the future can be obtained. Based on this predicted value of the amount of corrosion, the precious metal S1
It is possible to predict the service life of the joint structure between the base metal S2 and the base metal S2.
【0033】なお、本実施形態1においては、貴な金属
S1及び卑な金属S2を特定しないで説明したが、両者
は相対的な関係にあり、その関係が成り立つ2種の金属
に対しては何れの場合においても本実施形態1が適用さ
れる。In the first embodiment, the noble metal S1 and the noble metal S2 are described without specifying them, but the two have a relative relationship, and for two kinds of metals for which the relationship holds, In any case, the first embodiment is applied.
【0034】実施形態2.図8は本発明の実施形態2に
係る金属材等の設計方法、製造方法等の処理過程を示し
たフローチャートである。本実施形態2においては、上
記の実施形態1の計測原理を更に発展させたものであ
る。Embodiment 2. FIG. 8 is a flow chart showing the processing steps of the design method, the manufacturing method, etc. of the metal material and the like according to the second embodiment of the present invention. The second embodiment is a further development of the measurement principle of the first embodiment.
【0035】(S11)図1のセンサによって各地域
(A,B,C…)における腐食量の推定を行って、図6
の特性を各地域毎に求める。ここでは、例えば貴な金属
としてステンレス鋼、卑な金属として鉄、その他の各種
の組み合わせについての腐食量の推定をするものとす
る。(S11) The amount of corrosion in each area (A, B, C ...) Is estimated by the sensor shown in FIG.
The characteristics of are calculated for each region. Here, for example, the amount of corrosion of stainless steel as the noble metal, iron as the base metal, and various other combinations are estimated.
【0036】図9(A)乃至(C)は各地域(A,B,
C)における或る特定の2種の異種金属接触における腐
食量の推定を行った際の特性図である。FIGS. 9A to 9C show each area (A, B,
It is a characteristic view when estimating the corrosion amount in a certain 2 kinds of dissimilar metal contact in C).
【0037】(S12)各地域(A,B,C…)の環境
因子を計測する。環境因子としては例えば飛来海塩量、
温度、湿度等があるが、これらを各地域(A,B,C
…)毎に所定期間(最低1ヶ月以上)計測して平均値を
求める。(S12) Environmental factors of each area (A, B, C ...) Are measured. As environmental factors, for example, the amount of flying sea salt,
There are temperature, humidity, etc., but these are each area (A, B, C
...) for a predetermined period (at least one month or more) for each time to obtain an average value.
【0038】図10は各地域(A,B,C…)において
計測された環境因子(平均値)をリストした例を示した
図である。FIG. 10 is a diagram showing an example in which environmental factors (average values) measured in each area (A, B, C ...) Are listed.
【0039】なお、その地域は例えば、沿岸部、山間
部、都市部等に分類されるているものとする。予測に際
しては、ある程度、調査する地域を類似する環境の地域
に区分評価するのが好ましい。類似する環境とは気温や
気温の変化が似かよった地域、湿度や温度の変化が似か
よった地域等を言う。国内を例にとれば北海道、沖縄南
西諸島、太平洋沿岸等の区分である。このように区分し
評価すれば簡便かつ、短期間に寿命予測を行うことがで
き、予測の精度も上がる。It is assumed that the area is classified into coastal areas, mountainous areas, urban areas, and the like. When making a prediction, it is preferable to classify the surveyed area into areas of similar environment to some extent. The similar environment means an area where the temperature or the change of the temperature is similar, an area where the change of the humidity or the temperature is similar, or the like. Taking Japan as an example, it is classified into Hokkaido, the Okinawa Nansei Islands, and the Pacific coast. If divided and evaluated in this way, the life can be predicted easily and in a short period of time, and the accuracy of prediction can be improved.
【0040】(S13)環境因子を分類・定量化して支
配的環境因子を決定する。この工程においては、上述の
データ(図9、図10)から、飛来海塩量、温度、湿
度、等の環境因子を収集して、環境因子を腐食量に対し
てプロットして後述の演算処理をすることにより、両者
の相関係数(決定係数)を求めて、その相関係数(決定
係数)が相対的に大きいものが、腐食速度を支配してい
る支配的環境因子であると決定する。(S13) The dominant environmental factors are determined by classifying and quantifying the environmental factors. In this step, environmental factors such as the amount of incoming sea salt, temperature, and humidity are collected from the above-described data (FIGS. 9 and 10), the environmental factors are plotted against the amount of corrosion, and the calculation processing described later is performed. By determining the correlation coefficient (coefficient of determination) of both, it is determined that the one with a relatively large correlation coefficient (coefficient of determination) is the dominant environmental factor that controls the corrosion rate. .
【0041】図11は飛来海塩量と腐食量との関係を示
した特性図であり、上述のデータ(図9、図10)か
ら、例えば図9の経過年数が3年、5年についての腐食
量をそれぞれ抽出し、更に図10から各地域における飛
来海塩量を抽出することにより、経過年数を3年、5年
をパラメータとする飛来海塩量と腐食量との関係を求め
る。また、他の経過年数について同様にして求めておく
ものとする。更に、温度及び湿度についても図11と同
様な特性を求めておいて、次の処理を行う。FIG. 11 is a characteristic diagram showing the relation between the amount of incoming sea salt and the amount of corrosion. From the above-mentioned data (FIGS. 9 and 10), for example, when the elapsed years in FIG. 9 are 3 years and 5 years, By extracting the amount of corrosion and further extracting the amount of flying sea salt in each region from FIG. 10, the relationship between the amount of flying sea salt and the amount of corrosion with the elapsed years of 3 years and 5 years as a parameter is obtained. Also, the other elapsed years shall be similarly obtained. Further, regarding the temperature and the humidity, the characteristics similar to those in FIG. 11 are obtained, and the following processing is performed.
【0042】ここで、支配的環境因子の決定方法を具体
的に説明する。環境因子(独立変数)X、腐食量(従属
変数)Yについてそれぞれの対数を取って、線形モデル
に変換して回帰分析を行う。更に、(3)式の相関係数
(決定係数)R2を次の(4)式により求める。
logY=α+βlogX …(3)Here, a method of determining the dominant environmental factor will be specifically described. Environmental factors (independent variables) X and corrosion amounts (dependent variables) Y are each logarithmized and converted into a linear model for regression analysis. Further, the correlation coefficient (determination coefficient) R 2 of the equation (3) is calculated by the following equation (4). logY = α + βlogX (3)
【0043】[0043]
【数1】 [Equation 1]
【0044】上記の(3)式の定数α,βを求めるに際
しては、環境因子である飛来海塩量、湿度、温度等のそ
れぞれについて求める。図11の例では例えば5年経過
の腐食量及び飛来海塩量を上記の(3)式に適用して、
上記の定数α、βをそれぞれ求めるとともにその相関係
数(決定係数)を求める。また、湿度、温度等について
も同様にしてその相関係数を求める。In obtaining the constants α and β in the above equation (3), the amounts of incoming sea salt, humidity, temperature, etc., which are environmental factors, are obtained. In the example of FIG. 11, for example, applying the corrosion amount and the amount of incoming sea salt after 5 years to the above formula (3),
The above-mentioned constants α and β are obtained, and the correlation coefficient (determination coefficient) thereof is obtained. Further, the correlation coefficient is similarly obtained for humidity, temperature, and the like.
【0045】上記のようにして飛来海塩量、湿度、温度
のそれぞれの相関係数(決定係数)が求まると、相互の
大きさを対比して、決定係数が1番大きな値を示した環
境因子を支配的環境因子として決定する。次の表1は貴
な金属がステンレス鋼であり、卑な金属がアルミニウム
の場合における各環境因子の相関係数の例である。When the correlation coefficients (coefficients of determination) of the amount of incoming sea salt, humidity and temperature are obtained as described above, the mutual coefficients are compared and the coefficient of determination shows the largest value. Determine the factor as the dominant environmental factor. The following Table 1 is an example of the correlation coefficient of each environmental factor when the noble metal is stainless steel and the base metal is aluminum.
【0046】[0046]
【表1】 [Table 1]
【0047】支配的環境因子を決定した後は、その環境
因子についての上記の(3)式の定数α,βを少なくと
も3年分(例えば3年、5年、10年)について求めて
おくものとする(この年数分が多い方が望ましい)。After determining the dominant environmental factors, the constants α and β of the above equation (3) for the environmental factors are obtained for at least 3 years (for example, 3 years, 5 years, 10 years). (It is desirable that there are many minutes for this year).
【0048】(S14)対象となる実構造物(又はそれ
を模擬した構造物)の複数の被対象部位に図1のセンサ
を設置して上述の電流を(imax)を測定する。この
工程では、更に実構造物内でミクロに環境が異なること
から、各部位の腐食速度を外部環境に対して数値化す
る。日本の気候は四季があり、1年間で大きく変化する
ので、望ましくは、1年間継続的に測定するのが良い
が、1ヶ月の測定でも日本各地域の気候データから、推
定することは十分可能である。(S14) The sensors shown in FIG. 1 are installed at a plurality of target parts of a target real structure (or a structure imitating the structure), and the current (imax) is measured. In this process, since the environment is microscopically different in the actual structure, the corrosion rate of each part is quantified with respect to the external environment. Since the climate of Japan has four seasons and changes greatly in one year, it is desirable to measure continuously for one year, but even one-month measurement can be sufficiently estimated from climate data in each region of Japan. Is.
【0049】なお、測定に際しては、例えば顧客から要
請があった実構造物又はそれを模擬した構造物の複数の
部位で図1のセンサを用いて計測する。部位によっては
(例えば、躯体内とか狭い場所)、飛来海塩量を計測で
きない場所があるので、屋外で飛来海塩量の採取と図1
のセンサによる計測とを併行して行い、各部位は図1の
センサの計測のみを行う。図1のセンサの出力は定量で
きるので、図1のセンサの出力から環境データの度合い
(例えば、飛来海塩量、温度、湿度等)を次式(5)に
示すように見積もることができる。実際には、屋外を1
とした場合の比率で表現し、部位Aは腐食比率0.2と
か、部位Bは腐食比率0.01といった具合に表現す
る。In the measurement, for example, the sensor of FIG. 1 is used to measure the actual structure requested by the customer or a plurality of parts of the structure simulating the actual structure. Depending on the site (for example, in the body or in a narrow place), there is a place where the amount of incoming sea salt cannot be measured.
And the measurement by the sensor of FIG. 1 are performed in parallel, and only the measurement of the sensor of FIG. Since the output of the sensor of FIG. 1 can be quantified, the degree of environmental data (for example, the amount of incoming sea salt, temperature, humidity, etc.) can be estimated from the output of the sensor of FIG. 1 as shown in the following equation (5). Actually, 1 outdoors
The corrosion rate is 0.2 for the part A, and the corrosion rate is 0.01 for the part B.
【0050】 部位係数=部位の腐食量/屋外の腐食量 …(5)[0050] Coefficient of part = Corrosion amount of part / Corrosion amount of outdoor… (5)
【0051】図12は上記にて計測された各部位の部位
係数を示した図であり、ここでは屋外を1とし、部位1
乃至部位3はそれぞれ異なった値をとっていることが分
かる。FIG. 12 is a diagram showing the site coefficient of each site measured above, where the outdoor area is 1, and the site 1 is
It can be seen that the regions 3 have different values.
【0052】ここで例えば、実構造物をプレハブやスチ
ールハウス等の住宅部材を例として説明すると次のよう
になる。1ヶ月間の試験で屋外の飛来海塩量のデータ
と、金属材の腐食量のデータを取る。一方、軒先とか小
屋裏、壁内部等の各使用部位の腐食量を図1のセンサに
より計測する。屋外で測定した飛来海塩量と腐食量との
関係から上記の(5)式により部位係数が求まることに
より、上記にて測定された地域(例えば北海道)とは異
なる地域(例えば沖縄)に上記と同様な構造物を設置す
る際にその部位係数を用いて各部位の腐食量を求める。Here, for example, the actual structure will be described as an example of a housing member such as a prefab or a steel house. Data on the amount of incoming sea salt and data on the amount of corrosion of metal materials will be taken in a one-month test. On the other hand, the amount of corrosion of each used part such as the eaves, the back of the hut, and the inside of the wall is measured by the sensor of FIG. From the relationship between the amount of incoming sea salt and the amount of corrosion measured outdoors, the site coefficient is obtained by the above equation (5), so that the area (for example, Okinawa) different from the area (for example, Hokkaido) measured above can be used in the above area. When installing a structure similar to, calculate the amount of corrosion at each site using the site coefficient.
【0053】(S16)次に、既に計測されている全国
の気象データに基づいて異種金属腐食マップを作成す
る。ここでは、上記において計測されていない地域(地
域A乃至Zを除く)における飛来海塩量を既存の気象デ
ータのデータベースから求めて、その地域における異種
金属腐食量を求めてデータベース化する。例えば或る地
域における飛来海塩量がa(mdd)であることが分か
ると、その飛来海塩量aと上記の部位係数に基づいて各
部位の腐食量の経時変化を予測する。なお、飛来海塩量
の単位mddは、mg/dm2・day(10cm×1
0cm四方の面積に1日当たり捕獲される海塩量)であ
る。(S16) Next, a dissimilar metal corrosion map is prepared based on the nationwide meteorological data already measured. Here, the amount of incoming sea salt in an area not measured above (excluding areas A to Z) is obtained from a database of existing meteorological data, and the amount of different metal corrosion in that area is obtained and made into a database. For example, if it is found that the amount of incoming sea salt in a certain area is a (mdd), the change over time in the amount of corrosion at each site is predicted based on the amount of incoming sea salt a and the above-mentioned site coefficient. The unit mdd for the amount of incoming sea salt is mg / dm 2 · day (10 cm × 1
The amount of sea salt captured per day in an area of 0 cm square).
【0054】具体的には、各部位の飛来海塩量(例えば
屋外、軒先、小屋裏、壁内部等の各部位の飛来海塩量)
をそれぞれ図11の特性に当てはめて、腐食量と経過年
数のデータを得る。図11の例においては例えば環境因
子が飛来海塩量a(mdd)であった場合にはそれに対
応した腐食量Ya3、Ya5、Ya10を求める。そし
て、経過年数(独立変数)T、腐食量(従属変数)Yに
ついてそれぞれの対数を取って、線形モデルに変換して
回帰分析を行い、定数γ、δを求める。
logY=γ+δlogT …(7)Specifically, the amount of incoming sea salt at each part (for example, the amount of incoming sea salt at each part such as outdoors, eaves, attic, back wall, etc.)
Are applied to the characteristics shown in FIG. 11 to obtain data on the amount of corrosion and the number of years elapsed. In the example of FIG. 11, for example, when the environmental factor is the amount of incoming sea salt a (mdd), the amounts of corrosion Ya3, Ya5, and Ya10 corresponding thereto are calculated. Then, the logarithms of the elapsed years (independent variable) T and the corrosion amount (dependent variable) Y are taken, converted into a linear model, and regression analysis is performed to obtain constants γ and δ. logY = γ + δlogT (7)
【0055】図13は、上記の(7)式により求められ
た、屋外、部位1乃至3における経過年数と腐食量との
関係を概念的に示した特性図である。FIG. 13 is a characteristic diagram conceptually showing the relationship between the number of years elapsed and the corrosion amount in the outdoor areas 1 to 3 obtained by the above equation (7).
【0056】上記のようなデータを各地域毎に求めるこ
とにより異種金属腐食マップを作成してデータベース化
しておく。この場合には各種の異種金属の組み合わせに
ついてのデータについても同様に求めておくものとす
る。このようにしてデータベース化しておくと、例えば
施工予定の地域の気象データから環境因子を抽出して、
その環境因子と上記のデータベースとにより、対象構造
物の腐食量を簡単に求めることができる。By obtaining the above-mentioned data for each area, a dissimilar metal corrosion map is created and stored as a database. In this case, data on combinations of various kinds of different metals should be similarly obtained. By creating a database in this way, for example, by extracting environmental factors from the weather data of the area where construction is planned,
The amount of corrosion of the target structure can be easily obtained from the environmental factors and the above database.
【0057】(S17)上記の異種金属腐食マップに基
づいて構造物を設計する。ここでは、上記の異種金属腐
食マップから該当する構造物の各部位の腐食量を求め、
更に、その部位の構造から寿命(耐用年数)を求める。(S17) A structure is designed based on the above different metal corrosion map. Here, the corrosion amount of each part of the corresponding structure is obtained from the above-mentioned dissimilar metal corrosion map,
Furthermore, the life (useful life) is obtained from the structure of the part.
【0058】ここで、予測された腐食量をΔW[g]と
し、単位面積あたりの予測された腐食量をΔW1を[g/
m2]と定義すると、ΔW1は次式に表されるものとす
る。 Δ
W1[g/m2]=ΔW[g]/(金属片の幅×l) …(8)
l:図4の最大電流が流れたときの貴な金属の長さHere, the predicted corrosion amount is ΔW [g], and the predicted corrosion amount per unit area is ΔW1 [g /
m 2 ], ΔW1 is expressed by the following equation. Δ W1 [g / m 2 ] = Δ W [g] / (width of metal piece × l) (8) l: length of noble metal when maximum current flows in FIG.
【0059】予測された腐食量ΔW1[g/m2]は、貴
な金属の面積倍(A1)だけ発生し、卑な金属部分の面
積(A2)で消費されるため、減肉量ΔT[m]は直接
卑な金属の腐食部の面積で割り付けて算出することがで
きる。ρ[g/m3]を卑な金属の密度として、基本式は
下記のとおりになる。
ΔT=ΔW1×A1/A2/ρ …(9)The predicted corrosion amount ΔW1 [g / m 2 ] is generated by the area multiple (A1) of the noble metal and is consumed by the area (A2) of the base metal portion, so the amount of thinning ΔT [ m] can be calculated by directly allocating the area of the corroded portion of the base metal. The basic formula is as follows, where ρ [g / m 3 ] is the density of the base metal. ΔT = ΔW1 × A1 / A2 / ρ (9)
【0060】次に、接触部が直線と円弧の場合のΔTに
ついて説明する。(1)接触部が直線の場合
ΔT=ΔW1×(l×A)/(L×A)/ρ …(10)
但し、L[m]、A[m]は図14に定義される。な
お、図14は貴な金属S1及び卑な金属S2を接合した
ときの平面を示した図である。Next, ΔT when the contact portion is a straight line and a circular arc will be described. (1) When the contact portion is a straight line ΔT = ΔW1 × (l × A) / (L × A) / ρ (10) However, L [m] and A [m] are defined in FIG. Note that FIG. 14 is a view showing a plane when the noble metal S1 and the base metal S2 are joined.
【0061】ここで、上記のL[m]の求め方について
説明する。上述の実施形態1において説明したのと同様
にして、卑な金属S2についてもその電流分布(最大電
流が流れる長さ)を求める。図15はその際の説明図で
ある。貴な金属S1及び卑な金属S2のそれぞれについ
て異なった長さの金属片(試験片)S1a乃至S1c、
S2a乃至S2cを用意しておいて、両者を外部接続し
たときの電流を電流計12により計測する。貴な金属S
1及び卑な金属S2のそれぞれについて異なった長さの
金属片(試験片)を用意しておいて、両者を外部接続し
たときの電流を電流計12により計測する。卑な金属S
2においても、貴な金属S1の場合と同様にしてその長
さを長くするに従って電流値が大きくなり、所定の長さ
Lで飽和する。その長さLを上記(10)式及び後述の
式のLとして実構造物の設計に適用する。Here, a method for obtaining the above L [m] will be described. In the same manner as described in the first embodiment, the current distribution (length of maximum current) of the base metal S2 is calculated. FIG. 15 is an explanatory diagram at that time. Metal pieces (test pieces) S1a to S1c having different lengths for the noble metal S1 and the base metal S2, respectively.
S2a to S2c are prepared, and the current when the both are externally connected is measured by the ammeter 12. Precious metal S
A metal piece (test piece) having a different length is prepared for each of the 1 and the base metal S2, and the current when the both are externally connected is measured by the ammeter 12. Base metal S
Also in No. 2, as in the case of the noble metal S1, the current value increases as the length increases, and the value saturates at the predetermined length L. The length L is applied to the design of the actual structure as L in the above equation (10) and the equation described later.
【0062】(2)接触部が円弧の場合
図16(A)(B)は円弧の金属材が卑な金属S2で、
貴な金属S1がその外周を覆っている状態の構成の説明
図であり、半径rがLより大きな場合及び半径rがLよ
り小さな場合をそれぞれ示している。
(a)円弧の半径rがLより大きな場合には、減肉量Δ
Tは
ΔT=ΔW1×π((r+l) 2−r 2)/π(r 2−(r−L)2)/ρ
…(11)
(b)円弧の半径rがLより小さな場合には、減肉量ΔTは
ΔT=ΔW1×π((r+l) 2−r2)/πr 2/ρ …(12)(2) When the contact portion is an arc: In FIGS. 16A and 16B, the arc metal material is the base metal S2.
It is explanatory drawing of a structure in the state where the noble metal S1 has covered the outer periphery, and has shown the case where the radius r is larger than L and the case where the radius r is smaller than L, respectively. (A) When the radius r of the arc is larger than L, the amount of wall thinning Δ
T is ΔT = ΔW 1 × π ((r + 1) 2 −r 2 ) / π (r 2 − (r−L) 2 ) / ρ (11) (b) When the radius r of the arc is smaller than L, The amount of thickness reduction ΔT is ΔT = ΔW1 × π ((r + 1) 2 −r 2 ) / πr 2 / ρ (12)
【0063】以上の計算により減肉量ΔTが決定され、
各々の構造物の強度などの減肉量の許容量より、寿命
(耐用年数)を決定することができる。The amount of wall thinning ΔT is determined by the above calculation,
The service life (service life) can be determined based on the allowable amount of metal thinning such as the strength of each structure.
【0064】(S18)以上の処理により製品条件を満
たした金属材又は部品の仕様が得られるが、次に、その
金属材を製造・販売するまでの過程について説明する。
(S18a)金属材の材料を選定する。ここでは、上記
の処理にて耐用年数(例えば30年)が満たされた金属
材の中から材料を選定する。(S18) By the above processing, the specifications of the metal material or parts satisfying the product conditions can be obtained. Next, the process of manufacturing and selling the metal material will be described. (S18a) The metal material is selected. Here, the material is selected from among the metal materials that have been filled with the service life (for example, 30 years) by the above processing.
【0065】なお、上記の処理(S17)において、例
えば寿命予測対象となった全ての金属材が耐用年数を満
たさないような場合には、予測対象となった金属材より
も明らかに耐食性が高いとわかっている金属材を選定し
てもよい。同系統の金属材であればある程度の対応関係
がつけられるので、例えば最も寿命が長いと予測された
金属材と同系統かつ高耐食性の金属材を選定すればよ
い。In the above processing (S17), for example, when all the metal materials for which the life is predicted do not satisfy the service life, the corrosion resistance is obviously higher than that of the metal material for which the prediction is made. It is also possible to select a known metal material. Corresponding relationships can be established to some extent for metal materials of the same system, so for example, a metal material of the same system and with high corrosion resistance as the metal material predicted to have the longest life may be selected.
【0066】更に、例えば寿命予測対象となった全ての
金属材が耐用年数を満たさないような場合には、その予
測結果に基づいて新たな金属材を設計してもよい。或る
金属材にマイナーな設計修正を行うのであれば、耐食性
の向上程度は予測がつけられることを利用する。寿命予
測対象となった金属材の厚さを変更するとか、例えば化
成処理の種類を変えるとか、焼付け工程の温度制御を変
更するとか、めっき付着量を変更する等が考えられる。
なお、本発明においては、材料選択、材料選定、材料設
計の何れをも設計という概念に含まれるものとする。Further, for example, when all the metal materials for which the life has been predicted do not satisfy the service life, a new metal material may be designed based on the prediction result. If minor design modifications are made to a metal material, it is used that the degree of improvement in corrosion resistance can be predicted. It is conceivable to change the thickness of the metal material whose life is to be predicted, for example, to change the type of chemical conversion treatment, to change the temperature control in the baking process, or to change the plating adhesion amount.
Note that in the present invention, the concept of designing includes all of material selection, material selection, and material design.
【0067】(S18b)材料の受注、製造及び販売を
行う。(S18b) Orders, manufactures, and sells materials.
【0068】以上のようにして製造された金属材には、
上記の処理(S16)及び/又は(S17)のデータを
添付する。なお、この添付とは機械的に添付するだけで
なく、金属材とそのデータとが何らかの関連付けがなさ
れている場合も含む。例えば上記の各部位の腐食の進行
を予測した際のデータ又はそれを示す記号を金属材に付
記したり、或いはそのデータ又はそれに関連するデータ
を電子情報として納入先に送付する。この電子情報はF
D等の記録媒体でも良いし、ネットワークを介して納入
先に送付(送信)したりしても良い。The metal material manufactured as described above includes
The data of the above processing (S16) and / or (S17) is attached. Note that this attachment includes not only mechanical attachment but also the case where the metal material and its data are associated with each other in some way. For example, the data at the time of predicting the progress of corrosion of each of the above parts or a symbol indicating the data is added to the metal material, or the data or data related thereto is sent as electronic information to the delivery destination. This electronic information is F
It may be a recording medium such as D or may be sent (transmitted) to the delivery destination via a network.
【0069】本実施形態1においては、上述のように、
支配的環境因子を把握することにより金属材等の金属材
の腐食の進行を定量的に精度良く得ることができるよう
にしたので、実構造物の腐食量及び寿命に対して定量的
な見解を出せるようになっている。従来の経験等では、
このような処理ができなかったために、実構造物の腐食
量及び寿命に対し定性的な良否の示唆しかできなかっ
た。In the first embodiment, as described above,
By grasping the dominant environmental factors, it has become possible to quantitatively and accurately obtain the progress of corrosion of metal materials such as metal materials. It is ready to be put out. In the past experience,
Since such a treatment could not be performed, only a qualitative suggestion as to the corrosion amount and life of the actual structure could be suggested.
【0070】実施形態3.なお、上記の実施形態におい
ては飛来海塩量が支配的環境因子である場合の例につい
て説明しているが、本発明の支配的環境因子はそれに限
定されるものではない。日本国内のような四面海に囲ま
れている環境では飛来海塩量が支配的環境因子として腐
食との相関が強いが、内陸の極限られた地域では、温度
が支配的環境因子であったり、湿度が支配的環境因子で
あったりする。また、都会の極限られた地域ではイオウ
酸化物が支配的であったりもする。そのような環境で
も、本発明は有効であり、金属材の寿命予測を簡便に短
期間で行うことができる。また、上記の実施形態におい
ては、支配的環境因子が1つの場合を説明したが、本発
明は、支配的環境因子が2以上の場合にも適用できる。
例えば、沿岸部で湿度が高い地方では、飛来海塩量と湿
度の2つが支配的環境因子となる場合もある。Embodiment 3. In the above embodiment, an example in which the amount of flying sea salt is the predominant environmental factor has been described, but the predominant environmental factor of the present invention is not limited thereto. In an environment surrounded by a four-sided sea like Japan, the amount of incoming sea salt has a strong correlation with corrosion as a dominant environmental factor, but in the extremely limited inland area, temperature is the dominant environmental factor, Humidity may be the dominant environmental factor. Sulfur oxides may also predominate in the very limited areas of the city. Even in such an environment, the present invention is effective, and the life expectancy of a metal material can be easily predicted in a short period of time. Further, in the above embodiment, the case where there is one dominant environmental factor has been described, but the present invention can be applied to the case where there are two or more dominant environmental factors.
For example, in coastal regions with high humidity, the amount of incoming sea salt and humidity may be the two dominant environmental factors.
【0071】なお、環境因子には上記のように飛来海塩
量、温度、湿度、日照量(紫外線照射量)等があるが、
これらの環境因子に対し、腐食因子計測はそれぞれガー
ゼ法、温度計、湿度計、紫外線計測器で計測することに
なる。The environmental factors include the amount of incoming sea salt, the temperature, the humidity, the amount of sunlight (the amount of ultraviolet irradiation), etc.
Corrosion factors are measured by the gauze method, thermometer, hygrometer, and ultraviolet ray meter for these environmental factors.
【0072】実施形態4.また、上述の実施形態1にお
いては金属材の寿命予測等について説明したが、本発明
においては異種接合腐食が問題となる金属であれば、め
っき処理材等の他の金属材も含まれる。Embodiment 4. In addition, although the life prediction of the metal material and the like have been described in the above-described first embodiment, in the present invention, other metal materials such as a plated material are included as long as the metal causes a problem of dissimilar corrosion.
【0073】[0073]
【発明の効果】以上のように本発明によれば、絶縁部材
を介して接合された2種の金属片を外部接触させときに
流れる電流及びその経時的な推移を計測し、その電流の
経時的な推移に基づいて、2種の金属片の内、卑な金属
の腐食の進行を予測するようにしたので、精度の高い長
期の金属材の腐食量予測が可能になっている。As described above, according to the present invention, the current flowing when two kinds of metal pieces joined via an insulating member are brought into external contact and the transition thereof with time are measured, and the current is measured with time. Since the progress of corrosion of the base metal of the two kinds of metal pieces is predicted on the basis of the dynamic transition, it is possible to accurately predict the long-term corrosion amount of the metal material.
【図1】異種金属接触腐食の現象を利用したセンサの構
成図である。FIG. 1 is a configuration diagram of a sensor utilizing a phenomenon of contact corrosion of dissimilar metals.
【図2】異種金属接触腐食の現象を説明するための図で
ある。FIG. 2 is a diagram for explaining a phenomenon of contact corrosion of dissimilar metals.
【図3】図1のセンサにおいて貴な金属S1の面積(長
さ)と異種金属腐食電流との関係を求めるために用意さ
れた複数種類の面積(長さ)のものの説明図である。FIG. 3 is an explanatory diagram of a plurality of types of areas (lengths) prepared for obtaining the relationship between the area (length) of the noble metal S1 and the dissimilar metal corrosion current in the sensor of FIG.
【図4】貴な金属の面積(長さ)と異種金属腐食電流と
の関係を示した特性図である。FIG. 4 is a characteristic diagram showing the relationship between the area (length) of noble metal and the corrosion current of dissimilar metals.
【図5】図4の特性の経時的な変化を示した特性図であ
る。FIG. 5 is a characteristic diagram showing changes over time in the characteristics of FIG.
【図6】経過年数(暴露時間)と図5の異種金属腐食電
流の最大値との関係を示した特性図である。6 is a characteristic diagram showing the relationship between the number of years elapsed (exposure time) and the maximum value of the dissimilar metal corrosion current of FIG.
【図7】経過年数(暴露時間)と腐食量との関係を示し
た特性図であるFIG. 7 is a characteristic diagram showing the relationship between elapsed years (exposure time) and the amount of corrosion.
【図8】本発明の実施形態2に係る金属材等の設計方
法、製造方法等の処理過程を示したフローチャートであ
る。FIG. 8 is a flowchart showing processing steps of a design method, a manufacturing method, and the like of a metal material and the like according to a second embodiment of the present invention.
【図9】各地域(A,B,C)における或る特定の2種
の異種金属接触における腐食量の推定を行った際の特性
図である。FIG. 9 is a characteristic diagram when the amount of corrosion in contact with two specific kinds of dissimilar metals in each region (A, B, C) is estimated.
【図10】各地域(A,B,C…)において計測された
環境因子(平均値)をリストした例を示した図である。FIG. 10 is a diagram showing an example in which environmental factors (average values) measured in each area (A, B, C ...) Are listed.
【図11】飛来海塩量と腐食量との関係を示した特性図
である。FIG. 11 is a characteristic diagram showing the relationship between the amount of incoming sea salt and the amount of corrosion.
【図12】上記にて計測された各部位の部位係数を示し
た図である。FIG. 12 is a diagram showing the site coefficient of each site measured above.
【図13】屋外、部位1乃至3における経過年数と腐食
量との関係を概念的に示した特性図である。FIG. 13 is a characteristic diagram conceptually showing the relationship between the number of years elapsed and the amount of corrosion in the outdoor areas 1 to 3.
【図14】貴な金属S1及び卑な金属S2を接合したと
きの平面を示した図である。FIG. 14 is a view showing a plane when a noble metal S1 and a base metal S2 are joined.
【図15】貴な金属S1及び卑な金属S2について電流
分布(最大電流、最大電流が流れるときの長さ)を求め
る際の説明図である。FIG. 15 is an explanatory diagram for obtaining a current distribution (maximum current, length when the maximum current flows) for the noble metal S1 and the base metal S2.
【図16】円弧の金属材が卑な金属S2で、貴な金属S
1がその外周を覆っている状態の説明図である。FIG. 16 is a noble metal S2 in which the arc-shaped metal material is the base metal S2.
It is explanatory drawing of the state in which 1 has covered the outer periphery.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/416 G01N 27/46 301M (72)発明者 藤田 栄 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 2G050 AA01 BA02 BA04 BA06 BA09 BA10 CA01 DA02 EA01 EA02 EA03 EB02 EC05 4K060 AA02 BA13 BA14 BA39 DA07 DA10 EB02 FA07 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 27/416 G01N 27/46 301M (72) Inventor Sakae Fujita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd. F term (reference) 2G050 AA01 BA02 BA04 BA06 BA09 BA10 CA01 DA02 EA01 EA02 EA03 EB02 EC05 4K060 AA02 BA13 BA14 BA39 DA07 DA10 EB02 FA07
Claims (18)
を外部接触させたときに流れる電流及びその経時的な推
移を計測する工程と、 前記工程において計測された電流の経時的な推移に基づ
いて、前記2種の金属片の内、卑な金属の腐食の進行を
予測する工程とを有することを特徴とする異種金属接触
腐食による金属材の腐食量予測方法。1. A step of measuring a current flowing when two kinds of metal pieces joined via an insulating material are brought into external contact with each other and a transition thereof with time, and a step of measuring the current measured in the step with time. And a step of predicting the progress of corrosion of a base metal of the two kinds of metal pieces on the basis of the transition.
の金属片を用意しておいて、各2種の金属片について外
部に流れる電流を計測し、その内の最大の電流を前記2
種の金属片を外部接触させたときに流れた電流とするこ
とを特徴とする請求項1記載の異種金属接触腐食による
金属材の腐食量予測方法。2. A plurality of the two kinds of metal pieces having different noble metal areas are prepared, and an electric current flowing to the outside of each of the two kinds of metal pieces is measured, and the maximum current among them is measured. Two
The method for predicting the amount of corrosion of a metal material due to contact corrosion of dissimilar metals according to claim 1, characterized in that a current that flows when the seed metal piece is brought into external contact is used.
接合された2種の金属片を外部接触させたときに流れる
電流及びその経時的な推移を計測する第1の工程と、 前記第1の工程において計測された電流の経時的な推移
に基づいて、前記2種の金属片の内、複数の実環境にお
ける卑な金属の腐食の進行を予測する第2の工程と前記
複数の実環境において、前記2種の金属片の近傍又は周
囲の環境因子を測定する第3の工程と、 前記複数の実環境における環境因子と前記腐食の進行の
予測とに基づいて、前記環境因子における腐食の進行を
予測する第4の工程とを備えたことを特徴とする異種金
属接触腐食による金属材の腐食量の予測方法。3. A first step of measuring a current flowing when two kinds of metal pieces joined via an insulating material are brought into external contact in a plurality of actual environments, and a transition thereof with time, The second step of predicting the progress of corrosion of a base metal in a plurality of actual environments among the two kinds of metal pieces based on the change over time of the electric current measured in the first step and the plurality of the pieces of metal. In the environment, based on the third step of measuring the environmental factors near or around the two kinds of metal pieces, and the environmental factors in the plurality of actual environments and the prediction of the progress of corrosion, corrosion in the environmental factors And a fourth step of predicting the progress of the above method.
境因子と腐食量との相関係数が相対的に大きなものを支
配的環境因子とし、前記第4の工程においては前記支配
的環境因子における腐食の進行を予測する請求項3記載
の異種金属接触腐食による金属材の腐食量予測方法。4. When there are a plurality of environmental factors, the one having a relatively large correlation coefficient between the environmental factors and the amount of corrosion is defined as a dominant environmental factor, and in the fourth step, the dominant environmental factor is used. The method for predicting the amount of corrosion of a metal material due to the contact corrosion of different metals according to claim 3, which predicts the progress of corrosion in.
模擬した構造物(以下実構造物等という)の中又はその
表面に設けられる基準位置、又は前記実構造物等の外に
設けられた基準位置で計測した腐食量を基準値とし、前
記実構造物等における各部位で測定した腐食量と、前記
基準値との比を部位係数としたときに、前記基準値と所
定の環境因子との対応関係と前記部位係数とに基づき、
前記測定地域とは異なる地域における前記実構造物等の
各部位の腐食量を求めることを特徴とする請求項3又は
4記載の異種金属接触腐食による金属材の腐食量予測方
法。5. A reference position provided in or on a surface of a target real structure or a structure simulating the real structure (hereinafter referred to as a real structure or the like), or provided outside the real structure or the like. When the corrosion amount measured at the reference position is the reference value, and the ratio between the corrosion amount measured at each part of the actual structure or the like and the reference value is a part coefficient, the reference value and the predetermined environmental factor Based on the correspondence relationship with and the site coefficient,
The method for predicting the amount of corrosion of a metal material due to the contact corrosion of different metals according to claim 3 or 4, wherein the amount of corrosion of each part of the actual structure or the like in an area different from the measurement area is obtained.
ことを特徴とする請求項5記載の異種金属接触による金
属材の寿命予測方法。6. The method of predicting the life of a metal material by contacting different metals according to claim 5, wherein the predetermined environmental factor is the amount of incoming sea salt.
月であることを特徴とする請求項3乃至6の何れかに記
載の異種金属接触腐食による金属材の腐食量予測方法。7. The method of predicting the amount of corrosion of a metal material due to the contact corrosion of dissimilar metals according to claim 3, wherein the environmental factor is measured for at least one month.
度、日光照射量又はSOxであることを特徴とする請求
項3乃至7の何れかに記載の異種金属接触腐食による金
属材の腐食量予測方法。8. The metal material according to any one of claims 3 to 7, wherein the environmental factor is the amount of incoming sea salt, temperature, humidity, sunlight dose, or SOx. Corrosion amount prediction method.
域を類似する環境の地域に区分してから実行することを
特徴とする請求項3乃至8の何れかに記載の異種金属接
触腐食による金属材の腐食量予測方法。9. The metal according to any one of claims 3 to 8, wherein when estimating the amount of corrosion, the region to be evaluated is divided into regions having similar environments and then the corrosion is performed. A method for predicting the amount of corrosion of materials.
属材の腐食の進行との関係を示すデータを予め求めてお
いて、前記データと、対象となる実構造物等の施工予定
地域の環境因子とに基づいて、前記実構造物等における
異種金属接触腐食による金属材の腐食量を予測すること
を特徴とする請求項3乃至9の何れかに記載の異種金属
接触腐食による金属材の腐食量予測方法。10. Data indicating the relationship between environmental factors and the progress of corrosion of metallic materials due to contact corrosion of dissimilar metals is obtained in advance, and the data and environmental factors in the planned construction area of the target actual structure or the like. The corrosion amount of the metal material due to the contact corrosion of the dissimilar metals in the actual structure or the like is predicted based on the above, and the corrosion amount of the metal material due to the contact corrosion of the dissimilar metals according to any one of claims 3 to 9. Prediction method.
食による金属材の腐食量の予測値をデータベース化して
おくことを特徴とする請求項10記載の異種金属接触腐
食による金属材の腐食量予測方法。11. The method for predicting the amount of corrosion of a metal material by contact corrosion of different metals according to claim 10, wherein the predicted value of the amount of corrosion of the metal material by contact corrosion of different metals in each region is stored in a database. .
載の金属材の腐食量予測方法により予測された腐食量に
基づいて金属材の寿命を予測することを特徴とする異種
金属接触腐食による金属材の寿命予測方法。12. Corrosion corrosion of dissimilar metals, characterized in that the life of a metal material is predicted based on the amount of corrosion predicted by the method of predicting the amount of corrosion of a metal material according to any one of claims 1 to 11. Method for predicting the life of metallic materials.
肉量を算出して寿命予測を行うことを特徴とする請求項
12記載の異種金属接触腐食による金属材の寿命予測方
法。13. The method of predicting the life of a metal material by contact corrosion of dissimilar metals according to claim 12, wherein the amount of metal thinning corresponding to the joint structure of two kinds of metals is calculated to predict the life.
触による金属材の寿命方法により寿命が予測された1組
の金属材であって、前記各部位の腐食の進行を予測した
際のデータが添付されることを特徴とする金属材。14. A set of metal materials, the life of which is predicted by the method of life of a metal material by contact between different kinds of metals according to claim 12 or 13, wherein data for predicting the progress of corrosion of each part is Metal material characterized by being attached.
されてなることを特徴とする請求項14記載の金属材。15. The metal material according to claim 14, wherein the data or a symbol indicating the data is added.
が電子情報として納入先に送付されることを特徴とする
請求項14又は15記載の金属材。16. The metal material according to claim 14, wherein the data or data related thereto is sent to a delivery destination as electronic information.
命予測方法により腐食の進行が予測された1組以上の金
属材から、実構造に適用するために金属材を選定するこ
とを特徴とする構造物の設計方法。17. A metal material for application to an actual structure is selected from one or more sets of metal materials whose corrosion progress is predicted by the method for predicting life of a metal material according to claim 11 or 12. Method of designing structures.
より設計された金属材を製造することを特徴とする金属
材の製造方法。18. A method for manufacturing a metal material, which comprises manufacturing a metal material designed by the method for designing a structure according to claim 17.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328266A JP4151385B2 (en) | 2001-11-13 | 2002-11-12 | Corrosion amount prediction method and life prediction method of metal material due to contact corrosion of different metals, structure design method, and metal material manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-346980 | 2001-11-13 | ||
JP2001346980 | 2001-11-13 | ||
JP2002328266A JP4151385B2 (en) | 2001-11-13 | 2002-11-12 | Corrosion amount prediction method and life prediction method of metal material due to contact corrosion of different metals, structure design method, and metal material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003215024A true JP2003215024A (en) | 2003-07-30 |
JP4151385B2 JP4151385B2 (en) | 2008-09-17 |
Family
ID=27667138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002328266A Expired - Fee Related JP4151385B2 (en) | 2001-11-13 | 2002-11-12 | Corrosion amount prediction method and life prediction method of metal material due to contact corrosion of different metals, structure design method, and metal material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4151385B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107882A (en) * | 2005-10-11 | 2007-04-26 | Kubota Corp | Corrosion estimation method for buried pipe |
CN103018299A (en) * | 2012-12-07 | 2013-04-03 | 山东电力集团公司电力科学研究院 | Couple corrosion sensor |
JP2013134094A (en) * | 2011-12-26 | 2013-07-08 | Toyota Motor Corp | Corrosion evaluation method and humidity evaluation method |
CN103278442A (en) * | 2013-05-17 | 2013-09-04 | 中国海洋石油总公司 | Underground pipe column galvanic corrosion detecting device |
JP2015137950A (en) * | 2014-01-23 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | Corrosion detecting electric wire |
CN105527550A (en) * | 2015-12-12 | 2016-04-27 | 北京化工大学 | Method for monitoring insulating state of dissimilar metal in conductive solution |
CN106198374A (en) * | 2016-06-24 | 2016-12-07 | 西南石油大学 | A kind of High Temperature High Pressure galvanic corrosion use for electrochemical tests electrode and application thereof |
JP6058154B2 (en) * | 2013-10-31 | 2017-01-11 | 三菱電機株式会社 | Corrosion resistance life diagnosis parts, heat exchanger, refrigeration air conditioner |
JP2018091740A (en) * | 2016-12-05 | 2018-06-14 | 日本電信電話株式会社 | Corrosion amount estimation device and method thereof |
JP6910573B1 (en) * | 2020-05-28 | 2021-07-28 | 三菱電機株式会社 | Corrosion environment evaluation device and corrosion environment evaluation method |
US20210341381A1 (en) * | 2018-09-27 | 2021-11-04 | Nippon Telegraph And Telephone Corporation | Corrosivity Evaluation Device and Method Thereof |
WO2022179208A1 (en) * | 2021-02-26 | 2022-09-01 | 武汉材料保护研究所有限公司 | Sample for measuring galvanic corrosion between conductive coating and protected substrate, and evaluation method therefor |
US11518164B2 (en) | 2019-08-30 | 2022-12-06 | Canon Kabushiki Kaisha | Substrate with electrical connection section, substrate for liquid ejection head and methods of manufacturing the same |
-
2002
- 2002-11-12 JP JP2002328266A patent/JP4151385B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107882A (en) * | 2005-10-11 | 2007-04-26 | Kubota Corp | Corrosion estimation method for buried pipe |
JP2013134094A (en) * | 2011-12-26 | 2013-07-08 | Toyota Motor Corp | Corrosion evaluation method and humidity evaluation method |
CN103018299A (en) * | 2012-12-07 | 2013-04-03 | 山东电力集团公司电力科学研究院 | Couple corrosion sensor |
CN103278442A (en) * | 2013-05-17 | 2013-09-04 | 中国海洋石油总公司 | Underground pipe column galvanic corrosion detecting device |
JP6058154B2 (en) * | 2013-10-31 | 2017-01-11 | 三菱電機株式会社 | Corrosion resistance life diagnosis parts, heat exchanger, refrigeration air conditioner |
JP2015137950A (en) * | 2014-01-23 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | Corrosion detecting electric wire |
CN105527550A (en) * | 2015-12-12 | 2016-04-27 | 北京化工大学 | Method for monitoring insulating state of dissimilar metal in conductive solution |
CN106198374A (en) * | 2016-06-24 | 2016-12-07 | 西南石油大学 | A kind of High Temperature High Pressure galvanic corrosion use for electrochemical tests electrode and application thereof |
CN106198374B (en) * | 2016-06-24 | 2020-03-24 | 西南石油大学 | Electrode for high-temperature high-pressure galvanic corrosion electrochemical test and application thereof |
JP2018091740A (en) * | 2016-12-05 | 2018-06-14 | 日本電信電話株式会社 | Corrosion amount estimation device and method thereof |
US20210341381A1 (en) * | 2018-09-27 | 2021-11-04 | Nippon Telegraph And Telephone Corporation | Corrosivity Evaluation Device and Method Thereof |
US11518164B2 (en) | 2019-08-30 | 2022-12-06 | Canon Kabushiki Kaisha | Substrate with electrical connection section, substrate for liquid ejection head and methods of manufacturing the same |
JP6910573B1 (en) * | 2020-05-28 | 2021-07-28 | 三菱電機株式会社 | Corrosion environment evaluation device and corrosion environment evaluation method |
WO2021240709A1 (en) * | 2020-05-28 | 2021-12-02 | 三菱電機株式会社 | Corrosion environment evaluation device and corrosion environment evaluation method |
WO2022179208A1 (en) * | 2021-02-26 | 2022-09-01 | 武汉材料保护研究所有限公司 | Sample for measuring galvanic corrosion between conductive coating and protected substrate, and evaluation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4151385B2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003215024A (en) | Method for predicting amount of corrosion of metallic material due to galvanic corrosion, life predicting method, metallic material, structure designing method, and method for manufacturing metallic material | |
US20160132068A1 (en) | Systems and methods for measuring and verifying energy savings in buildings | |
JP3783929B2 (en) | Energy saving effect estimation method and apparatus | |
US20150331023A1 (en) | Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data | |
CN106503840A (en) | Parking stall Forecasting Methodology and system can be used in parking lot | |
JP4143018B2 (en) | Method for predicting corrosion depletion amount of weathering steel, prediction device, and method for selecting steel grade applicable to steel structure | |
KR20180028583A (en) | A customized electronic power scheduling system for consumer in an environment of intelligent power usage | |
CN116740946B (en) | Highway traffic flow big data analysis processing method | |
JP2005337838A (en) | Corrosion deterioration evaluation device and method, computer program and recording medium | |
JP2020148541A (en) | Corrosion speed estimation device, corrosion speed estimation method, and program | |
Wang et al. | Lifecycle energy consumption prediction of residential buildings by incorporating longitudinal uncertainties | |
KR20160044640A (en) | A Prediction System of Hourly Power Demand by Use for the City Energy Management | |
JP3665965B2 (en) | Method for selecting coated steel for peripheral part of photovoltaic power generation system, coated steel material for peripheral part of photovoltaic power generation system, and photovoltaic power generation system | |
JP7141006B2 (en) | Corrosivity predictor and method | |
MXPA04006331A (en) | Measurement and verification protocol for tradable residential emissions reductions. | |
KR20170060361A (en) | Device for analyzing power demands and system comprising the same | |
JP7527126B2 (en) | Processing device, processing method, processing program, and information processing system | |
CN109376958A (en) | A kind of load forecasting method and device of building | |
JP2002318227A (en) | Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same | |
Rasooli | In-Situ Determination of Buildings’ Thermo-Physical Characteristics: Method Development, Experimentation, and Computation | |
Knotkova et al. | Classification of the corrosivity of the atmosphere—Standardized classification system and approach for adjustment | |
CN116166924B (en) | Data processing method and device, storage medium and electronic equipment | |
Kaminski et al. | Application of artificial neural networks (ANNs) to predict air quality classes in big cities | |
Thiyagarajan et al. | Short-term Time Series Forecasting of Concrete Sewer Pipe Surface Temperature | |
CN117649133B (en) | Prediction method and system for large reservoir water surface evaporation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080623 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |