JP4706254B2 - Steel life prediction method - Google Patents

Steel life prediction method Download PDF

Info

Publication number
JP4706254B2
JP4706254B2 JP2004376140A JP2004376140A JP4706254B2 JP 4706254 B2 JP4706254 B2 JP 4706254B2 JP 2004376140 A JP2004376140 A JP 2004376140A JP 2004376140 A JP2004376140 A JP 2004376140A JP 4706254 B2 JP4706254 B2 JP 4706254B2
Authority
JP
Japan
Prior art keywords
value
steel
amount
test
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004376140A
Other languages
Japanese (ja)
Other versions
JP2006053122A (en
Inventor
勇 鹿毛
誠洋 竹村
務 小森
和彦 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004376140A priority Critical patent/JP4706254B2/en
Publication of JP2006053122A publication Critical patent/JP2006053122A/en
Application granted granted Critical
Publication of JP4706254B2 publication Critical patent/JP4706254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、構造用鋼材特に耐候性に優れた鋼材の寿命予測方に関する。 The present invention relates to a life prediction how excellent steel in structural steel especially weather resistant.

従来、建築・土木分野で使用される鋼材として、SS、SMと呼ばれる普通鋼とともに、無塗装で使用されるSMAと呼ばれる耐候性鋼があり、最近ではNi系高耐候性鋼等がある。これらの材料を用いた構造物の適用基準は、これまでには
(1)飛来海塩による地域区分 耐候性鋼
(2)鉄骨構造建築物の耐久性向上技術 普通鋼
(3)当該鋼種の暴露試験 任意の鋼種
(4)腐食量予測式 耐候性鋼
等があり、これらは必要に応じて使い分けられている。
Conventionally, steel materials used in the construction and civil engineering fields include ordinary steel called SS and SM, and weather resistant steel called SMA used without painting, and recently, Ni-based high weather resistant steel and the like. The application standards for structures using these materials have so far been
(1) Regional classification by flying sea salt Weather-resistant steel
(2) Durability improvement technology for steel structure buildings Normal steel
(3) Exposure test of the steel grade Any steel grade
(4) Corrosion amount prediction formula There are weather-resistant steel, etc., and these are properly used as needed.

上記の(1)及び(2)は従来の暴露結果を纏め上げたもので、適用可否判断が瞬時に可能である。上記の(3)の暴露試験による鋼材の腐食量は、
Y=AXB、Y:腐食量、X:年数
の式で表されることが知られている。その腐食量のしきい値Y1imを設定することにより、そのときのX1im年を寿命とする方法である。腐食寿命の判断の目安は、例えば100年の推定片側板厚減少量が0.5mm以下である。この式のA、Bは環境や鋼種によって変化するため、A、Bを決定するために、実環境又は実環境に近い環境に試験片を暴露し、試験片の腐食量の経年変化(X,Y)から累乗近似する方法が用いられている。
The above (1) and (2) summarize the conventional exposure results, and applicability determination can be made instantaneously. The amount of corrosion of steel by the exposure test (3) above is
It is known that Y = AX B , Y: corrosion amount, and X: years. By setting the threshold Y 1im for the amount of corrosion, this is a method in which X 1im year at that time is used as the lifetime. The standard for determining the corrosion life is, for example, an estimated one-side thickness reduction of 100 years is 0.5 mm or less. Since A and B in this equation vary depending on the environment and the steel type, in order to determine A and B, the test piece is exposed to the actual environment or an environment close to the actual environment, and the corrosion amount of the test piece changes with time (X, A method of power approximation from Y) is used.

ところで、腐食速度は、海塩量や亜硫酸ガス量によって影響を受けることが多数の文献に示されている。また、腐食現象は基本的には水溶液中の化学反応であるので、気温、湿度や、濡れ時間にも依存する。したがって、これらの環境因子をパラメータとする関数として記述することができる。   By the way, many literatures show that the corrosion rate is influenced by the amount of sea salt and the amount of sulfurous acid gas. In addition, since the corrosion phenomenon is basically a chemical reaction in an aqueous solution, it also depends on the temperature, humidity, and wetting time. Therefore, it can be described as a function using these environmental factors as parameters.

上記の(4)の予測方法に関して、建設省(当時)土木研究所においては、SMA(JIS規格の耐候性鋼)に関し、暴露試験の結果から、上記のA,Bを次のように決定している(例えば非特許文献1)。
A=CSa γa:飛来塩分量、C,γ:回帰係数
B=0.73
即ち、Aは飛来塩分と相関があるとし、Bは鋼種・暴露方向、設置場所等によらず0.73としている。
Regarding the prediction method of (4) above, the Ministry of Construction (at that time) Civil Engineering Research Institute determined the above A and B from the results of the exposure test for SMA (weather-resistant steel of JIS standard) as follows. (For example, Non-Patent Document 1).
A = CS a γ S a : flying salt content, C, γ: regression coefficient B = 0.73
That is, A is correlated with the incoming salt content, and B is 0.73 regardless of the steel type, exposure direction, installation location, and the like.

また、上記(4)の予測方法に関して、例えば次のように求める方法も提案されている(例えば特許文献1)。この方法では腐食性指標Zの2次回帰式から初年度腐食量を推定している。
Z=α・TOW・exp(-κ・W)・(C+δ・S)/(1+ε・C・S)・exp(-Ea/RT)
α=106, κ=-0.1, δ=0.05, ε=10.0, Ea=50kJ/mol・K
Z:腐食性指標,R:気体定数, C:飛来塩分, S:硫黄酸化物量,
TOW:年間濡れ時間(h)、W:年平均風速(m/sec),T:年平均気温(K)
「耐候性鋼材の橋梁への適用に関する共同研究報告書(XVIII)」(建設省土木研究所,(社)鋼材倶楽部,(社)日本橋梁建設協会、平成5年3月発行) 国際公開03/006957号パンフレット
In addition, with respect to the prediction method (4), for example, a method for obtaining as follows is proposed (for example, Patent Document 1). In this method, the amount of corrosion in the first year is estimated from the quadratic regression equation of the corrosivity index Z.
Z = α ・ TOW ・ exp (-κ ・ W) ・ (C + δ ・ S) / (1 + ε ・ C ・ S) ・ exp (-Ea / RT)
α = 10 6 , κ = -0.1, δ = 0.05, ε = 10.0, Ea = 50 kJ / mol · K
Z: Corrosion index, R: Gas constant, C: Flying salinity, S: Sulfur oxide content,
TOW: Annual wetting time (h), W: Annual average wind speed (m / sec), T: Annual average temperature (K)
"Joint Research Report on the Application of Weathering Steel to Bridges (XVIII)" (Public Works Research Institute, Ministry of Construction, Steel Club, Japan Bridge Construction Association, published in March 1993) WO03 / 006957 pamphlet

上記の従来の寿命予測方法の内、上記の(1)及び(2)の方法は鋼種が限定される上、或る時点でのその材料の適用可否を判断するだけであって、鋼種の選定は出来なかった。一方、上記の(3)の方法は、各鋼種の調査を行なうことによって鋼種の選定が可能である。しかしながら、新たな高耐候性を有する鋼が開発された場合には、開発後にただちに暴露試験を長期間種々の場所で行って、検量線あるいは式を作成しなければならない。また、上記の(3)の方法では、未知数A,B2つを決定するために、最低2点以上の腐食量データが必要である。日本では四季があり、腐食は季節によって進行速度が異なるために、最低2年間の計測を必要とする。更に、近年、土木建築用鋼材の長寿命化が叫ばれており、例えば100年といった長期寿命を精度よく予測するには、実質5〜20年といった長期試験を行なっており、実際に用いられるまでに時間がかかるという課題があった。また、上記の(4)の寿命予測方法においては、架設地の環境の影響は取り入れて式を構成しているものの、長期の暴露試験が必要であり、更に、非特許文献1の方法ではBを一定としているので、さびの保護性に必要な飛来塩分量や鋼種の影響が反映されていない、という問題点があった。   Among the conventional life prediction methods described above, the methods (1) and (2) described above are limited in steel grade and only determine whether the material is applicable at a certain point in time. I couldn't. On the other hand, in the above method (3), the steel type can be selected by examining each steel type. However, when a new steel having high weather resistance is developed, an exposure test must be performed at various locations for a long period of time immediately after development to create a calibration curve or formula. In the method (3), at least two points of corrosion amount data are required to determine the two unknowns A and B. In Japan, there are four seasons, and since corrosion progresses differently depending on the season, it requires a minimum of two years of measurement. Furthermore, in recent years, it has been sought to extend the life of steel for civil engineering and construction. For example, in order to accurately predict a long life such as 100 years, a long-term test such as 5 to 20 years has been conducted until it is actually used. There was a problem that it took time. Further, in the life prediction method of (4) above, although the influence of the environment of the construction site is incorporated to form the formula, a long-term exposure test is necessary. Therefore, there is a problem that the amount of incoming salt necessary for the protection of rust and the effect of steel type are not reflected.

また、上記の特許文献1において提案されている方法では、 S(硫黄酸化物量)を予測式のパラメータとしているが、S(硫黄酸化物量)と板厚減少量との間には有意な相関が見られないことが知られている。   In the method proposed in the above-mentioned Patent Document 1, S (sulfur oxide amount) is used as a parameter of the prediction formula, but there is a significant correlation between S (sulfur oxide amount) and the thickness reduction amount. It is known not to be seen.

本発明は、このような問題点を解決するためになされたものであり、各種鋼材の長期の腐食量を短期の腐食データにより高精度に予測することを可能にした鋼材の寿命予測方法提供することを目的とする。 The present invention has been made in order to solve such problems, and provides a method for predicting the life of a steel material that makes it possible to accurately predict the long-term corrosion amount of various steel materials from short-term corrosion data. The purpose is to do.

本発明に係る鋼材の寿命予測方法は、構造物の鋼材の腐食量予測式Y=AXB(Y:腐食量、X:年数、A,B:材料と環境に依存する係数、べき数)を用いて鋼材の寿命を予測する方法であって、前記A値を構造物の架設地又は建設地における暴露試験に基づいて求め、前記B値を前記A値の関数として求め、これらのA値及びB値に基づいて鋼材の腐食量Yを求める。 The steel material life prediction method according to the present invention is based on the following formula: Y = AX B (Y: corrosion amount, X: years, A, B: coefficient depending on material and environment, power) A method of predicting the life of a steel material using the A value based on an exposure test at a construction site or a construction site of a structure, obtaining the B value as a function of the A value, The corrosion amount Y of the steel material is obtained based on the B value.

本発明に係る鋼材の寿命予測方法は、構造物の鋼材の腐食量予測式Y=AXB(Y:腐食量、X:年数、A,B:材料と環境に依存する係数、べき数)を用いて鋼材の寿命を予測する方法であって、前記A値を構造物の架設地又は建設地の環境を模擬した実験室での試験に基づいて求め、前記B値を前記A値の関数として求め、これらのA値及びB値に基づいて鋼材の腐食量Yを求める。 The steel material life prediction method according to the present invention is based on the following formula: Y = AX B (Y: corrosion amount, X: years, A, B: coefficient depending on material and environment, power) A method for predicting the life of a steel material using the A value obtained based on a test in a laboratory simulating the environment of a construction site or a construction site, and the B value as a function of the A value. The corrosion amount Y of the steel material is obtained based on these A value and B value.

本発明に係る鋼材の寿命予測方法は、前記A値を次式により表現し、次式のα、β及びγを前記実験室での試験に基づいて求める。
A=CSa γ=(α・T+β)・Pw(T,H)・(Sa γ
T:温度(℃),H:相対湿度(%),Sa:飛来塩分量(mdd),
Pw(T,H):濡れ確率、α,β,γ:鋼種に応じて設定された係数
In the method for predicting the life of a steel material according to the present invention, the A value is expressed by the following equation, and α, β, and γ in the following equation are obtained based on tests in the laboratory.
A = CS a γ = (α · T + β) · Pw (T, H) · (S a γ )
T: temperature (° C.), H: relative humidity (%), Sa: incoming salt content (mdd),
Pw (T, H): Wetting probability, α, β, γ: Coefficients set according to steel type

本発明に係る鋼材の寿命予測方法は、前記α、β及びγと、構造物の架設地又は建設地における飛来塩分量Sa、年平均の温度T、相対湿度H及び濡れ確率Pwとによって前記A値を求める。 The method for predicting the life of a steel material according to the present invention is based on the above α, β, and γ, the amount of flying salt S a at the construction site or construction site of the structure, the average temperature T, the relative humidity H, and the wetting probability Pw. Find the A value.

本発明に係る鋼材の寿命予測方法は、前記A値を次式により特定し、次式のα、β及びγを前記実験室での試験に基づいて求める。
A=k(α・T+β)・TOW・(Sa γ
T:温度(℃),Sa:飛来塩分量(mdd),
TOW:年間濡れ時間(h)、k:係数、
α,β,γ:鋼種に応じて設定された係数
In the method of predicting the life of a steel material according to the present invention, the A value is specified by the following equation, and α, β, and γ in the following equation are obtained based on the test in the laboratory.
A = k (α · T + β) · TOW · (S a γ )
T: temperature (° C.), S a : incoming salt content (mdd),
TOW: Annual wetting time (h), k: coefficient,
α, β, γ: Coefficients set according to steel type

本発明に係る鋼材の寿命予測方法は、前記α、β及びγと、構造物の架設地又は建設地における飛来塩分量Sa、年平均の温度T、及び年間濡れ時間TOWとによって、前記A値を求める。 Life prediction method for a steel material according to the present invention, the alpha, and β and gamma, airborne salt amount S a in construction areas or construction site of the structure, the temperature T of the annual average, and annual wetting time TOW, the A Find the value.

本発明に係る鋼材の寿命予測方法は、前記実験室での試験に基づいて求められたA値を補正して前記腐食量予測式のA値とする。   In the method for predicting the life of a steel material according to the present invention, the A value obtained based on the laboratory test is corrected to obtain the A value of the corrosion amount prediction formula.

本発明によれば、短期間の暴露試験又は実験室での実験により腐食量予測式の材料特性及び環境特性に関するデータ(A値及びB値)を算出できるようにしたので、短期間の測定により腐食量予測ができるようになった。更に、短期間で腐食量の予測ができるので、各種鋼材選定の信頼性が向上し、構造物の最適設計を図ることができ、また、メンテナンス費用を最小に押さえ込むことができる。   According to the present invention, the data (A value and B value) relating to the material characteristics and environmental characteristics of the corrosion amount prediction formula can be calculated by a short-term exposure test or laboratory experiment. The amount of corrosion can be predicted. Furthermore, since the amount of corrosion can be predicted in a short period of time, the reliability of selecting various steel materials can be improved, the optimum design of the structure can be achieved, and maintenance costs can be minimized.

実施形態1.
本発明の実施形態1として、鋼材の腐食量予測式Y=AXB(Y:腐食量、X:年数、A,B:材料と環境に依存する係数、べき数)のA値,B値を短期間の暴露試験により求めて、鋼材の寿命予測をする予測方法を説明するが、それに先だって、まず、本実施形態1に係る寿命予測方法の計測原理を説明する。
図1は期間Xと鋼材の腐食量Yとの関係を示した特性図であり、腐食寿命の判断の目安は、例えば100年の推定片側板厚減少量が0.5mm以下である。この期間Xと鋼材の腐食量Yとの関係は、上述のように次式により表される。なお、A値はその環境での鋼材自体の耐食性を示しており、B値はさびの保護性を表している。鋼材の耐食性が高ければ図1の特性の初期の傾きは小さく、さびの保護性が高ければ腐食量Yの長期の年数経過後の値は小さな値を示す。
Y=AXB、Y:腐食量、X:年数 …(1)
Embodiment 1. FIG.
As Embodiment 1 of the present invention, the A value and B value of the corrosion amount prediction formula Y = AX B (Y: corrosion amount, X: number of years, A, B: coefficient depending on the material and the environment, power number) as the first embodiment of the present invention. A prediction method for predicting the life of a steel material obtained by a short-term exposure test will be described. Prior to that, the measurement principle of the life prediction method according to the first embodiment will be described first.
FIG. 1 is a characteristic diagram showing the relationship between the period X and the corrosion amount Y of the steel material, and the standard for determining the corrosion life is, for example, an estimated one-side plate thickness reduction amount of 100 years is 0.5 mm or less. The relationship between the period X and the corrosion amount Y of the steel material is expressed by the following equation as described above. In addition, A value has shown the corrosion resistance of steel materials itself in the environment, and B value represents the protection property of rust. If the corrosion resistance of the steel material is high, the initial inclination of the characteristic in FIG. 1 is small, and if the rust protection is high, the value of the corrosion amount Y after a long period of time is small.
Y = AX B , Y: Corrosion amount, X: Years (1)

図2はSMA実暴露の試験データにより求めたA値の特性図である。上記の(1)式において、X=1のときに、Y=Aとなるため、A値は1年分の板厚減少量(腐食量)に相当するものであり、図2の縦軸のA値(1年)は1年分の板厚減少量により求められたA値を示している。また、横軸のA値(〜9年)は暴露試験を9年間行ったときに、各経過年の板厚減少量に基づいて求められたA値を示している。図2の特性から明らかなように、暴露期間が9年の試験データによって求められたA値(A値(〜9年))と、暴露期間が1年の試験データによって求められたA値(A値(1年))とは相関があり、A値は短期間の暴露試験により算出が可能であることが分かる。したがって、本実施形態1においてはA値を短期間の暴露試験により算出するものとする。   FIG. 2 is a characteristic diagram of A value obtained from test data of SMA actual exposure. In the above equation (1), when X = 1, Y = A, so the A value corresponds to the reduction in thickness (corrosion amount) for one year. A value (1 year) has shown the A value calculated | required by the thickness reduction amount for 1 year. In addition, the A value (up to 9 years) on the horizontal axis indicates the A value obtained based on the amount of decrease in sheet thickness in each elapsed year when the exposure test was conducted for 9 years. As is apparent from the characteristics of FIG. 2, the A value (A value (˜9 years)) obtained from the test data with an exposure period of 9 years and the A value obtained from the test data with an exposure period of 1 year ( A value (1 year)) is correlated, and it can be seen that the A value can be calculated by a short-term exposure test. Therefore, in Embodiment 1, the A value is calculated by a short-term exposure test.

図3はSMA実暴露の試験データにより求めたB値の特性図であり、暴露期間が9年の試験データによって求められたB値と、暴露期間が1年の試験データによって求められたB値との相関関係を示している。図3の特性から明らかなように、暴露期間が9年の試験データによって求められたB値と、暴露期間が1年の試験データによって求められたB値とは相関がなく、B値は短期間の暴露試験により算出ができないことが分かる。   FIG. 3 is a characteristic diagram of B value obtained from test data of actual SMA exposure. B value obtained from test data with an exposure period of 9 years and B value obtained from test data with an exposure period of 1 year. The correlation is shown. As apparent from the characteristics of FIG. 3, the B value obtained from the test data with an exposure period of 9 years and the B value obtained from the test data with an exposure period of 1 year are not correlated, and the B value is short-term. It can be seen that it cannot be calculated by an exposure test during this period.

図4はSMA実暴露の試験データ(9年間)により求めたA値とB値との相関関係を示した特性図ある。この特性図からB値はA値で回帰することができ、極小値をとる次の3次式で表現される。なお、Aが小さいところでも、長期になれば、さびが成長し、B値が小さくなっていくことから、独自の解析により、
A≦0.03のとき、
B=0.5〜0.7、望ましくは0.6(理論的には放物線則0.5乗と考えられ
るが、実際に形成れるさびは完全に緻密でないため、0.5〜0.7で変
動する。)
0.03<A<0.083のとき、
B=−4611.3A3+769.19A2−32.421A+1.0109
0.083≦Aのとき、
B=0.9〜1.1、望ましくは1 …(2)
なるS字の関係が、成り立つことを見出した。
ただし、より簡便とするためにA≦0.03のときにおいても
B=−4611.3A3+769.19A2−32.421A+1.0109
としてもよい。
FIG. 4 is a characteristic diagram showing the correlation between the A value and the B value obtained from the SMA actual exposure test data (9 years). From this characteristic diagram, the B value can be regressed with the A value, and is expressed by the following cubic expression that takes the minimum value. In addition, even if A is small, rust grows and B value decreases as it becomes long-term.
When A ≦ 0.03,
B = 0.5 to 0.7, preferably 0.6 (theoretically, the parabolic law is considered to be 0.5th power, but the rust actually formed is not completely dense, so 0.5 to 0.7 fluctuate.)
When 0.03 <A <0.083,
B = −4611.3A 3 + 769.19A 2 −32.421A + 1.0109
When 0.083 ≦ A,
B = 0.9 to 1.1, preferably 1 (2)
It was found that the S-shaped relationship is established.
However, for simplicity, even when A ≦ 0.03, B = −4611.3A 3 + 769.19A 2 −32.421A + 1.0109
It is good.

上記のA値はその環境での鋼材自体の耐食性を示す係数であるが、腐食環境にも依存する性質をもっており、腐食環境の影響はA値にも含まれている。A値が小さい範囲では、安定さびが形成されるためB値は一定値となるが、腐食環境の厳しさがある量を超えると(例えばA=0.03程度)、さびが剥がれやすくなり安定化しないためB値は上昇し、B=1となって腐食曲線は直線のままとなる。但し、A値が小さい範囲において、暴露年数が短い鋼材ではさびの生成量が少ないため保護効果が小さく、B値が高い値となる場合もある。このSMAのデータに鋼種1(1.5Ni−0.3Mo鋼)及び鋼種2(2.5Ni−極低C鋼)の実暴露の試験データ(2年間)をプロットすると、この場合においても上記の関係式と合致していることが分かる。したがって、この関係式から鋼種に関係なく、B値をA値から求めることが可能であることが分かる。   The above A value is a coefficient indicating the corrosion resistance of the steel material itself in that environment, but has a property that depends on the corrosive environment, and the influence of the corrosive environment is also included in the A value. In the range where the A value is small, stable rust is formed, so the B value is a constant value. However, if the corrosive environment exceeds a certain amount (for example, about A = 0.03), the rust tends to peel off and is stable. Therefore, the B value rises and B = 1, and the corrosion curve remains a straight line. However, in a range where the A value is small, a steel material with a short exposure time has a small amount of rust generation, so the protective effect is small and the B value may be high. Plotting the actual exposure test data (2 years) of steel grade 1 (1.5Ni-0.3Mo steel) and steel grade 2 (2.5Ni-very low C steel) on the SMA data, It turns out that it is in agreement with the relational expression. Therefore, it can be seen from this relational expression that the B value can be obtained from the A value regardless of the steel type.

したがって、本実施形態1においては、或る鋼種のある環境における腐食寿命の予測を行う場合には次の(a)〜(d)の処理により寿命予測を行う。
(a)構造物の架設地又は建設地において例えば1年間の暴露試験を行う。
(b)その暴露試験の結果(腐食量)からA値を求める。
(c)上記A値を上記の関係式((2)式)に当てはめてB値を求める。
(d)上記のA値及びB値を鋼材の腐食量予測式Y=AXBに適用して、X年後の腐食量を求める。
このように処理することにより、1年間程度の暴露試験で腐食寿命の予測が可能となる。
Therefore, in the first embodiment, when the corrosion life is predicted in a certain steel type in a certain environment, the life is predicted by the following processes (a) to (d).
(A) For example, a one-year exposure test is performed at the construction site or construction site of the structure.
(B) A value is obtained from the result (corrosion amount) of the exposure test.
(C) The B value is obtained by applying the A value to the relational expression (formula (2)).
(D) The above A value and B value are applied to the corrosion amount prediction formula Y = AX B of the steel material to determine the corrosion amount after X years.
By treating in this way, the corrosion life can be predicted by an exposure test of about one year.

図5は種々の飛来塩分量の異なる環境で実施した暴露試験結果から、鋼種1(1.5Ni−0.3Mo鋼)及び鋼種2(2.5Ni−極低C鋼)について、A値及びB値を求めて鋼材の腐食量予測式に当てはめて、その飛来塩分量の環境における100年後の板厚減少量を予測した結果を示した特性図である。同図から、100年推定板厚減少量が0.5mmとなる飛来塩分量、すなわち耐塩限界が以下のように求まる。この耐塩限界を超えると両鋼材とも急激に腐食量が増加している。
鋼種1=0.4mdd(:mg/dm2/day)、鋼種2=0.6mdd
FIG. 5 shows the values of A and B for steel type 1 (1.5Ni-0.3Mo steel) and steel type 2 (2.5Ni-very low C steel) based on the results of exposure tests conducted in various environments with different salinity. It is the characteristic figure which showed the result of having calculated | required the value and applying to the corrosion amount prediction formula of steel materials, and predicting the sheet thickness reduction amount after 100 years in the environment of the amount of incoming salt. From the figure, the amount of incoming salt, that is, the salt resistance limit, at which the 100-year estimated thickness reduction amount is 0.5 mm, is obtained as follows. If this salt resistance limit is exceeded, the corrosion amount of both steel materials increases rapidly.
Steel grade 1 = 0.4 mdd (: mg / dm 2 / day), Steel grade 2 = 0.6 mdd

このように、その鋼種の適用限界の腐食環境も推定することが可能となる。また、Y=AXB に、X=100年、Y=0.5mmを代入してA値を求めると、A=0.03が得られる。すなわち、その環境での1年の板厚減少量0.03mmが、適用可否判断の目安となることも分かる。 Thus, it becomes possible to estimate the corrosive environment of the application limit of the steel type. Y = AX B If A = is obtained by substituting X = 100 years and Y = 0.5 mm, A = 0.03 is obtained. That is, it can also be seen that the thickness reduction amount of 0.03 mm per year in that environment is a guideline for determining applicability.

以上のように、本実施形態1においては、例えば1年間の暴露試験によりA値を求め、更にそのA値を上記の関係式((2)式)に適用してB値を求め、更に、これらA値及びB値を上記の鋼材の腐食量予測式((1)式)に適用してX年後の腐食量Yを予測することができるようになったので、短期間の暴露試験で腐食量を高精度に予測することが可能になっている。   As described above, in the first embodiment, for example, an A value is obtained by a one-year exposure test, and further, the A value is applied to the above relational expression (formula (2)) to obtain a B value. Since these A and B values can be applied to the above-mentioned steel corrosion amount prediction formula (Equation (1)), the corrosion amount Y after X years can be predicted. It is possible to predict the amount of corrosion with high accuracy.

実施形態2.
上記の実施形態1においては、A値を実暴露試験のデータに基づいて求める例について説明したが、本実施形態2においては、主として、実験室での試験によって求めるようにしている。したがって、本実施形態2においては、上記の(1)式及び(2)式はそのまま用いるが、A値は種々の環境因子の関数として次の(3)式のように表現するものとする。即ち、A値を、鋼種に特有な係数α、β、γと環境データ(Sa,T,Pw(T,H))とによって表現しており、鋼種に特有なα、β、γが求められれば、架設地又は建設地の環境データを当てはめることで自動的にA値が求まることになる。
Y=A・XB …(1)
B=f(A):
A≦0.03のとき、B=0.6(0.5〜0.7の範囲内で設定)
0.03<A<0.083のとき、
B=−4611.3A3+769.19A2−32.421A
+1.0109
0.083≦Aのとき、B=1(0.9〜1.1の範囲内で設定) …(2)
ただし、より簡便とするめにA≦0.03のときにも
B=−4611.3A3+769.19A2−32.421A
としてもよい。
A=CSa γ=(α・T+β)・Pw(T,H)・(Sa γ) …(3)
X:暴露時間(y),Y:板厚減少量(mm)
T:温度(℃),H:相対湿度(%),Sa:飛来塩分量(mdd),
Pw(T,H):濡れ確率、α、β、γ:鋼種に応じて設定された係数
Embodiment 2. FIG.
In the first embodiment, the example in which the A value is obtained based on the data of the actual exposure test has been described. However, in the second embodiment, the A value is mainly obtained by a test in a laboratory. Therefore, in the second embodiment, the above formulas (1) and (2) are used as they are, but the A value is expressed as the following formula (3) as a function of various environmental factors. That is, the A value is expressed by coefficients α, β, γ specific to the steel type and environmental data (Sa, T, Pw (T, H)), and α, β, γ specific to the steel type is required. For example, the A value is automatically obtained by applying the environmental data of the construction site or construction site.
Y = A · X B (1)
B = f (A):
When A ≦ 0.03, B = 0.6 (set within the range of 0.5 to 0.7)
When 0.03 <A <0.083
B = −4611.3A 3 + 769.19A 2 −32.421A
+1.0109
When 0.083 ≦ A, B = 1 (set within a range of 0.9 to 1.1) (2)
However, even when A ≦ 0.03, to make it more convenient
B = −4611.3A 3 + 769.19A 2 −32.421A
It is good.
A = CS a γ = (α · T + β) · Pw (T, H) · (S a γ ) (3)
X: Exposure time (y), Y: Thickness reduction (mm)
T: temperature (° C.), H: relative humidity (%), Sa: incoming salt content (mdd),
Pw (T, H): Wetting probability, α, β, γ: Coefficients set according to steel type

上記(3)式において、温度Tに関する項は、実際の対象となる温度範囲が比較的狭いので、直線近似にしてある。また、湿度Hに関する項は、腐食量が濡れ時間に比例すると考え、KuceraらがISOに提案した濡れ確率関数を導入した(Kucera, Tidblad, Mikhailov: ISO/TC156/WG4-N314, Annex A (1999))。年間の濡れ時間は8766h×(濡れ確率)である。なお、この濡れ確率Pw(T,H)は、kuceraの式によると、濡れ確率Pw(T,H)=N (T;0;9.96)*β(H/100;4.67;1.78)で表される。   In the above equation (3), the term relating to the temperature T is a linear approximation because the actual temperature range is relatively narrow. In terms of humidity H, we considered that the amount of corrosion is proportional to the wetting time, and introduced the wetting probability function proposed by Kucera et al. For ISO (Kucera, Tidblad, Mikhailov: ISO / TC156 / WG4-N314, Annex A (1999 )). The annual wetting time is 8766h × (wetting probability). The wetting probability Pw (T, H) is expressed by the wetting probability Pw (T, H) = N (T; 0; 9.96) * β (H / 100; 4.67; 1.78) according to the kucera equation. The

また、濡れ確率Pw(T,H)と年間濡れ時間TOWとは、
TOW=8766×Pw(T,H)
で表されるから、上記(3)式は年間濡れ時間TOWの関数として次のように表される。
A=k(α・T+β)・TOW・(Sa γ) …(3a)
TOW:年間濡れ時間(h)、k:係数
The wetting probability Pw (T, H) and the annual wetting time TOW are
TOW = 8766 × Pw (T, H)
Therefore, the above equation (3) is expressed as a function of the annual wetting time TOW as follows.
A = k (α · T + β) · TOW · (S a γ ) (3a)
TOW: Annual wetting time (h), k: Factor

なお、上記の温度T、相対湿度H及び飛来塩分量Saは、例えば橋梁が設置される環境の値である。飛来塩分量Saには、その環境での風の影響や方向(どの方角を向いているか)、橋桁の高さ等の影響が含まれた値であり、事前に測定されたものである。例えば日本のある地点(緯度・経度又は住所)を決定すれば、その位置情報に対応した温度T、相対湿度H、飛来塩分量Saを求めることができる。例えば地点情報と温度T、相対湿度Hの気象庁データ平年値とが既にデータベース化されており、それらのデータベースを利用することにより必要な情報が得られる。また、飛来塩分量Saについては、約300地点での測定データを集約した関係式(各地方の飛来海塩量・離岸距離の関係。具体的にはSa=Sa0・L-0.6、L:離岸距離)があり、この関係式を用いることにより、該当地点における飛来塩分量Saを求めることができる。なお、これらのデータをデータベースから入手できない場合には、該当する地点において実測により求めてもよい。このようにして、該当する地点における温度T、相対湿度H及び飛来塩分量Saを求めることができるので、係数α、β、γを実験室での試験で決定することができれば、A値が求まり、B値はA値の関数であり、Y=AXBによりY(板厚減少量)を求めることができる。 The above temperature T, relative humidity H and airborne salt amount S a is, for example, the value of the environment in which the bridge is installed. The flying salinity Sa is a value that includes the influence of the wind in the environment, the direction (to which direction), the height of the bridge girder, etc., and is measured in advance. For example, by determining the points of Japan (latitude and longitude or address) can be determined temperature T corresponding to the position information, the relative humidity H, the airborne salinity S a. For example, the point information and the JMA data normal values of temperature T and relative humidity H are already in a database, and necessary information can be obtained by using these databases. In addition, for the amount of salinity S a , a relational expression that aggregates measurement data at about 300 points (the relationship between the amount of sea salt in each region and the separation distance. Specifically, S a = S a0 · L -0.6 , L: rip distance) may, by using this relationship, it is possible to determine the airborne salt amount S a in the relevant point. In addition, when these data cannot be obtained from a database, you may obtain | require by measurement in an applicable point. In this way, the temperature T at the point where applicable, it is possible to determine the relative humidity H and airborne salt amount S a, the coefficient alpha, beta, if it is possible to determine by laboratory testing the gamma, A value The B value is a function of the A value, and Y (the thickness reduction amount) can be obtained by Y = AX B.

次に、上記のγの求め方について説明する。上記のγは、A≦0.03とA>0.03とではその値が異なる。A≦0.03のときには、例えばSMAに関しては、図6の暴露試験結果(「耐候性鋼材の橋梁への適用に関する共同研究報告書(XVIII)」(建設省土木研究所,(社)鋼材倶楽部,(社)日本橋梁建設協会、平成5年3月発行)によれば、γ=0.487が得られている。また、Ni系耐候性鋼については発明者らが独自に暴露試験を行ったところ、図7に示される特性が得られ、γ=0.487が得られている。両データが一致しており、信頼性が高いものであることが分かる。よって、A≦0.03では鋼種によらずγ=0.49で一定値とした。   Next, how to obtain γ will be described. The value of γ differs between A ≦ 0.03 and A> 0.03. When A ≦ 0.03, for example, for SMA, the results of the exposure test shown in FIG. 6 (“Joint Research Report on Application of Weatherproof Steel to Bridges (XVIII)” (Ministry of Construction, Civil Engineering Research Institute, Steel Club) According to the Japan Bridge Construction Association (published in March 1993), γ = 0.487 was obtained, and the inventors independently conducted exposure tests on Ni-based weathering steel. As a result, the characteristics shown in Fig. 7 are obtained, and γ = 0.487 is obtained, which indicates that the two data are consistent and have high reliability. Then, γ = 0.49 was set to a constant value regardless of the steel type.

また、A>0.03のときの上記のγは、恒温恒湿槽(ADVANTEC製 AGX-325)内での乾湿繰り返し試験により決定した。周期は24hで、乾湿サイクルは次の6条件である。乾湿の移行時間は1hであり、これは12hの中に含まれる。塩分付着はマイクロピペットを用いてNaCl水溶液を滴下した。滴下量は40μL/cm2とし、水溶液濃度により付着塩分量を制御した。試験は最長52週間行った。付着塩分量は、ここでは例えば0.1mdd、0.2mdd及び0.4mddの3種類について行う。(なお、この試験はα、βを求める際においても同様な条件で行われるものとする。但し、(1)〜(6)の条件である。)
(1)13℃/95%×12h−20℃/65%×12h
(2)20℃/95%×12h−27℃/65%×12h
(3)25℃/95%×12h−32℃/65%×12h
(4)20℃/95%×12h−35℃/40%×12h
(5)25℃/95%×12h−40℃/40%×12h
(6)13℃/95%×12h−28℃/40%×12h
Moreover, said γ when A> 0.03 was determined by a wet and dry repeated test in a constant temperature and humidity chamber (AGX-325 manufactured by ADVANTEC). The cycle is 24 h, and the wet and dry cycle is the following six conditions. The wet and dry transition time is 1 h, which is included in 12 h. For the adhesion of salt, an aqueous NaCl solution was added dropwise using a micropipette. The dripping amount was 40 μL / cm 2, and the amount of adhering salt was controlled by the concentration of the aqueous solution. The test was conducted for a maximum of 52 weeks. Here, for example, three types of salt content are 0.1 mdd, 0.2 mdd, and 0.4 mdd. (This test is performed under the same conditions when α and β are obtained. However, the conditions are (1) to (6).)
(1) 13 ° C / 95% x 12h-20 ° C / 65% x 12h
(2) 20 ° C./95%×12 h-27 ° C./65%×12 h
(3) 25 ° C./95%×12 h-32 ° C./65%×12 h
(4) 20 ° C / 95% x 12h-35 ° C / 40% x 12h
(5) 25 ° C / 95% x 12h-40 ° C / 40% x 12h
(6) 13 ° C / 95% x 12h-28 ° C / 40% x 12h

なお、上記の実験の条件は、実環境において、温度が上がると相対湿度が下がる傾向があること、また、その温度範囲や湿度範囲についても上記の範囲内にあること等から設定されている。このため、この試験は所謂促進試験ではなく、実環境と同オーダーの腐食速度が得られるものである。塩分量、温度及び湿度に関して橋梁内桁の腐食をよく再現していることが既に確認されており、以下、再現腐食試験(又は再現試験)と称するものとする。   Note that the conditions of the above experiment are set because the relative humidity tends to decrease as the temperature rises in an actual environment, and the temperature range and humidity range are also within the above range. For this reason, this test is not a so-called accelerated test, and a corrosion rate in the same order as the actual environment can be obtained. It has already been confirmed that the corrosion of the girder in the bridge is well reproduced with respect to the salinity, temperature, and humidity, and hereinafter referred to as a reproducible corrosion test (or reproducibility test).

次に、上記の再現腐食試験のデータに基づいてγを求める方法を説明する。
図8(A)(B)(C)はSMA、鋼種1及び鋼種2の付着塩分量ごとの腐食量の時間変化を示した特性図である。同図の特性から各付着量に対応したA値が求められる。
Next, a method for obtaining γ based on the data of the reproducible corrosion test will be described.
FIGS. 8A, 8B, and 8C are characteristic diagrams showing temporal changes in the corrosion amount for each amount of adhering salt of SMA, steel type 1, and steel type 2. FIG. The A value corresponding to each adhesion amount is obtained from the characteristics shown in FIG.

図9(A)(B)(C)は、横軸に上記付着塩分量を、縦軸に付着塩分量に対応したA値をとり、その両対数をプロットした特性図であり、直線の傾きがγとなる。何れの鋼種においても、γ=0.9の値が得られた。   9 (A), (B), and (C) are characteristic diagrams in which the horizontal axis represents the amount of the attached salt and the vertical axis represents the A value corresponding to the amount of the attached salt, and the logarithm of the logarithm is plotted. Becomes γ. A value of γ = 0.9 was obtained for any steel type.

次に、係数α及びβを求める方法について説明する。α及びβは、同一の付着塩分量でいくつかの腐食条件について連立方程式を当てることにより求められる。以下、具体的に説明する。上記の(3)式の塩分量は飛来塩分量であるが、再現腐食試験では付着塩分量であり、ともに単位はmddであるが、同じ数値でも影響度は異なる。そのため、再現試験で得られるα、βはα’、β’とおいて区別するが、α/βはα’/β’とは等しい。   Next, a method for obtaining the coefficients α and β will be described. α and β are determined by applying simultaneous equations for several corrosion conditions with the same amount of deposited salt. This will be specifically described below. The amount of salt in the above formula (3) is the amount of incoming salt, but it is the amount of adhering salt in the reproducible corrosion test, and both units are mdd, but the influence is different even with the same numerical value. Therefore, α and β obtained in the reproduction test are distinguished as α ′ and β ′, but α / β is equal to α ′ / β ′.

同一付着塩分量で、かつ上記の(1)〜(6)の試験条件について、乾燥ステップ、湿潤ステップの腐食量の和が試験で得られる腐食量となる。再現試験では塩分は付着塩分で与えられるが、上記の(3)式の塩分の変数は飛来塩分であり、上述のように、ともに単位はmdd であるが、同じ数値でも影響度は異なる。上記の(3)式の飛来塩分に相当する量がわからないので、ここではSa’とおいて、計算する。なお、A値が0.03より大きいか小さいかでγが変わるので、A値が0.03超/以下でそれぞれα、βを設定する。   For the test conditions (1) to (6) with the same amount of adhering salt, the sum of the corrosion amounts of the drying step and the wet step is the corrosion amount obtained in the test. In the reproduction test, the salinity is given as the adhering salinity, but the salinity variable in the above equation (3) is the incoming salinity, and as described above, both units are mdd, but the influence is different even with the same numerical value. Since the amount corresponding to the flying salt content of the above equation (3) is not known, calculation is made here with Sa '. Since γ changes depending on whether the A value is larger or smaller than 0.03, α and β are set when the A value exceeds 0.03 or less.

例えば、付着塩分が0.4mddで、13℃/95%×12h-20℃/65%×12hの試験の場合には、付着塩分は0.4mddでは、図9からγ=0.9であるので、これを用いる。
A' = (α'T+β')・Pw(T, H)・(Saγ)に塩分、温度、湿度を代入して、
乾燥ステップの腐食量 A'(13℃/95%、0.4mdd、乾燥) = (13α'+β')・Pw(13, 95)(Sa’0.9
湿潤ステップの腐食量 A'(20℃/65%、0.4mdd、湿潤) = (20α'+β')・Pw(20, 65)(Sa’0.9
である。
A'(13℃/95%×12h-20℃/65%×12h、0.4mdd) =(乾燥ステップの腐食量)+(湿潤ステップの腐食量)={(13α'+β')・Pw(13, 95)+(20α'+β')・Pw(20, 65)}(Sa’0.9
[{Pw(13, 95)*13+Pw(20, 65)*20}α'+{Pw(13, 95)+Pw(20, 65)}β'](Sa’0.9
For example, in the case of the test of 13 ° C./95%×12 h-20 ° C./65%×12 h with an attached salt content of 0.4 mdd, the attached salt content is 0.4 mdd and γ = 0.9 from FIG. Use this.
Substituting salinity, temperature, and humidity into A '= (α'T + β') · Pw (T, H) · (Sa γ )
Corrosion amount of drying step A ' (13 ° C / 95%, 0.4mdd, drying) = (13α' + β ') · Pw (13, 95) (Sa' 0.9 )
Corrosion amount of wet step A ' (20 ℃ / 65%, 0.4mdd, wet) = (20α' + β ') · Pw (20, 65) (Sa' 0.9 )
It is.
A ' (13 ° C / 95% × 12h-20 ° C / 65% × 12h, 0.4mdd) = (Corrosion amount in the drying step) + (Corrosion amount in the wet step) = {(13α' + β ') · Pw ( 13, 95) + (20α '+ β') · Pw (20, 65)} (Sa ' 0.9 )
= [{Pw (13, 95) * 13 + Pw (20, 65) * 20} α '+ {Pw (13, 95) + Pw (20, 65)} β'] (Sa ' 0.9 )

同じ0.4mddの塩分を載せた再現試験では、Saの値は不明であるが、載せた塩分量が同じであることから、少なくともSaを同じと見なすことができる。他の試験も同様に下記のように求めることができる。上記の式の下線部のA’の比から
{Pw(13,95)*13+Pw(20,65)*20}α'+{Pw(13,95)+Pw(20,65)}β'=1
{Pw(20,95)*20+Pw(27,65)*27}α'+{Pw(20,95)+Pw(27,65)}β'=1.403
{Pw(25,95)*25+Pw(32,65)*32}α'+{Pw(25,95)+Pw(32,65)}β'=1.661
{Pw(25,95)*25+Pw(40,40)*40}α'+{Pw(25,95)+Pw(40,40)}β'=0.858
のようになる。ここで腐食量として、A値比(基準条件のA値に対する相対値)をとっている。同一付着塩分量でいくつかの試験条件について同様の方程式を立て、2元連立1次方程式を解く。数学的には2試験条件あればα'、β'が得られるが、精度を上げるために4試験条件を用いて、1 次回帰によりα'、β'を求める。得られたα'、β'を用いてA値比を求める。SMAについて得られたα'、β'を用い、全国41橋試験の暴露地の飛来塩分量、年平均温度・湿度(最寄の気象庁観測所データ)を代入して、
A'(予測値)= (α'T1+β')・Pw(T1, H1)・(Sa1 0.9
を求め、暴露試験から得られたA値との関係を図10(B)に示す。両者の回帰式を求め、その1 次係数の比A'/A = 1.895 が得られた。Pw(T1, H1)・(Sa1 0.9)= K1
とおくと、
A'(予測値)= (α'T1+β')・Pw(T1, H1)・(Sa1 0.9)=(α'T1+β') K1
A(実測値)= (αT1+β)・Pw(T1, H1)・(Sa1 0.9)=(αT1+β)K1
任意のT1で成立するためには、
A'/A=α'/α=β'/β=1.895=k
In the reproduction test with the same salt content of 0.4 mdd, the value of Sa is unknown, but since the amount of salt content is the same, at least Sa can be considered the same. Other tests can be similarly determined as follows. From the ratio of A 'in the underlined part of the above formula
{Pw (13,95) * 13 + Pw (20,65) * 20} α '+ {Pw (13,95) + Pw (20,65)} β' = 1
{Pw (20,95) * 20 + Pw (27,65) * 27} α '+ {Pw (20,95) + Pw (27,65)} β' = 1.403
{Pw (25,95) * 25 + Pw (32,65) * 32} α '+ {Pw (25,95) + Pw (32,65)} β' = 1.661
{Pw (25,95) * 25 + Pw (40,40) * 40} α '+ {Pw (25,95) + Pw (40,40)} β' = 0.858
become that way. Here, the A value ratio (relative value to the A value of the reference condition) is taken as the corrosion amount. A similar equation is established for several test conditions with the same amount of attached salt, and a binary simultaneous linear equation is solved. Mathematically, α ′ and β ′ can be obtained with two test conditions, but α ′ and β ′ are obtained by linear regression using four test conditions in order to increase accuracy. The A value ratio is determined using the obtained α ′ and β ′. Using α 'and β' obtained for SMA, substituting the amount of salinity and yearly average temperature / humidity (closest data from the nearest Japan Meteorological Agency observation station) of the exposed areas of the 41 bridge test nationwide,
A ' (predicted value) = (α'T 1 + β') · Pw (T 1 , H 1 ) · (Sa 1 0.9 )
FIG. 10B shows the relationship with the A value obtained from the exposure test. Both regression equations were obtained, and the ratio of the first order coefficients A '/ A = 1.895 was obtained. Pw (T 1 , H 1 ) ・ (Sa 1 0.9 ) = K 1
After all,
A ′ (predicted value) = (α′T1 + β ′) · Pw (T 1 , H 1 ) · (Sa 1 0.9 ) = (α′T 1 + β ′) K 1
A (actual value) = (αT 1 + β) · Pw (T 1 , H 1 ) · (Sa 1 0.9 ) = (αT 1 + β) K 1
To hold in any T 1 is
A '/ A = α' / α = β '/ β = 1.895 = k

一方、A≦0.03のときは、γ=0.487として、同様に再現腐食試験の結果より方程式をたて、1 次回帰によりα'、β'を求める。さらに図10(A)より、A'/A = 4.658が得られた。A'/A=α'/α=β'/β=4.658   On the other hand, when A ≦ 0.03, γ = 0.487, an equation is similarly obtained from the results of the reproducible corrosion test, and α ′ and β ′ are obtained by linear regression. Furthermore, A '/ A = 4.658 was obtained from FIG. A '/ A = α' / α = β '/ β = 4.658

鋼種1及び鋼種2についても、同様に、これまでの再現腐食試験の結果から
A>0.03のとき、γ=0.9
A≦0.03のとき、γ=0.487
で分類して、試験条件に毎の方程式をたて、1 次回帰によりα'、β'を求め、以下同様ににしてA'/A=α'/α=β'/βがそれぞれ求められる。
For steel grade 1 and steel grade 2 as well, from the results of the previous reproducible corrosion tests
When A> 0.03, γ = 0.9
When A ≦ 0.03, γ = 0.487
Then, α ′ and β ′ are obtained by linear regression, and A ′ / A = α ′ / α = β ′ / β is obtained in the same manner. .

表1は、以上から得られた各耐候性鋼の腐食量予測式の係数、べき数を纏めたものである。   Table 1 summarizes the coefficients and power numbers of the corrosion amount prediction formulas of the weathering steels obtained from the above.

Figure 0004706254
Figure 0004706254

上記の(3)式に、表1に示された係数及びべき数と該当する地域の環境データを当てはめるとA値が求められ、そのA値を(2)式に当てはめてB値を求め、そのA値及びB値を鋼材の腐食量予測式に当てはめることにより寿命予測が可能になる。   If the coefficient and power shown in Table 1 are applied to the above equation (3) and the environmental data of the corresponding area are obtained, the A value is obtained, and the A value is applied to the equation (2) to obtain the B value, By applying the A value and the B value to the corrosion amount prediction formula of the steel material, the life prediction can be performed.

図11は全国41箇所の暴露試験地におけるA値及びその予測値をプロットした特性図である。同図から暴露試験によるA値とその予測値Aとは良く一致していることが分かる。図12は全国41箇所の暴露試験地の飛来塩分量、年平均温度・湿度(最寄の気象庁観測所データ)を予測式に代入して得られた9年の板厚減少量を、暴露試験結果と合わせて図示した特性図である。図13は上記の予測式による板厚減少量と暴露試験結果との相関を示した特性図である。
図12及び図13の特性から、予測式による板厚減少量と暴露試験結果とが良く一致しており、本実施形態2の予測方法の有用性が確認できる。
FIG. 11 is a characteristic diagram in which A values and predicted values thereof are plotted at 41 exposure test sites nationwide. From the figure, it can be seen that the A value in the exposure test and the predicted value A are in good agreement. Figure 12 shows exposure test results for the 9-year reduction in sheet thickness obtained by substituting the amount of airborne salinity and annual average temperature / humidity (closest data from the nearest Japan Meteorological Agency observation station) at 41 exposure test sites nationwide into the prediction formula. It is the characteristic view illustrated with the result. FIG. 13 is a characteristic diagram showing the correlation between the plate thickness reduction amount by the above prediction formula and the exposure test result.
From the characteristics of FIG. 12 and FIG. 13, the reduction in plate thickness according to the prediction formula and the exposure test result agree well, and the usefulness of the prediction method of the second embodiment can be confirmed.

図14は上述の予測式に基づいて予測した100年後の腐食量予測値と、実暴露データの1,3,5,7,9年の値から直接Y=AXBにより回帰して求めた100年後の値とを比較した特性図であるる。図14に示されるように、正規確率紙で良い直線性を示し、正規分布に従うことがわかる。これによりもとめた標準偏差σはσ=0.301(≒0.3)となった。したがって、直接回帰した値に対する本腐食量予測式の予測値の精度として、予測値に付帯して表すことができる。 FIG. 14 is obtained by regression using Y = AX B directly from the predicted corrosion amount after 100 years based on the above prediction formula and the values of actual exposure data for 1, 3, 5, 7, and 9 years. It is the characteristic figure which compared the value after 100 years. As shown in FIG. 14, it can be seen that the normal probability paper shows good linearity and follows a normal distribution. As a result, the standard deviation σ obtained was σ = 0.301 (≈0.3). Therefore, the accuracy of the predicted value of the present corrosion amount prediction formula for the directly regressed value can be represented by being attached to the predicted value.

以上のように本実施形態2においては実験室において該当地域における環境条件(温度、湿度、付着塩分量)を設定して、A値を求めるようにしているが、このA値は暴露試験結果と一致しているので、暴露試験を行わずに実験室の試験結果だけでも高精度にA値が求められるので、B値も上記の(2)式により求められ、鋼材の寿命を定量的に求めることができる。   As described above, in the second embodiment, environmental conditions (temperature, humidity, amount of adhering salt) in the corresponding region are set in the laboratory, and the A value is obtained. Since they are in agreement, the A value can be obtained with high accuracy only from the laboratory test result without performing the exposure test, so the B value is also obtained by the above equation (2), and the life of the steel material is quantitatively obtained. be able to.

実施形態3.
なお、上述の実施形態1及び2においては、A値を求めるのに、何れも暴露試験又は実験室での実験を1年程度行う例について説明したが、それよりも期間が短い期間の試験結果であってもよく、例えば数ケ月程度の試験結果に外挿法を適用することにより1年間分の腐食量を求めることにより(予測することにより)A値を求めることができる。
Embodiment 3. FIG.
In the first and second embodiments described above, an example in which an exposure test or a laboratory experiment is performed for about one year has been described in order to obtain the A value. For example, the A value can be obtained by obtaining (predicting) the corrosion amount for one year by applying an extrapolation method to a test result of about several months.

また、上述の実施形態1及び/又は2により、各種の鋼材について、各地域におけるA値及びB値を求めてデータベース化しておくことで、例えば鋼材の種類び場所の情報を入力することにより、その鋼材の寿命を簡単に予測することができるようになる。   Further, according to the above-described embodiment 1 and / or 2, for various steel materials, by obtaining the A value and B value in each region and creating a database, for example, by inputting information on the type and location of the steel material, The life of the steel material can be easily predicted.

実施形態4.
上記のように寿命予測が鋼材に、例えば各部位の腐食の進行を予測したデータを添付することにより、実構造の設計の際に利用に供することが可能になっている。なお、このデータの添付とは紙などだけでなく、電子データとして管理する状態も含むものである。また、鉄骨構造物の設計に際して、このような寿命予測がなされた鋼材を適宜選択して設計することにより構造物の寿命についても適切に予測することが可能になっている。
Embodiment 4 FIG.
As described above, the life prediction can be used for designing a real structure by attaching data predicting the progress of corrosion of each part, for example, to the steel material. Note that the attachment of data includes not only paper and the like, but also the state managed as electronic data. Further, when designing a steel structure, it is possible to appropriately predict the life of the structure by appropriately selecting and designing the steel material for which such life prediction has been made.

期間Xと鋼材の腐食量Yとの関係を示した特性図。The characteristic view which showed the relationship between the period X and the corrosion amount Y of steel materials. SMA実暴露の試験データにより求めたA値の特性図。The characteristic figure of A value calculated | required from the test data of SMA actual exposure. SMA実暴露の試験データにより求めたB値の特性図。The characteristic figure of B value calculated | required from the test data of SMA actual exposure. SMA実暴露の試験データ(9年間)により求めたA値とB値との相関関係を示した特性図。The characteristic view which showed the correlation of A value and B value which were calculated | required from the test data (9 years) of SMA actual exposure. 種々の飛来塩分量の異なる環境で実施した暴露試験結果から100年後の板厚減少量を予測した結果を示した特性図。The characteristic view which showed the result of having predicted the board thickness reduction amount 100 years after from the exposure test result implemented in the environment where various flying salinities differ. SMAの実暴露試験の試験データを示した特性図。The characteristic view which showed the test data of the actual exposure test of SMA. Ni系高耐候性鋼の試験(実験室)の試験データを示した特性図。The characteristic view which showed the test data of the test (laboratory) of Ni-type high weather resistance steel. SMA、鋼種1及び鋼種2の付着塩分量ごとの時間変化を示した特性図。The characteristic view which showed the time change for every adhesion salt content of SMA, steel type 1, and steel type 2. FIG. 横軸に上記付着塩分量を、縦軸に付着塩分量に対応したA値をとり、その両対数をプロットした特性図。The characteristic diagram which plotted the logarithm of the A with respect to the amount of adhered salt on the horizontal axis and the A value corresponding to the amount of adhered salt on the vertical axis. A’値と暴露試験から得られたA値との関係を示した特性図。The characteristic view which showed the relationship between A 'value and A value obtained from the exposure test. 全国41箇所の暴露試験地におけるA値及びその予測値をプロットした特性図。The characteristic figure which plotted the A value and the predicted value in 41 exposure test places nationwide. 全国41箇所の暴露試験地の飛来塩分量、年平均温度・湿度(最寄りの気象庁観測所データ)を予測式に代入して得られた9年の板厚減少量を、暴露試験結果と合わせて図示した特性図。Combined with the exposure test results, the 9-year reduction in plate thickness obtained by substituting the amount of airborne salinity and annual average temperature and humidity (data from the nearest Meteorological Agency observation station) at 41 exposure test sites nationwide into the prediction formula. FIG. 上記の予測式による板厚減少量と暴露試験結果との相関を示した特性図。The characteristic view which showed the correlation with the amount of plate | board thickness reduction | decrease by said prediction formula, and an exposure test result. 本実施形態1による100年後の腐食量予測値と、Y=AXBにより100年後の回帰をしたときの値の差を分布を示した図。A corrosion amount prediction value of 100 years in accordance with the present embodiment 1, diagram the difference between the values shows the distribution when the regression of 100 years by Y = AX B.

Claims (7)

構造物の鋼材の腐食量予測式Y=AXB(Y:腐食量、X:年数、A,B:材料と環境に依存する係数、べき数)を用いて鋼材の寿命を予測する方法であって、
前記A値を構造物の架設地又は建設地における暴露試験に基づいて求め、前記B値を前記A値の関数として求め、これらのA値及びB値に基づいて鋼材の腐食量Yを求めることを特徴とする鋼材の寿命予測方法。
This is a method for predicting the life of steel using the prediction formula Y = AX B (Y: corrosion amount, X: years, A, B: coefficient depending on material and environment, power). And
Obtaining the A value based on an exposure test at the construction site or construction site of the structure, obtaining the B value as a function of the A value, and obtaining the corrosion amount Y of the steel material based on the A value and the B value. A method for predicting the life of a steel material.
構造物の鋼材の腐食量予測式Y=AXB(Y:腐食量、X:年数、A,B:材料と環境に依存する係数、べき数)を用いて鋼材の寿命を予測する方法であって、
前記A値を構造物の架設地又は建設地の環境を模擬した実験室での試験に基づいて求め、前記B値を前記A値の関数として求め、これらのA値及びB値に基づいて鋼材の腐食量Yを求めることを特徴とする鋼材の寿命予測方法。
This is a method for predicting the life of steel using the prediction formula Y = AX B (Y: corrosion amount, X: years, A, B: coefficient depending on material and environment, power). And
The A value is obtained based on a test in a laboratory simulating the environment of a construction site or a construction site, the B value is obtained as a function of the A value, and the steel material is obtained based on the A value and the B value. A method for predicting the life of a steel material, characterized in that a corrosion amount Y of the steel is obtained.
前記A値を次式により特定し、次式のα、β及びγを前記実験室での試験に基づいて求めることを特徴とする請求項2記載の鋼材の寿命予側方法。
A=(α・T+β)・Pw(T,H)・(Sa γ
T:温度(℃),H:相対湿度(%),Sa:飛来塩分量(mdd),
Pw(T,H):濡れ確率、α、β、γ:鋼種に応じて設定された係数
3. The method for predicting the life of a steel material according to claim 2, wherein the A value is specified by the following equation, and α, β and γ of the following equation are obtained based on a test in the laboratory.
A = (α · T + β) · Pw (T, H) · (S a γ )
T: temperature (° C.), H: relative humidity (%), S a : incoming salt content (mdd),
Pw (T, H): Wetting probability, α, β, γ: Coefficients set according to steel type
前記α、β及びγと、構造物の架設地又は建設地における飛来塩分量Sa、年平均の温度T、相対湿度H及び濡れ確率PWとによって、前記A値を求めることを特徴とする請求項3記載の鋼材の寿命予測方法。 The alpha, and β and gamma, airborne salt amount S a in construction areas or construction site of the structure, the temperature T of the annual average, by the relative humidity H and wetting probability P W, and obtains the value A The steel material life prediction method according to claim 3. 前記A値を次式により特定し、次式のα、β及びγを前記実験室での試験に基づいて求めることを特徴とする請求項2記載の鋼材の寿命予側方法。
A=k(α・T+β)・TOW・(Sa γ
T:温度(℃),Sa:飛来塩分量(mdd),
TOW:年間濡れ時間(h)、k:係数、
α、β、γ:鋼種に応じて設定された係数
3. The method for predicting the life of a steel material according to claim 2, wherein the A value is specified by the following equation, and α, β and γ of the following equation are obtained based on a test in the laboratory.
A = k (α · T + β) · TOW · (S a γ )
T: temperature (° C.), S a : incoming salt content (mdd),
TOW: Annual wetting time (h), k: coefficient,
α, β, γ: Coefficients set according to steel type
前記α、β及びγと、構造物の架設地又は建設地における飛来塩分量Sa、年平均の温度T、及び年間濡れ時間TOWとによって、前記A値を求めることを特徴とする請求項5記載の鋼材の寿命予測方法。 The alpha, and β and gamma, according to claim 5 airborne salt amount S a in construction areas or construction site of the structure, which by the temperature T of the annual average, and annual wetting time TOW, and obtains the value A The life prediction method of steel materials as described. 前記実験室での試験に基づいて求められたA値を補正して前記腐食量予測式のA値とすることを特徴とする請求項2〜6の何れかに記載の鋼材の寿命予測方法。   The steel material life prediction method according to any one of claims 2 to 6, wherein the A value obtained based on the test in the laboratory is corrected to obtain the A value of the corrosion amount prediction formula.
JP2004376140A 2003-12-26 2004-12-27 Steel life prediction method Active JP4706254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376140A JP4706254B2 (en) 2003-12-26 2004-12-27 Steel life prediction method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003433070 2003-12-26
JP2003433070 2003-12-26
JP2004206536 2004-07-13
JP2004206536 2004-07-13
JP2004376140A JP4706254B2 (en) 2003-12-26 2004-12-27 Steel life prediction method

Publications (2)

Publication Number Publication Date
JP2006053122A JP2006053122A (en) 2006-02-23
JP4706254B2 true JP4706254B2 (en) 2011-06-22

Family

ID=36030694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376140A Active JP4706254B2 (en) 2003-12-26 2004-12-27 Steel life prediction method

Country Status (1)

Country Link
JP (1) JP4706254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467082B2 (en) 2018-01-05 2022-10-11 Jfe Steel Corporation Method for predicting corrosion loss of metal material, method for selecting metal material, and device for predicting corrosion loss of metal material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053870B2 (en) * 2007-03-29 2012-10-24 Jfeスチール株式会社 Method for predicting rust properties, method for designing steel bridges, and method for determining flying salt adhesion coefficient
JP5167080B2 (en) * 2008-11-13 2013-03-21 株式会社神戸製鋼所 Steel thickness change prediction method and steel material selection method
JP5066160B2 (en) * 2009-11-25 2012-11-07 株式会社神戸製鋼所 Method for predicting steel sheet thickness reduction
JP5008733B2 (en) * 2010-03-09 2012-08-22 中国電力株式会社 Wet state estimation method, wet state estimation device, wire deterioration estimation method, and wire deterioration estimation system
JP5510352B2 (en) * 2010-04-22 2014-06-04 Jfeスチール株式会社 Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5352530B2 (en) * 2010-05-24 2013-11-27 株式会社神戸製鋼所 Method for estimating the corrosion state of steel
JP5604375B2 (en) * 2011-06-29 2014-10-08 北日本電線株式会社 How to determine the life of overhead power lines
JP5812268B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 Steel offshore structure
JP6565665B2 (en) * 2014-12-26 2019-08-28 日本製鉄株式会社 Corrosion resistance evaluation method for electrical steel sheets
CN106600031B (en) * 2016-11-02 2020-08-18 国家电网公司 Method for predicting residual life of high-voltage transmission strain clamp
JP7020500B2 (en) * 2019-02-07 2022-02-16 Jfeスチール株式会社 Prediction model generation method, corrosion amount prediction method for metal materials, prediction model generation program and prediction model generation device
JP6939995B2 (en) * 2019-02-08 2021-09-22 Jfeスチール株式会社 Metal material corrosion amount prediction model generation method, metal material corrosion amount prediction method, metal material selection method, metal material corrosion amount prediction program and metal material corrosion amount prediction device
JP7006718B2 (en) * 2019-04-22 2022-02-10 Jfeスチール株式会社 Corrosion amount prediction method and equipment and steel material selection method using this

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467082B2 (en) 2018-01-05 2022-10-11 Jfe Steel Corporation Method for predicting corrosion loss of metal material, method for selecting metal material, and device for predicting corrosion loss of metal material

Also Published As

Publication number Publication date
JP2006053122A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4706279B2 (en) Steel life prediction method and apparatus, and computer program
JP4706254B2 (en) Steel life prediction method
Vu et al. Structural reliability of concrete bridges including improved chloride-induced corrosion models
Daniyal et al. Corrosion assessment and control techniques for reinforced concrete structures: a review
Zafeiropoulou et al. Performance evaluation of organic coatings against corrosion in reinforced cement mortars
Mustafa et al. Atmospheric chloride penetration into concrete in semitropical marine environment
Pyc Field performance of epoxy-coated reinforcing steel in Virginia bridge decks
Haagenrud et al. Degradation of built environment-review of cost assessment model and dose-response functions
Noor et al. Heritage building condition assessment: a case study from Johor Bahru, Malaysia
Osterminski et al. Design model for reinforcement corrosion
Daneshian et al. Effect of climatic parameters on marine atmospheric corrosion: correlation analysis of on-site sensors data
Narasimhan et al. Integration of durability with structural design: An optimal life cycle cost based design procedure for reinforced concrete structures
Lindquist et al. Cracking and chloride contents in reinforced concrete bridge decks
JP2007039970A (en) Predicting method for rusting level of non-painted atmospheric corrosion-resistant steel bridge
Trejo et al. Corrosion performance tests for reinforcing steel in concrete: technical report.
Gulikers Statistical interpretation of results of potential mapping on reinforced concrete structures
Koteš et al. Rapid tests of corrosion in corrosion chamber
Dunster et al. Rates of carbonation and reinforcement corrosion in high alumina cement concrete
WO2022210151A1 (en) Method for predicting amount of corrosion in steel material, system for predicting amount of corrosion in steel material, program for predicting amount of corrosion in steel material, and method for proposing steel material
JP3797189B2 (en) Method for estimating corrosion rate and evaluation method for steel
JP2001201450A (en) Exposure test method for uncoated steel material
Castañeda et al. Atmospheric corrosion behaviors of reinforcement steel in reinforced concrete in a coastal city as Havana, Cuba
JP7460845B1 (en) Environmental force prediction system, durability information provision system, environmental force prediction method, and environmental force prediction program
Halmen et al. Service Life of Corroding Galvanized Culverts Embedded in Controlled Low-Strength Materials
JP2024010478A (en) Accelerated corrosion test method for bridge steel materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4706254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250