JP2007107079A - Shipbuilding steel excellent in weldability and corrosion resistance - Google Patents

Shipbuilding steel excellent in weldability and corrosion resistance Download PDF

Info

Publication number
JP2007107079A
JP2007107079A JP2005301655A JP2005301655A JP2007107079A JP 2007107079 A JP2007107079 A JP 2007107079A JP 2005301655 A JP2005301655 A JP 2005301655A JP 2005301655 A JP2005301655 A JP 2005301655A JP 2007107079 A JP2007107079 A JP 2007107079A
Authority
JP
Japan
Prior art keywords
corrosion
corrosion resistance
steel material
weldability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301655A
Other languages
Japanese (ja)
Other versions
JP4786995B2 (en
Inventor
Manabu Izumi
学 泉
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005301655A priority Critical patent/JP4786995B2/en
Publication of JP2007107079A publication Critical patent/JP2007107079A/en
Application granted granted Critical
Publication of JP4786995B2 publication Critical patent/JP4786995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shipbuilding steel excellent in weldability and corrosion resistance to such an extent that the steel can be put into practical use without being coated or galvanically protected, more particularly excellent in durability against crevice corrosion and excellent in durability against corrosion even in wet environments including salt adhesion caused by seawater, and exhibiting excellent weldability and corrosion resistance even when applied to tanks for petroleum liquid fuels. <P>SOLUTION: The shipbuilding steel comprises C: 0.01-0.30%, Si: 0.01-2.0%, Mn: 0.01-2.0%, Al:0.005-0.10%, and Se:0.005-0.050%, S: 0.030% (inclusive of 0%), with the balance of Fe and unavoidable impurities and satisfies the formula: [S]+[Se]×(32/79)≤0.030(%), wherein [S] and [Se] are the contents (mass%) of S and Se, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶において、主要な構造材として用いられる船舶用耐食鋼に関するものであり、特に溶接性に優れると共に海水による塩分や恒温多湿に曝される環境下における耐食性に優れ、しかも石油系液体燃料タンクの素材として要求される耐食性および溶接性にも優れた船舶用鋼材に関するものである。   The present invention relates to marine corrosion resistant steel used as a main structural material in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, etc., and is particularly excellent in weldability and exposed to salt and constant temperature and humidity due to seawater. The present invention relates to marine steel materials that are excellent in corrosion resistance under the environment, and also have excellent corrosion resistance and weldability that are required as materials for petroleum-based liquid fuel tanks.

上記各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や恒温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。   Steel materials used as main structural materials (for example, outer plates, ballast tanks, crude oil tanks, etc.) in the above-mentioned various vessels are often corroded because they are exposed to seawater salt and constant temperature and humidity. Since such corrosion may cause marine accidents such as inundation and sinking, it is necessary to apply some anticorrosion means to the steel. Conventionally, (a) coating, (b) cathodic protection, and the like are well known as anticorrosion means used so far.

このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。   Of these, in coatings represented by heavy coating, there is a high possibility that coating film defects exist, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel material corrodes locally and intensively, leading to early leakage of the petroleum-based liquid fuel contained therein.

一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。   On the other hand, in the anti-corrosion, it is very effective for the part completely immersed in the seawater. However, in the part that receives the seawater splash in the atmosphere, the electric circuit necessary for the anticorrosion is not formed, and the anticorrosion. The effect may not be fully demonstrated. In addition, when the galvanic anode for anticorrosion disappears due to abnormal consumption or dropping, severe corrosion may immediately proceed.

上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることによって、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。   In addition to the above technique, for example, a technique as disclosed in Patent Document 1 has been proposed as a means for improving the corrosion resistance of the steel material itself. This technology discloses a corrosion-resistant steel for shipbuilding that has excellent corrosion resistance by appropriately adjusting the chemical composition of the steel material and can be used even without coating. Patent Document 2 discloses a marine steel material having an improved coating film life by making the chemical composition of the steel material appropriate. With these technologies, it can be said that a certain degree of corrosion resistance can be ensured as compared with the prior art.

しかしながら、より厳しい腐食環境下での耐食性については依然として十分なものとはいえず、更なる耐食性向上が要求されることになる。特に、異物と鋼材との接触部分、構造的な理由や防食塗膜の損傷部分等で形成される「すきま」部分における腐食(いわゆるすきま腐食)が顕著になり、寿命を低下させる場合があるが、これまで提案されている技術ではこうした部分における耐食性が不十分である。   However, the corrosion resistance in a more severe corrosive environment is still not sufficient, and further improvement in corrosion resistance is required. In particular, corrosion (so-called crevice corrosion) in the “clearance” portion formed at the contact portion between the foreign material and the steel material, the structural reason, the damaged portion of the anticorrosion coating film, etc. becomes prominent, and the life may be shortened. So far, the proposed techniques have insufficient corrosion resistance in these areas.

ところで、原油タンカーのタンク(石油系液体燃料タンク)における腐食は、鋼板表面に形成されるオイルコートの欠陥部分で顕著に進行し、この欠陥部分は運航時の原油の移動や船体の変形等のよって修復されたり、新たに形成されたりすると考えられる。このために、腐食箇所はある1箇所に集中することなく、鋼材のほぼ全面に亘って発生する。従って、石油系液体燃料タンクの素材として用いられる鋼材については、局部腐食が全面に進展する特殊な腐食環境での耐食性が良好であることが要求されることになる。また、こうした石油系液体燃料タンクにおいても上記のような「すきま腐食」が顕著に生じ、タンク寿命を低下させることがあることから、耐すきま腐食性にも優れていることが要求される。   By the way, corrosion in crude oil tanker tanks (petroleum liquid fuel tanks) proceeds remarkably at the defective part of the oil coat formed on the surface of the steel plate, and this defective part is caused by the movement of crude oil and deformation of the hull during operation. Therefore, it is considered that it is repaired or newly formed. For this reason, a corrosion location does not concentrate on one certain location, but generate | occur | produces over the substantially whole surface of steel materials. Therefore, the steel material used as the raw material for the petroleum-based liquid fuel tank is required to have good corrosion resistance in a special corrosive environment in which local corrosion progresses to the entire surface. Also, in such a petroleum-based liquid fuel tank, the above-mentioned “crevice corrosion” occurs remarkably and the life of the tank may be shortened, so that it is required to have excellent crevice corrosion resistance.

上記のような石油系液体燃料タンクの素材として、その耐食性を向上させたものとして、例えば特許文献3のような技術も提案されている。この技術では、化学成分組成を適切に調整することによって、液体燃料を貯蔵するタンクの素材として有用な耐食鋼が提案されている。この技術においては、全面腐食と共に「すきま腐食」のような局部腐食についても考慮されたものであり、その耐食性は向上したものといえる。しかしながら、こうした鋼材においても近年の要求に耐え得るだけの耐食性を具備したものとはいえない。   As a material for the above-described petroleum-based liquid fuel tank, for example, a technique as disclosed in Patent Document 3 has been proposed as a material having improved corrosion resistance. In this technique, corrosion-resistant steel useful as a material for a tank that stores liquid fuel has been proposed by appropriately adjusting the chemical composition. In this technique, local corrosion such as “crevice corrosion” is considered in addition to overall corrosion, and it can be said that the corrosion resistance is improved. However, these steel materials cannot be said to have sufficient corrosion resistance to withstand recent demands.

また、石油系液体燃料タンクの素材として用いられる鋼材としては、溶接熱影響部(HAZ)靭性に代表される溶接性も良好であることが必要であるが、これまで提案されている技術では、必ずしも良好な溶接性が達成されているとはいえないのが実情である。
特開2000−17381号公報 特許請求の範囲等 特開2002−266052号公報 特許請求の範囲等 特開2001−214236号公報 特許請求の範囲等
In addition, as a steel material used as a raw material for a petroleum-based liquid fuel tank, weldability typified by welding heat-affected zone (HAZ) toughness is required, but in the technology that has been proposed so far, The reality is that good weldability is not always achieved.
JP, 2000-17381, A Claims etc. JP, 2002-266052, A Claims etc. JP, 2001-214236, A Claims etc.

本発明は上記の様な事情に着目してなされたものであって、その目的は、溶接性に優れると共に、塗装や電気防食を施さなくても実用化できる耐食性に優れた造船舶用鋼材、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮し、しかも石油系液体燃料タンクに適用したときにおいても優れた溶接性および耐食性を発揮することのできる船舶用鋼材を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is excellent in weldability and steel material for shipbuilding that is excellent in corrosion resistance that can be put into practical use without being subjected to painting or corrosion protection, in particular. In addition to improving durability against crevice corrosion, it also demonstrates excellent durability against salt adhesion caused by seawater and corrosion due to wet environments, and excellent weldability even when applied to petroleum liquid fuel tanks And it is providing the marine steel material which can exhibit corrosion resistance.

上記目的を達成することのできた本発明の船舶用鋼材とは、C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.01〜2.0%、Mn:0.01〜2.0%、Al:0.005〜0.10%およびSe:0.005〜0.050%を含有する共に、S:0.030%以下(0%を含む)に抑制したものであり、且つ下記(1)式の関係を満足し、残部がFeおよび不可避的不純物からなるものである点に要旨を有するものである。
[S]+[Se]×(32/79)≦0.030(%) …(1)
但し、[S]および[Se]は、夫々SおよびSeの含有量(質量%)を示す。
The marine steel material of the present invention that has achieved the above object is C: 0.01 to 0.30% (meaning of mass%, the same shall apply hereinafter), Si: 0.01 to 2.0%, Mn: 0.01 to 2.0%, Al: 0.005 to 0.10% and Se: 0.005 to 0.050%, and S: 0.030% or less (including 0%) The present invention has the gist that it satisfies the relationship expressed by the following formula (1) and the balance is made of Fe and inevitable impurities.
[S] + [Se] × (32/79) ≦ 0.030 (%) (1)
However, [S] and [Se] indicate the contents (mass%) of S and Se, respectively.

また本発明の造船用鋼材においては、必要によって、(a)Ca:0.0005〜0.0040%、(b)Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上、(c)La:0.0005〜0.15%、Ce:0.0005〜0.15%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上、(d)Mo:0.01〜5.0%、(e)Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%およびTe:0.01〜0.5%よりなる群から選ばれる1種以上、(f)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。   Moreover, in the steel material for shipbuilding of this invention, (a) Ca: 0.0005-0.0040%, (b) Cu: 0.01-5.0%, Cr: 0.01-5.0 as needed. %, Co: 0.01 to 5.0%, Ni: 0.01 to 5.0%, and Ti: 0.005 to 0.20%, (c) La: 0 One or more selected from the group consisting of .0005 to 0.15%, Ce: 0.0005 to 0.15% and Mg: 0.0005 to 0.015%, (d) Mo: 0.01 to 5. 0%, (e) Sb: 0.01-0.5%, As: 0.01-0.5%, Sn: 0.01-0.5%, Bi: 0.01-0.5% and Te: one or more selected from the group consisting of 0.01 to 0.5%, (f) B: 0.0001 to 0.010%, V: 0.01 to 0.50% And Nb: It is also effective to contain one or more selected from the group consisting of 0.003 to 0.50%, etc., and the characteristics of the marine steel materials are further improved according to the type of components to be contained become.

本発明の船舶用鋼材は、石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下において優れた耐食性を発揮すると共に溶接性も良好なものとなる。   Even when the marine steel material of the present invention is used as a material for a petroleum-based liquid fuel tank, it exhibits excellent corrosion resistance and good weldability in the corrosive environment.

本発明の船舶用鋼材においては、Seの含有量をSとの関係で適切に制御しつつ含有させると共に、化学成分組成を適切に調整することによって、Se含有による溶接性低下を防止できると共に、塗装および電気防食を施さなくても実用化できる耐食性に優れた船舶用鋼材が実現でき、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材が実現でき、しかも石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下においても優れた耐食性を発揮するものとなる。こうした船舶用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板としてばかりでなく、バラストタンク、原油タンク等の素材として有用である。   In the marine steel material of the present invention, while containing the Se content while appropriately controlling in relation to S, by appropriately adjusting the chemical component composition, it is possible to prevent deterioration of weldability due to Se content, It is possible to realize marine steel with excellent corrosion resistance that can be put to practical use without painting or cathodic protection, especially to improve durability against crevice corrosion, as well as against salt adhesion caused by seawater and corrosion due to wet environments. A marine steel material exhibiting excellent durability can be realized, and even when used as a material for a petroleum-based liquid fuel tank, excellent corrosion resistance is exhibited even in a corrosive environment. Such steel materials for ships are useful not only as outer plates in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, but also as materials for ballast tanks, crude oil tanks, and the like.

本発明者らは、耐食性に優れた船舶用鋼材の実現を目指してかねてより研究を重ねてきた。その研究の一環として、所定量のSeを含有させると共に、化学成分組成を適切に調整すれば、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材が実現できることを見出し、その技術的意義が認められたので先に出願している(特願平2004−191759号)。しかしながら、Seはその含有量によっては、HAZ靭性が劣化することが判明したのである。   The present inventors have made further studies for the purpose of realizing a marine steel material having excellent corrosion resistance. As part of the research, if a predetermined amount of Se is contained and the chemical composition is appropriately adjusted, the durability against crevice corrosion will be improved, and the adhesion of salt caused by seawater and corrosion due to wet environments will be improved. However, it has been found that a marine steel material exhibiting excellent durability can be realized and its technical significance has been recognized, and has been filed earlier (Japanese Patent Application No. 2004-191759). However, it has been found that depending on the content of Se, the HAZ toughness deteriorates.

HAZ靭性を支配する因子としては、破壊の伝播エネルギーの大小や破壊の発生起点等が考えられる。このうち、破壊の伝播エネルギーはHAZの組織が、および破壊の発生起点はHAZ中の島状マルテンサイトや介在物の存在が夫々関与するものと考えられる。本発明で対象とする船舶用鋼材では、低炭素鋼を基本とし、しかも炭酸ガスアーク溶接法やサブマージアーク溶接法を適用するものであるので、HAZ組織はフェライト+パーライトで且つフェライト粒径が100〜200μmであるので、HAZ靭性に対する影響はそれほどないものと考えられる。また、島状マルテンサイトに関しても、上記条件の下では殆ど発生しないものとなる。   As factors governing HAZ toughness, the magnitude of fracture propagation energy, the origin of fracture, and the like can be considered. Among these, the propagation energy of fracture is considered to be related to the HAZ structure, and the origin of fracture is considered to be related to the presence of island martensite and inclusions in the HAZ. In the marine steel material to be used in the present invention, low carbon steel is basically used, and since the carbon dioxide arc welding method and the submerged arc welding method are applied, the HAZ structure is ferrite + pearlite and the ferrite grain size is 100 to 100. Since it is 200 micrometers, it is thought that there is not so much influence on HAZ toughness. Also, island martensite hardly occurs under the above conditions.

こうしたことから、HAZ靭性に最も影響を与える因子としては、鋼中の介在物があり、特にMnSの存在が影響を及ぼすことになると考えられた。また、耐食性の改善のためにSeを含有させた場合には、Mn−S−Se系の介在物が生成しやすく、これがHAZ靭性に大きく影響を及ぼすことになる。   For these reasons, it was considered that the factors that most affect the HAZ toughness include inclusions in the steel, and in particular, the presence of MnS. Further, when Se is contained for improving the corrosion resistance, Mn—S—Se inclusions are likely to be generated, which greatly affects the HAZ toughness.

そこで、本発明者らは良好なHAZ靭性を維持しつつ優れた耐食性を発揮することのできる船舶用鋼材の実現を目指してされに検討を重ねた。その結果、SとSeの含有量を適切に制御すると共に、これらが所定の関係式[前記(1)式の関係]を満足するように制御してやれば、HAZ靭性に影響を及ぼす介在物の低減が図れ、上記課題を解決することのできる造船用鋼材が実現できることを見出し、本発明を完成した。   Accordingly, the present inventors have repeatedly studied for the purpose of realizing a marine steel material that can exhibit excellent corrosion resistance while maintaining good HAZ toughness. As a result, if the contents of S and Se are appropriately controlled and controlled so as to satisfy a predetermined relational expression [the relation of the above formula (1)], inclusions that affect the HAZ toughness are reduced. As a result, it was found that a steel material for shipbuilding capable of solving the above-mentioned problems was realized, and the present invention was completed.

本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,Al等の基本成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Se、Sによる作用効果と共に、次に示す。   In the steel material of the present invention, basic components such as C, Si, Mn, and Al need to be appropriately adjusted in order to satisfy the basic characteristics as the steel material. The reasons for limiting the ranges of these components will be described below together with the effects of Se and S.

C:0.01〜0.30%
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.30%を超えて過剰に含有させると靱性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.30%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
C: 0.01 to 0.30%
C is an element necessary for ensuring the strength of the material. In order to obtain the minimum strength as a structural member of a ship, that is, about 400 MPa (depending on the thickness of the steel material used), it is necessary to contain 0.01% or more. However, if the content exceeds 0.30%, the toughness deteriorates. For these reasons, the C content range was set to 0.01 to 0.30%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.28%, More preferably, it is good to set it as 0.26% or less.

Si:0.01〜2.0%
Siは脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると溶接性が劣化する。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上とするのが良い。また、Si含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Si: 0.01 to 2.0%
Si is a necessary element for deoxidation and securing strength, and the minimum strength as a structural member cannot be secured unless it is less than 0.01%. However, if the content exceeds 2.0%, the weldability deteriorates. In addition, the minimum with preferable Si content is 0.02%, More preferably, it is good to set it as 0.05% or more. Moreover, the upper limit with preferable Si content is 1.80%, It is good to set it as 1.60% or less more preferably.

Mn:0.01〜2.0%
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Mn: 0.01 to 2.0%
Mn is also necessary for deoxidation and securing strength in the same manner as Si, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.05%, It is good to set it as 0.10% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.80%, More preferably, it is good to set it as 1.60% or less.

Al:0.005〜0.10%
AlもSi、Mnと同様に脱酸および強度確保のために必要であり、0.005%に満たないと脱酸に効果がない。しかし、0.10%を超えて添加すると溶接性を害するため、Al添加量の範囲は0.005〜0.10%とした。尚、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.040%であり、より好ましくは0.050%以下とするのが良い。
Al: 0.005-0.10%
Al is also necessary for deoxidation and securing of strength in the same manner as Si and Mn, and if less than 0.005%, there is no effect on deoxidation. However, if added over 0.10%, the weldability is impaired, so the range of the amount of Al added is set to 0.005 to 0.10%. In addition, the minimum with preferable Al content is 0.010%, It is good to set it as 0.015% or more more preferably. Moreover, the upper limit with preferable Al content is 0.040%, It is good to set it as 0.050% or less more preferably.

Se:0.005〜0.050%
Seは腐食の溶解反応が起こっているサイトのpH低下を抑制して腐食反応を抑制して耐食性を向上させる作用を発揮するものである。こうしたSeを含有させることによって、局部的なpH変化が起こりにくくなるため、腐食均一性が向上する作用がある。また、物質移動が制限されている局所的はpH低下が起こりやすい「すきま部」においては、上記した理由によってその効果(局部腐食抑制効果)が有効に発揮される。こうした環境で要求される耐食性を確保するためには、Seの含有量は0.005%以上とする必要がある。しかしながら、SeはMnSe系介在物(若しくはMn−S−Se系介在物)を生成してHAZ靭性を劣化させるので、0.050%を超えて過剰に含有させると溶接性が劣化する。また、加工性も劣化することになる。したことからSe含有量は、0.005〜0.050%とする必要がある。尚、Se含有量の好ましい下限は0.006%であり、より好ましくは0.008%以上とするのが良い。また、Se含有量の好ましい上限は0.030%であり、より好ましくは0.020%以下とするのが良い。
Se: 0.005 to 0.050%
Se exerts the action of suppressing the pH drop at the site where the dissolution reaction of corrosion occurs to suppress the corrosion reaction and improve the corrosion resistance. Inclusion of such Se makes it difficult for local pH changes to occur, and thus has an effect of improving corrosion uniformity. In addition, in the “gap portion” where the mass transfer is restricted and the pH is likely to decrease, the effect (local corrosion inhibition effect) is effectively exhibited for the reason described above. In order to ensure the corrosion resistance required in such an environment, the Se content needs to be 0.005% or more. However, Se generates MnSe inclusions (or Mn-S-Se inclusions) and degrades HAZ toughness. Therefore, if it is excessively contained in excess of 0.050%, weldability deteriorates. Moreover, workability will also deteriorate. Therefore, the Se content needs to be 0.005 to 0.050%. In addition, the minimum with preferable Se content is 0.006%, More preferably, it is good to set it as 0.008% or more. Moreover, the upper limit with preferable Se content is 0.030%, It is good to set it as 0.020% or less more preferably.

S:0.030%以下(0%を含む)
Sは溶製段階でMnとの介在物を生成し、圧延でこれが伸展されることになる。この介在物は、基地の靭性が高い鋼板の状態では大きな影響を及ぼさないが、基地の靭性が低下するHAZではこの介在物が起点となって脆性破壊を引き起こすことになる。従って、HAZ靭性を良好に維持するためには、MnSの生成を抑制する成分系にする必要があり、そのためには、S含有量は少なくとも0.030%以下に抑制する必要がある。S含有量は好ましくは、0.025%以下にするのが良い。
S: 0.030% or less (including 0%)
S produces inclusions with Mn at the melting stage, and this is extended by rolling. Although this inclusion does not have a great influence in the state of a steel plate having a high base toughness, in the HAZ in which the base toughness is reduced, this inclusion causes a brittle fracture. Therefore, in order to maintain the HAZ toughness satisfactorily, it is necessary to use a component system that suppresses the generation of MnS, and for that purpose, the S content needs to be suppressed to at least 0.030% or less. The S content is preferably 0.025% or less.

[S]+[Se]×(32/79)≦0.030(%)
SeおよびSの含有量が適切であっても、それらの合計の含有量が所定の量を超えると、Mn−S−Se系介在物となってHAZ靭性を劣化することになるので、上記の関係を満足する必要がある。
[S] + [Se] × (32/79) ≦ 0.030 (%)
Even if the content of Se and S is appropriate, if the total content thereof exceeds a predetermined amount, it becomes Mn-S-Se inclusions and deteriorates the HAZ toughness. It is necessary to satisfy the relationship.

本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、P,O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、Zr,N等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。   The basic components in the marine steel of the present invention are as described above, and the balance is composed of iron and inevitable impurities (for example, P, O, etc.), but other than these, the properties of the steel are not impaired. Components (eg, Zr, N, etc.) are also acceptable. However, these allowable components should be suppressed to about 0.1% or less because their toughness deteriorates when the amount is excessive.

また、本発明の船舶用鋼材には、上記成分の他必要によって、(a)Ca:0.0005〜0.0040%、(b)Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上、(c)La:0.0005〜0.15%、Ce:0.0005〜0.15%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上、(d)Mo:0.01〜5.0%、(e)Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%およびTe:0.01〜0.5%よりなる群から選ばれる1種以上、(f)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有あり、含有させる成分の種類に応じて造船用鋼材の特性が更に改善されることになる。   Further, the marine steel material of the present invention may include (a) Ca: 0.0005 to 0.0040%, (b) Cu: 0.01 to 5.0%, Cr: 0.0. One or more selected from the group consisting of 01 to 5.0%, Co: 0.01 to 5.0%, Ni: 0.01 to 5.0% and Ti: 0.005 to 0.20%; c) one or more selected from the group consisting of La: 0.0005 to 0.15%, Ce: 0.0005 to 0.15% and Mg: 0.0005 to 0.015%, (d) Mo: 0 0.01-5.0%, (e) Sb: 0.01-0.5%, As: 0.01-0.5%, Sn: 0.01-0.5%, Bi: 0.01- One or more selected from the group consisting of 0.5% and Te: 0.01-0.5%, (f) B: 0.0001-0.010%, V: 0.01-0 One or more selected from the group consisting of 50% and Nb: 0.003 to 0.50% may be included, and the characteristics of the steel material for shipbuilding are further improved depending on the type of component to be included. It will be.

Ca:0.0005〜0.0040%
Caは介在物の球状化を促進するのに有効な元素であり、介在物が球状化されることによってHA靭性が改善されることになる。こうした効果を発揮させるためには、0.0005%以上含有させることが好ましい。しかしながら、Ca含有量が過剰になると、CaOの介在物を生成し、鋼材の清浄度を低下させるのでので、その含有量は0.0040%以下にすることが好ましい。尚、Ca含有量のより好ましい下限は0.0030%であり、より好ましい上限は0.0035%である。
Ca: 0.0005 to 0.0040%
Ca is an element effective for promoting the spheroidization of inclusions, and the HA toughness is improved by spheroidizing the inclusions. In order to exhibit such an effect, it is preferable to contain 0.0005% or more. However, if the Ca content is excessive, CaO inclusions are generated and the cleanliness of the steel material is lowered. Therefore, the content is preferably 0.0040% or less. In addition, the more preferable minimum of Ca content is 0.0030%, and a more preferable upper limit is 0.0035%.

Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上
Cu,Cr,Co,NiおよびTiは、いずれも耐食性向上に有効な元素である。このうちCu,CrおよびCoは、耐食性向上に大きく寄与する緻密な表面錆被膜を形成するのに有効な元素である。またCoは、高塩分環境において有効な元素である。これらの元素による効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると溶接性や熱間加工性が劣化することから、5.0%以下とすることが好ましい。Cu,CrおよびCoを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。
Cu: 0.01-5.0%, Cr: 0.01-5.0%, Co: 0.01-5.0%, Ni: 0.01-5.0% and Ti: 0.005- One or more selected from the group consisting of 0.20% Cu, Cr, Co, Ni and Ti are all effective elements for improving corrosion resistance. Among these, Cu, Cr and Co are effective elements for forming a dense surface rust film that greatly contributes to the improvement of corrosion resistance. Co is an effective element in a high salinity environment. In order to exert the effect of these elements, it is preferable to contain 0.01% or more of all, but if contained excessively, weldability and hot workability deteriorate, so 5.0% or less. It is preferable to do. A more preferable lower limit when Cu, Cr and Co are contained is 0.05%, and a more preferable upper limit is 4.50%.

Niは耐食性向上に大きく寄与する緻密な表面錆被膜を安定化させるのに有効な元素であり、こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると溶接性や熱間加工性が劣化することから、5.0%以下とすることが好ましい。Niを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。   Ni is an element effective for stabilizing a dense surface rust film that greatly contributes to the improvement of corrosion resistance. In order to exert such an effect, it is preferably contained in an amount of 0.01% or more. However, if the Ni content is excessive, weldability and hot workability deteriorate, so 5.0% or less is preferable. The more preferable lower limit when Ni is contained is 0.05%, and the more preferable upper limit is 4.50%.

Tiは耐食性向上に大きく寄与する表面錆被膜を緻密化してその環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。こうした環境下で要求される耐食性を確保するためには、0.005%以上含有させることが好ましいが、0.20%を超えて過剰に含有させると加工性と溶接性を劣化させることになる。Tiを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.15%である。   Ti is an element that densifies the surface rust coating, which greatly contributes to the improvement of corrosion resistance, improves its environmental barrier properties, suppresses corrosion inside the crevice, and improves crevice corrosion resistance. In order to ensure the corrosion resistance required in such an environment, it is preferable to contain 0.005% or more. However, if it exceeds 0.20%, workability and weldability are deteriorated. . The more preferable lower limit when Ti is contained is 0.008%, and the more preferable upper limit is 0.15%.

La:0.0005〜0.15%、Ce:0.0005〜0.15%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上
これらの元素は、腐食によって溶解したFeイオンの加水分解によるpH低下を抑制する作用を有しており、またに必要によって含有されるCu等による錆緻密化を促進し、Seによる局所pH低下抑制作用を更に高める働きがある。こうした作用は、これらの元素の1種以上を0.0005%以上含有させることによって有効に発揮される。しかしながら、LaおよびCeについては、0.15%、Mgについては0.015%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。尚、La,Ceを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.10%である。またMgを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.010%である。
One or more elements selected from the group consisting of La: 0.0005 to 0.15%, Ce: 0.0005 to 0.15% and Mg: 0.0005 to 0.015% were dissolved by corrosion. It has an action of suppressing pH reduction due to Fe ion hydrolysis, and also promotes rust densification by Cu or the like contained if necessary, and further enhances local pH reduction suppression action by Se. Such an effect is effectively exhibited by containing at least 0.0005% of one or more of these elements. However, if La and Ce are contained in excess of 0.15% and Mg exceeds 0.015%, workability and weldability are deteriorated. In addition, a more preferable lower limit when containing La and Ce is 0.0010%, and a more preferable upper limit is 0.10%. Moreover, a more preferable lower limit when Mg is contained is 0.0010%, and a more preferable upper limit is 0.010%.

Mo:0.01〜5.0%
Moは、腐食の均一性を高めて局部腐食による穴あきを抑制する作用がある。特にCu,Cr,Co等と同時に含有させることによって、顕著な均一腐食性向上作用が発揮される。こうした効果を発揮させるためには、Moは0.01%以上含有させることが好ましいが、過剰に含有させると溶接性が劣化することから、5.0%以下とすることが好ましい。Moを含有させるときのより好ましい下限は0.02%であり、より好ましい上限は4.50%である。
Mo: 0.01-5.0%
Mo has the effect of increasing the uniformity of corrosion and suppressing perforations due to local corrosion. In particular, by containing Cu, Cr, Co, etc. at the same time, a remarkable uniform corrosion improvement effect is exhibited. In order to exhibit these effects, Mo is preferably contained in an amount of 0.01% or more. However, if excessively contained, the weldability is deteriorated, so 5.0% or less is preferable. The more preferable lower limit when Mo is contained is 0.02%, and the more preferable upper limit is 4.50%.

Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%およびTe:0.01〜0.5%よりなる群から選ばれる1種以上
これらの元素は、Cu等による錆緻密化作用やLa等によるpH低下作用を助長して耐食性を向上させる元素である。こうした作用を発揮させるためには、いずれも0.01%以上含有させることが好ましいは、過剰に含有させると加工性と溶接性が劣化することから、0.5%以下とすることが好ましい。これらの元素を含有させるときのより好ましい下限はいずれも0.02%であり、より好ましい上限は0.40%である。
Sb: 0.01-0.5%, As: 0.01-0.5%, Sn: 0.01-0.5%, Bi: 0.01-0.5% and Te: 0.01- One or more elements selected from the group consisting of 0.5% are elements that enhance corrosion resistance by promoting rust densification by Cu or the like and pH lowering action by La or the like. In order to exert such an effect, it is preferable to contain 0.01% or more in any case. However, if excessively contained, workability and weldability deteriorate, so 0.5% or less is preferable. The more preferable lower limit when these elements are contained is 0.02%, and the more preferable upper limit is 0.40%.

B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上
船舶用鋼材では、適用する部位によってはより高強度化が必要な場合があるが、これらの元素は強度向上に必要な元素である。このうちBは、0.0001%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.010%を超えて過剰に勧誘させると母材靭性が劣化するため好ましくない。Vは、0.01%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになるので好ましくない。Nbは、0.003%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになる。尚、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.02%、Nbについては0.005%である。またより好ましい上限はBについては0.0090%、Vについては0.45%、Nbについては0.45%である。
In one or more marine steel materials selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50%, and Nb: 0.003 to 0.50% , depending on the portion to be applied In some cases, higher strength is required, but these elements are necessary for strength improvement. Of these, B is contained in an amount of 0.0001% or more, which improves the hardenability and is effective in improving the strength. However, excessively soliciting exceeding 0.010% deteriorates the base material toughness, which is not preferable. . V is effective for improving the strength by containing 0.01% or more, but if it exceeds 0.50%, it is not preferable because it causes toughness deterioration of the steel material. Nb is effective for improving the strength by containing 0.003% or more, but if it exceeds 0.50% and it is contained excessively, the toughness of the steel will be deteriorated. More preferable lower limits of these elements are 0.0003% for B, 0.02% for V, and 0.005% for Nb. The more preferable upper limit is 0.0090% for B, 0.45% for V, and 0.45% for Nb.

本発明の船舶用鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、後記実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。   The marine steel material of the present invention basically exhibits excellent corrosion resistance even if it is not coated, but if necessary, the tar epoxy resin paint shown in the examples below, or other than that It can be used in combination with other anticorrosion methods such as heavy duty anticorrosion coating, zinc rich paint, shop primer, and anticorrosion. When such anticorrosion coating is applied, the corrosion resistance of the coating film itself (coating corrosion resistance) is also good as shown in the examples described later.

また本発明の鋼材では、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材が実現できるが、石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下においても優れた耐食性を発揮するものとなる。   In addition, the steel material of the present invention can realize a marine steel material that exhibits excellent durability against salt adhesion caused by seawater and corrosion due to a wet environment, but when used as a material for petroleum-based liquid fuel tanks. Even if it exists, it will exhibit excellent corrosion resistance even in the corrosive environment.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
下記表1、2に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造および熱間圧延により各種鋼板を製作した。得られた鋼板を切断および表面研削を行って、最終的に300×300×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図1に示す。
Example 1
Steel materials having the chemical composition shown in the following Tables 1 and 2 were melted in a converter, and various steel plates were produced by continuous casting and hot rolling. The obtained steel plate was cut and subjected to surface grinding to finally produce a test piece having a size of 300 × 300 × 25 (mm) (test piece A). The external shape of the test piece A is shown in FIG.

Figure 2007107079
Figure 2007107079

Figure 2007107079
Figure 2007107079

また、図2に示すように60×60×5(mm)の小試験片4個を、300×300×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に10mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M8プラスチック製ねじで固定した。   Further, as shown in FIG. 2, four small test pieces of 60 × 60 × 5 (mm) are brought into contact with a large test piece of 300 × 300 × 25 (mm) (the same as the test piece A), A test piece B having a clearance was formed. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece A. Then, a 10 mmφ hole was formed in the center of the small test piece, and a screw hole was made on the base material side (large test piece side), and fixed with an M8 plastic screw.

更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図3)も用いた。そして防食のための塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、試験片Cの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。   Further, a test piece C (FIG. 3) on which an entire thickness of 250 μm thick tar epoxy resin coating (undercoating: zinc rich primer) was applied was used. Then, in order to investigate the degree of corrosion progress when the base steel material is exposed due to scratches on the anticorrosion coating film, the cut surface reaching the base on one side of the test piece C (length: 100 mm, width: about 0) 0.5 mm) was formed with a cutter knife.

前記表1、2に示した各化学成分組成の供試材について、試験片A、試験片Bおよび試験片Cを夫々5個ずつ用い腐食試験に供した。このときの腐食試験方法(実船暴露試験)は次の通りである。   About the test material of each chemical component composition shown in the said Table 1, 2, the test piece A, the test piece B, and five test pieces C were used for the corrosion test, respectively. The corrosion test method (actual ship exposure test) at this time is as follows.

[腐食試験方法]
作製した供試材(各試験片A〜C)を、VLCC原油タンカーの内面の底板、壁面および上甲板裏に取り付けて、5年間の通常運航の後、各供試材の腐食状況を調査した。底板および甲板裏には、試験片AおよびBを5個ずつ、壁面には試験片AおよびCを5個ずつ暴露した。
[Corrosion test method]
The prepared specimens (each specimen A to C) were attached to the inner bottom plate, wall and upper deck of the VLCC crude oil tanker, and after five years of normal operation, the corrosion status of each specimen was investigated. . Five test pieces A and B were exposed on the bottom plate and the back of the deck, and five test pieces A and C were exposed on the wall surface.

5年間の暴露後に、試験片Aについては、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物の除去を行った。また、試験片Bについても、すきま形成用の小試験片を取り外し、同様の方法で腐食生成物の除去を行った。
(1)試験片Aについては、試験前後の重量変化を平均板厚減少量D-ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD-max(mm)を求め、平均板厚減少量[D-ave(mm)]で規格化して(即ち、D-max/D-aveを算出して)、腐食均一性を評価した。
(2)試験片Bについては、触針式三次元形状測定装置を用いて大試験片側の最大すきま腐食深さD-crev(mm)を測定した。
(3)塗装処理を施した試験片C(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅(mm))をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。
After exposure for 5 years, the test piece A was subjected to removal of corrosion products such as iron rust by the cathodic electrolysis method in diammonium hydrogen citrate aqueous solution [JIS K8284]. For test piece B, the small test piece for forming the gap was removed, and the corrosion products were removed in the same manner.
(1) For test piece A, the weight change before and after the test is converted into the average thickness reduction D-ave (mm), the average value of the five test pieces is calculated, and the overall corrosivity of each specimen is calculated. Evaluated. Further, the maximum erosion depth D-max (mm) of the test piece A is obtained using a stylus type three-dimensional shape measuring apparatus, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, D-max / D-ave was calculated) and corrosion uniformity was evaluated.
(2) For test piece B, the maximum crevice corrosion depth D-crev (mm) on the large test piece side was measured using a stylus type three-dimensional shape measuring apparatus.
(3) For test piece C (with cut flaws) that has been subjected to coating treatment, measure the swollen width (mm) of the coating film perpendicular to the cut flaws with a vernier caliper, and determine the maximum swollen width of the five test pieces. Defined.

上記耐全面腐食性(平均板減少量:D-ave)、腐食均一性(D-max/D-ave)、耐すきま腐食性(D-crev)、塗装耐食性(最大膨れ幅)の評価基準は下記表3に示す通りである。腐食試験結果を下記表4に示す。   Evaluation criteria for the above-mentioned overall corrosion resistance (average plate reduction: D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), and coating corrosion resistance (maximum swollen width) are It is as shown in Table 3 below. The corrosion test results are shown in Table 4 below.

また、各鋼板素地鋼板について、溶接性(HAZ靭性)について、下記の方法によって評価した。その結果を、下記表4に併記する。   Moreover, about each steel plate base steel plate, the weldability (HAZ toughness) was evaluated by the following method. The results are also shown in Table 4 below.

[HAZ靭性]
入熱量7KJ/mmの両面サブマージアーク溶接(SAW)を行い(X開先)、HAZ部からシャルピー衝撃試験片(JIS Z 2204 4号)を採取し、0℃における衝撃吸収エネルギーvEを求めた(3回試験)。vEが41J以上を合格とした。
[HAZ toughness]
Double-sided submerged arc welding (SAW) with a heat input of 7 KJ / mm was performed (X groove), and Charpy impact test pieces (JIS Z 2204 No. 4) were collected from the HAZ part, and the impact absorption energy vE 0 at 0 ° C. was determined. (Triple test). A vE 0 of 41 J or more was considered acceptable.

Figure 2007107079
Figure 2007107079

Figure 2007107079
Figure 2007107079

また、これらの結果に基づき、前記(1)式の左辺の値{[S]+[Se]×(32/79)}と衝撃吸収エネルギーvEの関係を図4(表1の成分系1〜3)および図5(表2の成分系4〜6)に示すが、[S]+[Se]×(32/79)の値を適切な範囲に制御することによって、良好なHAZ靭性が確保できていることが分かる。また、これら鋼板(表4のNo.2〜5、7〜26)では、良好な耐食性も発揮するものであり、原油タンク耐食鋼として好適に用いることができるものである。 Based on these results, the relationship between the value {[S] + [Se] × (32/79)} on the left side of the equation (1) and the impact absorption energy vE 0 is shown in FIG. 4 (component system 1 in Table 1). To 3) and FIG. 5 (component systems 4 to 6 in Table 2). By controlling the value of [S] + [Se] × (32/79) to an appropriate range, good HAZ toughness is obtained. It can be seen that it is secured. Moreover, these steel plates (Nos. 2 to 5 and 7 to 26 in Table 4) exhibit good corrosion resistance and can be suitably used as crude oil tank corrosion resistant steel.

実施例の耐食性試験に用いた試験片Aの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece A used for the corrosion resistance test of the Example. 実施例の耐食性試験に用いた試験片Bの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece B used for the corrosion resistance test of the Example. 実施例の耐食性試験に用いた試験片Cの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece C used for the corrosion resistance test of the Example. 表1の成分系1〜3における{[S]+[Se]×(32/79)}と衝撃吸収エネルギーvEの関係を示すグラフである。7 is a graph showing the relationship between {[S] + [Se] × (32/79)} and impact absorption energy vE 0 in component systems 1 to 3 in Table 1. 表2の成分系4〜6における{[S]+[Se]×(32/79)}と衝撃吸収エネルギーvEの関係を示すグラフである。7 is a graph showing the relationship between {[S] + [Se] × (32/79)} and impact absorption energy vE 0 in component systems 4 to 6 in Table 2.

Claims (8)

C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.01〜2.0%、Mn:0.01〜2.0%、Al:0.005〜0.10%およびSe:0.005〜0.050%を含有する共に、S:0.030%以下(0%を含む)に抑制したものであり、且つ下記(1)式の関係を満足し、残部がFeおよび不可避的不純物からなるものであることを特徴とする溶接性および耐食性に優れた船舶用鋼材。
[S]+[Se]×(32/79)≦0.030(%) …(1)
但し、[S]および[Se]は、夫々SおよびSeの含有量(質量%)を示す。
C: 0.01-0.30% (meaning of mass%, the same applies hereinafter), Si: 0.01-2.0%, Mn: 0.01-2.0%, Al: 0.005-0. 10% and Se: 0.005 to 0.050%, S: 0.030% or less (including 0%), and satisfying the relationship of the following formula (1), A marine steel material excellent in weldability and corrosion resistance, wherein the balance is made of Fe and inevitable impurities.
[S] + [Se] × (32/79) ≦ 0.030 (%) (1)
However, [S] and [Se] indicate the contents (mass%) of S and Se, respectively.
更に、Ca:0.0005〜0.0040%を含有するものである請求項1に記載の船舶用鋼材。   The marine steel material according to claim 1, further comprising Ca: 0.0005 to 0.0040%. 更に、Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上を含有する請求項1または2に記載の船舶用鋼材。   Furthermore, Cu: 0.01-5.0%, Cr: 0.01-5.0%, Co: 0.01-5.0%, Ni: 0.01-5.0% and Ti: 0.0. The marine steel material of Claim 1 or 2 containing 1 or more types chosen from the group which consists of 005 to 0.20%. 更に、La:0.0005〜0.15%、Ce:0.0005〜0.15%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上を含有する請求項1〜3のいずれかに記載の船舶用鋼材。   Furthermore, it contains at least one selected from the group consisting of La: 0.0005 to 0.15%, Ce: 0.0005 to 0.15% and Mg: 0.0005 to 0.015%. 4. The marine steel material according to any one of 3 above. 更に、Mo:0.01〜5.0%を含有する請求項1〜4のいずれかに記載の船舶用鋼材。   Furthermore, the marine steel material in any one of Claims 1-4 containing Mo: 0.01-5.0%. 更に、Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%およびTe:0.01〜0.5%よりなる群から選ばれる1種以上を含有する請求項1〜5のいずれかに記載の船舶用鋼材。   Further, Sb: 0.01 to 0.5%, As: 0.01 to 0.5%, Sn: 0.01 to 0.5%, Bi: 0.01 to 0.5%, and Te: 0.0. The marine steel material according to any one of claims 1 to 5, comprising one or more selected from the group consisting of 01 to 0.5%. 更に、B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上を含有する請求項1〜6のいずれかに記載の船舶用鋼材。   Furthermore, it contains at least one selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50% and Nb: 0.003 to 0.50%. The marine steel material according to any one of 6. 石油系液体燃料タンクの素材として用いられるものである請求項1〜7のいずれかに記載の船舶用鋼材。   The steel material for ships according to any one of claims 1 to 7, which is used as a material for a petroleum liquid fuel tank.
JP2005301655A 2005-10-17 2005-10-17 Marine steel with excellent weldability and corrosion resistance Expired - Fee Related JP4786995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301655A JP4786995B2 (en) 2005-10-17 2005-10-17 Marine steel with excellent weldability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301655A JP4786995B2 (en) 2005-10-17 2005-10-17 Marine steel with excellent weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2007107079A true JP2007107079A (en) 2007-04-26
JP4786995B2 JP4786995B2 (en) 2011-10-05

Family

ID=38033171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301655A Expired - Fee Related JP4786995B2 (en) 2005-10-17 2005-10-17 Marine steel with excellent weldability and corrosion resistance

Country Status (1)

Country Link
JP (1) JP4786995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451543A (en) * 2013-09-10 2013-12-18 内蒙古包钢钢联股份有限公司 Oil casing for ultra-deep well and production technology thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527319A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Steel for 50 kjoule/cm heavy heat input self-welding
JPS5231917A (en) * 1975-09-08 1977-03-10 Kawasaki Steel Corp Manufacturing method of structural steel, having superior welding prop erty of large heat input
JPS5242416A (en) * 1975-10-01 1977-04-02 Nippon Steel Corp Rust proofing steel plate
JPS5947364A (en) * 1982-09-08 1984-03-17 Nippon Kokan Kk <Nkk> Steel for electric welded steel pipe with groove corrosion resistance
JPS63270444A (en) * 1986-12-16 1988-11-08 Kawasaki Steel Corp Steel for line pipe having excellent sour resistance
JP2005023421A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Crude oil oil tank having welded joint excellent in corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527319A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Steel for 50 kjoule/cm heavy heat input self-welding
JPS5231917A (en) * 1975-09-08 1977-03-10 Kawasaki Steel Corp Manufacturing method of structural steel, having superior welding prop erty of large heat input
JPS5242416A (en) * 1975-10-01 1977-04-02 Nippon Steel Corp Rust proofing steel plate
JPS5947364A (en) * 1982-09-08 1984-03-17 Nippon Kokan Kk <Nkk> Steel for electric welded steel pipe with groove corrosion resistance
JPS63270444A (en) * 1986-12-16 1988-11-08 Kawasaki Steel Corp Steel for line pipe having excellent sour resistance
JP2005023421A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Crude oil oil tank having welded joint excellent in corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451543A (en) * 2013-09-10 2013-12-18 内蒙古包钢钢联股份有限公司 Oil casing for ultra-deep well and production technology thereof

Also Published As

Publication number Publication date
JP4786995B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP2012077378A (en) Welded joint excellent in corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP2013044020A (en) Corrosion resistant steel material for ship ballast tank
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
JP2007070677A (en) Steel material having superior various corrosion-resistance for ship, and welded structure
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP6260755B1 (en) Steel for ship ballast tank and ship
JP4659626B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP4763468B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4786995B2 (en) Marine steel with excellent weldability and corrosion resistance
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4728129B2 (en) Marine steel with excellent corrosion resistance and toughness
JP2006118002A (en) Steel material for oil tank
JP4476926B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP5629279B2 (en) Welded joints and welded structures with excellent corrosion resistance
JP4476927B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4502950B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4502949B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4786995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees