JPH0648239B2 - Corrosion prediction method for buried pipes - Google Patents

Corrosion prediction method for buried pipes

Info

Publication number
JPH0648239B2
JPH0648239B2 JP63080074A JP8007488A JPH0648239B2 JP H0648239 B2 JPH0648239 B2 JP H0648239B2 JP 63080074 A JP63080074 A JP 63080074A JP 8007488 A JP8007488 A JP 8007488A JP H0648239 B2 JPH0648239 B2 JP H0648239B2
Authority
JP
Japan
Prior art keywords
corrosion
buried
soil
environmental factors
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63080074A
Other languages
Japanese (ja)
Other versions
JPH01250841A (en
Inventor
潤吉 岩松
耕造 西崎
幸雄 片野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63080074A priority Critical patent/JPH0648239B2/en
Publication of JPH01250841A publication Critical patent/JPH01250841A/en
Publication of JPH0648239B2 publication Critical patent/JPH0648239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、土中における埋設管の腐食予測方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for predicting corrosion of a buried pipe in soil.

従来の技術 埋設管の腐食は、管路の構造や環境因子により支配され
る。なかでも、迷走電流や長回路電流による腐食を除
く、いわゆる土壌腐食においては、土壌の腐食性がそれ
に与える影響は比較的大きい。
Conventional technology Corrosion of buried pipes is governed by the structure of pipes and environmental factors. Above all, in so-called soil corrosion, which excludes corrosion due to stray current and long-circuit current, the influence of soil corrosivity is relatively large.

経験的に腐食性の強い土として、石炭ガラ、腐植土、泥
炭、海底泥土などが古くから知られている。近年になっ
て、都市近郊の丘陵地の開発により露頭することが多く
なった地質で、大阪層群海成粘土や上総層群泥層(土丹
と呼ばれる)などの海成層は極端に強い腐食性を示すこ
とがわかってきた。この海成層は、約30万年前以前に静
かな内湾の海底に堆積した粘土層で、現在では堆積平野
周辺の丘陵地に露頭している。海成粘土は、淡水成粘土
に比較して硫化鉄などの硫黄化合物を多量に含み、風化
したときに硫酸を生成するのが特徴的である。このよう
な特徴を有する粘土が、鉄の腐食といかなるメカニズム
で関わっているのか、十分な解明はなされていないが、
結果的には海成粘土の存在する所で鉄は激しく腐食する
ことが多い。
Empirical corrosive soils have long been known as coal husks, humus, peat, and submarine mud. In recent years, geological features have been frequently exposed due to the development of hilly areas in the suburbs of the city. Marine groups such as the Osaka group marine clay and the Kazusa group mud layer (called Dotan) are extremely corroded. It turned out that it shows sex. This marine layer is a clay layer deposited on the seabed of a quiet inner bay about 300,000 years ago, and it is now exposed to the hilly areas around the sedimentary plain. Marine clay is characterized by containing a large amount of sulfur compounds such as iron sulfide as compared with fresh water clay and producing sulfuric acid when weathered. It has not been fully clarified how clay having such characteristics is involved in iron corrosion, but
As a result, iron often corrodes heavily in the presence of marine clay.

一方、水道、ガスなどの埋設管は広域に布設され、維持
管理上、管路の腐食予測は重要性を増しつつある。これ
まで、埋設管の外面腐食の予測は、埋設土壌の種類や地
下水の性状などの環境因子を定性的に判別したり、土壌
測定の結果をANSI(アメリカ規格)やDIN(ドイツ規
格)に示される方法である程度数量化して行うことが可
能であった。
On the other hand, buried pipes for water, gas, etc. are laid in a wide area, and it is becoming more important to predict the corrosion of pipelines in terms of maintenance. Until now, the external corrosion of buried pipes has been predicted by qualitatively determining environmental factors such as the type of buried soil and the properties of groundwater, and showing the results of soil measurements in ANSI (American standard) and DIN (German standard). It was possible to quantify it to some extent by the method described above.

発明が解決しようとする課題 しかし、これら従来の腐食性評価法は、新設計画管路の
防食設計を検討するうえで有用であるが、合理的な予防
保全を行うためには、より精度の高い腐食予測が必要に
なるという問題がある。
However, these conventional corrosiveness evaluation methods are useful in considering the anticorrosion design of the newly designed pipeline, but in order to perform rational preventive maintenance, it is more accurate. There is a problem that corrosion prediction is required.

そこで本発明はこのような問題を解決し、従来よりも高
精度で腐食予測を行えるようにすることを目的とする。
Therefore, an object of the present invention is to solve such a problem and to enable corrosion prediction with higher accuracy than before.

課題を解決するための手段 上記課題を解決するため本発明は、土中に埋設された鋳
鉄管の外面腐食の程度を示す孔食深さ(P)の成長速度を
時間(t)のべき乗関数にしたがって、 P=kt で表わし、上記(k)を埋設地の環境因子に依存すると仮
定して属性変化による重回帰分析により定量化し、次に
上記(n)を腐食深さの実測値と環境因子による予測値と
の差への線形モデルの回帰係数として求めるものであ
る。
Means for Solving the Problem In order to solve the above problems, the present invention, the growth rate of the pitting depth (P) indicating the degree of outer surface corrosion of the cast iron pipe buried in the soil time (t) power function According to the equation, P = kt n , and the above (k) is quantified by multiple regression analysis by attribute change assuming that it depends on the environmental factors of the burial site, and then (n) is the measured value of the corrosion depth. This is obtained as a linear model regression coefficient to the difference from the predicted value due to environmental factors.

作用 このようにすれば、鋳鉄管の腐食における環境因子への
依存度がまず統計手法により定量的に求められる。次
に、このようにして求められた環境因子への依存度を腐
食深さの実測値から減じることにより、埋設期間につい
てのパラメータの値が統計的に求められる。
Effect In this way, the dependence of the corrosion of the cast iron pipe on the environmental factors is first quantitatively obtained by a statistical method. Next, by subtracting the degree of dependence on the environmental factors thus obtained from the measured value of the corrosion depth, the value of the parameter for the burying period is statistically obtained.

実施例 以下、本発明の一実施例について説明する。Example One example of the present invention will be described below.

まず、土壌及び埋設管の調査について説明する。解析に
用いたサンプルは、既設の水道管を調査することにより
得た。すなわち、掘削現場にて、埋設条件を調査し、管
の約1mの長さの範囲で、腐食深さを測定した。また、
管の周囲の土は研究室に持ち帰り分析した。調査項目と
その定義を表1に表す。
First, the survey of soil and buried pipe will be explained. The samples used for analysis were obtained by investigating existing water pipes. That is, the burial conditions were investigated at the excavation site, and the corrosion depth was measured in the range of the pipe length of about 1 m. Also,
The soil around the tube was taken back to the laboratory for analysis. Table 1 shows the survey items and their definitions.

調査地区は海成粘土層の存在する宅地造成地である。海
成粘土は、表2に示すように、他の土に比べて塩分や硫
黄分が多い。過酸化水素水により、海成粘土を強制的に
酸化すればpHは1〜2に強酸性となる。ANSI規格のA21.
5により腐食性の評価をすれば、海成粘土はその点数が1
9.5〜23.5点となり強い腐食性を示すことがわかる。
The study area is a residential land development site with a marine clay layer. As shown in Table 2, marine clay has higher salt content and sulfur content than other soils. If the marine clay is forcibly oxidized by the hydrogen peroxide solution, the pH becomes strongly acidic to 1-2. ANSI standard A21.
When the corrosiveness is evaluated according to 5, marine clay has a score of 1
It is 9.5 to 23.5 points, indicating that strong corrosion is exhibited.

海成粘土はもともと海底に堆積した泥であり、基本的に
微生物腐食の原因となる硫酸還元菌の増殖条件をよく満
たしていると考えられる。硫酸塩の濃度が高いことや、
土質的にも嫌気的条件が満たされないことがその理由と
してあげられる。
Marine clay is a mud originally deposited on the sea floor, and it is thought that it basically satisfies the growth conditions of sulfate-reducing bacteria that cause microbial corrosion. The concentration of sulfate is high,
The reason for this is that the anaerobic conditions are not met in terms of soil quality.

このような海成粘土の特徴は、次の統計解析を行う際の
参考とした。
These characteristics of marine clay were used as a reference when conducting the following statistical analysis.

次に解析手順について説明する。埋設管の腐食原因に対
する考察、さらに腐食予測式の作成を目的としてデータ
を解析した。解析は一般的な統計的手法により行った。
解析の手順を第1図に示す。
Next, the analysis procedure will be described. The data was analyzed for the purpose of considering the cause of corrosion of the buried pipe and creating a corrosion prediction formula. The analysis was performed by a general statistical method.
The analysis procedure is shown in FIG.

まず、調査から得た各サンプルについて、土壌腐食の分
野に関し固有技術的にみて矛盾がないか否かの検討を行
った。次に平均値、標準偏差、ヒストグラムなどにより
データの分布を調べ、とくに目的変数である最大腐食指
数(=特定のサンプルの最大腐食深さ/母集団における
最大腐食深さの平均値)については確率紙により分布の
確認を行った。つづいて、相関係数や散布図により2変
数間の関係を調べ、各変数の相関関係における矛盾や再
度異常データのチェックを行った。
First, for each sample obtained from the survey, it was examined whether or not there is a contradiction in terms of soil corrosion in terms of specific technology. Next, examine the distribution of the data by means of the average value, standard deviation, histogram, etc., and especially for the maximum corrosion index (= maximum corrosion depth of a specific sample / average value of the maximum corrosion depth in the population), which is the objective variable, the probability The distribution was confirmed with paper. Subsequently, the relationship between the two variables was examined by the correlation coefficient and the scatter plot, and the contradiction in the correlation of each variable and the abnormal data were checked again.

また、主成分分析により変数を分類し、腐食予測式に取
り込むべき変数の選択をする際の参考にした。腐食予測
式はP=ktで行うこととし、パラメーターkで埋設
環境を要約し、kは属性変数による重回帰分析(いわゆ
る林の数量化I類)で決定した。さらに、パラメーター
nは、腐食深さの実測値と環境因子による予測値との差
の時間tへの回帰係数として求めた。
In addition, the variables were classified by principal component analysis and used as a reference when selecting the variables to be included in the corrosion prediction formula. The corrosion prediction formula was set to P = kt n , the buried environment was summarized by the parameter k, and k was determined by multiple regression analysis using attribute variables (so-called forest quantification type I). Furthermore, the parameter n was obtained as a regression coefficient to the time t of the difference between the actual value of the corrosion depth and the predicted value due to environmental factors.

次に解析結果について説明する。Next, the analysis result will be described.

まず、単相関分析を行った。First, a single correlation analysis was performed.

2変数間の直線的関係(相関性)の強さを定量的に表わ
すものとして、相関係数が用いられる。相関係数(r)の
絶対値が1に近いほど、2変数間の直線的関係が強いと
判断できる。
A correlation coefficient is used to quantitatively express the strength of a linear relationship (correlation) between two variables. It can be judged that the closer the absolute value of the correlation coefficient (r) is to 1, the stronger the linear relationship between the two variables.

これまでに得られたデータを整理し、各変数間の相関係
数を算出した結果を表3に示す。
Table 3 shows the results of organizing the data obtained so far and calculating the correlation coefficient between each variable.

ここで、腐食の度合いを示す腐食指数(Y0)に対し、強い
相関を示した変数は、 H2O2pH、含水比、ANSI、切・盛、Redox、
ρ、ρ、地下水、土質、硫化物などであっ
た。
Here, with respect to the corrosion index (Y 0 ) indicating the degree of corrosion, variables that showed a strong correlation are H 2 O 2 pH, water content ratio, ANSI, cutting and assembling, Redox,
It was ρ 5 , ρ 1 , groundwater, soil, sulfide, etc.

単相関分析の結果から、次のような傾向があると判断さ
れる。
From the results of simple correlation analysis, the following tendencies are judged.

(1)H2O2による酸化後のpH値が低い(酸性)程腐食深さ
が深い。
(1) The lower the pH value (acidic) after oxidation with H 2 O 2, the deeper the corrosion depth.

(2)含水比の高い程腐食深さが深い。(2) The higher the water content, the deeper the corrosion depth.

(3)ANSI A21.5による評価点数が大きい程腐食深さが深
い。
(3) The larger the evaluation score according to ANSI A21.5, the deeper the corrosion depth.

(4)切土に較べ、盛土のほうが腐食深さが深い。(4) The embankment has a deeper corrosion depth than the cut soil.

(5)Redox電位の低いほうが腐食深さが深い。(5) The lower the Redox potential, the deeper the corrosion depth.

(6)土壌及び抽出水の抵抗率が低い程腐食深さが深い。(6) The lower the resistivity of soil and extracted water, the deeper the corrosion depth.

(7)湧水が有るほうが腐食深さが深い。(7) Corrosion depth is deeper when there is spring water.

(8)土質は粒子が細かいほうが腐食深さが深い。(8) In the soil, the finer the particles, the deeper the corrosion depth.

(9)硫化物が有るほうが腐食深さが深い。(9) Corrosion depth is deeper with sulfide.

(10)土壌抽出水の抵抗率が低いものは、土壌のH2O2pHが
低く、抽出水中のSO4 2-濃度が高い傾向にある。
(10) Soil extracted water having a low resistivity tends to have a low H 2 O 2 pH in the soil and a high SO 4 2− concentration in the extracted water.

(11)抽出水の蒸発残渣とSO4 2-濃度は強い相関関係があ
る。(抽出水中の溶液性塩分の主体は硫酸塩である。) ところで切土、盛土の区別、湧水の有無などの質的な特
性と腐食深さのような量的な特性との関係を相関係数で
評価するのは、適切ではない。そこで、切土・盛土の区
別及び湧水の有無について、次のように腐食深さの母平
均の差の検定を行った。
(11) There is a strong correlation between the evaporation residue of extracted water and the concentration of SO 4 2- . (The main component of the solution salt in the extracted water is sulfate.) By the way, the relationship between qualitative characteristics such as cut and embankment, the presence or absence of spring water, and quantitative characteristics such as corrosion depth should be discussed. It is not appropriate to evaluate it by the number of relations. Therefore, the difference between population averages of corrosion depths was tested as follows for the distinction between cut and fill and the presence or absence of spring water.

統計的には|Zo|>1.96であると危険率5%でAとB
の母平均に差があると判定する。すなわち、ここでは、
切土より盛土のほうが、また、湧水が有るほうが腐食深
さは深いといえる。
Statistically, if | Zo |> 1.96, A and B are at a risk rate of 5%.
It is determined that there is a difference in the population mean of. That is, here
It can be said that the embankment is deeper than the cut soil, and the corrosion depth is deeper with spring water.

次に環境因子の分類について説明する。単相関分析は2
変数間の相関関係(単相関)を見い出すのに対して、さ
らに多くの変数間にまたがる特徴なり構造を明らかにす
るため主成分分析を試みた。第2図に第1主成分−第2
主成分座標における各変数の位置を示す。図中に破線で
囲んだようなグループ化を行い、各々のグループは表5
に示すような特徴を持つと解釈した。
Next, the classification of environmental factors will be described. Single correlation analysis is 2
Principal component analysis was attempted to clarify the characteristic structure across more variables, while finding the correlation between variables (single correlation). In Fig. 2, the first main component-the second
The position of each variable in the principal component coordinates is shown. Grouping is performed as shown by the broken line in the figure, and each group is shown in Table 5.
Interpreted as having the characteristics shown in.

次に腐食環境因子の定量化につき説明する。上記単相関
分析及び主成分分析により、各変数間の線形関係が明ら
かになった。その結果は、固有技術的にみて特に異常は
認められない。しかし、ここでとりあげた環境因子には
質的な変数がいくつか含まれることと、量的な変数であ
っても腐食指数と線形関係にあるとは限らないことか
ら、腐食指数と環境因子の分析には通常の重回帰分析で
はなく、ダミー変数を用いるいわゆる林の数量化I類の
手法を用いた。
Next, the quantification of corrosive environmental factors will be explained. The above single correlation analysis and principal component analysis revealed a linear relationship between each variable. As a result, there is no particular abnormality in terms of inherent technology. However, the environmental factors taken up here include some qualitative variables, and even quantitative variables do not always have a linear relationship with the corrosion index. Instead of the usual multiple regression analysis, the so-called Hayashi quantification type I method using dummy variables was used for the analysis.

腐食指数を目的変数として回帰分析を行った。まず、腐
食指数の分布を調べた。第3図の確率紙へのプロットか
ら、最大腐食指数の分布は、対数正規にしたがっている
と判断した。したがって、最大腐食指数は対数変換後に
数量化I類を適用した。
A regression analysis was performed using the corrosion index as the objective variable. First, the distribution of the corrosion index was investigated. From the plot on the probability paper of FIG. 3, it was judged that the distribution of the maximum corrosion index was in accordance with the logarithmic normal. Therefore, the maximum corrosion index applied the quantification type I after logarithmic conversion.

単相関分析及び主成分分析の結果を考慮し、また、固有
技術的判断を加えて、環境因子からいくつかの説明変数
を選んだ。とくに、海成粘土の特徴及び変数間の交互作
用を考慮して次の6変数を選んだ。
Some explanatory variables were selected from environmental factors by considering the results of simple correlation analysis and principal component analysis, and adding proper technical judgment. In particular, the following six variables were selected considering the characteristics of marine clay and the interaction between the variables.

数量化I類の方法で、ANSI ρ H2O2pH・他下
水 含水比・切盛の変数に対する腐食指数の回帰式を
得た。その結果を表6に示す。
By the method of quantification type I, the regression equation of the corrosion index with respect to the variables of ANSI ρ 1 H 2 O 2 pH, other sewage water content ratio, and embankment was obtained. The results are shown in Table 6.

この結果から腐食指数に対して最も影響の度合いが大き
いのは、H2O2pH・地下水で、ついで含水比・切盛で
あった。すなわち、H2O2pHが3未満(ほぼ海成粘土と判
断できる)で地下水が有る場合、さらに含水比が35%以
上(埋設土が粘土質か、あるいはシルト質でも水分が多
いと判断できる)で盛土地盤の場合が腐食性の激しい環
境であることを示した。また、各変数について単独で腐
食指数に対する影響度を比較した場合、H2O2pH、切盛、
ρの順に影響度が大きい。したがって、埋設環境を腐
食性の面から評価する場合、海成粘土か否か、盛土地盤
か否かを調べることが重要である。
From these results, it was H 2 O 2 pH and groundwater that had the greatest influence on the corrosion index, followed by the water content ratio and fill. In other words, if the H 2 O 2 pH is less than 3 (it can be judged that it is almost marine clay) and there is groundwater, the water content ratio is 35% or more (it can be judged that the buried soil is clayey or silty and has a large amount of water). ) Showed that the case of the embankment is a highly corrosive environment. Also, when comparing the degree of influence on the corrosion index for each variable alone, H 2 O 2 pH, cutting,
The degree of influence is large in the order of ρ 1 . Therefore, when assessing the burial environment from the aspect of corrosiveness, it is important to check whether it is marine clay or embankment.

ここで、環境因子の最大腐食深さに対する影響度は、Y
cを最大腐食指数として(1)式により定量化できた。
Here, the degree of influence of environmental factors on the maximum corrosion depth is Y
It can be quantified by the equation (1) with c as the maximum corrosion index.

Yc=expA…(1) 表6より A=(O・δ11-0.11・δ12) +(O・δ21-0.09・δ22-0.28・δ23) +(O・δ31-0.15・δ32-0.26・δ33-0.49・δ34) +(O・δ41-0.18・δ42-0.32・δ43-0.42・δ44) +0.58 (δ=1または0) 次に腐食指数の予測手法につき説明する。Yc = expA ... (1) From Table 6, A = (O ・ δ 11 -0.11 ・ δ 12 ) + (O ・ δ 21 -0.09 ・ δ 22 -0.28 ・ δ 23 ) + (O ・ δ 31 -0.15 ・ δ 32 -0.26 ・ δ 33 -0.49 ・ δ 34 ) + (O ・ δ 41 -0.18 ・ δ 42 -0.32 ・ δ 43 -0.42 ・ δ 44 ) +0.58 (δ = 1 or 0) The method will be described.

環境因子から埋設管の腐食深さを予測することは、(1)
式により可能である。しかし、(1)式では速度因子を考
慮していないため、実用的ではない。ここで、埋設期間
を考慮することを試みた。
Predicting the corrosion depth of buried pipes from environmental factors is (1)
It is possible by formula. However, equation (1) is not practical because it does not consider the speed factor. Here, we tried to consider the burial period.

一般に、土壌腐食において腐食量と埋設期間とは線形関
係にない。腐食速度は初期において大きく、時間の経過
とともに小さくなっていく傾向にある。土壌中の最大孔
食深さPと埋設期間tとの関係は前述したように(2)式
で示されるといわれている。
Generally, in soil corrosion, there is no linear relationship between the amount of corrosion and the burial period. The corrosion rate tends to be high in the initial stage and decrease over time. It is said that the relationship between the maximum pit depth P in the soil and the burial period t is expressed by equation (2) as described above.

P=kt…(2) (2)式は両辺の対数をとると(3)式にように変形できる。P = kt n (2) Equation (2) can be transformed into Equation (3) by taking the logarithm of both sides.

logP=logk+nlogt…(3) ここで、孔食深さPを便宜的に最大腐食指数Y0とおき、
kを環境の腐食性を表わすパラメーターと考えた。すな
わち、腐食指数Y0の回帰モデルとして(4)式を仮定し
た。
logP = logk + nlogt (3) Here, the pitting depth P is expediently set to the maximum corrosion index Y 0 ,
It was considered that k was a parameter indicating the corrosiveness of the environment. That is, Eq. (4) was assumed as a regression model of the corrosion index Y 0 .

ここで、i=1,2,………,m(サンプル数) R:要因数 Cj:要因jにおけるカテゴリー数 δi(jl)=1(固体iが要因jのカテゴリーlに反応す
るとき)または0(その他のとき) ajl,aR+1:係数 ei:誤差項 (4)式における右辺の第1項はkに対応するが、これは
(1)式により求められる。したがって、パラメーターn
は(3)式を(5)式のように変形して、線形モデルの回帰係
数として求めることができる。
Here, i = 1, 2, ..., M (number of samples) R: number of factors C j : number of categories in factor j δ i (jl) = 1 (when solid i reacts to category l of factor j) ) Or 0 (at other times ) a jl , a R + 1 : coefficient e i : error term The first term on the right side in equation (4) corresponds to k, which is
It is calculated by the equation (1). Therefore, the parameter n
Can be obtained as a regression coefficient of the linear model by transforming equation (3) into equation (5).

logY0-logYc=C+nlogt(C:定数)…(5) すなわち、腐食指数を環境因子で説明した残りを埋設期
間で説明することを試みた。ここでは、パラメーターn
が環境の腐食性に依存するか否かを調べるために、腐食
性の大小によりサンプルを二つのグループに分け、それ
ぞれについてnを求めた。環境の腐食性は(1)式から求
められ、腐食指数Yc=1でサンプルを分けた。
logY 0 -logYc = C + nlogt (C: constant) (5) That is, an attempt was made to explain the rest of the corrosion index explained by the environmental factors by the burying period. Here, the parameter n
In order to investigate whether or not the value depends on the corrosiveness of the environment, the samples were divided into two groups according to the corrosiveness, and n was calculated for each group. The corrosiveness of the environment was obtained from the equation (1), and the samples were divided by the corrosion index Yc = 1.

回帰分析の結果を表7に示す。The results of the regression analysis are shown in Table 7.

この結果から、回帰係数nはそれぞれの場合で、危険率
1%の有意水準にあり、環境の腐食性の大小にかかわら
ずnは0.41〜0.42とほぼ一定値であった。
From these results, the regression coefficient n was at a significance level of 1% in each case, and n was a constant value of 0.41 to 0.42 regardless of the corrosiveness of the environment.

したがって、腐食指数は、埋設環境の腐食性と埋設期間
により、(6)式で予測できる。
Therefore, the corrosion index can be predicted by Eq. (6) depending on the corrosiveness of the buried environment and the buried period.

ここで、 実測値と(6)式による予測値の重相関係数Rは0.742であ
った。腐食指数の実測値Y0と予測値 の散布図を第4図に示す。また、ここで得た回帰モデル
の、欠陥や予測の偏りの有無を確認するために標準化残
差esを予測値に対してプロットした。ここで、 は残差 の標準偏差である。第5図に示したように、ここで得ら
れた腐食予測モデルは、特異な傾向を持つものではない
と判断される。
here, The multiple correlation coefficient R between the actually measured value and the predicted value by the equation (6) was 0.742. Measured value of corrosion index Y 0 and predicted value The scatter plot of is shown in FIG. In addition, the standardized residuals e s were plotted against the predicted values in order to confirm the presence or absence of defects and prediction bias in the regression model obtained here. here, Is the residual Is the standard deviation of. As shown in FIG. 5, it is judged that the corrosion prediction model obtained here does not have a peculiar tendency.

以上のように海成粘土の存在する所に埋設された鋳鉄管
の調査結果をサンプルとして、統計的な手法を用いて、
腐食と環境因子及び埋設期間との関係を調べた結果、次
のことが明らかになった。
As a sample of the survey results of cast iron pipes buried in the place where marine clay exists as described above, using statistical methods,
As a result of investigating the relationship between corrosion, environmental factors and burial period, the following facts were revealed.

(a)海成粘土は強い腐食性を示し、それは硫黄化合物を
多く含み、酸化すれば強酸性化することが特徴的であっ
た。
(a) Marine clay showed strong corrosiveness, which contained a large amount of sulfur compounds and was characterized by strong acidification when oxidized.

(b)海成粘土は地下水と共存する場合や、盛土に使用さ
れた場合に、腐食性がさらに強まる傾向にあった。
(b) Marine clay tended to be more corrosive when coexisting with groundwater and when used for embankment.

(c)埋設管の最大腐食深さの分布は対数正規分布にした
がった。
(c) The distribution of the maximum corrosion depth of the buried pipe follows the log-normal distribution.

(d)腐食深さPと埋設期間tとの関係をP=ktで示
す場合、kを環境の腐食性を示すパラメーターであると
考えることにより、nは統計的に有意な水準で求めるこ
とができた。
(d) When the relationship between the corrosion depth P and the burial period t is indicated by P = kt n , n should be calculated at a statistically significant level by considering k as a parameter indicating the corrosiveness of the environment. I was able to.

(e)この場合、腐食深さの変動から、それに占める割合
の高い環境因子による変動を先に削除することにより、
埋設期間のような相対的に小さな変動を顕在化すること
が可能になることがわかった。
(e) In this case, by first removing the fluctuations due to environmental factors that account for a large percentage of the fluctuations in corrosion depth,
It was found that it becomes possible to reveal relatively small fluctuations such as the buried period.

(f)また、パラメーターnは環境の腐食性に存在するこ
となく一定であり、鋳鉄管の場合はn=0.4であった。
(f) Further, the parameter n was constant without being present in the corrosiveness of the environment, and was n = 0.4 in the case of the cast iron pipe.

(g)以上のことにより、埋設管の最大腐食深さは、数個
の環境因子と埋設期間により、実用的な水準で予測する
ことができた。
(g) From the above, the maximum corrosion depth of the buried pipe could be predicted at a practical level by several environmental factors and the burial period.

発明の効果 以上述べたように本発明によると、土中に埋設された鋳
鉄管の外面腐食の程度を示す孔食深さ(P)の成長速度を
時間(t)のべき乗関数にしたがって、 P=kt で表わし、パラメーター(k)を埋設地の環境因子に依存
すると仮定してこれらパラメータ(k)(n)を統計的に求め
るものであるため、上記鋳鉄管の腐食を高精度で予測す
ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the growth rate of the pitting depth (P), which indicates the degree of external corrosion of the cast iron pipe buried in the soil, is calculated according to the power function of time (t): P = Kt n , and the parameter (k) is statistically calculated assuming that the parameter (k) depends on the environmental factors of the buried site, so the corrosion of the cast iron pipe can be predicted with high accuracy. can do.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基づく埋設管の腐食予測のための統計
的手法を示すフロー図、第2図は主成分分析における各
変数の位置を示す図、第3図は確率紙上における最大腐
食指数の累積度の分布を示す図、第4図は腐食指数の実
測値と予測値の散布図、第5図は腐食指数の予測値と標
準化残差の散布図である。
FIG. 1 is a flow chart showing a statistical method for predicting corrosion of a buried pipe based on the present invention, FIG. 2 is a view showing positions of respective variables in principal component analysis, and FIG. 3 is a maximum corrosion index on probability paper. FIG. 4 is a scatter diagram of measured values and predicted values of the corrosion index, and FIG. 5 is a scatter diagram of predicted values of the corrosion index and standardized residuals.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】土中に埋設された鋳鉄管の外面腐食の程度
を示す孔食深さ(P)の成長速度を時間(t)のべき乗関数に
したがって、 P=kt で表わし、上記(k)を埋設地の環境因子に依存すると仮
定して属性変数による重回帰分析により定量化し、次に
上記(n)を腐食深さの実測値と環境因子による予測値と
の差への線形モデルの回帰係数として求めることを特徴
とする埋設管の腐食予測方法。
1. A growth rate of a pit depth (P) indicating the degree of external corrosion of a cast iron pipe buried in soil is represented by P = kt n according to a power function of time (t), and the above ( k) is quantified by multiple regression analysis using attribute variables assuming that it depends on the environmental factors of the buried site, and then (n) is a linear model to the difference between the actual measured corrosion depth and the predicted value due to environmental factors. Corrosion prediction method for buried pipes, characterized in that it is obtained as a regression coefficient of.
【請求項2】土中に埋設された鋳鉄管の外面腐食の程度
を示す腐食指数(Y0)の回帰モデルとして次式 ここで、i=1,2,………,m(サンプル数) R:要因数 Cj:要因jにおけるカテゴリー数 δi(j )=1(固体iが要因jのカテゴリーに反応する
とき)または0(その他のとき) ai,aR+1:係数 ei:誤差項 を用いることを特徴とする請求項1記載の埋設管の腐食
予測方法。
2. Degree of external corrosion of cast iron pipe buried in soil
Corrosion index (Y0) As the regression modelWhere i = 1,2, ..., m (number of samples) R: number of factors Cj: Number of categories in factor j δi(j ) = 1 (solid i reacts to category of factor j)
When) or 0 (at other times) ai, aR + 1: Coefficient eiCorrosion of the buried pipe according to claim 1, characterized in that an error term is used.
Prediction method.
【請求項3】パラメータ(n)を、次式 logY0-logYc=C+nlogt ここで、Y0:外面腐食の程度を示す腐食指数 Yc:環境因子にもとづく腐食指数 C:定数 で表わされる線形モデルの回帰係数として求めることを
特徴とする請求項1記載の埋設管の腐食予測方法。
3. The parameter (n) is defined by the following equation: logY 0 -logYc = C + nlogt where Y 0 : Corrosion index indicating the degree of external corrosion Yc: Corrosion index based on environmental factors C: Linear represented by a constant The method for predicting corrosion of a buried pipe according to claim 1, wherein the method is obtained as a regression coefficient of a model.
【請求項4】土中に埋設された鋳鉄管の外面腐食の程度
を示す腐食指数の予測値 を、次式 ここで、Yc:環境因子にもとづく腐食指数 t:埋設期間(年) を用いて求めることを特徴とする請求項1から請求項3
までのいずれかに記載の埋設管の腐食予測方法。
4. A predicted value of a corrosion index showing the degree of external corrosion of a cast iron pipe buried in soil. Is Here, it is obtained by using Yc: a corrosion index based on an environmental factor, t: a burying period (years),
The method for predicting corrosion of a buried pipe according to any one of 1 to 3 above.
JP63080074A 1988-03-31 1988-03-31 Corrosion prediction method for buried pipes Expired - Lifetime JPH0648239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080074A JPH0648239B2 (en) 1988-03-31 1988-03-31 Corrosion prediction method for buried pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080074A JPH0648239B2 (en) 1988-03-31 1988-03-31 Corrosion prediction method for buried pipes

Publications (2)

Publication Number Publication Date
JPH01250841A JPH01250841A (en) 1989-10-05
JPH0648239B2 true JPH0648239B2 (en) 1994-06-22

Family

ID=13708067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080074A Expired - Lifetime JPH0648239B2 (en) 1988-03-31 1988-03-31 Corrosion prediction method for buried pipes

Country Status (1)

Country Link
JP (1) JPH0648239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148178A (en) * 2000-11-13 2002-05-22 Kubota Corp Corrosion estimating method for underground pipe
JP2005351821A (en) * 2004-06-14 2005-12-22 Kubota Corp Method for estimating corrosion of embedded pipe
JP2007107882A (en) * 2005-10-11 2007-04-26 Kubota Corp Corrosion estimation method for buried pipe
JP2009162706A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel material buried in soil
JP6725928B1 (en) * 2020-02-13 2020-07-22 東洋インキScホールディングス株式会社 Regression model creation method, regression model creation device, and regression model creation program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820392B2 (en) * 1990-02-27 1996-03-04 新日本製鐵株式会社 Multiple gas component concentration determination method
JP2005308841A (en) * 2004-04-19 2005-11-04 Hitachi Ltd Pipeline management data processing device, pipeline management data processing method, pipeline management data program, and pipeline management data processing system
JP5352530B2 (en) * 2010-05-24 2013-11-27 株式会社神戸製鋼所 Method for estimating the corrosion state of steel
JP2014106146A (en) * 2012-11-28 2014-06-09 Masashi Fujita Drain deterioration determination method
CN109238950B (en) * 2018-09-06 2021-04-20 中国兵器工业第五九研究所 Metal material atmospheric corrosion prediction method based on qualitative analysis and quantitative prediction
JP6898390B6 (en) * 2019-07-25 2021-08-18 新菱冷熱工業株式会社 Corrosion assessment system for metallic materials and its method
CN113011638B (en) * 2021-03-01 2023-09-15 中车大连机车研究所有限公司 Prediction method for leakage rate of locomotive radiator
CN113466406A (en) * 2021-06-08 2021-10-01 重庆科技学院 Shale gas gathering and transportation trunk line pitting prediction method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148178A (en) * 2000-11-13 2002-05-22 Kubota Corp Corrosion estimating method for underground pipe
JP2005351821A (en) * 2004-06-14 2005-12-22 Kubota Corp Method for estimating corrosion of embedded pipe
JP2007107882A (en) * 2005-10-11 2007-04-26 Kubota Corp Corrosion estimation method for buried pipe
JP2009162706A (en) * 2008-01-10 2009-07-23 Chugoku Electric Power Co Inc:The Method of diagnosing steel material buried in soil
JP6725928B1 (en) * 2020-02-13 2020-07-22 東洋インキScホールディングス株式会社 Regression model creation method, regression model creation device, and regression model creation program
WO2021162033A1 (en) * 2020-02-13 2021-08-19 東洋インキScホールディングス株式会社 Regression model creation method, regression model creation device, and regression model creation program
JP2021128042A (en) * 2020-02-13 2021-09-02 東洋インキScホールディングス株式会社 Regression model creation method, regression model creation device, and regression model creation program

Also Published As

Publication number Publication date
JPH01250841A (en) 1989-10-05

Similar Documents

Publication Publication Date Title
Katano et al. Predictive model for pit growth on underground pipes
Melchers Pitting Corrosion of Mild Steel in Marine Immersion EnvironmentPart 2: Variability of Maximum Pit Depth, October 2004
Provan et al. Part I: Development of a Markov description of pitting corrosion
JPH0648239B2 (en) Corrosion prediction method for buried pipes
Petersen et al. Long-term corrosion of cast iron cement lined pipes
Kim et al. Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors
Kleiner et al. Performance of ductile iron pipes. I: Characterization of external corrosion patterns
Wang et al. Factors affecting corrosion of buried cast iron pipes
CN112251756A (en) System and method for evaluating dynamic direct-current corrosion risk of buried metal pipeline
Romanoff Exterior Corrosion of Cast‐Iron Pipe
Othman et al. Modeling of external metal loss for corroded buried pipeline
Petersen et al. Development of long-term localised corrosion of cast iron pipes in backfill soils based on time of wetness
Melchers Progression of pitting corrosion and structural reliability of welded steel pipelines
Villanueva-Balsera et al. Methods to evaluate corrosion in buried steel structures: A review
Smart et al. Internal corrosion direct measurement enhances pipeline integrity
Palmer Field Soil Corrosivity Testing—Engineering Considerations
Anyanwu et al. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel under the Influence of Soil pH and Resistivity
Oudbashi Corrosion Risk Assessment Approach in Archaeological Bronze Collections: From Burial to Long-term Preservation Environments
JP2002148178A (en) Corrosion estimating method for underground pipe
Logan et al. Soil corrosion testing
Vela´ zquez et al. Statistical modeling of pitting corrosion in buried pipelines taking into account soil properties
JP2005351821A (en) Method for estimating corrosion of embedded pipe
Olabisi et al. Experimental Investigation of Pipeline Corrosion in a Polluted Niger Delta River
Barlo Origin and Validation of the 100 mv Polarization Criterion
Ke et al. Corrosivity of Indiana bottom ash

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term