JP2007103763A - High withstand voltage power semiconductor device structure and manufacturing method therefor - Google Patents

High withstand voltage power semiconductor device structure and manufacturing method therefor Download PDF

Info

Publication number
JP2007103763A
JP2007103763A JP2005293386A JP2005293386A JP2007103763A JP 2007103763 A JP2007103763 A JP 2007103763A JP 2005293386 A JP2005293386 A JP 2005293386A JP 2005293386 A JP2005293386 A JP 2005293386A JP 2007103763 A JP2007103763 A JP 2007103763A
Authority
JP
Japan
Prior art keywords
layer
forming
type
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005293386A
Other languages
Japanese (ja)
Inventor
Saburo Okumura
三郎 奥村
Yoshikazu Nishimura
良和 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2005293386A priority Critical patent/JP2007103763A/en
Publication of JP2007103763A publication Critical patent/JP2007103763A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure that enables a high withstand voltage power semiconductor device to be manufactured inexpensively. <P>SOLUTION: This power semiconductor device (MOS transistor, diode) provides the main function via a first main electrode (emitter, anode area) and a second main electrode (cathode, collector area) corresponding to the first main electrode. In this semiconductor device, the first main electrode to be formed on the n<SP>-</SP>-type semiconductor layer and the n<SP>+</SP>-type separation area 14 to be circularly formed enclosing a cell area near that electrode within an n<SP>-</SP>-type semiconductor layer are formed in a portion to be formed as a unit device periphery after dicing from the top surface of the n<SP>-</SP>-type semiconductor layer until they reach at least a depth dimension of thickness dimension of the n<SP>-</SP>-type semiconductor layer, wherein the n<SP>+</SP>-type separation area 14 is not a channel stopper. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,耐圧を改善したパワー半導体デバイスの構造に関し,安価に製造出来るようにしたデバイスの構造と製造方法に関する。   The present invention relates to a power semiconductor device structure with improved breakdown voltage, and to a device structure and a manufacturing method that can be manufactured at low cost.

IGBT素子の耐圧向上に関する技術文献として特許文献1がある。   There is Patent Document 1 as a technical document regarding the breakdown voltage improvement of the IGBT element.

特許文献1の(段落0002)に次の記述がある。「このIGBTのセル領域(MOSFET一つに相当する領域)の終端部の高耐圧化手段として、従来は一般的に素子のセル領域外周部にガードリング構造が設けられている。このガードリング構造により電界が階段状になり耐圧が向上する。図3(本願の図2に記した)にガードリング構造を有する従来のIGBT素子の主な断面図を示す。」
(段落0003)に次の記述がある。「図3(本願の図2に記した)で、ドレイン電極1とソース電極9との間に電圧サージが印加され、第三半導体層7と第二半導体層3とからなるpn接合2が逆バイアス状態になり、高抵抗の第二半導体層3に空乏層(図示しない)が広がる状況を考える。ここで、第三及び第四半導体層が複数配置されたセル領域(以下A領域と呼ぶ)つまり隣合う第三半導体層とその間に位置する第二半導体層領域では、隣合う第三半導体層7からその間に位置する第二半導体層領域に向けて接近するように空乏層が伸び、互いに重なる事により電界の緩和が達成される。そして第三半導体層の底部のpn接合部で最大の電界値EA をとる。一方、第三半導体層の繰り返し配置が終わるA領域の終端では上記電界緩和効果がなくなり、終端の第三半導体層のコ−ナ−部ないし第三半導体近傍の第二半導体層表面で最大電界値EB をとり、一般にEA <EB となる。それでEB 値を減少させEA 値に近付けて、A領域の終端から第二半導体層の終端に至る領域(以下B領域と呼ぶ)の耐圧を向上するために、B領域に一つ以上の第五半導体層を設けてB領域の最大電界値EB を小さくするため、ガ−ドリング構造が一般的に使われる。また第五半導体層に加え、第五半導体層の一部と接触部を有し、第二半導体層上に絶縁膜を介して延在する金属膜、いわゆるフィ−ルドプレ−トを設ける場合もある」と、記述されている。(注、図2の18がフィ−ルドプレ−ト、6が第五半導体層のp層でフィールドリミティングリングFLRである)但し,ここでB領域とは,セル領域(主機能の作用部位、A領域)の終端から第二半導体層3の終端(ダイシングしたチップの周縁)に至る領域のことでありガードリング領域を言う。
Patent Document 1 (paragraph 0002) has the following description. “As a means for increasing the withstand voltage at the end of the IGBT cell region (a region corresponding to one MOSFET), a guard ring structure is generally provided on the outer periphery of the cell region of the element. As a result, the electric field becomes stepped and the breakdown voltage is improved.The main cross-sectional view of a conventional IGBT element having a guard ring structure is shown in FIG.
(Paragraph 0003) has the following description. “In FIG. 3 (described in FIG. 2 of the present application), a voltage surge is applied between the drain electrode 1 and the source electrode 9, and the pn junction 2 composed of the third semiconductor layer 7 and the second semiconductor layer 3 is reversed. Consider a situation in which a depletion layer (not shown) spreads in the high resistance second semiconductor layer 3 in a biased state, where a cell region (hereinafter referred to as an A region) in which a plurality of third and fourth semiconductor layers are arranged. That is, in the adjacent third semiconductor layer and the second semiconductor layer region positioned therebetween, the depletion layers extend from the adjacent third semiconductor layer 7 toward the second semiconductor layer region positioned therebetween and overlap each other. As a result, electric field relaxation is achieved, and the maximum electric field value E A is obtained at the pn junction at the bottom of the third semiconductor layer, while the electric field relaxation is performed at the end of the region A where the repeated arrangement of the third semiconductor layer ends. Terminated third semiconductor layer, no effect Co - Na -. Take part to the maximum electric field value at the second surface of the semiconductor layer of the third semiconductor vicinity E B, generally the E A <E B So close to the E A value decreases the E B value, A region In order to improve the breakdown voltage of a region (hereinafter referred to as B region) from the end of the second semiconductor layer to the end of the second semiconductor layer, one or more fifth semiconductor layers are provided in the B region and the maximum electric field value E B of the B region is increased. In order to reduce the size, a guarding structure is generally used, and in addition to the fifth semiconductor layer, it has a contact portion with a part of the fifth semiconductor layer and extends over the second semiconductor layer via an insulating film. In some cases, a so-called field plate may be provided. " (Note, 18 in FIG. 2 is a field plate, and 6 is a p-layer of the fifth semiconductor layer and is a field limiting ring FLR). However, here, the B region is a cell region (acting site of main function, A region from the end of (A region) to the end of the second semiconductor layer 3 (periphery of the diced chip), which is a guard ring region.

「特開平07−115189」公報。「絶縁ゲート型バイポーラトランジスタ」Japanese Patent Laid-Open No. 07-115189. "Insulated Gate Bipolar Transistor"

しかし、特許文献1のような従来の構造ではFLRの周囲に電圧を荷担する為の寸法を確保する必要があったので耐電圧向上のガードリングの為に面積が大きく費やされており、半導体装置の主機能の作用には寄与しないチップ面積が広くて、一枚のウエハからダイシングしたチップの取れる数が少なくなるためチップ1個当たりのコストが高く、目標コストが達成できる安価なパワー半導体デバイスを製作することが出来なかった。   However, in the conventional structure such as Patent Document 1, it is necessary to secure a dimension for carrying a voltage around the FLR, so that a large area is spent for a guard ring for improving a withstand voltage. An inexpensive power semiconductor device that has a large chip area that does not contribute to the operation of the main function of the apparatus, and the number of chips that can be diced from one wafer is reduced, so that the cost per chip is high and the target cost can be achieved. Could not be produced.

耐圧の高いパワー半導体デバイスが,安価に生産できるような方法で完成させる事が出来て,量産に適した半導体デバイス構造と製造方法にすることがこの発明の目的である。   It is an object of the present invention to make a semiconductor device structure and manufacturing method suitable for mass production so that a power semiconductor device having a high withstand voltage can be completed by a method that can be produced at low cost.

チップ寸法のうち耐電圧向上の為に費やされる面積(B領域)を小さくしても、耐電圧の向上が可能であるパワー半導体デバイスの構造を見つけだす事が課題である。   It is a problem to find a structure of a power semiconductor device that can improve the withstand voltage even if the area (B region) spent for improving the withstand voltage is reduced among the chip dimensions.

請求項1に関しては、上記課題を解決するために下面にコレクタ電極を有するn+型半導体基板(第一層)と,該基板上にエピタキシャル成長させたn-型の第二層と,第二層に接続された主電極(エミッタ電極)および制御電極の直下部に形成されるセル領域を有し,該制御電極に入力される電圧に応じてコレクタ電極に流れる電流が制御されるパワー半導体デバイス又は、上記課題を解決するために下面にコレクタ電極を有する第1導電型(p型)半導体基板(第1層)と,該基板上にエピタキシャル成長させた第2導電型(n+)の第2層と,第2層上に形成されたn-層の第3層に接続された主電極(エミッタ電極)と制御電極の直下部とで形成されるセル領域を有し,該制御電極に入力される電圧に応じてコレクタ電極に流れる電流が制御されるパワー半導体デバイス、において,前記エミッタ電極を有するn-層上面から下面方向に伸びて,セル領域を囲む形状に、少なくともn-層の厚さ寸法(例えば55μm)の深さ迄、n+型分離領域を設けたことを特徴とするコレクタウォール構造のパワー半導体デバイスの構造とした。   In order to solve the above problem, an n + type semiconductor substrate (first layer) having a collector electrode on the lower surface, an n − type second layer epitaxially grown on the substrate, and a second layer A power semiconductor device having a cell region formed immediately below the main electrode (emitter electrode) connected to the control electrode and the control electrode, and a current flowing through the collector electrode controlled according to a voltage input to the control electrode, or In order to solve the above problems, a first conductivity type (p-type) semiconductor substrate (first layer) having a collector electrode on the lower surface and a second conductivity type (n +) second layer epitaxially grown on the substrate And a cell region formed by a main electrode (emitter electrode) connected to the third layer of the n− layer formed on the second layer and a portion immediately below the control electrode, and input to the control electrode The current flowing through the collector electrode is controlled according to the voltage In the power semiconductor device to be controlled, n extends from the upper surface of the n-layer having the emitter electrode toward the lower surface and surrounds the cell region, at least to a depth of the thickness dimension of the n-layer (for example, 55 μm). A power semiconductor device structure with a collector wall structure characterized by providing a + -type isolation region.

請求項2に関しては、n+型の半導体基板(第一層)と,該基板上にエピタキシャル成長させたn-型の第二層と,該n-型の第二層に接続された第1主電極と該基板に設けた第2主電極を備え,第1主電極直下部の第二層に形成されるセル領域を有し,該電極間に印加された交流を整流するパワー半導体デバイスにおいて,または第1導電型(p型)の半導体基板(第一層)と,該基板上にエピタキシャル成長させた第2導電型(n+)の第二層と,第二層上に形成されたn-層の第三層に接続された第1主電極と該基板に設けた第2主電極を備え,第1主電極直下部の第三層に形成されるセル領域を有し,該電極間に印加された交流を整流するパワー半導体デバイスにおいて,前記第1主電極を有するn-層上面から下面方向に伸びて,セル領域を囲む形状に、少なくともn-層厚み寸法にn+型分離領域が設けられたことを特徴とする縦型構造のパワー半導体デバイスの構造とした。   With respect to claim 2, an n + type semiconductor substrate (first layer), an n − type second layer epitaxially grown on the substrate, and a first main body connected to the n − type second layer In a power semiconductor device comprising an electrode and a second main electrode provided on the substrate, having a cell region formed in a second layer immediately below the first main electrode, and rectifying an alternating current applied between the electrodes, Alternatively, a first conductivity type (p-type) semiconductor substrate (first layer), a second conductivity type (n +) second layer epitaxially grown on the substrate, and an n− formed on the second layer. A first main electrode connected to the third layer of the layer and a second main electrode provided on the substrate, and having a cell region formed in the third layer immediately below the first main electrode, between the electrodes In a power semiconductor device that rectifies an applied alternating current, a cell region extends from the upper surface of the n − layer having the first main electrode toward the lower surface. A shape surrounding, has a structure of the power semiconductor devices of the vertical structure, characterized in that the n + -type isolation region is provided at least on the n- layer thickness.

請求項3に関しては、p型半導体層にn+型の半導体を形成したものを半導体基板とした第1層である請求項1または2のパワー半導体デバイスの構造とした。
請求項4に関しては、n+型分離領域は、これの設けられる位置が、半導体ウエハをダイシングの後、切離された各素子に於ける周縁部となる部位に形成されるn+型分離領域である、パワー半導体デバイスの構造とした。
請求項5に関しては、ガードリング領域の面積が、セル領域の面積よりも小さい寸法に形成される、請求項4記載のパワー半導体デバイスの構造とした。
According to a third aspect of the present invention, there is provided the structure of the power semiconductor device according to the first or second aspect, wherein the first layer is a semiconductor substrate formed by forming an n + type semiconductor in a p-type semiconductor layer.
According to claim 4, the n + type isolation region is formed in a region where the position where the n + type isolation region is provided becomes a peripheral portion in each element separated after the semiconductor wafer is diced. It was set as the structure of a power semiconductor device.
The power semiconductor device structure according to claim 4, wherein the area of the guard ring region is smaller than the area of the cell region.

請求項6に関しては、
n+型の半導体基板(第一層)の上面にn−型の第二層を形成する工程Aと,ダイシングしたときの素子の外周となる位置に、n+型分離を第二層上面から少なくとも第二層の深さに形成する工程A2と、
第二層に所定の形状にp層(第三層)を不純物拡散によって形成する工程Eと、
第三層に接続して第1主電極を形成する工程Gと、
半導体基板(第一層)の下面に第2主電極を形成する工程Iとを行い、
ダイシングして個々の単位半導体素子を形成する工程Jに於いて、
第1種電極の直下の領域であるセル領域を囲む形状に、少なくとも第二層(n−層)の厚み寸法にn+型分離領域が位置するようにダイシングされることを特徴としたパワー半導体デバイスの製造方法とした。
Regarding claim 6,
An n + type separation is performed at least from the upper surface of the second layer at a position that forms the outer periphery of the element when diced, and the step A of forming an n− type second layer on the upper surface of the n + type semiconductor substrate (first layer). Forming step A2 at a depth of the second layer;
Forming a p-layer (third layer) in a predetermined shape on the second layer by impurity diffusion; and
Forming a first main electrode in connection with the third layer;
Performing a step I of forming a second main electrode on the lower surface of the semiconductor substrate (first layer);
In the process J of forming individual unit semiconductor elements by dicing,
A power semiconductor characterized in that it is diced so that an n + -type isolation region is positioned at least in the thickness dimension of the second layer (n− layer) in a shape surrounding a cell region which is a region immediately below the first type electrode A device manufacturing method was adopted.

請求項7に関しては、
p型又はn+型の半導体基板(第一層)の上面にn−型の第二層を形成する工程Aと,ダイシングしたときの素子の外周となる位置に、n+型分離を第二層上面から少なくとも第二層の深さに形成する工程A2と、
エミッタ側平面上に所定の形状にゲート酸化膜を形成する工程Bと、
第一絶縁層の上に所定の形状に制御電極を形成する工程Cと、
制御電極を覆う第二絶縁層を堆積させて形成する工程Dと、
第二層に所定の形状にp層(第三層)を不純物拡散によって形成する工程Eと、
第三層にn層(第四層)を不純物拡散によって形成する工程Fと、
第三層、第四層を短絡させつつ両層に接続してエミッタ電極を形成する工程Gと、
第二絶縁層に孔を設けて制御電極を導出するよう形成する工程Hと、
半導体基板(第一層)の下面にコレクタ電極を形成する工程Iとを行い、
ダイシングして個々の単位半導体素子を形成する工程Jに於いて、
エミッタ電極の直下のアクティブ領域であるセル領域を囲む形状に、少なくとも第二層
(n−層)の厚み寸法にn+型分離領域が位置するようにダイシングされることを特徴としたパワー半導体デバイスの製造方法とした。
Regarding claim 7,
Step A for forming an n-type second layer on the upper surface of a p-type or n + -type semiconductor substrate (first layer), and n + -type separation at the position that becomes the outer periphery of the element when diced A step A2 of forming at least the depth of the second layer from the upper surface;
Forming a gate oxide film in a predetermined shape on the emitter side plane; and
Forming a control electrode in a predetermined shape on the first insulating layer; and
A step D of depositing and forming a second insulating layer covering the control electrode;
Forming a p-layer (third layer) in a predetermined shape on the second layer by impurity diffusion; and
Forming an n layer (fourth layer) in the third layer by impurity diffusion; and
A step G of forming an emitter electrode by connecting the third layer and the fourth layer to both layers while short-circuiting;
Forming a hole in the second insulating layer to lead out the control electrode; and
Performing a step I of forming a collector electrode on the lower surface of the semiconductor substrate (first layer);
In the process J of forming individual unit semiconductor elements by dicing,
A power semiconductor device characterized in that it is diced so that an n + -type isolation region is positioned at least in the thickness dimension of the second layer (n-layer) in a shape surrounding a cell region which is an active region immediately below the emitter electrode It was set as the manufacturing method of this.

本発明による構造によれば,チップ寸法が0.95mm角であったものが、0.82mm角へ縮小できたので、一枚のウエハからダイシングして取れるチップ数が134%へ増加し安定的に量産できた。従って34%のチップが同じウエハ製作増加する分だけコスト低減できて安価に提供できる。従来の生産工数のうち、一つ以上のフィールドリミティングリング(FLR)とフィ−ルドプレ−ト(金属膜)を形成していた工数が削除できるので、生産性が大幅に向上した分、人件費縮減で製作費が安価になった。   According to the structure of the present invention, since the chip size of 0.95 mm square can be reduced to 0.82 mm square, the number of chips obtained by dicing from one wafer increases to 134% and is stable. Could be mass-produced. Therefore, 34% of the chips can be provided at low cost because the cost can be reduced by the increase in the production of the same wafer. Since the number of man-hours that used to form one or more field limiting rings (FLR) and field plates (metal films) can be eliminated from the conventional production man-hours, labor costs have been greatly increased. Reduced production costs have been reduced.

本発明による実施の形態を図1にチップの厚み方向の断面で示した構造図で示して説明する。4は半導体基板(n+層)であり,これの下面にコレクタ電極1を設ける。該半導体基板4の上面に第二半導体層(n−層)をエピタキシャル成長などで形成し、ここにエミッタ層を形成してエミッタ電極9を設けるとともにゲート絶縁膜11を介して制御電極(ゲート電極)10を形成し、エミッタ電極9と制御電極10との直下のアクティブゾーンであるセル領域30によって機能を発揮するIGBT(絶縁ゲート型バイポーラトランジスタ)素子が形成される。同一部位を同一符号で示した、図3の従来例では、セル領域30を取り囲むように環状に形成されるp型半導体のFLR(フィールドリミティングリング)6で逆耐圧を荷担していたが、この構造を廃止し、図1のように耐電圧を荷担させるためのn+型分離領域14を不純物拡散法などによって形成した。半導体基板6はn+型半導体に限るものではなくp型半導体であっても良い。   An embodiment according to the present invention will be described with reference to a structural diagram shown in FIG. Reference numeral 4 denotes a semiconductor substrate (n + layer) on which a collector electrode 1 is provided. A second semiconductor layer (n− layer) is formed on the upper surface of the semiconductor substrate 4 by epitaxial growth or the like, and an emitter layer is formed thereon to provide an emitter electrode 9 and a control electrode (gate electrode) via a gate insulating film 11. 10 is formed, and an IGBT (Insulated Gate Bipolar Transistor) element that functions by the cell region 30 that is an active zone immediately below the emitter electrode 9 and the control electrode 10 is formed. In the conventional example of FIG. 3 in which the same part is indicated by the same reference numeral, the reverse breakdown voltage is borne by the FLR (field limiting ring) 6 of a p-type semiconductor formed in an annular shape so as to surround the cell region 30. This structure was abolished, and an n + type isolation region 14 for carrying a withstand voltage as shown in FIG. 1 was formed by an impurity diffusion method or the like. The semiconductor substrate 6 is not limited to an n + type semiconductor but may be a p-type semiconductor.

コレクタ電極1とエミッタ電極9との二つの主電極と制御電極10は、メタル電極材で電極を形成し導出される。エミッタ電極9の周囲は絶縁物である酸化膜13を形成して耐電圧の荷担に寄与させる。半導体基板4の下方の平面にメタル電極のコレクタ電極1を形成する。以上でパワーデバイスが完成し,図1のn+型分離領域14の部位でダイシングしてパワー半導体デバイスの素子が完成する。その結果パワー半導体デバイスの周縁の部位にn+型分離領域14が形成されることになる。   The two main electrodes of the collector electrode 1 and the emitter electrode 9 and the control electrode 10 are derived by forming electrodes with a metal electrode material. An oxide film 13 that is an insulator is formed around the emitter electrode 9 so as to contribute to withstand voltage. A collector electrode 1 of a metal electrode is formed on a plane below the semiconductor substrate 4. Thus, the power device is completed, and dicing is performed at the site of the n + type isolation region 14 in FIG. 1 to complete the element of the power semiconductor device. As a result, the n + type isolation region 14 is formed at the peripheral portion of the power semiconductor device.

図2と図3に従来のチップの断面図に一例を示すように、従来のB領域(ガードリング領域)の寸法は図3では175μmであったが、図1の本発明の実施例では、図2、図3に示すように従来のp型半導体のFLR(フィールドリミティングリング又はガードリング)6を必要としないので110μmである。エミッタ電極の寸法600μmでは、図3の従来のチップの寸法が、950μm角のサイズであったのに対し、図1では820μm角のサイズで安定に量産可能な完成品となった。従って一枚のウエハから切り出す事が出来たチップの数が134%に増加したので、製造法が従来と同じ製造工程であったとしても個数34%増加分だけコストが安くなった。図4に本発明による実施形態のパワー半導体の製造工程フロー図を示し、図5に本願筆者ら製作品の、従来のパワー半導体の製造工程フロー図を示した。   As shown in FIG. 2 and FIG. 3 in the cross-sectional view of the conventional chip, the size of the conventional B region (guard ring region) was 175 μm in FIG. 3, but in the embodiment of the present invention in FIG. As shown in FIGS. 2 and 3, the conventional p-type semiconductor FLR (field limiting ring or guard ring) 6 is not required and is 110 μm. With the emitter electrode size of 600 μm, the size of the conventional chip of FIG. 3 was 950 μm square, whereas in FIG. 1, the finished product was 820 μm square and could be stably mass-produced. Therefore, since the number of chips that can be cut out from one wafer has increased to 134%, even if the manufacturing method is the same as the conventional manufacturing process, the cost has been reduced by an increase of 34%. FIG. 4 shows a manufacturing process flow chart of a power semiconductor according to an embodiment of the present invention, and FIG. 5 shows a manufacturing process flow chart of a conventional power semiconductor produced by the present inventors.

この発明は、半導体デバイスの耐圧向上のため大きくなっていたチップ面積を縮小することに成功したので、同一のウエハからチップの取れ数が増加し,チップ1個当たりの製品コストが削減できるので、半導体デバイスを生産する際の省エネルギーと省資源に貢献し,産業上の貢献度が高い。   Since the present invention succeeded in reducing the chip area that has become large for improving the breakdown voltage of the semiconductor device, the number of chips that can be taken from the same wafer increases, and the product cost per chip can be reduced. It contributes to energy and resource saving when producing semiconductor devices, and has a high industrial contribution.

本発明による一実施形態のパワー半導体の構造図Structure of power semiconductor according to one embodiment of the present invention 特許文献1にある、従来のパワー半導体の構造図Structure of conventional power semiconductor in Patent Document 1 本願筆者ら製作品の、従来のパワー半導体の構造図Structure diagram of the conventional power semiconductor produced by the authors 本発明による実施形態のパワー半導体の製造工程フロー図Manufacturing process flow diagram of power semiconductor according to an embodiment of the present invention 本願筆者ら製作品の、従来のパワー半導体の製造工程フロー図Flow chart of manufacturing process of conventional power semiconductors made by the authors

符号の説明Explanation of symbols

1 ドレイン(コレクタ)電極
2 p+層(第三層)とn-層(第二層)からなるpn接合
3 n-層(第二層)
4 n+層(第一層)半導体基板
5 n+型分離領域
6 p層フィ−ルドリミティングリング(FLR)又はガードリング
7 p+層(第三層)
8 n+層(第四層)
9 エミッタ電極(ソース電極)
10 ゲート電極
11 ゲート絶縁膜
12 層間絶縁膜
13 酸化膜
14 n+型分離領域
18 金属膜(フィ−ルドプレ−ト)
30 セル領域
1 drain (collector) electrode 2 pn junction consisting of p + layer (third layer) and n- layer (second layer) 3 n- layer (second layer)
4 n + layer (first layer) semiconductor substrate 5 n + type isolation region 6 p layer field limiting ring (FLR) or guard ring 7 p + layer (third layer)
8 n + layer (fourth layer)
9 Emitter electrode (source electrode)
DESCRIPTION OF SYMBOLS 10 Gate electrode 11 Gate insulating film 12 Interlayer insulating film 13 Oxide film 14 n + type isolation region 18 Metal film (field plate)
30 cell area

Claims (7)

n+型の半導体基板(第一層)と,該第一層上面に形成されたn−型の第二層と,第二層上面に接続された第一主電極(エミッタ電極)と、第二層上面に絶縁層を介して接続された制御電極を備え、第一主電極(エミッタ電極)直下部と制御電極直下部とで形成されるセル領域を有し,該半導体基板の下面に第二主電極(コレクタ電極)が設けられたコレクタウォール構造のパワー半導体デバイスにおいて,前記第二層上面から下面方向に伸びて,セル領域を囲む形状に、少なくとも第二層(n−層)の厚み寸法にn+型分離領域が設けられたことを特徴とするパワー半導体デバイスの構造。   an n + type semiconductor substrate (first layer), an n − type second layer formed on the upper surface of the first layer, a first main electrode (emitter electrode) connected to the upper surface of the second layer, and a second A control electrode connected to the upper surface of the layer via an insulating layer; a cell region formed immediately below the first main electrode (emitter electrode) and immediately below the control electrode; In a power semiconductor device having a collector wall structure provided with a main electrode (collector electrode), the thickness dimension of at least the second layer (n− layer) extends from the upper surface of the second layer toward the lower surface and surrounds the cell region. A structure of a power semiconductor device characterized in that an n + -type isolation region is provided in the structure. n+型の半導体基板(第一層)と,該第一層上面に形成されたn−型の第二層と,第二層上に形成され接続された第一主電極と、該半導体基板の下面に設けられた第二主電極を備え,第一主電極の直下部で形成されるセル領域を有するパワー半導体デバイスにおいて,前記第二層上面から下面方向に伸びて,セル領域を囲む形状に、少なくとも第二層の厚み寸法で、n+型分離領域が設けられたことを特徴とする縦型構造のパワー半導体デバイスの構造。   an n + type semiconductor substrate (first layer), an n− type second layer formed on the upper surface of the first layer, a first main electrode formed on and connected to the second layer, and the semiconductor substrate In a power semiconductor device having a second main electrode provided on the lower surface and having a cell region formed immediately below the first main electrode, the shape extends from the upper surface of the second layer toward the lower surface and surrounds the cell region. A structure of a power semiconductor device having a vertical structure, wherein an n + type isolation region is provided at least in the thickness dimension of the second layer. 前記第一半導体層がp型半導体上面にn+型の半導体をエピタキシャル成長して形成したものを半導体基板としたn+型の第一層である請求項1又は2のパワー半導体デバイスの構造。   3. The structure of a power semiconductor device according to claim 1, wherein the first semiconductor layer is an n + type first layer formed by epitaxially growing an n + type semiconductor on the p type semiconductor upper surface. 前記、n+型分離領域が形成される部位が、半導体ウエハがダイシングされた後に、単位素子の周縁となる部位であり、半導体チップ単体の面積からセル領域の面積を除いた面積のガードリング領域の面積を形成するn+型分離領域である請求項1乃至3のパワー半導体デバイスの構造。   The portion where the n + type isolation region is formed is a portion which becomes the periphery of the unit element after the semiconductor wafer is diced, and is a guard ring region having an area excluding the area of the cell region from the area of the single semiconductor chip. 4. The structure of a power semiconductor device according to claim 1, which is an n + type isolation region forming an area. 前記、ガードリング領域の面積が、単位素子のセル領域の面積寸法と同等またはこの寸法を超えない範囲の寸法に形成されることを特徴とする請求項4記載のパワー半導体の構造。   5. The structure of a power semiconductor according to claim 4, wherein the area of the guard ring region is formed to have a size equal to or not exceeding the area size of the cell region of the unit element. n+型の半導体基板(第一層)の上面にn−型の第二層を形成する工程Aと,ダイシングしたときの素子の外周となる位置に、n+型分離を第二層上面から少なくとも第二層の深さに形成する工程A2と、
第二層に所定の形状にp層(第三層)を不純物拡散によって形成する工程Eと、
第三層に接続して第一主電極を形成する工程Gと、
半導体基板(第一層)の下面に第二主電極を形成する工程Iとを行い、
ダイシングして個々の単位半導体素子を形成する工程Jに於いて、
第一主電極の直下の領域であるセル領域を囲む形状で、素子の外周となる位置にn+型分離領域が位置するようにダイシングされることを特徴としたパワー半導体デバイスの製造方法。
An n + type separation is performed at least from the upper surface of the second layer at a position that forms the outer periphery of the element when diced, and the step A of forming an n− type second layer on the upper surface of the n + type semiconductor substrate (first layer). Forming step A2 at a depth of the second layer;
Forming a p-layer (third layer) in a predetermined shape on the second layer by impurity diffusion; and
Forming a first main electrode in connection with the third layer; and
Performing a step I of forming a second main electrode on the lower surface of the semiconductor substrate (first layer);
In the process J of forming individual unit semiconductor elements by dicing,
A method for manufacturing a power semiconductor device, characterized in that dicing is performed so that an n + -type isolation region is positioned at a position that is an outer periphery of an element in a shape surrounding a cell region that is a region immediately below a first main electrode.
p型又はn+型の半導体基板(第一層)の上面にn−型の第二層を形成する工程Aと,ダイシングしたときの素子の外周となる位置に、n+型分離を第二層上面から少なくとも第二層の深さに形成する工程A2と、
エミッタ側平面上に所定の形状にゲート酸化膜を形成する工程Bと、
第一絶縁層の上に所定の形状に制御電極を形成する工程Cと、
制御電極を覆う第二絶縁層を堆積させて形成する工程Dと、
第二層に所定の形状にp層(第三層)を不純物拡散によって形成する工程Eと、
第三層にn層(第四層)を不純物拡散によって形成する工程Fと、
第三層、第四層を短絡させつつ両層に接続してエミッタ電極を形成する工程Gと、
第二絶縁層に孔を設けて制御電極を導出するよう形成する工程Hと、
半導体基板(第一層)の下面にコレクタ電極を形成する工程Iとを行い、
ダイシングして個々の単位半導体素子を形成する工程Jに於いて、
エミッタ電極の直下のアクティブ領域であるセル領域を囲む形状で素子の外周となる位置にn+型分離領域が位置するようにダイシングされることを特徴としたパワー半導体デバイスの製造方法。
Step A for forming an n-type second layer on the upper surface of a p-type or n + -type semiconductor substrate (first layer), and n + -type separation at the position that becomes the outer periphery of the element when diced A step A2 of forming at least the depth of the second layer from the upper surface;
Forming a gate oxide film in a predetermined shape on the emitter side plane; and
Forming a control electrode in a predetermined shape on the first insulating layer; and
A step D of depositing and forming a second insulating layer covering the control electrode;
Forming a p-layer (third layer) in a predetermined shape on the second layer by impurity diffusion; and
Forming an n layer (fourth layer) in the third layer by impurity diffusion; and
A step G of forming an emitter electrode by connecting the third layer and the fourth layer to both layers while short-circuiting;
Forming a hole in the second insulating layer to lead out the control electrode; and
Performing a step I of forming a collector electrode on the lower surface of the semiconductor substrate (first layer);
In the process J of forming individual unit semiconductor elements by dicing,
A method of manufacturing a power semiconductor device, characterized in that dicing is performed so that an n + -type isolation region is positioned at a position that is an outer periphery of an element in a shape surrounding a cell region that is an active region immediately below an emitter electrode.
JP2005293386A 2005-10-06 2005-10-06 High withstand voltage power semiconductor device structure and manufacturing method therefor Pending JP2007103763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293386A JP2007103763A (en) 2005-10-06 2005-10-06 High withstand voltage power semiconductor device structure and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293386A JP2007103763A (en) 2005-10-06 2005-10-06 High withstand voltage power semiconductor device structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007103763A true JP2007103763A (en) 2007-04-19

Family

ID=38030391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293386A Pending JP2007103763A (en) 2005-10-06 2005-10-06 High withstand voltage power semiconductor device structure and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007103763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477358B1 (en) * 2012-12-20 2014-12-29 삼성전기주식회사 Semiconductor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477358B1 (en) * 2012-12-20 2014-12-29 삼성전기주식회사 Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US10109725B2 (en) Reverse-conducting semiconductor device
US10361266B2 (en) Semiconductor device
JP5406171B2 (en) SiC semiconductor device
JP2009187994A (en) Semiconductor device and manufacturing method thereof
JP2011124464A (en) Semiconductor device and method for manufacturing the same
JP2008177328A (en) Semiconductor device and manufacturing method thereof
JP5943819B2 (en) Semiconductor element, semiconductor device
JP2013251406A (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP5233158B2 (en) Silicon carbide semiconductor device
TW201818457A (en) Semiconductor device
JP2012186318A (en) High-breakdown-voltage semiconductor device
JP2012174895A (en) High breakdown voltage semiconductor device
JP2013069783A (en) Power semiconductor device
JP5735611B2 (en) SiC semiconductor device
JP5827020B2 (en) High voltage semiconductor device
JP2013168549A (en) Semiconductor device and manufacturing method of the same
JP2018110165A (en) Semiconductor device and manufacturing method for semiconductor device
JP7371724B2 (en) Semiconductor device and its manufacturing method
JP2014187200A (en) Semiconductor device manufacturing method
JP5520024B2 (en) Semiconductor device and manufacturing method thereof
JP2007115920A (en) Power switching device with built-in diode and manufacturing method thereof
JP2007103763A (en) High withstand voltage power semiconductor device structure and manufacturing method therefor
JP2005136092A (en) Semiconductor device and its manufacturing method
JP2009049279A (en) Method of manufacturing insulating gate type semiconductor element
JPWO2016143099A1 (en) Semiconductor device, method of manufacturing the same, and power conversion device