JP2005351821A - Method for estimating corrosion of embedded pipe - Google Patents
Method for estimating corrosion of embedded pipe Download PDFInfo
- Publication number
- JP2005351821A JP2005351821A JP2004174877A JP2004174877A JP2005351821A JP 2005351821 A JP2005351821 A JP 2005351821A JP 2004174877 A JP2004174877 A JP 2004174877A JP 2004174877 A JP2004174877 A JP 2004174877A JP 2005351821 A JP2005351821 A JP 2005351821A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- cases
- coefficient
- pipe
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は、土中に埋設された埋設管の腐食予測方法に関する。 The present invention relates to a method for predicting corrosion of a buried pipe buried in soil.
土中に埋設された鋳鉄管は、その外面が土壌によって腐食を受ける可能性がある。このため、その土壌の腐食性にもとづく管の腐食を定量的に予測することができれば、管の腐食を予測できることになる。 There is a possibility that the outer surface of the cast iron pipe buried in the soil is corroded by the soil. Therefore, if the corrosion of the pipe based on the corrosiveness of the soil can be predicted quantitatively, the corrosion of the pipe can be predicted.
従来、土中に埋設された鋳鉄管の外面の腐食を予測する際には、土壌の種類や地下水の性質などの埋設環境因子を指標にしたり、土壌の分析結果にもとづきアメリカのANSI規格やドイツのDIN規格に示される方法でその土壌の腐食性を定性的に評価したりすることが行われている。しかし、このような定性的な評価だけでは、埋設管の腐食量を定量的に予測することができない。 Conventionally, when predicting the corrosion of cast iron pipes embedded in the soil, the embedding environmental factors such as the type of soil and the properties of groundwater are used as indicators, and the American ANSI standards and German The soil corrosivity is qualitatively evaluated by the method shown in the DIN standard. However, the corrosion amount of the buried pipe cannot be quantitatively predicted only by such qualitative evaluation.
このため従来、たとえば特許文献1においては、土中に埋設された鋳鉄管の外面腐食の程度を示す孔食深さPの成長速度を時間tのべき乗関数にしたがって、
P=ktn
で表わし、kを埋設地の環境因子に依存すると仮定して属性変数による重回帰分析により定量化し、次にnを腐食深さの実測値と環境因子による予測値との差への線形モデルの回帰係数として求めるようにした、埋設管の腐食予測方法が提案されている。
For this reason, conventionally, for example, in
P = kt n
Quantified by multiple regression analysis with attribute variables assuming that k depends on the environmental factor of the buried land, and then n is the linear model difference to the difference between the measured value of corrosion depth and the predicted value of environmental factor A method for predicting corrosion of buried pipes, which is obtained as a regression coefficient, has been proposed.
これによれば、kとtとnとを求めることによって、鋳鉄管の外面の孔食深さPを定量的に求めることができる。
しかし、特許文献1に記載の方法では、上述のように、腐食深さの実測値と、環境因子すなわち埋設環境としての管の周囲の土壌についての情報とを収集する必要がある。そのためには、土砂を掘削して土中の管体を露出させたうえで、その腐食情報と、土壌すなわち埋設環境の情報とを収集する必要があり、その情報収集にはコストと時間を要するという課題がある。
However, in the method described in
そこで本発明は、地中に埋設された管体の腐食量を予測するに際し、その予測を行うごとに管体の腐食深さについての情報を得ることを要しないようにすることを目的とする。 Therefore, the present invention has an object to avoid the need to obtain information about the corrosion depth of the pipe every time the prediction is made when the amount of corrosion of the pipe buried in the ground is predicted. .
この目的を達成するため本発明は、土中に埋設された鋳鉄管の腐食深さを、
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2+C3+C4+C5+C6)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数、C3:土壌の比抵抗にもとづく係数、C4:土壌のpHにもとづく係数、C5:土壌の酸化還元電位にもとづく係数、C6:土壌における硫化物の検出の有無にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2、C3、C4、C5、C6とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類、土壌の比抵抗、土壌のpH、土壌の酸化還元電位、土壌における硫化物の検出の有無に関する情報と、その管の埋設期間とにもとづいて予測するものである。
In order to achieve this object, the present invention determines the corrosion depth of cast iron pipes embedded in the soil,
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2 + C3 + C4 + C5 + C6)
(Β 0 : constant, C1: coefficient based on soil, C2: coefficient based on soil type, C3: coefficient based on soil resistivity, C4: coefficient based on soil pH, C5: based on soil redox potential. Coefficient, C6: Coefficient based on the presence or absence of detection of sulfide in the soil)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1, C2, C3, C4, C5, C6 are determined in advance,
Corrosion depth of a pipe buried in a specific area, the soil quality, soil type, soil resistivity, soil pH, soil oxidation-reduction potential, soil in the soil where the pipe is buried The prediction is based on information on the presence or absence of detection of sulfide and the burial period of the pipe.
したがって本発明によれば、多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成して、定数β0と係数C1、C2、C3、C4、C5、C6とをあらかじめ決定しておくことで、鋳鉄管が埋設されている土壌の分析を行うだけで、その土壌を掘削して鋳鉄管をわざわざ露出させることなしに、その鋳鉄管の腐食深さを容易に低コストで、しかも正確に、予測することができる。すなわち、たとえば全国各地において多数の調査サンプルを作成しておくことで、全国どこでも同様に、鋳鉄管の腐食深さを容易に予測することができる。 Therefore, according to the present invention, a measurement value of the corrosion depth of each cast iron pipe buried in a large number of areas, and an analysis of the soil around the pipe, a large number of investigation samples are created, By determining the constant β 0 and the coefficients C1, C2, C3, C4, C5, and C6 in advance, simply analyzing the soil in which the cast iron pipe is embedded, excavating the soil, The corrosion depth of the cast iron pipe can be easily estimated at low cost and accurately without being exposed. That is, for example, by creating a large number of survey samples in various parts of the country, the corrosion depth of cast iron pipes can be easily predicted anywhere in the country.
また本発明は、土中に埋設された鋳鉄管の腐食深さを、
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類に関する情報と、その管の埋設期間とにもとづいて予測するものである。
The present invention also provides the corrosion depth of the cast iron pipe embedded in the soil,
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2)
(Β 0 : constant, C1: coefficient based on soil quality, C2: coefficient based on soil type)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1 and C2 are determined in advance,
Corrosion depth of a pipe buried in a specific area is predicted based on the information on the soil type and the ground type of the soil in which the pipe is buried, and the burial period of the pipe. .
このようにすると、管を埋設した土壌の土質と地盤の種類とのみによって、ある程度の精度で簡単に鋳鉄管の腐食深さを予測することができ、しかもこれら土壌の土質と地盤の種類とは実際に土壌を分析しなくても知ることができるものであるため、鋳鉄管を露出させる必要がないうえに、土壌分析をも必要とせずに、迅速かつ容易にしかも低コストで鋳鉄管の腐食深さを予測することができる。 In this way, it is possible to easily predict the corrosion depth of cast iron pipes with a certain degree of accuracy based only on the soil quality and soil type in which the pipes are embedded, and what is the soil soil type and ground type? Since it is possible to know without actually analyzing the soil, it is not necessary to expose the cast iron pipe, and it is quick and easy at low cost without the need for soil analysis. Depth can be predicted.
以上のように本発明によれば、鋳鉄管が埋設されている土壌を掘削して鋳鉄管をわざわざ露出させることなしに、その鋳鉄管の腐食深さを容易に低コストで予測することができる。 As described above, according to the present invention, it is possible to easily predict the corrosion depth of a cast iron pipe at low cost without excavating the soil in which the cast iron pipe is buried and exposing the cast iron pipe. .
まず、本発明にもとづき鋳鉄管の腐食深さを精度良く予測する方法について説明する。
すなわち、上述のように、土中に埋設された鋳鉄管の腐食深さを、
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2+C3+C4+C5+C6)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数、C3:土壌の比抵抗にもとづく係数、C4:土壌のpHにもとづく係数、C5:土壌の酸化還元電位にもとづく係数、C6:土壌における硫化物の検出の有無にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2、C3、C4、C5、C6とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類、土壌の比抵抗、土壌のpH、土壌の酸化還元電位、土壌における硫化物の検出の有無に関する情報と、その管の埋設期間とにもとづいて予測する。
First, a method for accurately predicting the corrosion depth of a cast iron pipe according to the present invention will be described.
That is, as described above, the corrosion depth of the cast iron pipe embedded in the soil,
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2 + C3 + C4 + C5 + C6)
(Β 0 : constant, C1: coefficient based on soil, C2: coefficient based on soil type, C3: coefficient based on soil resistivity, C4: coefficient based on soil pH, C5: based on soil redox potential. Coefficient, C6: Coefficient based on the presence or absence of detection of sulfide in the soil)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1, C2, C3, C4, C5, C6 are determined in advance,
Corrosion depth of a pipe buried in a specific area, the soil quality, soil type, soil resistivity, soil pH, soil oxidation-reduction potential, soil in the soil where the pipe is buried Predict based on information about the presence or absence of detection of sulfides and the burial period of the pipe.
詳細には、係数C1は土質が粘土である場合と泥炭である場合と海成粘土である場合と海成層および泥炭である場合とガラ混じりである場合とで異なった値とし、係数C2は地盤が埋立地である場合と造成地である場合とで異なった値とし、係数C3は土壌の比抵抗の大小に対応して異なった値とし、係数C4は土壌のpHの大小に対応して異なった値とし、係数C5は土壌の酸化還元電位が一定値以上の場合にのみ所定の値とし、係数C6は硫化物が検出されたときにのみ所定の値とする。 Specifically, the coefficient C1 is a different value depending on whether the soil is clay, peat, marine clay, marine layer and peat, or a mixture of galley, and the coefficient C2 is the ground. The value is different depending on whether the soil is a landfill or the site of the reclaimed land, the coefficient C3 is different depending on the soil resistivity, and the coefficient C4 is different depending on the soil pH. The coefficient C5 is a predetermined value only when the oxidation-reduction potential of the soil is not less than a certain value, and the coefficient C6 is a predetermined value only when sulfide is detected.
上記の腐食予測式を重回帰モデルで書き換えて表すと、次のようになる。
η=exp(β0+β1σ1j+β2σ2j+β3σ3j+β4σ4j+β5σ5j+β6σ6j)・tα
ただし、σi(mj)=1(個体iがアイテムmのカテゴリーjに対応するとき)
σi(mj)=0(その他のとき)
北海道から沖縄までの各地域において、鋳鉄管外面の腐食深さの測定と、環境条件としての管周囲の土壌の分析を行い、それにより約3000地点の調査サンプルを得て、そのデータを用いて重回帰分析を行うことで得られた説明変数、カテゴリー、偏回帰係数を、表1に示す。
When the above corrosion prediction formula is rewritten with a multiple regression model, it is as follows.
η = exp (β 0 + β 1 σ 1j + β 2 σ 2j + β 3 σ 3j + β 4 σ 4j + β 5 σ 5j + β 6 σ 6j ) · t α
However, σ i (mj) = 1 (when individual i corresponds to category j of item m)
σ i (mj) = 0 (otherwise)
In each region from Hokkaido to Okinawa, the corrosion depth of the cast iron pipe outer surface is measured and the soil around the pipe is analyzed as an environmental condition, thereby obtaining about 3000 survey samples and using the data. Table 1 shows explanatory variables, categories, and partial regression coefficients obtained by performing multiple regression analysis.
表1における「詳細式」の欄の偏回帰係数を用いれば、上記の重回帰モデルは、具体的には、次のように規定することができる。すなわち、
η=exp(−0.930+0.061σ11+0.104σ12+0.251σ13+0.489σ14+0.695σ15+0.050σ21+0.549σ22+0.199σ31+0.349σ32+0.532σ33+0.668σ34+0.055σ41+0.145σ42+0.300σ51+0.126σ61)×t0.374
ただし、σ11=1(土質が粘土である場合)
=0(その他の場合)
σ12=1(土質が泥炭である場合)
=0(その他の場合)
σ13=1(土質が海成粘土である場合)
=0(その他の場合)
σ14=1(土質が海成層および泥炭である場合)
=0(その他の場合)
σ15=1(土質がガラ混じりである場合)
=0(その他の場合)
σ21=1(地盤が埋立地である場合)
=0(その他の場合)
σ22=1(地盤が造成地である場合)
=0(その他の場合)
σ31=1(土壌の比抵抗ρ[Ω・cm]が、1500<ρ≦3000である場合)
=0(その他の場合)
σ32=1(土壌の比抵抗ρ[Ω・cm]が、1000<ρ≦1500である場合)
=0(その他の場合)
σ33=1(土壌の比抵抗ρ[Ω・cm]が、500<ρ≦1000である場合)
=0(その他の場合)
σ34=1(土壌の比抵抗ρ[Ω・cm]が、ρ≦500である場合)
=0(その他の場合)
σ41=1(土壌のpHが、pH≦7.5である場合)
=0(その他の場合)
σ42=1(土壌のpHが、pH>8.5である場合)
=0(その他の場合)
σ51=1(土壌の酸化還元電位Eh[mV]が、Eh≦100である場合)
=0(その他の場合)
σ61=1(硫化物が検出された場合)
=0(硫化物が検出されなかった場合)
と規定することができる。
Using the partial regression coefficient in the column of “detailed expression” in Table 1, the multiple regression model can be specifically defined as follows. That is,
η = exp (−0.930 + 0.061σ 11 + 0.104σ 12 + 0.251σ 13 + 0.489σ 14 + 0.695σ 15 + 0.050σ 21 + 0.549σ 22 + 0.199σ 31 + 0.349σ 32 + 0.532σ 33 + 0.668σ 34 + 0.055σ 41 + 0.145σ 42 + 0.300σ 51 + 0.126σ 61 ) × t 0.374
However, σ 11 = 1 (when the soil is clay)
= 0 (other cases)
σ 12 = 1 (when soil is peat)
= 0 (other cases)
σ 13 = 1 (when the soil is marine clay)
= 0 (other cases)
σ 14 = 1 (when soil is marine and peat)
= 0 (other cases)
σ 15 = 1 (when soil is mixed with glass)
= 0 (other cases)
σ 21 = 1 (when the ground is a landfill)
= 0 (other cases)
σ 22 = 1 (when the ground is a reclaimed land)
= 0 (other cases)
σ 31 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 1500 <ρ ≦ 3000)
= 0 (other cases)
σ 32 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 1000 <ρ ≦ 1500)
= 0 (other cases)
σ 33 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 500 <ρ ≦ 1000)
= 0 (other cases)
σ 34 = 1 (when the specific resistance ρ [Ω · cm] of the soil is ρ ≦ 500)
= 0 (other cases)
σ 41 = 1 (when soil pH is pH ≦ 7.5)
= 0 (other cases)
σ 42 = 1 (when the pH of the soil is pH> 8.5)
= 0 (other cases)
σ 51 = 1 (when soil redox potential Eh [mV] is Eh ≦ 100)
= 0 (other cases)
σ 61 = 1 (when sulfide is detected)
= 0 (when sulfide is not detected)
Can be defined.
したがって、鋳鉄管が埋設されている土壌について、その土質と、地盤と、土壌の比抵抗の大小と、土壌のpHの大小と、土壌の酸化還元電位と、土壌における硫化物の検出の有無とについて分析するだけで、その管の埋設期間から、その腐食を定量的に予測することができる。分析結果がすでに存在する場合は、それを用いるだけで、同様に埋設管の腐食を定量的に予測することができる。 Therefore, regarding the soil in which the cast iron pipe is buried, the soil quality, the ground, the magnitude of the specific resistance of the soil, the magnitude of the soil pH, the oxidation-reduction potential of the soil, and whether or not sulfide is detected in the soil By simply analyzing the above, it is possible to quantitatively predict the corrosion from the pipe burial period. If the analysis result already exists, the corrosion of the buried pipe can be similarly predicted quantitatively by just using it.
さらに本発明によれば、土壌の分析を行わずに簡易に腐食量を予測することも可能である。この場合は、土中に埋設された鋳鉄管の腐食深さを、
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類に関する情報と、その管の埋設期間とにもとづいて予測するものである。
Furthermore, according to the present invention, it is also possible to easily predict the amount of corrosion without analyzing the soil. In this case, the corrosion depth of the cast iron pipe buried in the soil
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2)
(Β 0 : constant, C1: coefficient based on soil quality, C2: coefficient based on soil type)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1 and C2 are determined in advance,
Corrosion depth of a pipe buried in a specific area is predicted based on the information on the soil type and the ground type of the soil in which the pipe is buried, and the burial period of the pipe. .
詳細には、係数C1は土質が粘土である場合と泥炭である場合と海成粘土である場合と海成層および泥炭である場合とガラ混じりである場合とで異なった値とし、係数C2は地盤が埋立地である場合と造成地である場合とで異なった値とする。 Specifically, the coefficient C1 is a different value depending on whether the soil is clay, peat, marine clay, marine layer and peat, or a mixture of galley, and the coefficient C2 is the ground. Different values for landfills and landfills.
上記の腐食予測式を重回帰モデルで書き換えて表すと、次のようになる。
η=exp(β0+β1σ1j+β2σ2j)・tα
ただし、σi(mj)=1(個体iがアイテムmのカテゴリーjに対応するとき)
σi(mj)=0(その他のとき)
表1における「簡易式」の欄の偏回帰係数は、「詳細式」の場合と同様にして求めたものであるが、これを用いれば、上記の重回帰モデルは、具体的には、次のように規定することができる。すなわち、
η=exp(−0.374+0.295σ11+0.494σ12+0.656σ13+1.068σ14+1.232σ15+0.145σ21+0.569σ22)×t0.269
ただし、σ11=1(土質が粘土である場合)
=0(その他の場合)
σ12=1(土質が泥炭である場合)
=0(その他の場合)
σ13=1(土質が海成粘土である場合)
=0(その他の場合)
σ14=1(土質が海成層および泥炭である場合)
=0(その他の場合)
σ15=1(土質がガラ混じりである場合)
=0(その他の場合)
σ21=1(地盤が埋立地である場合)
=0(その他の場合)
σ22=1(地盤が造成地である場合)
=0(その他の場合)
と規定することができる。
When the above corrosion prediction formula is rewritten with a multiple regression model, it is as follows.
η = exp (β 0 + β 1 σ 1j + β 2 σ 2j ) · t α
However, σ i (mj) = 1 (when individual i corresponds to category j of item m)
σ i (mj) = 0 (otherwise)
The partial regression coefficient in the column of “Simple Formula” in Table 1 is obtained in the same manner as in the case of “Detailed Formula”. Using this, the above multiple regression model is specifically described as follows. It can be defined as follows. That is,
η = exp (−0.374 + 0.295σ 11 + 0.494σ 12 + 0.656σ 13 + 1.068σ 14 + 1.232σ 15 + 0.145σ 21 + 0.569σ 22 ) × t 0.269
However, σ 11 = 1 (when the soil is clay)
= 0 (other cases)
σ 12 = 1 (when soil is peat)
= 0 (other cases)
σ 13 = 1 (when the soil is marine clay)
= 0 (other cases)
σ 14 = 1 (when soil is marine and peat)
= 0 (other cases)
σ 15 = 1 (when soil is mixed with glass)
= 0 (other cases)
σ 21 = 1 (when the ground is a landfill)
= 0 (other cases)
σ 22 = 1 (when the ground is a reclaimed land)
= 0 (other cases)
Can be defined.
したがって、管を埋設した土壌の土質と地盤の種類とのみによって、ある程度の精度で簡易に鋳鉄管の腐食深さを予測することができる。しかもこれら土壌の土質と地盤の種類とは、一般に実際に土壌を分析しなくても知ることができるものであるため、鋳鉄管を露出させる必要がないうえに、土壌分析をも必要とせずに、迅速かつ容易にしかも低コストで鋳鉄管の腐食深さを予測することができる。 Therefore, the corrosion depth of the cast iron pipe can be easily predicted with a certain degree of accuracy only by the soil quality of the soil in which the pipe is embedded and the kind of ground. Moreover, since the soil quality and soil type can be known without actually analyzing the soil, it is not necessary to expose the cast iron pipe, and without the need for soil analysis. The corrosion depth of cast iron pipe can be predicted quickly, easily and at low cost.
次に本発明にもとづく腐食深さの予測値と実際に測定した腐食深さとの関係について説明する。すなわち、ある地域の20箇所で、埋設管を掘り返して管体の腐食深さを測定するとともに、その周囲の土壌を分析した。そして、これら20箇所の土壌分析データを上述の詳細式にあてはめ、予測値を算出した。この予測値を実際に測定した腐食深さつまり実測値と比較したところ、図1に示すように高い予測精度を示した。 Next, the relationship between the predicted value of the corrosion depth based on the present invention and the actually measured corrosion depth will be described. That is, at 20 locations in a certain area, the buried pipe was dug up to measure the corrosion depth of the pipe body, and the surrounding soil was analyzed. And these 20 soil analysis data were applied to the above-mentioned detailed formula, and the predicted value was computed. When this predicted value was compared with the actually measured corrosion depth, that is, the actually measured value, high predicted accuracy was shown as shown in FIG.
また、同様に上述の簡易式にあてはめた結果、図2に示すようになった。この図2から、簡易式でもある程度の精度で予測が可能であることが判った。 Similarly, as a result of applying the above simplified formula, the result is as shown in FIG. From FIG. 2, it was found that even a simple formula can be predicted with a certain degree of accuracy.
Claims (6)
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2+C3+C4+C5+C6)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数、C3:土壌の比抵抗にもとづく係数、C4:土壌のpHにもとづく係数、C5:土壌の酸化還元電位にもとづく係数、C6:土壌における硫化物の検出の有無にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2、C3、C4、C5、C6とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類、土壌の比抵抗、土壌のpH、土壌の酸化還元電位、土壌における硫化物の検出の有無に関する情報と、その管の埋設期間とにもとづいて予測することを特徴とする埋設管の腐食予測方法。 Corrosion depth of cast iron pipe buried in the soil,
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2 + C3 + C4 + C5 + C6)
(Β 0 : constant, C1: coefficient based on soil, C2: coefficient based on soil type, C3: coefficient based on soil resistivity, C4: coefficient based on soil pH, C5: based on soil redox potential. Coefficient, C6: Coefficient based on the presence or absence of detection of sulfide in the soil)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1, C2, C3, C4, C5, C6 are determined in advance,
Corrosion depth of a pipe buried in a specific area, the soil quality, soil type, soil resistivity, soil pH, soil oxidation-reduction potential, soil in the soil where the pipe is buried A method for predicting corrosion of buried pipes, wherein prediction is made based on information on the presence or absence of detection of sulfides and the duration of the pipes.
ただし、σ11=1(土質が粘土である場合)
=0(その他の場合)
σ12=1(土質が泥炭である場合)
=0(その他の場合)
σ13=1(土質が海成粘土である場合)
=0(その他の場合)
σ14=1(土質が海成層および泥炭である場合)
=0(その他の場合)
σ15=1(土質がガラ混じりである場合)
=0(その他の場合)
σ21=1(地盤が埋立地である場合)
=0(その他の場合)
σ22=1(地盤が造成地である場合)
=0(その他の場合)
σ31=1(土壌の比抵抗ρ[Ω・cm]が、1500<ρ≦3000である場合)
=0(その他の場合)
σ32=1(土壌の比抵抗ρ[Ω・cm]が、1000<ρ≦1500である場合)
=0(その他の場合)
σ33=1(土壌の比抵抗ρ[Ω・cm]が、500<ρ≦1000である場合)
=0(その他の場合)
σ34=1(土壌の比抵抗ρ[Ω・cm]が、ρ≦500である場合)
=0(その他の場合)
σ41=1(土壌のpHが、pH≦7.5である場合)
=0(その他の場合)
σ42=1(土壌のpHが、pH>8.5である場合)
=0(その他の場合)
σ51=1(土壌の酸化還元電位Eh[mV]が、Eh≦100である場合)
=0(その他の場合)
σ61=1(硫化物が検出された場合)
=0(硫化物が検出されなかった場合)
とすることを特徴とする請求項1または2記載の埋設管の腐食予測方法。 η = exp (−0.930 + 0.061σ 11 + 0.104σ 12 + 0.251σ 13 + 0.489σ 14 + 0.695σ 15 + 0.050σ 21 + 0.549σ 22 + 0.199σ 31 + 0.349σ 32 + 0.532σ 33 + 0.668σ 34 + 0.055σ 41 + 0.145σ 42 + 0.300σ 51 + 0.126σ 61 ) × t 0.374
However, σ 11 = 1 (when the soil is clay)
= 0 (other cases)
σ 12 = 1 (when soil is peat)
= 0 (other cases)
σ 13 = 1 (when the soil is marine clay)
= 0 (other cases)
σ 14 = 1 (when soil is marine and peat)
= 0 (other cases)
σ 15 = 1 (when soil is mixed with glass)
= 0 (other cases)
σ 21 = 1 (when the ground is a landfill)
= 0 (other cases)
σ 22 = 1 (when the ground is a reclaimed land)
= 0 (other cases)
σ 31 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 1500 <ρ ≦ 3000)
= 0 (other cases)
σ 32 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 1000 <ρ ≦ 1500)
= 0 (other cases)
σ 33 = 1 (when the specific resistance ρ [Ω · cm] of the soil is 500 <ρ ≦ 1000)
= 0 (other cases)
σ 34 = 1 (when the specific resistance ρ [Ω · cm] of the soil is ρ ≦ 500)
= 0 (other cases)
σ 41 = 1 (when soil pH is pH ≦ 7.5)
= 0 (other cases)
σ 42 = 1 (when the pH of the soil is pH> 8.5)
= 0 (other cases)
σ 51 = 1 (when soil redox potential Eh [mV] is Eh ≦ 100)
= 0 (other cases)
σ 61 = 1 (when sulfide is detected)
= 0 (when sulfide is not detected)
The method for predicting corrosion of a buried pipe according to claim 1 or 2, wherein:
η=ktα
(η:腐食深さ[mm]、t:埋設期間[年]、k,α:定数)
で表し、定数kを、
k=exp(β0+C1+C2)
(β0:定数、C1:土質にもとづく係数、C2:地盤の種類にもとづく係数)
で表し、
多数の地域において埋設されているそれぞれの鋳鉄管の腐食深さの測定値と、その管の周囲の土壌の分析とを行って、多数の調査サンプルを作成することで、前記定数β0と係数C1、C2とをあらかじめ決定しておいて、
特定の地域に埋設されている管の腐食深さを、その管が埋設されている土壌についての、前記土質、地盤の種類に関する情報と、その管の埋設期間とにもとづいて予測することを特徴とする埋設管の腐食予測方法。 Corrosion depth of cast iron pipe buried in the soil,
η = kt α
(Η: corrosion depth [mm], t: burial period [year], k, α: constant)
And the constant k is
k = exp (β 0 + C1 + C2)
(Β 0 : constant, C1: coefficient based on soil quality, C2: coefficient based on soil type)
Represented by
Each measurement value of corrosion depth of the cast iron pipes are embedded in a number of areas, by performing an analysis of the soil around the pipe, creating a large number of research samples, the constants beta 0 and the coefficient C1 and C2 are determined in advance,
Predicting the corrosion depth of a pipe buried in a specific area based on the information on the soil type and ground type of the soil in which the pipe is buried, and the duration of the pipe. Corrosion prediction method for buried pipes.
ただし、σ11=1(土質が粘土である場合)
=0(その他の場合)
σ12=1(土質が泥炭である場合)
=0(その他の場合)
σ13=1(土質が海成粘土である場合)
=0(その他の場合)
σ14=1(土質が海成層および泥炭である場合)
=0(その他の場合)
σ15=1(土質がガラ混じりである場合)
=0(その他の場合)
σ21=1(地盤が埋立地である場合)
=0(その他の場合)
σ22=1(地盤が造成地である場合)
=0(その他の場合)
とすることを特徴とする請求項4または5記載の埋設管の腐食予測方法。 η = exp (−0.374 + 0.295σ 11 + 0.494σ 12 + 0.656σ 13 + 1.068σ 14 + 1.232σ 15 + 0.145σ 21 + 0.569σ 22 ) × t 0.269
However, σ 11 = 1 (when the soil is clay)
= 0 (other cases)
σ 12 = 1 (when soil is peat)
= 0 (other cases)
σ 13 = 1 (when the soil is marine clay)
= 0 (other cases)
σ 14 = 1 (when soil is marine and peat)
= 0 (other cases)
σ 15 = 1 (when soil is mixed with glass)
= 0 (other cases)
σ 21 = 1 (when the ground is a landfill)
= 0 (other cases)
σ 22 = 1 (when the ground is a reclaimed land)
= 0 (other cases)
The method for predicting corrosion of a buried pipe according to claim 4 or 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004174877A JP2005351821A (en) | 2004-06-14 | 2004-06-14 | Method for estimating corrosion of embedded pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004174877A JP2005351821A (en) | 2004-06-14 | 2004-06-14 | Method for estimating corrosion of embedded pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005351821A true JP2005351821A (en) | 2005-12-22 |
Family
ID=35586424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004174877A Pending JP2005351821A (en) | 2004-06-14 | 2004-06-14 | Method for estimating corrosion of embedded pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005351821A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009162706A (en) * | 2008-01-10 | 2009-07-23 | Chugoku Electric Power Co Inc:The | Method of diagnosing steel material buried in soil |
JP2009162705A (en) * | 2008-01-10 | 2009-07-23 | Chugoku Electric Power Co Inc:The | Method of diagnosing steel materials buried in soil |
JP2016114564A (en) * | 2014-12-17 | 2016-06-23 | 株式会社ベンチャー・アカデミア | Soil corrosiveness evaluation method |
RU2649630C1 (en) * | 2017-02-06 | 2018-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" (ФГАОУ ВО "ЮУрГУ (НИУ)") | Method of detection grounding devices corrosion condition |
JP2020051801A (en) * | 2018-09-25 | 2020-04-02 | 株式会社クボタ | Underground pipe update period prediction device, underground pipe update period prediction method, program, and computer readable recording medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648239B2 (en) * | 1988-03-31 | 1994-06-22 | 株式会社クボタ | Corrosion prediction method for buried pipes |
JP2002148178A (en) * | 2000-11-13 | 2002-05-22 | Kubota Corp | Corrosion estimating method for underground pipe |
JP2003149129A (en) * | 2001-11-09 | 2003-05-21 | Kubota Corp | Prediction method for corrosion rate of embedded pipe |
-
2004
- 2004-06-14 JP JP2004174877A patent/JP2005351821A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648239B2 (en) * | 1988-03-31 | 1994-06-22 | 株式会社クボタ | Corrosion prediction method for buried pipes |
JP2002148178A (en) * | 2000-11-13 | 2002-05-22 | Kubota Corp | Corrosion estimating method for underground pipe |
JP2003149129A (en) * | 2001-11-09 | 2003-05-21 | Kubota Corp | Prediction method for corrosion rate of embedded pipe |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009162706A (en) * | 2008-01-10 | 2009-07-23 | Chugoku Electric Power Co Inc:The | Method of diagnosing steel material buried in soil |
JP2009162705A (en) * | 2008-01-10 | 2009-07-23 | Chugoku Electric Power Co Inc:The | Method of diagnosing steel materials buried in soil |
JP2016114564A (en) * | 2014-12-17 | 2016-06-23 | 株式会社ベンチャー・アカデミア | Soil corrosiveness evaluation method |
RU2649630C1 (en) * | 2017-02-06 | 2018-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" (ФГАОУ ВО "ЮУрГУ (НИУ)") | Method of detection grounding devices corrosion condition |
JP2020051801A (en) * | 2018-09-25 | 2020-04-02 | 株式会社クボタ | Underground pipe update period prediction device, underground pipe update period prediction method, program, and computer readable recording medium |
JP7133416B2 (en) | 2018-09-25 | 2022-09-08 | 株式会社クボタ | Buried pipe renewal time prediction device, buried pipe renewal time prediction method, program and computer-readable recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors | |
Schmadel et al. | Approaches to estimate uncertainty in longitudinal channel water balances | |
JP2007107882A (en) | Corrosion estimation method for buried pipe | |
Shaw et al. | Evaluating urban pollutant buildup/wash-off models using a Madison, Wisconsin catchment | |
Petersen et al. | Development of long-term localised corrosion of cast iron pipes in backfill soils based on time of wetness | |
Othman et al. | Modeling of external metal loss for corroded buried pipeline | |
Matthiesen | Detecting and quantifying ongoing decay of organic archaeological remains: A discussion of different approaches | |
JP2005351821A (en) | Method for estimating corrosion of embedded pipe | |
Chaker | Effects of soil characteristics on corrosion | |
JPH01250841A (en) | Corrosion predicting method for buried tube | |
Wittler et al. | Calibration of electromagnetic induction for regional assessment of soil water salinity in an irrigated valley | |
Wang et al. | Electrochemical characterization of the soils surrounding buried or embedded steel elements | |
JP3853231B2 (en) | Method for predicting the degree of corrosion of buried pipes | |
JP2002148178A (en) | Corrosion estimating method for underground pipe | |
Park et al. | Use of a forensic geochemical technique and a hydrogeological assessment to determine the source of petroleum hydrocarbon contamination at a foreshore site in Korea | |
JP4169587B2 (en) | Diagnosis method for aging of buried pipelines | |
Zhang et al. | Development of a rapid field testing method for metals in horizontal directional drilling residuals with XRF sensor | |
Vela´ zquez et al. | Statistical modeling of pitting corrosion in buried pipelines taking into account soil properties | |
Doyle et al. | Applying GIS to a water main corrosion study | |
Yajima et al. | The application of macro modeling concept for the soil/coating external corrosion for ECDA process by using statistical tools | |
Davis et al. | Estimating failure probability from condition assessment of critical cast iron water mains | |
Elberling et al. | Heavy metals in 3300‐year‐old agricultural soils used to assess present soil contamination | |
Bonds et al. | Corrosion and corrosion control research of iron pipe | |
Contreras et al. | Corrosion rate of low carbon steels in function of physicochemical properties of soils | |
Moglia et al. | Estimating corrosion rates in wrought iron pipelines: an application of linear polarisation resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070327 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080430 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090402 |
|
A131 | Notification of reasons for refusal |
Effective date: 20091020 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20091221 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20100316 Free format text: JAPANESE INTERMEDIATE CODE: A02 |