JP2000054172A - Method for evaluating stability of rust in steel - Google Patents

Method for evaluating stability of rust in steel

Info

Publication number
JP2000054172A
JP2000054172A JP10217171A JP21717198A JP2000054172A JP 2000054172 A JP2000054172 A JP 2000054172A JP 10217171 A JP10217171 A JP 10217171A JP 21717198 A JP21717198 A JP 21717198A JP 2000054172 A JP2000054172 A JP 2000054172A
Authority
JP
Japan
Prior art keywords
steel
rust layer
rust
stability
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10217171A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kajima
和幸 鹿島
Hideaki Yuki
英昭 幸
Hiroshi Kishikawa
浩史 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10217171A priority Critical patent/JP2000054172A/en
Publication of JP2000054172A publication Critical patent/JP2000054172A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To swiftly evaluate the stability of a rust layer in steel non- destructively, to estimate the corrosion rate of steel in an actual structure on the spot, and to evaluate the performance thereof by measuring the anode current density of a rust layer under certain electric potential of steel composed of weather resistant steel or the like. SOLUTION: By using a steel 2 composed of weather resistant steel contg. Cu, Cr and P in a bare state over a long period, a rust layer 1 having high corrosion preventability is formed. A connecting wire 3 of Cu or the like freed from a part of the rust layer 1 and fitted and sponge 4 impregnated with an electrolytic soln. of Na2SO4 or the like on the rust layer 1 are arranged, and a reference electrode 5 connected with this and a counter electrode 6 of Pt or the like are connected to a potentiostat 7. In this way, the anode current density of the rust layer 1 is measured under certain electric potential, e.g. of about -0.3 to +0.5 V. This current density is made small as the stability of the rust layer 1 increases, and the corrosion rate reduces. Thus, the stability of the rust layer 1 is evaluated from this measured value, and the forecast of the service life of the steel 2, the repairing period thereof or the like can precisely be judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材のさびの安定
性の評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating rust stability of a steel material.

【0002】[0002]

【従来の技術】鋼中にCu,Cr,P 等を含む耐候性鋼におい
ては、裸で使用すると長期の大気暴露により防食性の高
いさび (以下、安定さびという) が生成するため、腐食
速度が著しく低下し、メンテナンスフリー材料として橋
梁等の陸上構造物に使用されている。
2. Description of the Related Art Weather-resistant steel containing Cu, Cr, P, etc., in the steel, produces rust with high anticorrosion properties (hereinafter referred to as stable rust) due to long-term exposure to the atmosphere when used in the naked state. Is significantly reduced, and is used as a maintenance-free material for land structures such as bridges.

【0003】しかし、安定さび層の生成に要する期間は
鋼材の使用環境によって変わり、飛来海塩粒子の多いよ
うな場合には安定さびができないこともあるため、さび
が安定化しているのかどうかを評価する必要がある。
However, the time required for forming a stable rust layer varies depending on the use environment of the steel material, and stable rust may not be obtained when there are many flying sea salt particles. Need to be evaluated.

【0004】このさび層の安定性は、(1) 鋼材の腐食減
量の経時変化を測定し腐食速度を実測する方法や、(2)
X線回折法によりさび中のα-FeOOH量とγ-FeOOH量を測
定し、それらの重量%比 (α-FeOOH/ γ-FeOOH)(以
下、比 (α-FeOOH/ γ-FeOOH)と略記する)により評価
する方法が既に用いられている。
[0004] The stability of the rust layer can be determined by (1) a method of measuring the change over time of the corrosion loss of steel and measuring the corrosion rate, and (2)
The amounts of α-FeOOH and γ-FeOOH in the rust were measured by X-ray diffraction, and their weight percentages (α-FeOOH / γ-FeOOH) (hereinafter abbreviated as ratio (α-FeOOH / γ-FeOOH)) Method) has already been used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
(1) の方法は、さびを除去して現場で肉厚測定をしなけ
ればならず作業性に劣り、かつ、さびの安定化に関する
情報は何ら得られない。
SUMMARY OF THE INVENTION
In the method (1), the rust must be removed and the thickness must be measured on site, resulting in inferior workability, and no information on stabilization of the rust can be obtained.

【0006】(2) の方法は、鋼材よりさびを採取した上
にそれを実験室に持ち帰って測定、評価をする必要があ
り、直ちに安定性を知ることができないという問題があ
る。したがって、これらの方法は、実構造物における鋼
材の性能評価には適さないばかりではなく、これらの測
定法で得られる情報は、マクロ的な情報であり、鋼材の
局所的に存在する割れや欠陥等に関する情報は得ること
ができないという問題もある。
The method (2) has a problem in that it is necessary to collect rust from a steel material, take it back to the laboratory and measure and evaluate it, and it is not possible to immediately know the stability. Therefore, these methods are not only unsuitable for the performance evaluation of steel materials in actual structures, but the information obtained by these measurement methods is macroscopic information, and cracks and defects existing locally in steel materials There is also a problem that information on the like cannot be obtained.

【0007】本発明の課題は、鋼材のさびの安定性の評
価を非破壊でかつ迅速に、実構造物を対象にその場で行
う方法を提供することにある。
An object of the present invention is to provide a method for non-destructively and quickly evaluating the rust stability of a steel material on a real structure in situ.

【0008】[0008]

【課題を解決するための手段】本発明者らは、様々な電
気化学的な手法を用いて研究を行った結果、下記の(A)
〜(B) の知見を得た。
Means for Solving the Problems The present inventors have conducted research using various electrochemical techniques, and as a result, the following (A)
~ (B) were obtained.

【0009】(A) 図1は大気暴露期間の異なる耐候性鋼
材のアノード分極曲線を示すグラフである。同図に示す
ように、暴露期間の異なる耐候性鋼材ごとに、飽和する
電流密度の値が存在し、しかも飽和する電流密度の値が
図中の矢印で示すように大気暴露期間が長くなりさび層
の安定性が増すにつれて小さくなり、鋼材が不動態化し
た状態によく似た挙動を示すことが新たに認められた。
この結果より、ある一定の電位に設定したときのアノー
ド電流を測定することにより鋼材のさび層の安定性の評
価を行なうことができる。
(A) FIG. 1 is a graph showing anodic polarization curves of weatherable steel materials having different air exposure periods. As shown in the figure, there is a saturated current density value for each of the weathering steels with different exposure periods, and the saturated current density value increases as the air exposure period becomes longer as shown by the arrow in the figure. It was newly observed that the steel became smaller as the layer stability increased, and that the steel behaved much like a passivated state.
From this result, the stability of the rust layer of the steel material can be evaluated by measuring the anode current when the potential is set to a certain constant potential.

【0010】(B) 図2は参照電極として飽和甘こう電
極、対極として白金電極を用いた場合の電位+0.3V
(vs.SCE)でのアノード電流密度と、各鋼材の腐食減量
の実測から求めた腐食速度との関係を示すグラフであ
る。試験片としては兵庫県尼崎市の工業地帯において大
気暴露された耐候性鋼材の裸材および耐候性鋼材に安定
さび生成促進処理を施した表面処理材を用いた。図2に
示すように、耐候性鋼材の表面処理の有無に関わらず電
流密度と腐食速度の間に精度の高い直線的な関係がある
ことがわかる。ここで、アノード電流密度100μA/cm
2 が腐食速度10μm/yearに相当する。
(B) FIG. 2 shows a potential +0.3 V when a saturated luster electrode is used as a reference electrode and a platinum electrode is used as a counter electrode.
5 is a graph showing the relationship between the anode current density in (vs. SCE) and the corrosion rate obtained from the actual measurement of the corrosion weight loss of each steel material. The test piece used was a bare material of weather-resistant steel exposed to air in an industrial zone in Amagasaki City, Hyogo Prefecture, and a surface-treated material obtained by subjecting weather-resistant steel to a process of promoting stable rust formation. As shown in FIG. 2, it can be seen that there is a highly accurate linear relationship between the current density and the corrosion rate regardless of the presence or absence of the surface treatment of the weathering steel. Here, the anode current density is 100 μA / cm
2 corresponds to a corrosion rate of 10 μm / year.

【0011】一般的に実構造物においては、50年暴露
における腐食しろを0.3mmとしており、6μm/year以
下の腐食速度であれば、さび層は十分な保護性を有し、
安定化していると判定できる。
In general, in actual structures, the corrosion margin after 50 years of exposure is set to 0.3 mm. If the corrosion rate is 6 μm / year or less, the rust layer has sufficient protection.
It can be determined that it has stabilized.

【0012】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。
The present invention has been made based on the above findings, and the gist thereof is as follows.

【0013】(1) 鋼材のさび層の安定性を、一定電位下
における該さび層のアノード電流密度の測定により評価
する鋼材のさびの安定性の評価方法。
(1) A method for evaluating rust stability of a steel material in which the stability of the rust layer of the steel material is evaluated by measuring the anode current density of the rust layer at a constant potential.

【0014】(2) 請求項1の方法を実構造物のさび層に
非破壊で適用することを特徴とする鋼材のさびの安定性
の評価方法。
(2) A method for evaluating rust stability of a steel material, wherein the method according to claim 1 is applied to a rust layer of an actual structure in a non-destructive manner.

【0015】[0015]

【発明の実施の形態】図3は、アノード電流密度の測定
方法を示す概念図である。同図に示すように、鋼材2と
導通をとるためにさび層1の一部除去し、接続線3を取
り付ける。接続線としてはCu線を用いているが、導電性
のものであれば何でもよい。次に、さび層を電解質溶液
をしみ込ませたスポンジ4で濡らし、その上に参照電極
5と対極6をセットする。前記電解質溶液としては導電
性のある水溶液であればよい。例えば、0.1M-Na2 SO
4 (M=mol/l) の水溶液を用いることができ、溶液の濃度
は、0.01M 〜飽和溶液であればよい。0.01M 未
満の濃度であると、溶液抵抗が大きくなり正確な電位を
測定できなくなるおそれがあるからである。参照電極と
しては飽和甘こう電極(SCE) 、対極としては白金電極を
用いるが、他の参照電極、対極も使用可能である。
FIG. 3 is a conceptual diagram showing a method for measuring an anode current density. As shown in the drawing, a part of the rust layer 1 is removed and a connection wire 3 is attached in order to establish conduction with the steel material 2. Although a Cu wire is used as the connection line, any conductive wire may be used. Next, the rust layer is wet with a sponge 4 impregnated with an electrolyte solution, and a reference electrode 5 and a counter electrode 6 are set thereon. The electrolyte solution may be a conductive aqueous solution. For example, 0.1M-Na 2 SO
An aqueous solution of 4 (M = mol / l) can be used, and the concentration of the solution may be 0.01 M to a saturated solution. If the concentration is less than 0.01 M, the solution resistance may increase, and it may be impossible to measure an accurate potential. A saturated electrode (SCE) is used as a reference electrode and a platinum electrode is used as a counter electrode, but other reference electrodes and counter electrodes can also be used.

【0016】ポテンショスタット7により電位を飽和甘
こう電極(SCE) に対して−0.3V〜+0.5V の範囲
の値に設定する。以下に理由を述べる。
The electric potential is set by the potentiostat 7 to a value in the range of -0.3 V to +0.5 V with respect to the saturated gingival electrode (SCE). The reason is described below.

【0017】安定化しているさび層は溶液に接触してい
る自然状態での電位 (腐食電位) が−0.3V 〜+0.
2V 程度であるため、−0.3V 未満の電位では測定を
行うことができない。+0.5V を超えると腐食電位に
対して過剰な電位差を加えることになり正しい測定値が
得られないおそれがある。好ましい設定電位は+0.2
V 〜+0.3V である。
The stabilized rust layer has a potential (corrosion potential) in a natural state in contact with the solution of -0.3 V to +0.
Since it is about 2 V, measurement cannot be performed at a potential lower than -0.3 V. If it exceeds +0.5 V, an excessive potential difference is added to the corrosion potential, and a correct measurement value may not be obtained. The preferred set potential is +0.2
V to + 0.3V.

【0018】前記の図2のグラフは設定電位を前述のと
おり、+0.3V に保った状態での電流密度を測定した
ものであるが上記電位の範囲であれば、同様の傾向のグ
ラフを得ることができ、安定性を評価することができ
る。
The graph shown in FIG. 2 is obtained by measuring the current density in a state where the set potential is maintained at +0.3 V, as described above. If the potential is within the above range, a graph having the same tendency is obtained. And the stability can be evaluated.

【0019】本発明の測定法は、参照電極の接点での情
報であるため、化学分析による方法のようなマクロ情報
ではなく、局部的なさびの安定性を評価でき、きめこま
かな情報が得られる特徴がある。
Since the measurement method of the present invention is information at the contact point of the reference electrode, it is possible to evaluate local rust stability and obtain detailed information, not macro information as in a method based on chemical analysis. There are features.

【0020】さらに、本発明の測定法は非破壊で行うこ
とができるので、実構造物の評価に適しており、例え
ば、実構造物の耐食性の面からの寿命予測あるいは補修
時期を的確に判断することができる。
Further, since the measuring method of the present invention can be performed in a non-destructive manner, it is suitable for evaluation of an actual structure. For example, the life expectancy from the corrosion resistance of the actual structure or the time for repair can be accurately determined. can do.

【0021】[0021]

【実施例】兵庫県尼崎市の工業地帯に数ヶ月〜32年間
実橋に大気暴露された低合金耐候性鋼材、および安定さ
び生成促進処理を施した表面処理鋼材の試験片について
ポテンショスタットにより電位を飽和甘こう電極(SCE)
に対して+0.2V および+0.3V に保った状態での
電流密度を0.1M-Na2 SO4 (M=mol/l) の水溶液を用い
て前記と同様な方法で測定を行なった。
Example: Potential was measured by potentiostat on a test piece of a low-alloy weather-resistant steel material exposed to the real bridge in the industrial area of Amagasaki City, Hyogo Prefecture for several months to 32 years, and a surface-treated steel material subjected to stable rust generation promotion treatment. The saturated ginger electrode (SCE)
The current density was measured in the same manner as described above using an aqueous solution of 0.1 M-Na 2 SO 4 (M = mol / l) while maintaining the current density at +0.2 V and +0.3 V.

【0022】表1は低合金耐候性鋼材について+0.2
V および+0.3V に保った状態での大気暴露期間毎の
飽和した電流密度 [μA/cm2]の値を示す。
Table 1 shows +0.2 for low alloy weathering steel.
It shows the value of the saturated current density [μA / cm 2 ] for each period of exposure to the air while maintaining V and +0.3 V.

【0023】[0023]

【表1】 [Table 1]

【0024】表2は安定さび生成促進処理を実施した低
合金耐候性鋼材について+0.2Vおよび+0.3V に
保った状態での大気暴露期間毎の電流密度 [μA/cm2]の
値を示す。
Table 2 shows the values of the current density [μA / cm 2 ] of each of the low-alloy weather-resistant steel materials subjected to the stable rust formation accelerating treatment at +0.2 V and +0.3 V for each atmospheric exposure period. .

【0025】[0025]

【表2】 [Table 2]

【0026】表1および表2に示すように、低合金耐候
性鋼材の処理の有無に関係なく飽和した電流密度 [μA/
cm2]の値が+0.2V または+0.3V のいづれの電位
でも大気暴露期間が長くなるにつれて小さくなり各種鋼
材のさびの安定性を評価できることがわかった。
As shown in Tables 1 and 2, the saturated current density [μA /
It was found that the stability of the rust of various steel materials could be evaluated at any potential of +0.2 V or +0.3 V with the value of [cm 2 ] as the air exposure period became longer.

【0027】[0027]

【発明の効果】本発明によれば、下記の効果が得られる (1) 鋼材におけるさびの安定性の評価を非破壊でかつ迅
速に測定できる。 (2) 測定部位のマクロ情報ではなく、局部的なさびの安
定性を評価でき、きめこまかな情報が得られる (3) 測定を非破壊で行うことができるので、実構造物の
評価に適しており、例えば、実構造物の耐食性の面から
の寿命予測あるいは補修時期を的確に判断することがで
きる。
According to the present invention, the following effects can be obtained. (1) The evaluation of rust stability in steel can be measured nondestructively and quickly. (2) It is possible to evaluate the stability of local rust, not macro information of the measurement site, and obtain detailed information. (3) Since the measurement can be performed nondestructively, it is suitable for evaluation of actual structures. Thus, for example, it is possible to accurately judge the life expectancy or the repair time from the viewpoint of the corrosion resistance of the actual structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大気暴露期間の異なる耐候性鋼材のアノード分
極曲線を示すグラフである。
FIG. 1 is a graph showing anodic polarization curves of weathering steel materials having different exposure periods to the atmosphere.

【図2】アノード電流密度と、各鋼材の腐食減量から求
めた腐食速度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an anode current density and a corrosion rate obtained from corrosion loss of each steel material.

【図3】アノード電流密度の測定方法を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing a method for measuring an anode current density.

【符号の説明】[Explanation of symbols]

1:さび層 2:鋼材 3:接続線 4:スポンジ 5:参照電極 6:対極 7:ポテンショスタット 1: rust layer 2: steel material 3: connection wire 4: sponge 5: reference electrode 6: counter electrode 7: potentiostat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸川 浩史 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 Fターム(参考) 4K060 AA10 CA06 CA12 CA15 EA08 FA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Kishikawa 4-33 Kitahama, Chuo-ku, Osaka City F-term in Sumitomo Metal Industries Co., Ltd. 4K060 AA10 CA06 CA12 CA15 EA08 FA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼材のさび層の安定性を、一定電位下に
おける該さび層のアノード電流密度の測定により評価す
る鋼材のさびの安定性の評価方法。
1. A method for evaluating rust stability of a steel material, wherein the stability of the rust layer of the steel material is evaluated by measuring the anode current density of the rust layer at a constant potential.
【請求項2】 請求項1の方法を実構造物のさび層に非
破壊で適用することを特徴とする鋼材のさびの安定性の
評価方法。
2. A method for evaluating rust stability of a steel material, wherein the method according to claim 1 is applied non-destructively to a rust layer of an actual structure.
JP10217171A 1998-07-31 1998-07-31 Method for evaluating stability of rust in steel Withdrawn JP2000054172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217171A JP2000054172A (en) 1998-07-31 1998-07-31 Method for evaluating stability of rust in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217171A JP2000054172A (en) 1998-07-31 1998-07-31 Method for evaluating stability of rust in steel

Publications (1)

Publication Number Publication Date
JP2000054172A true JP2000054172A (en) 2000-02-22

Family

ID=16699979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217171A Withdrawn JP2000054172A (en) 1998-07-31 1998-07-31 Method for evaluating stability of rust in steel

Country Status (1)

Country Link
JP (1) JP2000054172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318227A (en) * 2001-02-16 2002-10-31 Nkk Corp Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same
CN103572301A (en) * 2012-07-19 2014-02-12 中国石油天然气股份有限公司 Pipeline and station power-off potential effectiveness evaluation method and apparatus
CN113390782A (en) * 2021-06-29 2021-09-14 武汉钢铁有限公司 Method for evaluating weather-resistant bridge steel stable rust layer in high-salinity marine atmospheric environment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318227A (en) * 2001-02-16 2002-10-31 Nkk Corp Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same
CN103572301A (en) * 2012-07-19 2014-02-12 中国石油天然气股份有限公司 Pipeline and station power-off potential effectiveness evaluation method and apparatus
CN113390782A (en) * 2021-06-29 2021-09-14 武汉钢铁有限公司 Method for evaluating weather-resistant bridge steel stable rust layer in high-salinity marine atmospheric environment
CN113390782B (en) * 2021-06-29 2022-06-03 武汉钢铁有限公司 Method for evaluating weather-resistant bridge steel stable rust layer in high-salinity marine atmospheric environment

Similar Documents

Publication Publication Date Title
Carino Nondestructive techniques to investigate corrosion status in concrete structures
Cinitha et al. An overview of corrosion and experimental studies on corroded mild steel compression members
Mohamed et al. Corrosion of carbon steel and corrosion-resistant rebars in concrete structures under chloride ion attack
Vedalakshmi et al. Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies
Vélez et al. Electrochemical characterization of early corrosion in prestressed concrete exposed to salt water
Guseva et al. Comparative evaluation of corrosion resistance of wheel and rail steels in various media
JP6623329B2 (en) Corrosion sensor
JP2009250845A (en) Environmental factor measuring method, thickness decrease prediction method of steel material, and selection method of steel material
Yoo et al. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Part 1. Laboratory tests to correlate galvanic current with actual damage
JP2000054172A (en) Method for evaluating stability of rust in steel
JP3849338B2 (en) Method for evaluating weather resistance of steel and weather resistance measuring apparatus
Compton et al. Atmospheric galvanic couple corrosion
JP6026055B2 (en) Method for measuring corrosion rate of metal bodies
Videm et al. Electrochemical behavior of steel in concrete and evaluation of the corrosion rate
JP6621137B2 (en) Method for evaluating the soundness of buried objects
Gulikers Statistical interpretation of results of potential mapping on reinforced concrete structures
JP2000046778A (en) Mimic electrode for monitoring local corrosion and method for monitoring local corrosion using the electrode
JP3797189B2 (en) Method for estimating corrosion rate and evaluation method for steel
Vassie et al. Electrode potentials for on-site monitoring of atmospheric corrosion of steel
JP2003050222A (en) Evaluation method for crevice corrosion initiation time
CN114252391B (en) Method for evaluating industrial atmospheric corrosion resistance of steel welded joint
JPH07333188A (en) Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor
JP2001124693A (en) Method and device for evaluating weather resistance of steel product
Angst Monitoring corrosion of steel in concrete structures
JP3730157B2 (en) Method for evaluating the stability of surface protective coatings on metallic materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004