JP2002318227A - Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same - Google Patents

Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same

Info

Publication number
JP2002318227A
JP2002318227A JP2001218579A JP2001218579A JP2002318227A JP 2002318227 A JP2002318227 A JP 2002318227A JP 2001218579 A JP2001218579 A JP 2001218579A JP 2001218579 A JP2001218579 A JP 2001218579A JP 2002318227 A JP2002318227 A JP 2002318227A
Authority
JP
Japan
Prior art keywords
steel material
treated steel
corrosion
amount
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218579A
Other languages
Japanese (ja)
Inventor
Isamu Kage
勇 鹿毛
Sakae Fujita
栄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001218579A priority Critical patent/JP2002318227A/en
Publication of JP2002318227A publication Critical patent/JP2002318227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of estimating the life of a surface-treated steel material with high accuracy, a method for designing the surface-treated steel material, and a method for manufacturing the surface-treated steel material. SOLUTION: The method for estimating the life of the surface-treated steel material has a process (S21) for calculating the relation between an environmental factor and corrosion quantity on the basis of data showing the relation between the corrosion quantity and an exposure time under a plurality of actual environments and the environmental factor of the data, a process (S22) for determining a dominant environmental factor from the relation between the environmental factor and the corrosion quantity; a process (S23) for measuring the values of the dominant environmental factor in a plurality of regions of a target actual structure or a structure simulating the target actual structure, and a process (S24) for calculating the data showing the corrosion quantity and the exposure time of each of the regions on the basis of the relation between the environmental factor and the corrosion quantity and the measured values of the environmental factor and estimating the advance of corrosion on the basis of the data showing the relation between the corrosion quantity and the exposure time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面処理鋼材の寿
命予測方法、表面処理鋼材の設計方法及び表面処理鋼材
の製造方法に関する。
The present invention relates to a method for estimating the life of a surface-treated steel, a method for designing a surface-treated steel, and a method for producing a surface-treated steel.

【0002】[0002]

【従来技術】従来、塗装鋼材の寿命を予測する技術はな
く、最も近い技術として実環境に近い環境に試験片を暴
露し、試験片の腐食量から類推する方法、或いは腐食促
進試験により試験片の腐食量を評価し、その結果を、対
応する既存の長期暴露試験材の腐食量との相対比較によ
る寿命推定を行う方法が行われていた。また、昨今、ガ
ルバニック対(ACMセンサ等)等を用いて部材が使用
される腐食環境強度を調査することが試みられている。
2. Description of the Related Art Conventionally, there is no technique for estimating the life of a coated steel material. As the closest technique, a test piece is exposed to an environment close to the actual environment, and a method of estimating from the corrosion amount of the test piece, or a test piece by a corrosion acceleration test. A method has been used in which the amount of corrosion is evaluated, and the life is estimated by comparing the results with the amount of corrosion of the corresponding existing long-term exposure test material. In recent years, attempts have been made to investigate the strength of a corrosive environment in which a member is used, using a galvanic couple (ACM sensor or the like) or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ように、実環境に近い環境に試験片を暴露し、試験片の
膨れ幅から寿命を推定する方法では、何十年という長期
に亘る試験を必要とする。また、過去の暴露データがあ
っても、完全に同一場所で使用するわけではないため
に、定量的に腐食量を予測することができず、定性的な
良否の示唆にとどまっていた。また、腐食促進試験と既
存の長期暴露材との相対比較による寿命推定を行う方法
では、使用環境を適切に再現できない、また環境が再現
されているかどうかが確認ができない、という課題があ
る。一方、環境を明らかにする手法として、交流インピ
ーダンス法やACMセンサを実構造物に設置して、部材
が実際に使用される局所的な腐食環境強度を測定する方
法が考案されているが、腐食環境強度と塗装鋼材の腐食
量との関係が明らかになっていない、という課題があ
る。
However, as described above, the method of exposing a test piece to an environment close to the actual environment and estimating the life from the swollen width of the test piece requires a long-term test of several tens of years. I need. In addition, even if there is past exposure data, it was not possible to predict the amount of corrosion quantitatively because it was not used in the same place completely, and only suggested qualitative quality. In addition, the method of estimating the service life based on the relative comparison between the corrosion promotion test and the existing long-term exposed material has a problem that the use environment cannot be appropriately reproduced and it cannot be confirmed whether or not the environment has been reproduced. On the other hand, as a method of clarifying the environment, an AC impedance method or a method of installing an ACM sensor on an actual structure and measuring the local corrosion environment strength at which the member is actually used has been devised. There is a problem that the relationship between environmental strength and the amount of corrosion of painted steel has not been clarified.

【0004】本発明は、上記のような課題を解決するた
めになされたものであり、寿命を高精度に予測すること
を可能にした表面処理鋼材の寿命予測方法、その寿命予
測に関連した表面処理鋼材、表面処理鋼材の設計方法及
び表面処理鋼材の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a method for predicting the life of a surface-treated steel material capable of predicting the life with high accuracy, and a surface relating to the life prediction It is an object of the present invention to provide a treated steel material, a method for designing a surface-treated steel material, and a method for producing a surface-treated steel material.

【0005】[0005]

【課題を解決するための手段】(1)本発明の一つの態様
に係る表面処理鋼材の寿命予測方法は、複数の実環境で
の腐食量と暴露時間との関係を示すデータ及びそのデー
タの環境因子に基づいて、環境因子と腐食量との関係を
求める第1の工程と、対象となる実構造物又はその実構
造物を模擬した構造物における1以上の部位で環境因子
の値を測定する第2の工程と、第1の工程における環境
因子と腐食量との関係と、第2の工程で測定された環境
因子の測定値とに基づき、前記の部位における腐食量と
暴露時間との関係を示すデータを求める第3の工程と、
第3の工程における腐食量と暴露時間との関係を示すデ
ータに基づいて腐食の進行を予測する第4の工程とを有
する。
Means for Solving the Problems (1) According to one aspect of the present invention, a method for predicting the life of a surface-treated steel material includes data showing a relationship between a corrosion amount and an exposure time in a plurality of actual environments and data of the data. A first step of determining the relationship between the environmental factor and the amount of corrosion based on the environmental factor, and measuring the value of the environmental factor at one or more sites in the target actual structure or a structure simulating the actual structure The relationship between the amount of corrosion and the exposure time at the site based on the relationship between the environmental factor and the amount of corrosion in the second step, the first step, and the measured value of the environmental factor measured in the second step. A third step of obtaining data indicating
And a fourth step of predicting the progress of corrosion based on data indicating the relationship between the amount of corrosion and the exposure time in the third step.

【0006】(2)本発明の他の態様に係る表面処理鋼材
の寿命予測方法は、対象となる実構造物又はその実構造
物を模擬した構造物における1以上の部位で環境因子の
値を測定する第1の工程と、予め設定されている環境因
子と腐食量との関係と、前記第1の工程で測定された環
境因子の測定値とに基づき、前記部位における腐食量と
暴露時間との関係を示すデータを求める第2の工程と、
第2の工程における腐食量と暴露時間との関係を示すデ
ータに基づいて腐食の進行を予測する第3の工程とを有
する。
(2) A method for predicting the life of a surface-treated steel material according to another aspect of the present invention measures the value of an environmental factor at one or more sites in a target actual structure or a structure simulating the actual structure. A first step to be performed, a relationship between a preset environmental factor and the amount of corrosion, and a measured value of the environmental factor measured in the first step, based on the corrosion amount and the exposure time in the site. A second step of obtaining data indicating the relationship;
A third step of predicting the progress of corrosion based on data indicating the relationship between the amount of corrosion and the exposure time in the second step.

【0007】(3)本発明の他の態様に係る表面処理鋼材
の寿命予測方法は、上記(1)又は(2)の寿命予測方
法において、環境因子が複数ある場合に、複数の実環境
での腐食量と暴露時間との関係を示すデータ及びそのデ
ータの環境因子に基づき求められた、環境因子と腐食量
との関係から、1以上の環境因子を支配的環境因子とし
て決定するとともに、上記(1)の場合は第2の工程以
降、上記(2)の場合は第1の工程以降の環境因子に基
づく処理を支配的環境因子により実行する。
(3) A method for estimating the life of a surface-treated steel material according to another aspect of the present invention is the method of estimating the life of the surface-treated steel material according to the above (1) or (2), wherein when there are a plurality of environmental factors, Determine one or more environmental factors as the dominant environmental factors from the data showing the relationship between the amount of corrosion and the exposure time and the relationship between the environmental factors and the amount of corrosion obtained based on the environmental factors of the data. In the case of (1), the processing based on the environmental factors in the second and subsequent steps, and in the case of (2), the first and subsequent steps are executed by the dominant environmental factors.

【0008】(4)本発明の他の態様に係る表面処理鋼材
の寿命予測方法は、対象となる実構造物又はその実構造
物を模擬した構造物(以下実構造物等という)の中又は
その表面に設けられる基準位置、又は実構造物等の外に
設けられた基準位置における環境データの値を基準値と
し、実構造物等における前記部位で測定された環境デー
タの値と、基準値との比を部位係数としたときに、基準
値とある環境因子との対応関係と、前記部位係数とに基
づき、各部位における前記のある環境因子の値を算出
し、上記(1)の場合は第3の工程以降、上記(2)の
場合は第2の工程以降の環境因子に基づく処理を前記あ
る環境因子により実行する。
(4) According to another aspect of the present invention, there is provided a method for predicting the life of a surface-treated steel material, wherein the method is performed in or on a target actual structure or a structure simulating the actual structure (hereinafter referred to as an actual structure). A reference position provided on the surface, or a value of environmental data at a reference position provided outside the actual structure or the like as a reference value, a value of environmental data measured at the site in the actual structure or the like, a reference value and Is defined as a part coefficient, the value of the certain environmental factor in each part is calculated based on the correspondence between the reference value and a certain environmental factor and the part coefficient. In the case of the above (1), After the third step, in the case of the above (2), the processing based on the environmental factor from the second step on is executed by the certain environmental factor.

【0009】(5)本発明の他の態様に係る表面処理鋼材
の寿命予測方法は、前記基準位置を前記部位の一つとす
る。
(5) In the method for estimating the life of a surface-treated steel material according to another aspect of the present invention, the reference position is one of the parts.

【0010】(6)本発明の他の態様に係る表面処理鋼材
の寿命予測方法は、前記環境データを付着塩分量とし、
前記ある環境因子を飛来海塩量とする。
(6) In a method for predicting the life of a surface-treated steel material according to another aspect of the present invention, the environmental data is defined as an amount of attached salt,
The certain environmental factor is the amount of incoming sea salt.

【0011】(7)本発明の他の態様に係る表面処理鋼材
の寿命予測方法において、前記腐食量と暴露時間の関係
を示すデータは暴露時間の関係を示すデータは、表面処
理鋼材の膨れ幅又は白錆発生面積の経年変化を示すデー
タである。
(7) In the method for predicting the life of a surface-treated steel according to another aspect of the present invention, the data indicating the relationship between the corrosion amount and the exposure time is the data indicating the relationship between the exposure time and the swollen width of the surface-treated steel. Or it is data which shows a secular change of a white rust generation area.

【0012】(8)本発明の他の態様に係る表面処理鋼材
の寿命予測方法おいて、環境因子の計測は少なくとも1
ヶ月である。
(8) In the method for predicting the life of a surface-treated steel material according to another aspect of the present invention, at least one environmental factor is measured.
Months.

【0013】(9)本発明の他の態様に係る表面処理鋼材
の寿命予測方法において、環境因子は飛来海塩、温度、
湿度、日光照射量又はSOxである。
(9) In the method for predicting the life of a surface-treated steel material according to another aspect of the present invention, the environmental factors include flying sea salt, temperature,
Humidity, sunlight exposure or SOx.

【0014】(10)本発明の他の態様に係る表面処理鋼
材の寿命予測方法において、表面処理鋼材は塗装鋼材で
ある。
(10) In the life prediction method for a surface-treated steel according to another aspect of the present invention, the surface-treated steel is a painted steel.

【0015】(11)本発明の他の態様に係る表面処理鋼
材の寿命予測方法においては、寿命予測に際して、予め
評価する地域を類似する環境の地域に区分してから実行
する。
(11) In the method for predicting the life of a surface-treated steel material according to another aspect of the present invention, the life is predicted after the area to be evaluated is divided into areas having similar environments.

【0016】(12)本発明の他の態様に係る表面処理鋼
材は、上記(1)乃至(11)の寿命予測方法により寿
命が予測された表面処理鋼材であって、各部位の腐食の
進行を予測した際のデータが添付される。
(12) A surface-treated steel material according to another aspect of the present invention is a surface-treated steel material whose life is predicted by the life prediction methods of (1) to (11) above, and the progress of corrosion of each part. Is attached with the data at the time of prediction.

【0017】(13)本発明の他の態様に係る表面処理鋼
材において、上記(12)の各部位の腐食の進行を予測
した際のデータは、膨れ幅又は白錆発生面積に関するデ
ータである。
(13) In the surface-treated steel material according to another aspect of the present invention, the data at the time of predicting the progress of corrosion at each part in (12) above is data relating to the blister width or the area where white rust occurs.

【0018】(14)本発明の他の態様に係る表面処理鋼
材は、上記のデータ又はそれを示す記号が付記される。
(14) A surface-treated steel material according to another aspect of the present invention is provided with the above data or a symbol indicating the same.

【0019】(15)本発明の他の態様に係る表面処理鋼
材においては、表面処理鋼材に添付されるデータ又はそ
れに関連するデータが電子情報として納入先に送付され
る。
(15) In the surface-treated steel material according to another aspect of the present invention, data attached to the surface-treated steel material or data related thereto is sent to the delivery destination as electronic information.

【0020】(16)本発明の他の態様に係る表面処理鋼
材の設計方法は、上記(1)乃至(11)の表面処理鋼
材の寿命予測方法により腐食の進行が予測された1以上
の表面処理鋼材から選択し、又は、1以上の表面処理鋼
材における腐食進行の予測結果に基づいて腐食進行の予
測をしなかった表面処理鋼材から選択し若しくは新たな
表面処理鋼材を設計することにより、実構造に適用する
ために鋼材を選定する。
(16) According to another aspect of the present invention, there is provided a method for designing a surface-treated steel material. By selecting from the treated steel materials, or selecting from the surface treated steel materials for which the corrosion progress was not predicted based on the prediction result of the corrosion progress in one or more surface treated steel materials, or designing a new surface treated steel material, Select steel materials to apply to the structure.

【0021】(17)本発明の他の態様に係る表面処理鋼
材の製造方法は、上記(16)の表面処理鋼材の設計方
法によ設計された表面処理鋼材を製造する。
(17) In a method of manufacturing a surface-treated steel material according to another aspect of the present invention, a surface-treated steel material designed according to the method (16) for designing a surface-treated steel material is manufactured.

【0022】[0022]

【発明の実施の形態】実施形態1.図1は本発明の実施
形態1に係る塗装鋼材の寿命予測方法、塗装鋼材の設計
方法及び塗装鋼材の製造方法の処理過程を示したフロー
チャートである。 (ST1)最初の段階では製品条件が提示される。この
製品条件としては、腐食環境(地域、部位)や要求性能
(外観腐食、構造寿命)などがある。本実施形態1にお
いては、塗装の膨れ幅が外観寿命の決定因子であること
を見い出し、塗装の膨れ幅を寿命の計測基準にしてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. FIG. 1 is a flowchart showing the process steps of a method for estimating the life of a coated steel, a method for designing a coated steel, and a method for manufacturing a coated steel according to Embodiment 1 of the present invention. (ST1) At the first stage, product conditions are presented. The product conditions include a corrosive environment (region, site) and required performance (appearance corrosion, structural life). In the first embodiment, it has been found that the swollen width of the paint is a determining factor of the appearance life, and the swollen width of the paint is used as a measurement standard of the life.

【0023】(ST2)次の段階では、製品条件を満た
す材料を選択する処理に移行する。具体的には、特定の
腐食環境(地域、部位)において使用される鋼材の寿命
を予測して耐用年数を決定する処理を行う。この寿命予
測の処理は次の(S21)乃至(S26)の各工程の処
理によって行われる。
(ST2) In the next stage, the process shifts to a process of selecting a material satisfying the product conditions. Specifically, a process of predicting the life of a steel material used in a specific corrosive environment (area, site) and determining the useful life is performed. The life prediction process is performed by the following processes of (S21) to (S26).

【0024】(S21)塗装鋼材の寿命予測を行うため
のデータを整理を行う工程。この工程においては、暴露
年数(経過時間)と腐食量との関係を求めてグラフ化す
るとともに、平均温度(以下、温度という)、平均湿度
(以下、湿度という)、飛来海塩量、温度、湿度、日照
量、イオウ酸化物、降水量、結露時間、付着塩分量等の
環境因子から適宜選択し、各環境因子のデータを環境デ
ータとして、合わせて整理する。また、腐食データに
は、膨れ幅、外観変化、白錆発生面積等があるが、本実
施形態1においては膨れ幅の例について説明する。な
お、塗装鋼材の膨れ幅とは、鋼材が腐食するのにともな
って切断端部から塗膜が膨れ上がったときに、その膨れ
上がった塗膜部分の端部からの幅を示すものとする(後
述の図6参照)。
(S21) A step of organizing data for estimating the life of the coated steel material. In this process, the relationship between the number of years of exposure (elapsed time) and the amount of corrosion is determined and graphed, and the average temperature (hereinafter, referred to as temperature), the average humidity (hereinafter, referred to as humidity), the amount of incoming sea salt, the temperature, Appropriate selection is made from environmental factors such as humidity, sunlight, sulfur oxides, precipitation, dew condensation time, and amount of attached salt, and the data of each environmental factor is arranged together as environmental data. The corrosion data includes a swollen width, a change in appearance, an area where white rust occurs, and the like. In the first embodiment, an example of the swollen width will be described. The swelling width of the coated steel material indicates the width of the swelled coating film from the end when the coating swells from the cut end due to corrosion of the steel ( See FIG. 6 to be described later).

【0025】図2(A)乃至(C)は、或る地域a乃至
cにおける塗装鋼材の暴露時間(経過時間)と腐食量と
の関係を示した特性図であり、この特性図には飛来海塩
量、湿度、温度等のデータがそれぞれ添付されている。
そして、図2のデータを含めて多数の地域のデータがデ
ータベースに格納されているものとする。また、その地
域は例えば、沿岸部、山間部、都市部等に分類されるて
いるものとする。寿命予測に際しては、ある程度、調査
する地域を類似する環境の地域に区分評価するのが好ま
しい。類似する環境とは気温や気温の変化が似かよった
地域、湿度や温度の変化が似かよった地域等を言う。国
内を例にとれば北海道、沖縄南西諸島、太平洋沿岸等の
区分である。このように区分し評価すれば簡便かつ、短
期間に寿命予測を行うことができ、予測の精度も上が
る。
FIGS. 2A to 2C are characteristic diagrams showing the relationship between the exposure time (elapsed time) of the coated steel material and the amount of corrosion in certain areas a to c. Data such as the amount of sea salt, humidity, and temperature are attached.
Then, it is assumed that data of many areas including the data of FIG. 2 is stored in the database. In addition, it is assumed that the area is classified into, for example, a coastal area, a mountain area, an urban area, and the like. In estimating the life, it is preferable to classify the area to be surveyed into areas having similar environments to some extent. The similar environment refers to an area where the temperature and temperature changes are similar, an area where the humidity and temperature changes are similar, and the like. Taking Japan as an example, it is classified into Hokkaido, the Nansei Islands of Okinawa, and the Pacific coast. If the classification and evaluation are performed in this manner, the life can be predicted easily and in a short period of time, and the prediction accuracy is improved.

【0026】なお、後述の処理(S22)に対応するデ
ータが不足している場合には、経年膨れ幅の予測を行
う。例えば後述の処理において暴露年数(経過年数)が
5年目のデータを利用する場合に、3年目と6年目のデ
ータしかない場合には、これらのデータを参考に、欠落
している5年目のデータを補完してもよい。
If the data corresponding to the processing (S22) described later is insufficient, the aging bulging width is predicted. For example, in the processing described below, when the data of the exposure years (elapsed years) uses the data of the fifth year, and when there is only the data of the third and sixth years, the data is missing by referring to these data. Year data may be supplemented.

【0027】(S22)環境因子を分類・定量化して支
配的環境因子を決定する工程。この工程においては、上
述のデータベースから温度、湿度、飛来海塩量等の環境
データを収集して、環境因子を腐食量に対してプロット
して後述の演算処理をすることにより、両者の決定係数
を求めて、その決定係数が相対的に大きいものが、腐食
速度を支配している支配的環境因子であると決定する。
(S22) A step of classifying and quantifying environmental factors to determine a dominant environmental factor. In this process, environmental data such as temperature, humidity, and amount of sea salt coming from the above-mentioned database are collected, environmental factors are plotted with respect to the amount of corrosion, and the following processing is performed to determine the coefficient of determination of both. It is determined that the coefficient having a relatively large coefficient of determination is the dominant environmental factor that controls the corrosion rate.

【0028】この支配的環境因子の決定方法を具体的に
説明する。図2(A)乃至(C)に示されるようなデー
タベースのデータの内、製品条件から利用するデータを
絞り込む。例えば、製品の設置場所が沿岸部であれば、
利用するデータをデータベースのデータの内、沿岸部の
地域のデータに絞り込む。そして、環境因子(独立変
数)X、腐食量(従属変数)Yについてそれぞれの対数
を取って、線形モデルに変換して回帰分析を行う。更
に、(1)式の決定係数R2を次の(2)式により求め
る。
The method for determining the dominant environmental factor will be specifically described. From the data in the database as shown in FIGS. 2A to 2C, data to be used is narrowed down based on product conditions. For example, if the location of the product is coastal,
The data to be used is narrowed down to the coastal area data from the database data. Then, the logarithm of each of the environmental factor (independent variable) X and the corrosion amount (dependent variable) Y is calculated and converted into a linear model to perform a regression analysis. Further, it determined by (1) the coefficient of determination R 2 for the following equation (2).

【数1】 logY=a+blogX …(1)## EQU1 ## logY = a + blogX (1)

【0029】[0029]

【数2】 (Equation 2)

【0030】上記の(1)式の定数a,bを求めるに際
しては、環境因子である飛来海塩量、湿度、温度等のそ
れぞれについて求める。図2(A)乃至(C)の例で
は、例えば地域a乃至cの5年経過の腐食量及び飛来海
塩量を上記の(1)式に適用して、上記の定数a、bを
それぞれ求めるとともにその決定係数を求める。また、
湿度、温度等についても同様にしてその決定係数を求め
る。
In determining the constants a and b in the above equation (1), the constants a and b, which are environmental factors, as well as the amount of incoming sea salt, humidity, and temperature are determined. In the examples of FIGS. 2A to 2C, the constants a and b are respectively applied by applying the amount of corrosion and the amount of incoming sea salt in the areas a to c after five years to the above equation (1). And the coefficient of determination. Also,
The coefficient of determination for humidity, temperature, and the like is obtained in the same manner.

【0031】上記のようにして飛来海塩量、湿度、温度
のそれぞれの決定係数が求まると、相互の大きさを対比
して、決定係数が1番大きな値を示した環境因子を支配
的環境因子として決定する。
When the determination coefficients for the amount of incoming sea salt, humidity, and temperature are determined as described above, the environmental factors having the largest determination coefficient are determined by comparing the mutual magnitudes with each other. Determined as a factor.

【0032】支配的環境因子を決定した後は、その環境
因子についての上記の(1)式の定数a,bを少なくと
も3年分(例えば2年、5年、7年)について求めてお
くものとする(後述するようにその年数分が多い方が望
ましい)。図3(A)乃至(C)は、暴露年数2年、5
年、7年に対応した上記の(1)式の定数a,bが求ま
ったときに、上記の(1)式により得られる支配的環境
因子と腐食量との関係をそれぞれ概念的に示した特性図
である。
After determining the dominant environmental factor, the constants a and b in the above equation (1) for the environmental factor are determined for at least three years (for example, two years, five years, and seven years). (It is desirable that the number of years is large as described later). FIGS. 3A to 3C show two years of exposure and five years of exposure.
When the constants a and b of the above equation (1) corresponding to the years 7 and 7 are obtained, the relationship between the dominant environmental factor obtained by the above equation (1) and the amount of corrosion is conceptually shown. It is a characteristic diagram.

【0033】(S23)対象となる実構造物の複数の被
対象部位にガルバニック対を設置し、支配的環境因子を
測定する工程。この工程では、更に実構造物内でミクロ
に環境が異なることから、各部位の腐食速度の環境因子
依存性を外部環境に対して数値化する。日本の気候は四
季があり、1年間で大きく変化するので、望ましくは、
1年間継続的の測定するのが良いが、1ヶ月の測定でも
日本各地域の気候データから、推定することは十分可能
である。
(S23) A step of installing galvanic pairs at a plurality of target sites of the actual structure to be measured and measuring a dominant environmental factor. In this step, since the environment is microscopically different in the actual structure, the dependence of the corrosion rate of each part on the environmental factor is quantified with respect to the external environment. Japan's climate has four seasons, and it changes greatly in one year.
It is good to measure continuously for one year, but it is quite possible to estimate even one month of measurement from climate data in each region of Japan.

【0034】なお、測定に際しては、例えば顧客から要
請があった実構造物又はそれを模擬した構造物の複数の
部位でガルバニック対を用いて計測する。部位によって
は(例えば、躯体内とか狭い場所)、飛来海塩量を計測
できない場所があるので、屋外で飛来海塩量の採取とガ
ルバニック対による計測とを併行して行い、各部位はガ
ルバニック対の計測のみを行う。ガルバニック対の出力
は、相対湿度、付着塩分量の関係から環境データを定量
できるので、ガルバニック対の出力から環境データの度
合い(例えば、飛来海塩量、温度、湿度等)を次式
(3),(4)に示すように見積もることができる。実
際には、屋外を1とした場合の付着塩分量比率(付着塩
分量に関する部位係数:なお、部位係数は飛来海塩量、
温度、湿度等種々の環境因子に関して算出し得る。)で
表現し、部位Aは付着塩分量比率0.2とか、部位Bは
付着塩分量比率0.01といった具合に表現する。
At the time of the measurement, for example, the measurement is performed using a galvanic pair at a plurality of portions of the actual structure or a structure simulating the actual structure requested by the customer. Depending on the part (for example, inside the building or in a narrow place), the amount of incoming sea salt cannot be measured. Therefore, the sampling of the amount of incoming sea salt and the measurement using a galvanic pair are performed outdoors, and each part is connected to a galvanic pair. Only the measurement of is performed. Since the output of the galvanic pair can quantify the environmental data from the relationship between the relative humidity and the amount of attached salt, the degree of the environmental data (for example, the amount of incoming sea salt, temperature, humidity, etc.) can be calculated from the output of the galvanic pair by the following equation (3). , (4). Actually, the ratio of the amount of attached salt when the outdoors is set to 1 (partial coefficient relating to the amount of attached salt: the part coefficient is the amount of incoming sea salt,
It can be calculated for various environmental factors such as temperature and humidity. ), Site A is expressed as an attached salt content ratio of 0.2, and site B is expressed as an attached salt content ratio of 0.01.

【0035】[0035]

【数3】 部位係数=部位の付着塩分量/屋外の付着塩分量 …(3)## EQU00003 ## Site coefficient = Amount of salt attached to site / Amount of salt attached outdoors ... (3)

【数4】 部位Aの飛来海塩量=屋外の飛来海塩量×部位Aの部位係数 …(4)## EQU00004 ## Flying sea salt amount of the part A = outdoor flying sea salt amount.times.partial coefficient of the part A (4)

【0036】例えば、実構造物をプレハブやスチールハ
ウス等の住宅部材を例として説明すると次のようにな
る。1ヶ月間の試験で屋外の飛来海塩量のデータとを、
塗装鋼材の付着塩分量のデータを取る。一方、軒先とか
小屋裏、壁内部等の各使用部位の付着塩分量をガルバニ
ック対で計測する。付着塩分量は予め用意したガルバニ
ック対の出力と付着塩分量の関係を示す検量線により求
められる。屋外で測定した飛来海塩量と付着塩分量の関
係から、ガルバニック対の出力から間接的ではあるが、
軒先、小屋裏、壁内部等の各部位の飛来海塩量がそれぞ
れ求まる。
For example, the actual structure will be described below with reference to a housing member such as a prefab or a steel house. The data of the amount of incoming sea salt in the one month test is
Take data on the amount of salt attached to painted steel. On the other hand, the amount of salt attached to each use site such as the eaves, the back of a cabin, and the inside of a wall is measured by a galvanic pair. The amount of attached salt is obtained from a calibration curve indicating the relationship between the output of the galvanic couple prepared in advance and the amount of attached salt. From the relationship between the amount of incoming sea salt and the amount of attached salt measured outdoors, although indirect from the output of the galvanic pair,
The amount of incoming sea salt at each site, such as the eaves, the back of the hut, and the inside of the wall, is obtained.

【0037】(S24)支配的環境因子に対する各部位
の膨れ幅を予測する工程。この工程においては、数値化
された各部位の支配的環境因子に基づいて膨れ幅を推定
する。
(S24) A step of estimating a swollen width of each part with respect to a dominant environmental factor. In this step, the swollen width is estimated based on the numerically dominant environmental factors of each part.

【0038】具体的には、支配的環境因子の計測値(例
えば軒先、小屋裏、壁内部等の各部位の飛来海塩量)を
それぞれ図3(A)乃至(C)の特性に当てはめて、腐
食量と経過年数のデータを得る。図3(A)乃至(C)
の例おいては例えば飛来海塩量a(mmd)であった場
合にはそれに対応した腐食量Ya2、Ya5、Ya7を
求める。そして、暴露年数(独立変数)T、腐食量(従
属変数)Yについてそれぞれの対数を取って、線形モデ
ルに変換して回帰分析を行い、定数α、βを求める。
More specifically, the measured values of the dominant environmental factors (for example, the amount of incoming sea salt at each site such as the eaves, the back of a cabin, and the inside of a wall) are applied to the characteristics shown in FIGS. Obtain data on corrosion rate and age. FIGS. 3A to 3C
For example, if the incoming sea salt amount is a (mmd), the corresponding corrosion amounts Ya2, Ya5, and Ya7 are obtained. Then, the logarithms of the years of exposure (independent variable) T and the amount of corrosion (dependent variable) Y are taken, converted into a linear model, and regression analysis is performed to obtain constants α and β.

【数5】 logY=α+βlogT …(5)LogY = α + βlogT (5)

【0039】図4(A)乃至(C)は、上記の(5)式
により求められた、屋外、部位A及びBにおける暴露年
数(経過年数)と腐食量(膨れ幅)との関係を概念的に
示した特性図である。
FIGS. 4A to 4C conceptually illustrate the relationship between the number of years of exposure (elapsed years) and the amount of corrosion (bulging width) outdoors and in the parts A and B obtained by the above equation (5). FIG. 3 is a characteristic diagram schematically shown.

【0040】(S25)支配的環境因子に対する各部位
の寿命予測をする工程。この工程においては、図4に示
される膨れ幅を寿命を決定する膨れ幅のしきい値に照ら
し合わせ寿命を算出する。
(S25) A step of predicting the life of each part with respect to the dominant environmental factor. In this step, the life is calculated by comparing the swollen width shown in FIG. 4 with a threshold of the swollen width that determines the life.

【0041】(S26)耐用年数を決定する工程。この
工程においては、上記の寿命予測に安全係数(用途に応
じて)を掛けてその耐用年数を決定する。
(S26) The step of determining the service life. In this step, the life expectancy is determined by multiplying the above-described life expectancy by a safety factor (depending on the application).

【0042】(ST3)以上の処理(S21)乃至(S
26)により製品条件を満たした塗装鋼材の仕様が得ら
れるが、次に、その塗装鋼材を製造・販売するまでの過
程について説明する。 (S31)塗装鋼材の材料を選定する。ここでは、上記
の処理にて耐用年数(例えば30年)が満たされた鋼材
の中から材料を選定する。
(ST3) The above processing (S21) through (S3)
According to 26), the specification of the coated steel material satisfying the product conditions is obtained. Next, a process until the coated steel material is manufactured and sold will be described. (S31) The material of the coated steel is selected. Here, a material is selected from steel materials whose service life (for example, 30 years) has been satisfied by the above processing.

【0043】なお、この材料選定については次にような
変形例も考えられる。例えば腐食量や寿命の予測(S2
4、S25)結果のみに基づいて材料選定を行ってもよ
い。本来的には上記の処理(S26)を経ることが好ま
しいが、上記の処理(S24)又は(S25)の結果の
みでも材料選定は可能である。
The following modification can be considered for the selection of the material. For example, prediction of corrosion amount and life (S2
4, S25) Material selection may be performed based only on the result. Originally, it is preferable to go through the above-mentioned processing (S26), but it is also possible to select a material only by the result of the above-mentioned processing (S24) or (S25).

【0044】また、上記の処理(S26)において、例
えば寿命予測対象となった全ての鋼材が耐用年数を満た
さないような場合には、予測対象となった鋼材よりも明
かに耐食性が高いとわかっている塗装鋼材を選定しても
よい。同系統の鋼材であればある程度の対応関係がつけ
られるので、例えば最も寿命が長いと予測された鋼材と
同系統かつ高耐食性の鋼材を選定すればよい。
Further, in the above processing (S26), for example, when all the steel materials whose life is to be predicted do not satisfy the service life, it is found that the corrosion resistance is clearly higher than that of the steel whose prediction was made. May be selected. Since a certain degree of correspondence can be given to steel materials of the same system, for example, a steel material of the same system and high corrosion resistance as a steel material predicted to have the longest life may be selected.

【0045】更に、例えば寿命予測対象となった全ての
鋼材が耐用年数を満たさないような場合には、その予測
結果に基づいて新たな鋼材を設計してもよい。或る鋼材
にマイナーな設計修正を行うのであれば、耐食性の向上
程度は予測がつけられることを利用する。寿命予測対象
となった鋼材の塗装膜厚を変更するとか、化成処理の種
類を変えるとか、焼付け工程の温度制御を変更すると
か、めっき付着量を変更する等が考えられる。なお、本
発明においては、材料選択、材料選定、材料設計の何れ
をも設計という概念に含まれるものとする。
Further, for example, when all the steel materials whose life is to be predicted do not satisfy the service life, a new steel material may be designed based on the prediction result. If a minor design modification is made to a steel material, the fact that the degree of improvement in corrosion resistance can be predicted is used. It is possible to change the coating thickness of the steel material whose life is to be predicted, change the type of chemical conversion treatment, change the temperature control in the baking process, change the plating adhesion amount, and the like. In the present invention, any of material selection, material selection, and material design shall be included in the concept of design.

【0046】(S32)材料の受注、製造及び販売を行
う。
(S32) Order, manufacture and sale of materials are performed.

【0047】図2は上記の処理(S32)内の塗装処理
の過程を示したフローチャートであり、次の(S41)
乃至(S47)の各工程の処理を行う。 (S41)鋼材の脱脂工程:塗装前の鋼材の表面に付着
した油分や汚れを除去する。 (S42)鋼材の研磨工程:ブラシで、鋼材表面の酸化
皮膜を除去し、表面を活性化させる。後工程の化成処理
性が改善する。 (S43)化成処理工程:りん酸塩処理やクロメート処
理を行う。塗膜密着性を改善する前処理的役割と鋼材の
耐食性を改善する機能的役割がある。上記の処理により
鋼材の寿命が分かった場合であって、更に高寿命を期待
する場合には、この化成処理に反映させる。 (S44)塗装工程:塗料をコーティングする工程。ロ
ールコーティング、スプレーコーティングが一般的であ
る。 (S45)焼付工程:塗料の乾燥、硬化。塗膜を形成さ
せる。要求される耐食性に応じて塗装、焼付を2.3回
繰り返す場合がある。 (S46)検査工程:塗膜のピンホール、光沢むら、色
調などを検査する。 (S47)保護フィルムの貼り付け工程:実施しない場
合もあるが、客先からの要望で、保護フィルムを張り付
けて出荷する場合がある。
FIG. 2 is a flowchart showing the steps of the coating process in the above process (S32).
Through (S47). (S41) Degreasing step of steel: Oil and dirt attached to the surface of the steel before coating are removed. (S42) Polishing step of steel: The oxide film on the surface of the steel is removed with a brush to activate the surface. The post-process chemical conversion property is improved. (S43) Chemical conversion treatment step: A phosphate treatment or a chromate treatment is performed. It has a pretreatment role to improve coating film adhesion and a functional role to improve corrosion resistance of steel materials. In the case where the life of the steel material is known by the above-described processing, and when a longer life is expected, the chemical processing is reflected. (S44) Painting step: a step of coating a paint. Roll coating and spray coating are common. (S45) Baking step: drying and curing of the paint. A coating is formed. Painting and baking may be repeated 2.3 times depending on the required corrosion resistance. (S46) Inspection step: Inspection of the coating film for pinholes, uneven gloss, and color tone. (S47) Attaching step of protective film: Although it may not be performed, there is a case where the protective film is attached and shipped at the request of the customer.

【0048】以上のようにして製造された塗装鋼材に
は、上記の処理(S25)及び/又は(S26)のデー
タを添付する。なお、この添付とは機械的に添付するだ
けでなく、塗装鋼材とそのデータとが何らかの関連付け
がなされている場合も含む。例えば上記の各部位の腐食
の進行を予測した際のデータ(鋼材の膨れ幅に関するデ
ータ等)又はそれを示す記号を塗装鋼材に付記したり、
或いはそのデータ又はそれに関連するデータを電子情報
として納入先に送付する。この電子情報はFD等の記録
媒体でも良いし、ネットワークを介して納入先に送付
(送信)したりしても良い。
The data of the above processing (S25) and / or (S26) is attached to the coated steel material manufactured as described above. This attachment includes not only mechanical attachment but also a case where the painted steel material and its data are associated with each other. For example, data when predicting the progress of corrosion of each of the above-described parts (such as data regarding the swollen width of steel material) or a symbol indicating the same is added to the painted steel material,
Alternatively, the data or data related thereto is sent to the delivery destination as electronic information. This electronic information may be stored in a recording medium such as an FD, or may be sent (transmitted) to a delivery destination via a network.

【0049】本実施形態1においては、上述のように、
支配的環境因子を把握することにより塗装鋼材の腐食の
進行を定量的に精度良く得ることができるようにしたの
で、実構造物の腐食量及び寿命に対して定量的な見解を
出せるようになっている。従来の暴露試験では、このよ
うな処理ができなかったために、実構造物の腐食量及び
寿命に対し定性的な良否の示唆しかできなかった。
In the first embodiment, as described above,
By grasping the dominant environmental factors, it was possible to quantitatively and accurately obtain the progress of corrosion of painted steel materials, so that it was possible to give a quantitative view on the amount of corrosion and life of actual structures. ing. In the conventional exposure test, since such treatment was not performed, it was only possible to suggest qualitative quality as to the corrosion amount and the life of the actual structure.

【0050】実施形態2.なお、上記の実施形態におい
ては飛来海塩が支配的環境因子である場合の例について
説明している(後述の実施例においても飛来海塩量が支
配的環境因子の例について説明している。)が、しか
し、本発明の支配的環境因子はそれに限定されるもので
はない。日本国内のような四面海に囲まれている環境で
は飛来海塩量が支配的環境因子として腐食との相関が強
いが、内陸の極限られた地域では、温度が支配的環境因
子であったり、湿度が支配的環境因子であったりする。
また、都会の極限られた地域ではイオウ酸化物が支配的
であったりもする。そのような環境でも、本発明は有効
であり、塗装鋼材の寿命予測を簡便に短期間で行うこと
ができる。また、上記の実施形態においては、支配的環
境因子が1つの場合を説明したが、本発明は、支配的環
境因子が2以上の場合にも適用できる。例えば、沿岸部
で湿度が高い地方では、飛来海塩量と温度の2つが支配
的環境因子となる場合もある。
Embodiment 2 In the above embodiment, an example in which flying sea salt is a dominant environmental factor is described (an example described later also describes an example in which the amount of flying sea salt is a dominant environmental factor). ), However, the dominant environmental factors of the present invention are not limited thereto. In an environment surrounded by four seas, such as in Japan, the amount of incoming sea salt is strongly correlated with corrosion as the dominant environmental factor, but in extremely inland areas, temperature is the dominant environmental factor, Humidity may be the dominant environmental factor.
Sulfur oxides can also dominate in very limited urban areas. The present invention is effective even in such an environment, and the life expectancy of the coated steel material can be easily and quickly performed. Further, in the above embodiment, the case where the dominant environmental factor is one has been described, but the present invention can be applied to the case where the dominant environmental factor is two or more. For example, in a coastal region where humidity is high, two factors, the amount of incoming sea salt and the temperature, may be the dominant environmental factors.

【0051】なお、環境因子には上記のように飛来海塩
量、温度、湿度、日照量(紫外線照射量)等があるが、
これらの環境因子に対し、腐食因子計測はそれぞれガル
バニック対(ACMセンサー等)、温度計、湿度計、紫
外線計測器で計測することになる。
The environmental factors include the amount of incoming sea salt, the temperature, the humidity, the amount of sunshine (the amount of ultraviolet radiation) and the like as described above.
For these environmental factors, the corrosion factors are measured by a galvanic couple (ACM sensor or the like), a thermometer, a hygrometer, and an ultraviolet ray meter, respectively.

【0052】また、本実施形態においては、腐食データ
として膨れ幅を利用して塗装鋼材の寿命予測を行ってい
る例について説明したが、本発明においては、塗装鋼材
の外観変化や白錆発生面積等に基づいて寿命予測も同様
にできる。
In this embodiment, an example has been described in which the life of a painted steel material is predicted by using the swollen width as corrosion data. However, in the present invention, the appearance change of the painted steel material and the area where white rust occurs are described. And the like, and the life can be predicted in the same manner.

【0053】実施形態3.また、上述の実施形態1にお
いては支配的環境因子を求める過程について説明した
が、例えば或る地域において塗装鋼材A乃至Cの支配的
環境因子を1度求めてしまえば、次回以降においてほぼ
同一の条件で支配的環境因子を求める場合には、先に求
められた支配的環境因子を既定のものとして扱うことが
できる。そのような場合には、図1の処理(22)まで
を省略することができる。
Embodiment 3 FIG. Further, in the first embodiment, the process of obtaining the dominant environmental factor has been described. For example, if the dominant environmental factor of the coated steel materials A to C is obtained once in a certain area, the same is obtained from the next time onward. When the dominant environmental factor is determined by the condition, the dominant environmental factor previously determined can be treated as a predetermined one. In such a case, the processing up to the processing (22) in FIG. 1 can be omitted.

【0054】実施形態4.また、上述の実施形態1にお
いては塗装鋼材の寿命予測等について説明したが、本願
発明の表面処理鋼材には、塗装鋼材の他に、化成処理鋼
材及びめっき処理鋼材も含まれる。
Embodiment 4 FIG. Further, in the first embodiment described above, the life prediction and the like of the coated steel material have been described. However, the surface-treated steel material of the present invention includes, in addition to the coated steel material, a chemically treated steel material and a plated steel material.

【0055】図6(A)乃至(C)は塗装鋼材、化成処
理鋼材及びめっき処理鋼材の経年変化を示した説明図で
ある。塗装鋼材20は、同図(A)に示されるように、
鉄31の上にめっき層32、化成処理層33及び塗装膜
34が順次形成されたものである。塗装膜34はめっき
層32などより耐食性が高いので、塗装膜34が経年変
化する前に、めっき層32が経年変化し、その切断端部
は酸化して白錆35となり、その部位は膨張して塗装膜
34の切断端部が膨れ上がる。その膨れ上がった塗装膜
34の端部からの幅Wを膨れ幅といい、腐食の程度を示
すパラメータとなる。また、化成処理鋼材21は、同図
(B)に示されるように、鉄31の上にめっき層32及
び化成処理層33が順次形成されたものである。化成処
理層33は耐食性が低いので腐食してめっき層32が露
出すると、めっき層32が酸化して白錆36となる。ま
た、めっき処理鋼材22は、同図(C)に示されるよう
に、鉄31の上にめっき層32が形成されたものであ
る。めっき層32が酸化して白錆36となり、また、め
っき層32が剥がれると鉄31が酸化して赤錆37が発
生する。
FIGS. 6 (A) to 6 (C) are explanatory views showing the secular change of the coated steel material, the chemical conversion treated steel material and the plated steel material. The coated steel material 20 is, as shown in FIG.
A plating layer 32, a chemical conversion layer 33, and a coating film 34 are sequentially formed on iron 31. Since the coating film 34 has higher corrosion resistance than the plating layer 32 or the like, before the coating film 34 ages, the plating layer 32 ages, and its cut end is oxidized to white rust 35, and the portion expands. As a result, the cut end of the coating film 34 swells. The width W from the end of the swollen coating film 34 is called the swollen width, and is a parameter indicating the degree of corrosion. Further, as shown in FIG. 1B, the chemical conversion treated steel material 21 is formed by sequentially forming a plating layer 32 and a chemical conversion treatment layer 33 on an iron 31. Since the chemical conversion treatment layer 33 has low corrosion resistance, when the plating layer 32 is exposed by corrosion, the plating layer 32 is oxidized to white rust 36. Further, the plated steel material 22 has a plating layer 32 formed on an iron 31 as shown in FIG. The plating layer 32 is oxidized to become white rust 36, and when the plating layer 32 is peeled off, the iron 31 is oxidized to generate red rust 37.

【0056】塗装鋼材20、化成処理鋼材21及びめっ
き処理鋼材22は、それぞれ上記のようにして経年変化
するので、その外観寿命は、 塗装鋼材の寿命>化成処理鋼材の寿命>めっき処理鋼材
の寿命 という関係にある。本発明は、寿命が長い鋼材の寿命予
測に適用した場合に有用であるから、特に、化成処理鋼
材及び塗装鋼材に適用した場合にその有用性が顕著なも
のとなる。
The painted steel 20, the chemically treated steel 21, and the plated steel 22 change with time as described above, and therefore, the appearance life is: life of painted steel> life of chemically treated steel> life of plated steel. There is a relationship. INDUSTRIAL APPLICABILITY The present invention is useful when applied to the prediction of the life of a steel material having a long life, and its usefulness is particularly remarkable when applied to a chemical conversion treated steel material and a painted steel material.

【0057】[0057]

【実施例】図7は上述の実施形態1の処理(S21)に
より得られた、或る地域の塗装鋼材の特性図である(上
述の図2に対応した特性図である)。ここでは、暴露年
数が1年乃至7年のデータが描かれている。このような
データが上記の処理(S22)に多数利用されることに
なる。
FIG. 7 is a characteristic diagram of a coated steel material in a certain area obtained by the processing (S21) of the above-described first embodiment (a characteristic diagram corresponding to FIG. 2 described above). Here, data with exposure years of 1 to 7 years are depicted. A large number of such data will be used in the above processing (S22).

【0058】表1乃至表2は、上記の処理(S22)で
支配的環境因子を決定する際に求められた決定係数を示
したものであり、暴露後5年後及び7年後の決定係数が
それぞれ示されている。これらの表1及び表2から、温
度、湿度及び飛来海塩量の各決定係数の内、飛来海塩量
の決定係数が最も高いため、この地域における塗装鋼材
A乃至Cの支配的環境因子は飛来海塩量であるとして決
定される。
Tables 1 and 2 show the coefficient of determination obtained when determining the dominant environmental factor in the above processing (S22), and the coefficient of determination at 5 years and 7 years after exposure. Are shown respectively. From Tables 1 and 2, from among the determination coefficients of temperature, humidity and the amount of incoming sea salt, the determining coefficient of the amount of incoming sea salt is the highest, so that the dominant environmental factors of the coated steel materials A to C in this area are It is determined as the amount of incoming sea salt.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】図8乃至図10は暴露後2年後、5年後及
び7年後の飛来海塩量と塗装鋼材の膨れ幅との関係をそ
れぞれ示した特性図であり、これは上述の図3(A)乃
至(C)に対応している。なお、飛来海塩量の単位md
dは、mg/dm2・day(10cm×10cm四方
の面積に1日当たり捕獲される海塩量)である。
FIGS. 8 to 10 are characteristic diagrams respectively showing the relationship between the amount of incoming sea salt, the swelling width of the coated steel material two years, five years, and seven years after the exposure. 3 (A) to 3 (C). In addition, unit md of flying sea salt amount
d is mg / dm 2 · day (the amount of sea salt captured per day in an area of 10 cm × 10 cm square).

【0062】図11は上記の処理(S24)により得ら
れた塗装鋼材の屋外における膨れ幅の予測値を経過年で
表した特性図である。塗装鋼材の膨れ幅が5mm達した
ときを寿命とする場合には、図10より塗装鋼材Aは3
年程度、塗装鋼材Bは6年程度、塗装鋼材Cは30年以
上の外観寿命があるという予測が可能となっている。
FIG. 11 is a characteristic diagram showing the predicted value of the swollen width of the coated steel material obtained outdoors by the above-described process (S24) in the elapsed years. In the case where the life is when the swollen width of the coated steel material reaches 5 mm, as shown in FIG.
It is possible to predict that the coated steel material B has an appearance life of about 6 years and the coated steel material C has an appearance life of 30 years or more.

【0063】図12乃至図14は塗装鋼材A乃至Cにつ
いて、屋外、部位A及び部位Bについての膨れ幅の予測
値を膨れ幅の予測値を経過年で表した特性図である。図
示の例においては、屋外、部位A及び部位Bの付着塩分
量の比率は、1:0.2:0.01である。
FIGS. 12 to 14 are characteristic diagrams showing the predicted values of the swollen widths of the coated steel materials A to C outdoors and for the portions A and B, and the predicted values of the swollen widths with the elapsed years. In the illustrated example, the ratio of the amount of attached salt in the outdoor area, the site A and the site B is 1: 0.2: 0.01.

【0064】[0064]

【発明の効果】以上のように本発明によれば、対象とな
る実構造物又はその実構造物を模擬した構造物における
1以上の部位で環境因子の値を測定し、環境因子と腐食
量との関係と、その環境因子の測定値とに基づき、腐食
量と暴露時間との関係を示すデータを求め、そのデータ
に基づいて腐食の進行を予測するようにしたので、短期
間の試験で、且つ精度の高い長期の表面処理鋼材の寿命
予測が可能になっている。なお、本発明は、プレハブ、
スチールハウス等の住宅部材の設計に特に有効な発明で
ある。
As described above, according to the present invention, the value of an environmental factor is measured at one or more sites in a target real structure or a structure simulating the real structure, and the environmental factor, the amount of corrosion, and the like are measured. Based on the relationship and the measured values of the environmental factors, data showing the relationship between the amount of corrosion and the exposure time was obtained, and the progress of corrosion was predicted based on the data. In addition, it is possible to accurately predict the long-term life of a surface-treated steel material. Note that the present invention relates to a prefab,
This invention is particularly effective for designing a housing member such as a steel house.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る塗装鋼材の寿命予測
方法、設計方法及び鋼材の製造方法の処理過程を示した
フローチャートである。
FIG. 1 is a flowchart showing processing steps of a life prediction method, a design method, and a steel material manufacturing method of a coated steel material according to a first embodiment of the present invention.

【図2】或る地域a乃至cにおける塗装鋼材の暴露年数
と腐食量との関係を示した特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the number of years of exposure of a coated steel material and the amount of corrosion in certain areas a to c.

【図3】暴露年数が2年、5年及び7年の支配的環境因
子と腐食量との関係を示した特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a dominant environmental factor of two years, five years and seven years of exposure and a corrosion amount.

【図4】屋外、部位A及び部位Bにおける、暴露年数と
腐食量との関係を概念的に示した特性図である。
FIG. 4 is a characteristic diagram conceptually showing the relationship between the number of years of exposure and the amount of corrosion in an outdoor area, site A and site B.

【図5】図1の処理(S32)内の塗装処理の過程を示
したフローチャートである。
FIG. 5 is a flowchart showing a process of a coating process in the process (S32) of FIG. 1;

【図6】塗装鋼材、化成処理鋼材及びめっき処理鋼材の
経年変化を示した説明図である。
FIG. 6 is an explanatory view showing the secular change of a coated steel material, a chemical conversion steel material, and a plating steel material.

【図7】図1の処理(S21)により得られた特性図で
ある。
FIG. 7 is a characteristic diagram obtained by the process (S21) of FIG.

【図8】2年経過後の飛来海塩量と膨れ幅との関係を示
した特性図である。
FIG. 8 is a characteristic diagram showing the relationship between the amount of incoming sea salt and the swollen width after two years.

【図9】5年経過後の飛来海塩量と膨れ幅との関係を示
した特性図である。
FIG. 9 is a characteristic diagram showing the relationship between the amount of incoming sea salt after 5 years and the swollen width.

【図10】7年経過後の飛来海塩量と膨れ幅との関係を
示した特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the amount of incoming sea salt after seven years and the swollen width.

【図11】塗装鋼材A乃至Cの屋外における膨れ幅の予
測値を示した特性図である。
FIG. 11 is a characteristic diagram showing predicted values of blister widths of painted steel materials A to C outdoors.

【図12】塗装鋼材Aの屋外、部位A及び部位Bについ
ての膨れ幅の予測値を示した特性図である。
FIG. 12 is a characteristic diagram showing a predicted value of a swollen width of a coated steel material A outdoors, a part A and a part B.

【図13】塗装鋼材Bの屋外、部位A及び部位Bについ
ての膨れ幅の予測値を示した特性図である。
FIG. 13 is a characteristic diagram showing a predicted value of a swollen width of a painted steel material B with respect to an outdoor area, an area A, and an area B.

【図14】塗装鋼材Cの屋外、部位A及び部位Bについ
ての膨れ幅の予測値を示した特性図である。
FIG. 14 is a characteristic diagram showing a predicted value of a swollen width of a painted steel material C outdoors and at locations A and B.

【手続補正書】[Procedure amendment]

【提出日】平成14年6月6日(2002.6.6)[Submission date] June 6, 2002 (2002.6.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項9[Correction target item name] Claim 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項12[Correction target item name] Claim 12

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】(9)本発明の他の態様に係る表面処理鋼材
の寿命予測方法において、環境因子は飛来海塩、温
度、湿度、日光照射量又はSOxである。
(9) In the method for predicting the life of a surface-treated steel material according to another aspect of the present invention, the environmental factor is the amount of incoming sea salt, temperature, humidity, sunlight irradiation amount or SOx.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】(S21)塗装鋼材の寿命予測を行うため
のデータ整理を行う工程。この工程においては、暴露
年数(経過時間)と腐食量との関係を求めてグラフ化す
るとともに、平均温度(以下、温度という)、平均湿度
(以下、湿度という)、飛来海塩量、温度、湿度、日照
量、イオウ酸化物、降水量、結露時間、付着塩分量等の
環境因子から適宜選択し、各環境因子のデータを環境デ
ータとして、合わせて整理する。また、腐食データに
は、膨れ幅、外観変化、白錆発生面積等があるが、本実
施形態1においては膨れ幅の例について説明する。な
お、塗装鋼材の膨れ幅とは、鋼材が腐食するのにともな
って切断端部から塗膜が膨れ上がったときに、その膨れ
上がった塗膜部分の端部からの幅を示すものとする(後
述の図6参照)。
(S21) A step of organizing data for estimating the life of the coated steel material. In this process, the relationship between the number of years of exposure (elapsed time) and the amount of corrosion is determined and graphed, and the average temperature (hereinafter, referred to as temperature), the average humidity (hereinafter, referred to as humidity), the amount of incoming sea salt, the temperature, Appropriate selection is made from environmental factors such as humidity, sunlight, sulfur oxides, precipitation, dew condensation time, and amount of attached salt, and the data of each environmental factor is arranged together as environmental data. The corrosion data includes a swollen width, a change in appearance, an area where white rust occurs, and the like. In the first embodiment, an example of the swollen width will be described. The swelling width of the coated steel material indicates the width of the swelled coating film from the end when the coating swells from the cut end due to corrosion of the steel ( See FIG. 6 to be described later).

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】[0029]

【数2】 (Equation 2)

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0036】例えば、実構造物をプレハブやスチールハ
ウス等の住宅部材を例として説明すると次のようにな
る。1ヶ月間の試験で屋外の飛来海塩量のデータ、塗
装鋼材の付着塩分量のデータを取る。一方、軒先とか小
屋裏、壁内部等の各使用部位の付着塩分量をガルバニッ
ク対で計測する。付着塩分量は予め用意したガルバニッ
ク対の出力と付着塩分量の関係を示す検量線により求め
られる。屋外で測定した飛来海塩量と付着塩分量の関係
から、ガルバニック対の出力から間接的ではあるが、軒
先、小屋裏、壁内部等の各部位の飛来海塩量がそれぞれ
求まる。
For example, the actual structure will be described below with reference to a housing member such as a prefab or a steel house. In a one-month test, data on the amount of sea salt coming from outside and data on the amount of salt attached to the coated steel are collected. On the other hand, the amount of salt attached to each use site such as the eaves, the back of a cabin, and the inside of a wall is measured by a galvanic pair. The amount of attached salt is obtained from a calibration curve indicating the relationship between the output of the galvanic couple prepared in advance and the amount of attached salt. From the relationship between the amount of incoming sea salt and the amount of attached salt measured outdoors, the amount of incoming sea salt at each site, such as the eaves, the back of the cabin, and the inside of the wall, can be obtained indirectly from the output of the galvanic couple.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0038】具体的には、支配的環境因子の計測値(例
えば軒先、小屋裏、壁内部等の各部位の飛来海塩量)を
それぞれ図3(A)乃至(C)の特性に当てはめて、腐
食量と経過年数のデータを得る。図3(A)乃至(C)
例においては例えば飛来海塩量a(mdd)であった
場合にはそれに対応した腐食量Ya2、Ya5、Ya7
を求める。そして、暴露年数(独立変数)T、腐食量
(従属変数)Yについてそれぞれの対数を取って、線形
モデルに変換して回帰分析を行い、定数α、βを求め
る。
More specifically, the measured values of the dominant environmental factors (for example, the amount of incoming sea salt at each site such as the eaves, the back of a cabin, and the inside of a wall) are applied to the characteristics shown in FIGS. Obtain data on corrosion rate and age. FIGS. 3A to 3C
The amount Oite the example corrosion corresponding thereto in the case were for example airborne sea salt amount a (mdd) Ya2, Ya5, Ya7
Ask for. Then, the logarithms of the years of exposure (independent variable) T and the amount of corrosion (dependent variable) Y are taken, converted into a linear model, and regression analysis is performed to obtain constants α and β.

【数5】 logY=α+βlogT …(5)LogY = α + βlogT (5)

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0047】図5は上記の処理(S32)内の塗装処理
の過程を示したフローチャートであり、次の(S41)
乃至(S47)の各工程の処理を行う。 (S41)鋼材の脱脂工程:塗装前の鋼材の表面に付着
した油分や汚れを除去する。 (S42)鋼材の研磨工程:ブラシで、鋼材表面の酸化
皮膜を除去し、表面を活性化させる。後工程の化成処理
性が改善する。 (S43)化成処理工程:りん酸塩処理やクロメート処
理を行う。塗膜密着性を改善する前処理的役割と鋼材の
耐食性を改善する機能的役割がある。上記の処理により
鋼材の寿命が分かった場合であって、更に高寿命を期待
する場合には、この化成処理に反映させる。 (S44)塗装工程:塗料をコーティングする工程。ロ
ールコーティング、スプレーコーティングが一般的であ
る。 (S45)焼付工程:塗料の乾燥、硬化。塗膜を形成さ
せる。要求される耐食性に応じて塗装、焼付を23回
繰り返す場合がある。 (S46)検査工程:塗膜のピンホール、光沢むら、色
調などを検査する。 (S47)保護フィルムの貼り付け工程:実施しない場
合もあるが、客先からの要望で、保護フィルムを張り付
けて出荷する場合がある。
FIG . 5 is a flowchart showing the steps of the coating process in the above process (S32).
Through (S47). (S41) Degreasing step of steel: Oil and dirt attached to the surface of the steel before coating are removed. (S42) Polishing step of steel: The oxide film on the surface of the steel is removed with a brush to activate the surface. The post-process chemical conversion property is improved. (S43) Chemical conversion treatment step: A phosphate treatment or a chromate treatment is performed. It has a pre-treatment role to improve coating film adhesion and a functional role to improve corrosion resistance of steel materials. In the case where the life of the steel material is known by the above-described processing, and when a longer life is expected, the chemical processing is reflected. (S44) Painting step: a step of coating a paint. Roll coating and spray coating are common. (S45) Baking step: drying and curing of the paint. Form a coating. Paint according to corrosion resistance is required, it may repeat the baking 2, 3 times. (S46) Inspection step: Inspection of the coating film for pinholes, uneven gloss, and color tone. (S47) Attaching step of protective film: Although it may not be performed, there is a case where the protective film is attached and shipped at the request of the customer.

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0055[Correction target item name] 0055

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0055】図6(A)乃至(C)は塗装鋼材、化成処
理鋼材及びめっき処理鋼材の経年変化を示した説明図で
ある。塗装鋼材20は、同図(A)に示されるように、
30の上にめっき層31、化成処理層32及び塗装膜
33が順次形成されたものである。塗装膜33はめっき
31などより耐食性が高いので、塗装膜33が経年変
化する前に、めっき層31が経年変化し、その切断端部
は酸化して白錆35となり、その部位は膨張して塗装膜
33の切断端部が膨れ上がる。その膨れ上がった塗装膜
33の端部からの幅Wを膨れ幅といい、腐食の程度を示
すパラメータとなる。また、化成処理鋼材21は、同図
(B)に示されるように、鉄30の上にめっき層31
び化成処理層32が順次形成されたものである。化成処
理層32は耐食性が低いので腐食してめっき層31が露
出すると、めっき層31が酸化して白錆36となる。ま
た、めっき処理鋼材22は、同図(C)に示されるよう
に、鉄30の上にめっき層31が形成されたものであ
る。めっき層31が酸化して白錆36となり、また、め
っき層31が剥がれると鉄30が酸化して赤錆37が発
生する。
FIGS. 6 (A) to 6 (C) are explanatory views showing the secular change of the coated steel material, the chemical conversion treated steel material and the plated steel material. The coated steel material 20 is, as shown in FIG.
Plating layer 31 , chemical conversion layer 32, and coating film on iron 30
33 are sequentially formed. Since the coating film 33 has higher corrosion resistance than the plating layer 31 or the like, before the coating film 33 ages, the plating layer 31 ages, and its cut end is oxidized to white rust 35, and the site expands. Paint film
The cut end of 33 is swollen. The swollen coating film
The width W from the end of 33 is called the swollen width, and is a parameter indicating the degree of corrosion. In addition, the chemical conversion treated steel material 21 has a plating layer 31 and a chemical conversion treatment layer 32 sequentially formed on iron 30 as shown in FIG. Since the chemical conversion layer 32 has low corrosion resistance, when the plating layer 31 is exposed by corrosion, the plating layer 31 is oxidized to form white rust 36. Further, the plated steel material 22 has a plating layer 31 formed on an iron 30 as shown in FIG. The plating layer 31 is oxidized to become white rust 36, and when the plating layer 31 is peeled off, the iron 30 is oxidized to generate red rust 37.

【手続補正11】[Procedure amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0062】図11は上記の処理(S24)により得ら
れた塗装鋼材の屋外における膨れ幅の予測値を経過年で
表した特性図である。塗装鋼材の膨れ幅が5mm達した
ときを寿命とする場合には、図11より塗装鋼材Aは3
年程度、塗装鋼材Bは6年程度、塗装鋼材Cは30年以
上の外観寿命があるという予測が可能となっている。
FIG. 11 is a characteristic diagram showing the predicted value of the swollen width of the coated steel material obtained outdoors by the above-described process (S24) in the elapsed years. In the case where the life is when the swollen width of the painted steel material reaches 5 mm, the painted steel material A is 3 from FIG.
It is possible to predict that the coated steel material B has an appearance life of about 6 years and the coated steel material C has an appearance life of 30 years or more.

フロントページの続き Fターム(参考) 2G050 AA01 AA07 BA02 BA05 BA06 BA09 BA10 BA20 DA01 EB02 EB03 EB07 EB10 EC10 2G055 AA03 AA07 BA07 BA09 BA12 CA01 CA07 CA25 DA08 FA02 FA06 Continued on the front page F term (reference) 2G050 AA01 AA07 BA02 BA05 BA06 BA09 BA10 BA20 DA01 EB02 EB03 EB07 EB10 EC10 2G055 AA03 AA07 BA07 BA09 BA12 CA01 CA07 CA25 DA08 FA02 FA06

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 複数の実環境での腐食量と暴露時間との
関係を示すデータ及びそのデータの環境因子に基づい
て、環境因子と腐食量との関係を求める第1の工程と、 対象となる実構造物又はその実構造物を模擬した構造物
における1以上の部位で環境因子の値を測定する第2の
工程と、 前記第1の工程における環境因子と腐食量との関係と、
前記第2の工程で測定された環境因子の測定値とに基づ
き、前記部位における腐食量と暴露時間との関係を示す
データを求める第3の工程と、 前記第3の工程における腐食量と暴露時間との関係を示
すデータに基づいて腐食の進行を予測する第4の工程と
を有することを特徴とする表面処理鋼材の寿命予測方
法。
A first step of obtaining a relationship between an environmental factor and a corrosion amount based on data indicating a relationship between the corrosion amount and an exposure time in a plurality of real environments and an environmental factor of the data; A second step of measuring the value of the environmental factor at one or more sites in a real structure or a structure simulating the real structure, and a relationship between the environmental factor and the amount of corrosion in the first step,
A third step of obtaining data indicating the relationship between the amount of corrosion at the site and the exposure time based on the measured values of the environmental factors measured in the second step; and the amount of corrosion and the exposure in the third step. And a fourth step of predicting the progress of corrosion based on data indicating a relationship with time.
【請求項2】 対象となる実構造物又はその実構造物を
模擬した構造物における1以上の部位で環境因子の値を
測定する第1の工程と、 予め設定されている環境因子と腐食量との関係と、前記
第1の工程で測定された環境因子の測定値とに基づき、
前記部位における腐食量と暴露時間との関係を示すデー
タを求める第2の工程と、 前記第2の工程における腐食量と暴露時間との関係を示
すデータに基づいて腐食の進行を予測する第3の工程と
を有することを特徴とする表面処理鋼材の寿命予測方
法。
2. A first step of measuring a value of an environmental factor at one or more sites in a target actual structure or a structure simulating the actual structure; And the measured value of the environmental factor measured in the first step,
A second step of obtaining data indicating the relationship between the amount of corrosion and the exposure time at the site; and a third step of predicting the progress of corrosion based on the data indicating the relationship between the amount of corrosion and the exposure time in the second step. And a method for predicting the life of a surface-treated steel material.
【請求項3】 前記環境因子が複数ある場合に、複数の
実環境での腐食量と暴露時間との関係を示すデータ及び
そのデータの環境因子に基づき求められた、環境因子と
腐食量との関係から、1以上の環境因子を支配的環境因
子として決定するとともに、 請求項1の場合は前記第2の工程以降、請求項2の場合
は前記第1の工程以降の環境因子に基づく処理を支配的
環境因子により実行することを特徴とする請求項1又は
2記載の表面処理鋼材の寿命予測方法。
3. When there are a plurality of said environmental factors, data indicating the relationship between the corrosion amount and the exposure time in a plurality of real environments and the relationship between the environmental factors and the corrosion amount obtained based on the environmental factors of the data. From the relationship, one or more environmental factors are determined as the dominant environmental factors. 3. The method according to claim 1, wherein the method is performed based on a dominant environmental factor.
【請求項4】 前記対象となる実構造物又はその実構造
物を模擬した構造物(以下実構造物等という)の中又は
その表面に設けられる基準位置、又は前記実構造物等の
外に設けられた基準位置における環境データの値を基準
値とし、 前記実構造物等における前記部位で測定された前記環境
データの値と、前記基準値との比を部位係数としたとき
に、 前記基準値とある環境因子との対応関係と前記部位係数
とに基づき、各部位における前記ある環境因子の値を前
記算出し、 請求項1の場合は前記第3の工程以降、請求項2の場合
は前記第2の工程以降の環境因子に基づく処理を前記あ
る環境因子により実行することを特徴とする請求項1乃
至3の何れかに記載の表面処理鋼材の寿命予測方法。
4. A reference position provided in or on the surface of the target real structure or a structure simulating the real structure (hereinafter referred to as a real structure or the like), or provided outside the real structure or the like. The value of the environmental data at the given reference position is used as a reference value, and the value of the environmental data measured at the site in the actual structure or the like, and the ratio between the reference value and the site coefficient is used as the site coefficient. The value of the certain environmental factor in each part is calculated based on the correspondence between the certain environmental factor and the part coefficient. The method according to any one of claims 1 to 3, wherein a process based on an environmental factor after the second step is performed by the certain environmental factor.
【請求項5】 前記基準位置を前記部位の一つとするこ
とを特徴とする請求項4記載の表面処理鋼材の寿命予測
方法。
5. The method according to claim 4, wherein the reference position is one of the parts.
【請求項6】 前記環境データを付着塩分量とし、前記
ある環境因子を飛来海塩量とすることを特徴とする請求
項4又は5記載の表面処理鋼材の寿命予測方法。
6. The method for predicting the life of a surface-treated steel material according to claim 4, wherein the environmental data is the amount of attached salt and the certain environmental factor is the amount of incoming sea salt.
【請求項7】 前記腐食量と暴露時間の関係を示すデー
タは、表面処理鋼材の膨れ幅又は白錆発生面積の経年変
化を示すデータであることを特徴とする請求項1乃至6
の何れかに記載の表面処理鋼材の寿命予測方法。
7. The data representing the relationship between the amount of corrosion and the exposure time is data representing aging of the blister width or white rust occurrence area of the surface-treated steel material.
The method for estimating the life of a surface-treated steel material according to any one of the above.
【請求項8】 前記環境因子の計測は、少なくとも1ヶ
月であることを特徴とする請求項1乃至7の何れかに記
載の表面処理鋼材の寿命予測方法。
8. The method for predicting the life of a surface-treated steel material according to claim 1, wherein the measurement of the environmental factor is at least one month.
【請求項9】 前記環境因子は、飛来海塩、温度、湿
度、日光照射量又はSOxであることを特徴とする請求
項1乃至8の何れかに記載の表面処理鋼材の寿命予測方
法。
9. The method according to claim 1, wherein the environmental factors are incoming sea salt, temperature, humidity, sunlight irradiation amount, or SOx.
【請求項10】 寿命予測に際して、予め評価する地域
を類似する環境の地域に区分してから実行することを特
徴とする請求項1乃至9の何れかに記載の表面処理鋼材
の寿命予測方法。
10. The method for predicting the life of a surface-treated steel material according to claim 1, wherein the life is predicted before the area to be evaluated is divided into regions having similar environments.
【請求項11】 前記表面処理鋼材は塗装鋼材であるこ
とことを特徴とする請求項1乃至10の何れかに記載の
表面処理鋼材の寿命予測方法。
11. The method according to claim 1, wherein the surface-treated steel material is a painted steel material.
【請求項12】 請求項1乃至11の何れかに記載の表
面処理鋼材の寿命方法により寿命が予測された表面処理
鋼材であって、前記各部位の腐食の進行を予測した際の
データが添付されることを特徴とする表面処理鋼材。
12. A surface-treated steel material whose life is predicted by the life-treatment method for a surface-treated steel material according to any one of claims 1 to 11, wherein data when the progress of corrosion of each of the parts is predicted is attached. A surface-treated steel material characterized by being made.
【請求項13】 前記各部位の腐食の進行を予測した際
のデータは膨れ幅又は白錆発生面積に関するデータであ
ることを特徴とする請求項12記載の表面処理鋼材。
13. The surface-treated steel material according to claim 12, wherein the data at the time of predicting the progress of corrosion at each part is data relating to a swollen width or a white rust generation area.
【請求項14】 前記データ又はそれを示す記号が表面
処理鋼材に付記されてなることを特徴とする請求項12
又は13記載の表面処理鋼材。
14. The data or a symbol indicating the data is added to a surface-treated steel material.
Or a surface-treated steel material according to 13.
【請求項15】 前記データ又はそれに関連するデータ
が電子情報として納入先に送付されることを特徴とする
請求項12又は13記載の表面処理鋼材。
15. The surface-treated steel material according to claim 12, wherein the data or data related thereto is sent as electronic information to a delivery destination.
【請求項16】 請求項1乃至11の何れかに記載の表
面処理鋼材の寿命予測方法により腐食の進行が予測され
た1以上の表面処理鋼材から選択し、又は、前記1以上
の表面処理鋼材における腐食進行の予測結果に基づいて
腐食進行の予測をしなかった表面処理鋼材から選択し若
しくは新たな表面処理鋼材を設計することにより、実構
造に適用するために鋼材を選定することを特徴とする表
面処理鋼材の設計方法。
16. A method of selecting one or more surface-treated steel materials whose corrosion has been predicted by the method for predicting the life of a surface-treated steel material according to claim 1, or the one or more surface-treated steel materials. By selecting from surface-treated steel materials for which corrosion progress was not predicted based on the prediction results of corrosion progress in, or designing new surface-treated steel materials, the steel materials are selected for application to actual structures. How to design surface-treated steel.
【請求項17】 請求項16記載の表面処理鋼材の設計
方法により設計された表面処理鋼材を製造することを特
徴とする表面処理鋼材の製造方法。
17. A method for producing a surface-treated steel material, characterized by producing a surface-treated steel material designed by the method for designing a surface-treated steel material according to claim 16.
JP2001218579A 2001-02-16 2001-07-18 Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same Pending JP2002318227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218579A JP2002318227A (en) 2001-02-16 2001-07-18 Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-40793 2001-02-16
JP2001040793 2001-02-16
JP2001218579A JP2002318227A (en) 2001-02-16 2001-07-18 Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002318227A true JP2002318227A (en) 2002-10-31

Family

ID=26609575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218579A Pending JP2002318227A (en) 2001-02-16 2001-07-18 Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002318227A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345111A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method and device for predicting deterioration of steel
JP2011227004A (en) * 2010-04-22 2011-11-10 Jfe Steel Corp Method for testing corrosion acceleration of double anticorrosive coating steel material
JP2011227005A (en) * 2010-04-22 2011-11-10 Jfe Steel Corp Method for testing corrosion acceleration of heavy corrosion protection coated steel material
JP2011242382A (en) * 2010-04-22 2011-12-01 Jfe Steel Corp Method for predicting cross-section after corrosion of heavy-duty anticorrosive coated steel material, method for predicting degradation in strength of heavy-duty anticorrosive coated structure, and method for managing heavy-duty anticorrosive coated structure
JP2012194176A (en) * 2011-02-28 2012-10-11 Jfe Steel Corp Method for predicting corrosion quantity of steel material in outdoor environment
JP2012251848A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion rate estimation device and method
JP2017066433A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of manufacturing anti-weathering steel material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054172A (en) * 1998-07-31 2000-02-22 Sumitomo Metal Ind Ltd Method for evaluating stability of rust in steel
JP2000329725A (en) * 1999-05-18 2000-11-30 Hakuto Co Ltd Device for estimating local corrosion of metal material in river system
JP2001033389A (en) * 1999-07-26 2001-02-09 Sumitomo Metal Ind Ltd Method and apparatus for evaluating corrosion resistance of steel product
JP2001124693A (en) * 1999-10-27 2001-05-11 Sumitomo Metal Ind Ltd Method and device for evaluating weather resistance of steel product
JP2002221483A (en) * 2001-01-25 2002-08-09 Nippon Steel Corp Testing liquid and method for evaluating corrosion resistance of stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054172A (en) * 1998-07-31 2000-02-22 Sumitomo Metal Ind Ltd Method for evaluating stability of rust in steel
JP2000329725A (en) * 1999-05-18 2000-11-30 Hakuto Co Ltd Device for estimating local corrosion of metal material in river system
JP2001033389A (en) * 1999-07-26 2001-02-09 Sumitomo Metal Ind Ltd Method and apparatus for evaluating corrosion resistance of steel product
JP2001124693A (en) * 1999-10-27 2001-05-11 Sumitomo Metal Ind Ltd Method and device for evaluating weather resistance of steel product
JP2002221483A (en) * 2001-01-25 2002-08-09 Nippon Steel Corp Testing liquid and method for evaluating corrosion resistance of stainless steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345111A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method and device for predicting deterioration of steel
JP4495523B2 (en) * 2004-05-31 2010-07-07 財団法人鉄道総合技術研究所 Deterioration prediction system for steel in submarine tunnel
JP2011227004A (en) * 2010-04-22 2011-11-10 Jfe Steel Corp Method for testing corrosion acceleration of double anticorrosive coating steel material
JP2011227005A (en) * 2010-04-22 2011-11-10 Jfe Steel Corp Method for testing corrosion acceleration of heavy corrosion protection coated steel material
JP2011242382A (en) * 2010-04-22 2011-12-01 Jfe Steel Corp Method for predicting cross-section after corrosion of heavy-duty anticorrosive coated steel material, method for predicting degradation in strength of heavy-duty anticorrosive coated structure, and method for managing heavy-duty anticorrosive coated structure
JP2012194176A (en) * 2011-02-28 2012-10-11 Jfe Steel Corp Method for predicting corrosion quantity of steel material in outdoor environment
JP2012251848A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion rate estimation device and method
JP2017066433A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Method of manufacturing anti-weathering steel material

Similar Documents

Publication Publication Date Title
Silva et al. Methodologies for service life prediction of buildings: with a focus on façade claddings
KR100708786B1 (en) Method for predicting degree of corrosion of weather-resistant steel
JP2003329573A (en) Method for evaluating corrosion resistance of metallic material, method for predicting corrosion life thereof, metallic material, method for designing thereof, and method for manufacturing thereof
JP2008224405A (en) Corrosion rate evaluating method
Souza et al. Service life prediction of ceramic tiling systems in Brasília-Brazil using the factor method
CN111542746B (en) Method for predicting corrosion amount of metal material, method for selecting metal material, and device for predicting corrosion amount of metal material
Magos et al. Application of the factor method to the prediction of the service life of external paint finishes on façades
JP2002318227A (en) Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same
JP4151385B2 (en) Corrosion amount prediction method and life prediction method of metal material due to contact corrosion of different metals, structure design method, and metal material manufacturing method
JP2020148541A (en) Corrosion speed estimation device, corrosion speed estimation method, and program
JP4706489B2 (en) Method for predicting corrosion resistance of metal and coated metal plate, method for selecting coated metal plate
JP4706254B2 (en) Steel life prediction method
LeBozec et al. Influence of climatic factors in cyclic accelerated corrosion test towards the development of a reliable and repeatable accelerated corrosion test for the automotive industry
JP2008122170A (en) Weatherable deterioration diagnosing method of facing member
JP3665965B2 (en) Method for selecting coated steel for peripheral part of photovoltaic power generation system, coated steel material for peripheral part of photovoltaic power generation system, and photovoltaic power generation system
KR102100040B1 (en) method of estimating at least one of coating weight and alloy degree of zinc alloy plated sheet
JP2002328085A (en) Corrosion-proof life predicting method, designing method, and manufacturing method for surface treated steel material
CN113777013B (en) Corrosion resistance test sample and method for testing corrosion resistance of zinc-aluminum-magnesium coated steel
EP0079970B1 (en) Method of predicting durability of coated metal material
Bedoya et al. Electrochemical impedance study for modeling the anticorrosive performance of coatings based on accelerated tests and outdoor exposures
JP2003106166A (en) Method for managing service life of high temperature part of gas turbine
Zhang et al. A software for predicting zinc coating life
JP2006064469A (en) Corrosive environment sensor and corrosive environment evaluation method
Aggarwal et al. Application of Partial Least Squares regression to assess the hygrothermal performance of wood-frame walls in Canada under historical and future climates
CN115598048B (en) Multi-factor coupling simulation acceleration test method and system for marine atmosphere environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115