JP2007103633A - Cooling device and electronic apparatus including the same - Google Patents

Cooling device and electronic apparatus including the same Download PDF

Info

Publication number
JP2007103633A
JP2007103633A JP2005290955A JP2005290955A JP2007103633A JP 2007103633 A JP2007103633 A JP 2007103633A JP 2005290955 A JP2005290955 A JP 2005290955A JP 2005290955 A JP2005290955 A JP 2005290955A JP 2007103633 A JP2007103633 A JP 2007103633A
Authority
JP
Japan
Prior art keywords
liquid
heat
radiator
cooling device
reserve tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005290955A
Other languages
Japanese (ja)
Inventor
Seiji Urano
誠二 浦野
Shigeru Narakino
滋 楢木野
Masamitsu Aizono
譲光 相園
Kazuhiro Seguchi
和宏 瀬口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005290955A priority Critical patent/JP2007103633A/en
Publication of JP2007103633A publication Critical patent/JP2007103633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably improve a gas-liquid separating and cooling function together with miniaturization concerning a cooling device used for cooling, etc., by using the circulation of a liquid refrigerant. <P>SOLUTION: The cooling device includes a heat-receiving integrated pump 2 incorporating a pump for driving liquid circulation, which contacts with a heat generating electronic component so as to exchange heat with the liquid refrigerant flowing inside; two liquid transport routes 3, 4 for connecting the heat-receiving integrated pump 2 to a radiator 6; and a hermetically sealed reservation tank 5 for gas-liquid separation. One end of the core tube of the radiator 6 is arranged at one side of the reservation tank 5 and connected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器の筐体内部に配設された中央演算処理装置(以下、CPUと称する)などの発熱電子部品を、液体冷媒の循環を利用して冷却するときに用いられる冷却装置及びそれを備えた電子機器に関するものである。   The present invention relates to a cooling device used when cooling a heat-generating electronic component such as a central processing unit (hereinafter referred to as a CPU) disposed inside a casing of an electronic device by utilizing circulation of a liquid refrigerant, and The present invention relates to an electronic device provided with the same.

最近のコンピューターにおけるデータ処理の高速化の動きはきわめて急速であり、CPUのクロック周波数は以前と比較して格段に大きなものになってきている。この結果、CPUの発熱量が増大し、従来のように放熱体であるヒートシンクや放熱フィンを発熱体に接触させ放熱する方法だけなく、そのヒートシンクをファンで直接冷却する方法、或いは受熱体よりヒートパイプを用いて放熱体に熱接続したヒートシンクモジュールにおいてその放熱体をファン冷却する方法、さらには、熱伝導性の高い液体冷媒をポンプを用いて強制循環させ受熱体と放熱体との間で熱交換をさせる液冷却方式などが必要不可欠になっており、今後さらにその冷却能力の向上と小型化が必要とされている。   Recently, the speed of data processing in computers has been very rapid, and the clock frequency of the CPU has become much larger than before. As a result, the amount of heat generated by the CPU increases, so that not only the conventional method of dissipating heat by bringing a heat sink or heat radiating fins into contact with the heat generator, but also a method of directly cooling the heat sink with a fan, In a heat sink module thermally connected to a radiator using a pipe, the radiator is cooled by a fan. Further, liquid refrigerant with high thermal conductivity is forced to circulate using a pump, and heat is generated between the receiver and the radiator. A liquid cooling system for replacement is indispensable, and further improvement in cooling capacity and miniaturization are required in the future.

そこで以上のような冷却装置を、CPUなどの発熱電子部品が実装された基板に取り付ける構成として、例えば(特許文献1)に開示されているような発熱電子部品と放熱用のラジエータをフレキシブル構造の液輸送路を有する熱輸送デバイスにより熱接続した冷却装置が知られている。   Therefore, as a configuration in which the cooling device as described above is attached to a substrate on which a heat generating electronic component such as a CPU is mounted, for example, a heat generating electronic component disclosed in (Patent Document 1) and a radiator for heat dissipation have a flexible structure. A cooling device that is thermally connected by a heat transport device having a liquid transport path is known.

図10は、その(特許文献1)に示された実施の形態で、電子機器の第一筐体101の上面にキーボード102が搭載され、第一筐体101内にはCPU等の発熱電子部品103が電子回路の基板104に実装され、電子機器の第二筐体105にはそのCPUによる処理結果を表示する表示装置106が配置され、受熱器107は発熱電子部品103に密着しその発熱電子部品103の熱を受熱して、その内部を流れる液体冷媒との間で熱交換して発熱電子部品103を冷却し、ポンプ108はその液体冷媒を冷却装置内で循環させるためのポンプである。   FIG. 10 shows an embodiment shown in (Patent Document 1), in which a keyboard 102 is mounted on an upper surface of a first casing 101 of an electronic device, and a heat generating electronic component such as a CPU is provided in the first casing 101. 103 is mounted on a substrate 104 of an electronic circuit, and a display device 106 for displaying a processing result by the CPU is disposed in a second casing 105 of the electronic device, and a heat receiver 107 is in close contact with the heat generating electronic component 103 and the heat generating electron. The heat of the component 103 is received, heat is exchanged with the liquid refrigerant flowing inside the component 103 to cool the heat generating electronic component 103, and the pump 108 is a pump for circulating the liquid refrigerant in the cooling device.

受熱器107としては、アルミニウムや銅等の金属やそれらの合金等の熱伝導性の良い金属材料が使われ、ポンプ108は、図示はしないがウエスコ型ポンプであり、外周に多数の溝状羽根が形成され内周にはローターマグネットが設けられたリング状羽根車と、ローターマグネットの内周側にモーターステータとが設けられて、モーターステータへの通電で駆動され、吸込口と吐出口を有するポンプケーシングにこのリング状羽根車が収容される。   The heat receiver 107 is made of a metal material having good thermal conductivity such as a metal such as aluminum or copper, or an alloy thereof, and the pump 108 is a Wesco-type pump (not shown). A ring-shaped impeller provided with a rotor magnet on the inner periphery, and a motor stator provided on the inner periphery side of the rotor magnet, driven by energizing the motor stator, and having a suction port and a discharge port The ring-shaped impeller is accommodated in the pump casing.

このポンプケーシングには、モーターステータとローターマグネットの間に円筒部が配設され、この円筒部にリング状羽根車が回転自在に軸支される。   In the pump casing, a cylindrical portion is disposed between the motor stator and the rotor magnet, and a ring-shaped impeller is rotatably supported on the cylindrical portion.

このポンプ108は小型でフラット薄型の形状となるため、冷却装置をより小型、薄型にすることができる。   Since the pump 108 is small and flat and thin, the cooling device can be made smaller and thinner.

なお、図10に示すように受熱器107とポンプ108は別体となって接続配管112cで接続されているが、上述したウエスコ型ポンプのポンプケーシングの底面をフラットにして受熱機能をもたせ、ポンプ機能と受熱器機能とを兼ねた構成の受熱一体ポンプとし、この受熱一体ポンプをCPU等の発熱電子部品103に直接載置することもできる。   As shown in FIG. 10, the heat receiver 107 and the pump 108 are separated and connected by the connection pipe 112c. However, the bottom surface of the pump casing of the above-mentioned Wesco type pump is flattened to provide a heat receiving function. It is also possible to use a heat receiving integrated pump having a configuration that has both a function and a heat receiving function, and this heat receiving integrated pump can be directly mounted on a heat generating electronic component 103 such as a CPU.

この場合、ポンプケーシングをアルミニウムや銅等の熱伝導率の高い金属で作る必要があるが、ポンプ底面がフラットなためCPU等に載置することが可能となるものである。これにより十分な熱伝達を行うことができる。   In this case, the pump casing needs to be made of a metal having a high thermal conductivity such as aluminum or copper. However, since the pump bottom is flat, it can be placed on a CPU or the like. Thereby, sufficient heat transfer can be performed.

ラジエータ109は表示装置106の裏面に配設され液体冷媒と熱交換を行いその熱を空気中に放熱し、送風ファン110はラジエータ109に空気を送風するもので、その送風ファン110には三方向に矩形の排気口が設けられ一側面に送風ファン110の内部の風の流れをスムーズに行うための風路壁(図示せず)が設けられている。   The radiator 109 is disposed on the back surface of the display device 106 and exchanges heat with the liquid refrigerant to dissipate the heat into the air. The blower fan 110 blows air to the radiator 109, and the blower fan 110 has three directions. A rectangular exhaust port is provided on one side, and an air passage wall (not shown) is provided on one side surface to smoothly flow the air inside the blower fan 110.

リザーブタンク111は送風ファン110に隣接するように配置され、接続配管112a〜112dがこれらの要素を接続している。ラジエータ109は表示装置106の裏面の比較的狭い空間で液体冷媒からの熱を取り除くことが必要であるため、図10に示す様に表面積をより広く取れるようにコの字形状の放熱配管113に、アルミニウムや銅等で構成された多数の放熱フィンを設置した形態としている。   The reserve tank 111 is disposed adjacent to the blower fan 110, and connection pipes 112a to 112d connect these elements. Since the radiator 109 needs to remove the heat from the liquid refrigerant in a relatively narrow space on the back surface of the display device 106, the U-shaped radiating pipe 113 is provided with a wider surface area as shown in FIG. In addition, a large number of heat dissipating fins made of aluminum or copper are installed.

また、放熱配管113と放熱フィンとの接続は、放熱配管113から放熱フィンへの熱伝導を良好に保つことが必要であるため、強固に密着させている。   Further, the connection between the heat radiating pipe 113 and the heat radiating fin is tightly adhered because it is necessary to maintain good heat conduction from the heat radiating pipe 113 to the heat radiating fin.

以上の構成により、送風ファン110も小型でフラット形状とすることができるため、冷却装置全体を小型、薄型にすることができる。   With the above configuration, since the blower fan 110 can also be made small and flat, the entire cooling device can be made small and thin.

一方、本発明とはその用途が大きく異なるが、油圧シャベル等の建設機械を駆動する油圧ポンプのエンジンに付設されたラジエータ装置の構成として、例えば(特許文献2)に開示されているようなラジエータとリザーブタンクを一体的に構成することにより簡素な構成として部品点数を少なくしたラジエータ装置も知られている。   On the other hand, the use of the present invention is greatly different from that of the present invention, but as a configuration of a radiator device attached to an engine of a hydraulic pump that drives a construction machine such as a hydraulic shovel, for example, a radiator as disclosed in (Patent Document 2) In addition, there is also known a radiator device in which the number of parts is reduced as a simple configuration by integrally configuring the reserve tank.

図11は、その(特許文献2)に示された実施の形態で、ラジエータ装置200は、アッパタンク201と、ロアタンク202と、ラジエータコア部203とから構成され、ラジエータコア部203はフィン(図示せず)と、このフィンを貫通するように配置した多数の細管からなるコアチューブ(図示せず)で構成されている。   FIG. 11 shows an embodiment shown in (Patent Document 2). A radiator device 200 includes an upper tank 201, a lower tank 202, and a radiator core section 203. The radiator core section 203 is a fin (not shown). And a core tube (not shown) made up of a large number of thin tubes arranged so as to penetrate through the fins.

然るに、リザーブタンク204は、アッパタンク201と一体に設けられ、これらアッパタンク201とリザーブタンク204とで上部側タンク205が形成される。   However, the reserve tank 204 is provided integrally with the upper tank 201, and the upper tank 205 is formed by the upper tank 201 and the reserve tank 204.

上部側タンク205は、下部側がアッパタンク201で、上部側はリザーブタンク204となっており、これらアッパタンク201とリザーブタンク204との間を区画形成するための隔壁206が設けられている。   The upper tank 205 has an upper tank 201 on the lower side and a reserve tank 204 on the upper side, and a partition wall 206 is provided for partitioning the upper tank 201 and the reserve tank 204.

この隔壁206は、長手方向における両端部の高さは低いが、中間部分は高くなっている。そして、このアッパタンク201における中間部分に流入管207が接続されている。また、この流入管207の接続位置の上部には溢出用の筒部(図示せず)が設けられており、この筒部の上端部にはプレッシャキャップ208が設置されている。   The partition 206 has a low height at both ends in the longitudinal direction, but a high middle portion. An inflow pipe 207 is connected to an intermediate portion of the upper tank 201. An overflow cylinder (not shown) is provided above the connection position of the inflow pipe 207, and a pressure cap 208 is provided at the upper end of the cylinder.

このプレッシャキャップ208は、アッパタンク201を含めて、例えば水とエチレングリコールとの混合液などの液体冷媒が流通する液循環路全体に所定の設定圧を与えるためのものである。また、筒部におけるプレッシャキャップ208の直下位置と、リザーブタンク204の下部との間には、細い連通管209が接続して設けられている。   The pressure cap 208 is for applying a predetermined set pressure to the entire liquid circulation path including a liquid refrigerant such as a mixed liquid of water and ethylene glycol including the upper tank 201. In addition, a thin communication pipe 209 is provided between the position immediately below the pressure cap 208 in the cylindrical portion and the lower portion of the reserve tank 204.

さらに、リザーブタンク204の上面には、このリザーブタンク204内の液面が上下した時に、その内圧が変動するのを防止し、実質的に内部を大気圧状態に保つための大気連通管210が接続され、さらに、ロアタンク202には流出管211が接続されている。   Further, an air communication pipe 210 is provided on the upper surface of the reserve tank 204 to prevent the internal pressure from fluctuating when the liquid level in the reserve tank 204 moves up and down, and to substantially keep the inside at atmospheric pressure. Further, an outflow pipe 211 is connected to the lower tank 202.

このリザーブタンク204を設けることによって、液体冷媒が熱膨張すると、連通管209を介してリザーブタンク204内に膨張した分の液体冷媒が流れこみ、また逆に液体冷媒の温度が低下すると、リザーブタンク204から連通管209を通ってアッパタンク201に液体冷媒が環流するようになる。   By providing the reserve tank 204, when the liquid refrigerant expands thermally, the expanded liquid refrigerant flows into the reserve tank 204 via the communication pipe 209, and conversely, when the temperature of the liquid refrigerant decreases, the reserve tank The liquid refrigerant circulates from 204 to the upper tank 201 through the communication pipe 209.

しかも、下部側のアッパタンク201と上部側のリザーブタンク204とにより一体のケーシングからなる上部側タンク205が構成され、その部品点数を少なくすることができる。   In addition, the lower tank 201 and the upper reserve tank 204 constitute an upper tank 205 formed of an integral casing, and the number of parts can be reduced.

そして、ラジエータ装置200による熱交換をより効率的に行うために、送風ファン212の周囲をシュラウド213で囲うことにより冷却風が確実にラジエータコア部203を通るようにしている。   In order to more efficiently perform heat exchange by the radiator device 200, the cooling air is surely passed through the radiator core portion 203 by surrounding the blower fan 212 with the shroud 213.

さらには、(特許文献3)に開示されているように、ノートPCなどの携帯用電子機器に搭載される冷却装置に対応したリザーブタンクの構成についても知られている。   Furthermore, as disclosed in (Patent Document 3), a configuration of a reserve tank corresponding to a cooling device mounted on a portable electronic device such as a notebook PC is also known.

図12(a)は、その冷却装置の液循環路内にチューブで接続されたリザーブタンクの概略を説明する斜視図で、リザーブタンク300の内部には液体冷媒領域301と気体領域302、及びその境界である液面303があり、液体の冷媒を補給用する際の注入口を閉鎖するためのキャップ304が取り付けられている。   FIG. 12A is a perspective view for explaining the outline of a reserve tank connected by a tube in the liquid circulation path of the cooling device. Inside the reserve tank 300, there are a liquid refrigerant region 301, a gas region 302, and its There is a liquid surface 303 that is a boundary, and a cap 304 is attached to close the inlet when the liquid refrigerant is replenished.

また、正面305から見て右側面306には、図示しないラジエータのチューブが接続される液流入口307が設けられ、左側面308には液流出口309を有する液流出管310が設けられている。ここで、液体の冷媒の流れ方向は、矢印311で示したように、液流入口307から液流出口309への方向で、液流出口309を有する液流出管310は、リザーブタンク300の中心まで伸びている。   Further, a liquid inlet 307 to which a radiator tube (not shown) is connected is provided on the right side 306 when viewed from the front 305, and a liquid outlet pipe 310 having a liquid outlet 309 is provided on the left side 308. . Here, the flow direction of the liquid refrigerant is the direction from the liquid inlet 307 to the liquid outlet 309 as indicated by an arrow 311, and the liquid outlet pipe 310 having the liquid outlet 309 is the center of the reserve tank 300. It extends to.

以上のような構成にすることで、そのリザーブタンク300が搭載された電子機器があらゆる方向に動かされたとしても、液流出口309が液面303以下となって液流出口309に空気が吸い込まれないようにしている。   With the above configuration, even when the electronic device on which the reserve tank 300 is mounted is moved in any direction, the liquid outlet 309 becomes the liquid level 303 or less and air is sucked into the liquid outlet 309. I try not to.

そして、(特許文献4)では、前述した内容に加え、リザーブタンク300の液流出口309で空気の吸引をしないようにするための改善として、その液流出口309の近傍の内壁面に凹凸部を設けた構成が開示されている。   And in (patent document 4), in addition to the content mentioned above, as an improvement not to suck | inhale air at the liquid outlet 309 of the reserve tank 300, an uneven | corrugated | grooved part is provided in the inner wall surface near the liquid outlet 309. The structure which provided is disclosed.

図12(b)は、そのリザーブタンク300の概略を説明する斜視図で、リザーブタンク300の中心まで伸びた液流出口309の付近の内壁面には凹凸部312が設けられており、その凹凸部312の表面張力の作用により液体冷媒領域301が液面303を上昇させ、さらにはその液流出口309の付近の流速を増加させ、圧力を上昇させて、空気を寄せつけなくし、壁面を透過する液体の冷媒の蒸発量も抑制している。   FIG. 12B is a perspective view for explaining the outline of the reserve tank 300. An uneven surface 312 is provided on the inner wall surface near the liquid outlet 309 extending to the center of the reserve tank 300. The liquid refrigerant region 301 raises the liquid surface 303 by the action of the surface tension of the part 312, further increases the flow velocity near the liquid outlet 309, raises the pressure, keeps the air away, and permeates the wall surface. The amount of evaporation of the liquid refrigerant is also suppressed.

以上のような構成にすることで、空気が液流出口309から吸い込まれることなく、高い信頼性の冷却装置を提供している。
特開2005−26498号公報(第11頁、図1) 特開2001−153490号公報(第5頁、図3) 特開2003−78271号公報(第7頁、図2) 特開2003−304086号公報(第5頁、図2)
With the above-described configuration, a highly reliable cooling device is provided without air being sucked from the liquid outlet 309.
Japanese Patent Laying-Open No. 2005-26498 (page 11, FIG. 1) JP 2001-153490 A (page 5, FIG. 3) Japanese Unexamined Patent Publication No. 2003-78271 (page 7, FIG. 2) Japanese Patent Laying-Open No. 2003-304086 (5th page, FIG. 2)

しかしながら、(特許文献1)に記載されたような従来の冷却装置では、CPU等などの発熱電子部品103の表面に受熱器107を設置し冷却装置を構成する他の要素、例えばラジエータ109、リザーブタンク111、ポンプ108が接続配管112a〜112dにより直列的に接続され電子機器筐体内に別々に配置されているため、電子機器筐体の薄型化には対応が容易なものの、冷却装置の電子機器筐体への取り付け作業が煩雑で、冷却装置自体が占める容積も非常に大きいものとなっていた。   However, in the conventional cooling device described in (Patent Document 1), the heat receiver 107 is installed on the surface of the heat generating electronic component 103 such as a CPU, and other elements constituting the cooling device, such as the radiator 109, the reserve, etc. Since the tank 111 and the pump 108 are connected in series by the connection pipes 112a to 112d and are separately disposed in the electronic device casing, it is easy to reduce the thickness of the electronic device casing, but the electronic device of the cooling device The mounting work to the housing is complicated, and the volume occupied by the cooling device itself is very large.

また、それぞれの部品を相互に接続する液輸送路長が必然的に長くなるため、長期使用による液体冷媒である水分の蒸発量も多くなり、これを補充するためにより大型のリザーブタンクを設けることを必要とする場合もあり、結果として冷却装置全体の大型化や液輸送路長が長くなることで、ポンプに対する液循環路の流路抵抗が増して流量が減ることによって冷却性能の低下につながっていた。   In addition, since the length of the liquid transport path that interconnects each component is inevitably increased, the amount of water evaporation, which is a liquid refrigerant due to long-term use, also increases, and a larger reserve tank must be provided to supplement this. As a result, the overall size of the cooling device and the length of the liquid transport path are increased, leading to an increase in the resistance of the liquid circulation path to the pump and a decrease in the flow rate, leading to a decrease in cooling performance. It was.

さらに、放熱性を強化するため、ラジエータ109を構成する金属製のフィンを送風ファン110で強制冷却する場合にも、送風ファン110の送風路を電子機器筐体内で確保するためのスペースが必要であるので、電子機器筐体内に冷却装置を搭載する上で、構成要素のさらなる複雑化とそれに伴う冷却性能の低下も課題であった。   Furthermore, in order to enhance the heat dissipation, even when the metal fins constituting the radiator 109 are forcibly cooled by the blower fan 110, a space for securing the blower fan 110 in the electronic device casing is required. Therefore, when the cooling device is mounted in the electronic device casing, further complication of components and a decrease in cooling performance associated therewith are also problems.

一方、(特許文献2)においては、液循環路の一部を構成するアッパタンク201と単なる貯留用のリザーブタンク204が隔壁206により仕切られているために上部側タンク205の構造が複雑な二重構造となっている。   On the other hand, in (Patent Document 2), the upper tank 201 constituting a part of the liquid circulation path and the mere storage reserve tank 204 are partitioned by a partition wall 206, so that the structure of the upper side tank 205 is complicated. It has a structure.

さらに、リザーブタンク204の内部において大気圧状態を保ち有効な貯留機能が得られるように大気中に開放された大気連通管210が接続されているので、リザーブタンク204をアッパタンク201の上部に設け、しかも液体冷媒が外部へ漏れないようにラジエータ装置200の設置方向も重力方向に対して一方向に固定する必要がある。   Furthermore, since the atmosphere communication pipe 210 opened to the atmosphere is connected so as to maintain an atmospheric pressure state inside the reserve tank 204 and obtain an effective storage function, the reserve tank 204 is provided on the upper part of the upper tank 201, In addition, the installation direction of the radiator device 200 needs to be fixed in one direction with respect to the direction of gravity so that the liquid refrigerant does not leak to the outside.

つまり、上部側タンク205の構造が複雑な二重構造となっているだけでなく、ラジエータ装置200の設置方向についても重力方向に対して制約があるので、可搬性の高い電子機器、或いは縦置き又は横置きのいずれの設置方向でも用いられる電子機器への適用が困難であるという課題も有していた。   That is, not only the structure of the upper tank 205 is a complicated double structure, but also the installation direction of the radiator device 200 is restricted with respect to the direction of gravity. In addition, there is a problem that it is difficult to apply to an electronic device used in any installation direction of horizontal installation.

また、(特許文献3)や(特許文献4)においては、(特許文献1)と同様に、リザーブタンク300は、冷却装置を構成する他の要素、例えばラジエータ、受熱器、ポンプがチューブにより直列的に接続され電子機器筐体内に別々に配置されているため、電子機器筐体の薄型化には対応が容易なものの、冷却装置の電子機器筐体への取り付け作業が煩雑で、冷却装置自体が占める容積も非常に大きいものとなっていた。   Further, in (Patent Document 3) and (Patent Document 4), similarly to (Patent Document 1), the reserve tank 300 includes other elements constituting the cooling device such as a radiator, a heat receiver, and a pump in series by a tube. Are connected to each other and are separately arranged in the electronic device casing, so it is easy to reduce the thickness of the electronic device casing, but the mounting work of the cooling device on the electronic device casing is complicated, and the cooling device itself The volume occupied by was very large.

また、それぞれの部品を相互に接続する液輸送路長が必然的に長くなるため、長期使用による液体冷媒である水分の蒸発量も多くなり、これを補充するためにより大型のリザーブタンクを設けることを必要とする場合もあり、結果として冷却装置全体の大型化や液輸送路長が長くなることで、ポンプに対する液循環路の流路抵抗が増して流量が減ることによって冷却性能の低下にもつながっていた。   In addition, since the length of the liquid transport path that interconnects each component is inevitably increased, the amount of water evaporation, which is a liquid refrigerant due to long-term use, also increases, and a larger reserve tank must be provided to supplement this. As a result, the overall size of the cooling device and the length of the liquid transport path are increased, which increases the flow resistance of the liquid circulation path to the pump and decreases the flow rate. It was connected.

本発明は、このような従来の課題を解決するものであり、気液分離用の密閉型のリザーブタンクがラジエータと一体的な簡素な構造となって液循環路の一部を構成するので、従来の冷却装置で必要とされていた単なる貯留用のリザーブタンクを別に設ける必要がなくなり容易に小型化が図れ、ラジエータがリザーブタンクの片側に寄せられているので、ラジエータへの風路を確保でき放熱性能を向上できる。   The present invention solves such a conventional problem, and the sealed reserve tank for gas-liquid separation has a simple structure integrated with the radiator and constitutes a part of the liquid circulation path. It is no longer necessary to provide a separate reserve tank, which was required for conventional cooling devices, and it is easy to reduce the size, and the radiator is moved to one side of the reserve tank, so that an air passage to the radiator can be secured. Heat dissipation performance can be improved.

さらに、リザーブタンクが密閉型であるので、可搬性の高い電子機器、或いは縦置き又は横置きのいずれの設置方向でも用いられる電子機器への適用も容易となる。   Furthermore, since the reserve tank is hermetically sealed, it can be easily applied to highly portable electronic devices, or electronic devices that are used in either the vertical or horizontal installation direction.

しかも、液循環路内に混入した空気を十分収容できる程度の内部容積を有する大きなリザーブタンクを用いて所定の位置に液流出管を設けた場合には、安定した気液分離機能も得られ、良好な液循環動作を確保できる。   Moreover, when a liquid outflow pipe is provided at a predetermined position using a large reserve tank having an internal volume sufficient to accommodate the air mixed in the liquid circulation path, a stable gas-liquid separation function can also be obtained. Good liquid circulation operation can be secured.

本発明は、上記目的を達成するために、液体冷媒を循環し、液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、その奪った熱を複数のコアチューブを有するラジエータで放熱する冷却装置であって、発熱電子部品と接触し内部を流れる液体冷媒と熱交換をさせるための受熱器と、受熱器に接続され、受熱器からラジエータまでの間を接続する液輸送路と、液体冷媒を受熱器から液輸送路を通してラジエータの方向へ循環駆動するポンプと、ラジエータのコアチューブの一方端を、片側に寄せて接続した気液分離用の密閉型のリザーブタンクとを備え、リザーブタンクの液流出管の液流出口をリザーブタンク内の略中央に配置した。   In order to achieve the above object, the present invention provides a radiator having a plurality of core tubes that circulates liquid refrigerant and removes heat from heat-generating electronic components mounted on a substrate by heat exchange with the liquid refrigerant. A cooling device that dissipates heat, a heat receiver for exchanging heat with the liquid refrigerant flowing in contact with the heat-generating electronic components, a liquid transport path that is connected to the heat receiver and connects between the heat receiver and the radiator, A pump that circulates and drives liquid refrigerant from the heat receiver through the liquid transport path toward the radiator, and a sealed reserve tank for gas-liquid separation in which one end of the core tube of the radiator is connected to one side, The liquid outlet of the liquid outflow pipe of the reserve tank was arranged at the approximate center in the reserve tank.

本発明の冷却装置によれば、従来の冷却装置で必要とされていた単なる貯留用のリザーブタンクを別に設ける必要がなくなり容易に小型化が図れ、ラジエータがリザーブタンクの片側に寄せられて接続されているので、ラジエータへの風路を確保でき放熱性能を向上できる。   According to the cooling device of the present invention, it is not necessary to provide a separate reserve storage tank that is required in the conventional cooling device, and the size can be easily reduced, and the radiator is brought close to one side of the reserve tank and connected. Therefore, the air path to the radiator can be secured and the heat radiation performance can be improved.

本発明の請求項1記載の発明によれば、液体冷媒を循環し、液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、その奪った熱を複数のコアチューブを有するラジエータで放熱する冷却装置であって、発熱電子部品と接触し内部を流れる液体冷媒と熱交換をさせるための受熱器と、受熱器に接続され、受熱器からラジエータまでの間を接続する液輸送路と、液体冷媒を受熱器から液輸送路を通してラジエータの方向へ循環駆動するポンプと、ラジエータのコアチューブの一方端を、片側に寄せて接続した気液分離用の密閉型のリザーブタンクとを備え、リザーブタンクの液流出管の液流出口をリザーブタンク内の略中央に配置したので、気液分離用の密閉型のリザーブタンクがラジエータと一体的な簡素な構造となって液循環路の一部を構成し、従来の冷却装置で必要とされていた単なる貯留用のリザーブタンクを別に設ける必要がなくなり小型化が図れ、ラジエータがリザーブタンクの片側に寄せられラジエータへの風路を確保でき放熱性能を向上できる。   According to the first aspect of the present invention, a radiator having a plurality of core tubes that circulates a liquid refrigerant and removes heat from the heat-generating electronic component mounted on the substrate by heat exchange with the liquid refrigerant. A cooling device that dissipates heat at a heat receiving device for exchanging heat with a liquid refrigerant that is in contact with heat-generating electronic components and flowing inside, and a liquid transport path that is connected to the heat receiving device and connects between the heat receiving device and the radiator And a pump that circulates and drives the liquid refrigerant from the heat receiver through the liquid transport path toward the radiator, and a sealed reserve tank for gas-liquid separation in which one end of the core tube of the radiator is connected to one side. Since the liquid outlet of the liquid outlet pipe of the reserve tank is arranged at the approximate center in the reserve tank, the sealed reserve tank for gas-liquid separation has a simple structure integrated with the radiator and the liquid circulation path It is possible to reduce the size by eliminating the need for a separate reserve storage tank, which is part of the conventional cooling system, and the radiator can be moved to one side of the reserve tank to secure the air path to the radiator. Heat dissipation performance can be improved.

また、リザーブタンクの液流出管の液流出口をリザーブタンク内の略中央に配置したので、冷却装置が比較的可搬性の高いデスクトップパソコンやPCサーバーなどの電子機器に搭載され、その電子機器またはその筐体の一部が事務所内の配置換えやメンテナンス、修理等で一時的に傾けられリザーブタンク内の液体冷媒の液面が傾いた場合でも、リザーブタンクの液流出管の液流出口が液面以下となり、液面上の空気がその液流出口からポンプや液輸送路などの液循環路に混入し冷却能力が低下するのを防止できる。   In addition, since the liquid outlet of the liquid outflow pipe of the reserve tank is arranged in the approximate center of the reserve tank, the cooling device is mounted on a relatively portable electronic device such as a desktop personal computer or PC server. Even when a part of the housing is temporarily tilted due to relocation, maintenance, repair, etc. in the office and the liquid level of the liquid refrigerant in the reserve tank is tilted, the liquid outlet of the liquid outflow pipe of the reserve tank is liquid. Therefore, it is possible to prevent the air on the liquid surface from entering the liquid circulation path such as a pump and a liquid transport path from the liquid outlet and lowering the cooling capacity.

さらに、リザーブタンクが密閉型であるので、可搬性の高い電子機器、或いは縦置き又は横置きのいずれの設置方向でも用いられる電子機器への適用も容易となるという効果を奏する。   Furthermore, since the reserve tank is hermetically sealed, there is an effect that it can be easily applied to highly portable electronic devices or electronic devices that are used in either the vertical or horizontal installation direction.

しかも、液循環路内に混入した空気を十分収容できる程度の内部容積を有する大きなリザーブタンクを用いて所定の位置に液流出管を設けた場合には、安定した気液分離機能も得られ、良好な液循環動作を確保できる。   Moreover, when a liquid outflow pipe is provided at a predetermined position using a large reserve tank having an internal volume sufficient to accommodate the air mixed in the liquid circulation path, a stable gas-liquid separation function can also be obtained. Good liquid circulation operation can be secured.

本発明の請求項2記載の発明によれば、受熱器はポンプを内蔵した受熱一体ポンプとしたので、液循環路内にポンプを別体で単独に設ける必要がないので、電子機器筐体内の発熱電子部品への搭載作業が容易となるばかりでなく、液循環路長がさらに短くなることで、ポンプに対する液循環路の流路抵抗が減少し、流量が増大することによって冷却性能を向上することができる。   According to the invention described in claim 2 of the present invention, the heat receiver is a heat receiving integrated pump with a built-in pump, so there is no need to separately provide the pump separately in the liquid circulation path. In addition to facilitating mounting work on heat-generating electronic components, the liquid circulation path length is further shortened, which reduces the flow resistance of the liquid circulation path to the pump and improves the cooling performance by increasing the flow rate. be able to.

また、全体の液循環路長が短くなることで液体冷媒の水分蒸発も抑制できるので、その分リザーブタンクの内部容量を小さくでき冷却装置全体の小型化も可能となる。   Further, since the liquid circulation path length of the entire liquid is shortened, moisture evaporation of the liquid refrigerant can be suppressed, and accordingly, the internal capacity of the reserve tank can be reduced and the entire cooling device can be downsized.

本発明の請求項3記載の発明によれば、液輸送路を2本のみとしたので、従来の冷却装置では少なくとも3〜4本必要であった液輸送路が2本となって液循環路長が短くなるので、ポンプに対する液循環路の流路抵抗が減少し、流量が増大することによって冷却性能を向上することができる。   According to the invention described in claim 3 of the present invention, since there are only two liquid transport paths, at least 3 to 4 liquid transport paths are required in the conventional cooling device, and the liquid circulation path becomes two. Since the length is shortened, the flow resistance of the liquid circulation path with respect to the pump is reduced, and the cooling performance can be improved by increasing the flow rate.

また、全体の液循環路長が短くなることで液体冷媒の水分蒸発も抑制できるので、その分リザーブタンクの内部容量を小さくでき冷却装置全体の小型化も可能となる。   Further, since the liquid circulation path length of the entire liquid is shortened, moisture evaporation of the liquid refrigerant can be suppressed, and accordingly, the internal capacity of the reserve tank can be reduced and the entire cooling device can be downsized.

本発明の請求項4記載の発明によれば、リザーブタンクをラジエータに対して重力方向で上側に配置したので、液循環路内に微量に混入した空気がある場合でも、その浮力を利用してリザーブタンクに集め易くなり、より安定した気液分離機能が得られ、良好な液循環動作を確保できる。   According to the invention described in claim 4 of the present invention, the reserve tank is arranged on the upper side in the direction of gravity with respect to the radiator, so even if there is a minute amount of air in the liquid circulation path, the buoyancy is utilized. It becomes easy to collect in the reserve tank, a more stable gas-liquid separation function is obtained, and good liquid circulation operation can be secured.

本発明の請求項5記載の発明によれば、リザーブタンクの液流出管の液流出口の液底面側に切り欠き部を形成したので、リザーブタンクの液流出管の液流出口を起点とした渦流が液面方向へ発生するのを抑制し、その渦流にリザーブタンク内の液面上の空気が巻き込まれてその液流出口よりポンプや液輸送路などの液循環路に混入し冷却能力が低下するのを防止できる。   According to the invention of claim 5 of the present invention, the notch is formed on the liquid bottom side of the liquid outlet of the liquid outlet pipe of the reserve tank, so that the liquid outlet of the liquid outlet pipe of the reserve tank is the starting point. Suppresses the generation of vortex flow in the liquid surface direction, and air on the liquid level in the reserve tank is entrained in the vortex flow, and enters the liquid circulation path such as the pump and liquid transport path from the liquid flow outlet to reduce the cooling capacity. It can be prevented from lowering.

本発明の請求項6記載の発明によれば、リザーブタンクの内壁から液流出管の液流出口の液面方向に突出壁を形成したので、液面上の空気との遮蔽作用が働きリザーブタンクの液流出管の液流出口を起点とした渦流が液面方向へ発生するのを抑制し、その渦流にリザーブタンク内の液面上の空気が巻き込まれてその液流出口よりポンプや液輸送路などの液循環路に混入し冷却能力が低下するのを防止できる。   According to the sixth aspect of the present invention, since the protruding wall is formed from the inner wall of the reserve tank in the liquid surface direction of the liquid outlet of the liquid outflow pipe, the shielding action against the air on the liquid surface works and the reserve tank The vortex flow starting from the liquid outlet of the liquid outflow pipe is suppressed from occurring in the liquid surface direction, and the air on the liquid level in the reserve tank is entrained in the vortex flow, and the pump and liquid transport from the liquid outlet It is possible to prevent the cooling capacity from being reduced due to mixing in a liquid circulation path such as a path.

本発明の請求項7記載の発明によれば、ラジエータのコアチューブの他方端に、そのコアチューブと液輸送路とを連通する連通タンクを接続し、リザーブタンクと連通タンクとをタンク連結部材で連結したので、リザーブタンクと連通タンクがタンク連結部材により強固に保持され、しかもそのタンク連結部材を介して受熱器と連結する場合や電子機器筐体の所定の位置に配置、固定する場合などの組み込み作業が容易となるばかりでなく、他の関連部材との連結も容易になる。   According to the seventh aspect of the present invention, a communication tank that connects the core tube and the liquid transport path is connected to the other end of the core tube of the radiator, and the reserve tank and the communication tank are connected by the tank connecting member. Since it is connected, the reserve tank and the communication tank are firmly held by the tank connecting member, and when connecting to the heat receiver via the tank connecting member, or when being placed and fixed at a predetermined position of the electronic device casing, etc. Not only the assembling work is facilitated, but also the connection with other related members is facilitated.

本発明の請求項8記載の発明によれば、リザーブタンクと連通タンクとを、ラジエータを挟み込んでコの字状となるように対向配置し、リザーブタンクと連通タンクとの空間に風路を形成したので、ラジエータへの風路を確保でき放熱性能を向上できる。また、その風路に強制冷却のための送風ファンを組み込めばよりコンパクトな冷却装置を構成できる。   According to the invention of claim 8 of the present invention, the reserve tank and the communication tank are arranged to face each other so as to have a U shape with the radiator interposed therebetween, and an air passage is formed in the space between the reserve tank and the communication tank. As a result, the air path to the radiator can be secured and the heat dissipation performance can be improved. Further, if a blower fan for forced cooling is incorporated in the air passage, a more compact cooling device can be configured.

本発明の請求項9記載の発明によれば、ラジエータの通風面に送風ファンの送風面を対向配置したので、本発明の冷却装置を電子機器筐体内で他の周辺装置や筐体壁に近接して設置したとしても、ラジエータに十分な風量の空気を送風できるのでラジエータの放熱性能を向上できる。   According to the ninth aspect of the present invention, since the air blowing surface of the blower fan is disposed opposite to the ventilation surface of the radiator, the cooling device of the present invention is located close to other peripheral devices and the housing wall in the electronic device housing. Even if installed, a sufficient amount of air can be blown to the radiator, so that the heat dissipation performance of the radiator can be improved.

本発明の請求項10記載の発明によれば、受熱器連結部材を介して受熱器とタンク連結部材とを連結したので、冷却装置全体がよりコンパクトで一体的になり、発熱電子部品の実装された基板上に受熱器を固定するのみで、受熱器連結部材を介してタンク連結部材と連結されたリザーブタンク、連通タンク、及びそれと接続されたリザーブタンクなどの関連部材も同時設置可能となり、CPUなど冷却したい発熱電子部品の交換作業も容易に行うことができる。   According to the tenth aspect of the present invention, since the heat receiver and the tank connection member are connected via the heat receiver connection member, the entire cooling device becomes more compact and integrated, and the heat generating electronic component is mounted. By simply fixing the heat receiver on the printed circuit board, it becomes possible to simultaneously install related members such as a reserve tank connected to the tank connecting member via the heat receiver connecting member, a communication tank, and a reserve tank connected to the tank. For example, it is possible to easily replace a heat generating electronic component to be cooled.

本発明の請求項11記載の発明によれば、ラジエータの一部を構成する複数のコアチューブ間にコルゲートフィンを設けたので、コアチューブの中を流通する液体冷媒の熱がコルゲートフィンにまで熱伝導し、その放熱面積を大幅に増大させ効率のよい放熱が可能となる。   According to the eleventh aspect of the present invention, since the corrugated fins are provided between the plurality of core tubes constituting a part of the radiator, the heat of the liquid refrigerant flowing through the core tubes is heated to the corrugated fins. Conduction and the heat radiation area are greatly increased, and efficient heat radiation becomes possible.

本発明の請求項12記載の発明によれば、ラジエータのコアチューブとリザーブタンクとを熱接続したので、リザーブタンクに貯留された液体冷媒の熱がコアチューブに伝導されて放熱され、リザーブタンクも放熱機能を有しその冷却装置全体の冷却性能を向上できる。   According to the twelfth aspect of the present invention, since the core tube of the radiator and the reserve tank are thermally connected, the heat of the liquid refrigerant stored in the reserve tank is conducted to the core tube and radiated, and the reserve tank is also It has a heat dissipation function and can improve the cooling performance of the entire cooling device.

本発明の請求項13記載の発明によれば、液輸送路は湾曲部分または屈曲部分を有し、その湾曲部分または屈曲部分を金属管で構成したので、電子機器に搭載された状態で液輸送路を局部的に曲げる応力が働く場所が1箇所の場合であれば、その部分を金属管で構成することにより液輸送路が閉塞するのを防止し、良好な液循環動作を確保できる。   According to the thirteenth aspect of the present invention, the liquid transport path has a curved portion or a bent portion, and the curved portion or the bent portion is formed of a metal tube. Therefore, the liquid transport path is mounted in an electronic device. If there is only one place where the stress that locally bends the path works, the liquid transport path can be prevented from being blocked by configuring the portion with a metal tube, and a good liquid circulation operation can be secured.

また、電子機器に搭載された状態で液輸送路を局部的に曲げる応力が働く場所が複数箇所となる場合であれば、そのいずれかの湾曲部分又は屈曲部分を比較的大きな曲率を有する円弧状が鋭く折れ曲がった金属管で構成することにより他の湾曲又は屈曲部分がより小さな曲率の円弧状がよりゆるやかな折れ曲がりとなるので、その曲がりが軽減され仮にその湾曲部分又は屈曲部分がフレキシブルチューブであってもその液輸送路が閉塞するのを防止し、良好な液循環動作を確保できる。   In addition, if there are a plurality of places where the stress that locally bends the liquid transport path is applied in a state of being mounted on an electronic device, any one of the curved portions or the bent portions has an arc shape having a relatively large curvature. By forming the metal tube with a sharp bend, the other curved or bent portion becomes a gentle bend when the arc shape with a smaller curvature becomes smaller. However, it is possible to prevent the liquid transport path from being blocked and to ensure a good liquid circulation operation.

さらに、受熱器とラジエータの相互の位置関係が一定であれば全ての湾曲部分又は屈曲部分がフレキシブルチューブで構成されても閉塞するおそれがない場合でも、その冷却装置が電子機器内に複数個搭載された結果、受熱器とラジエータの相互の位置関係がそれぞれにおいて不均一となる場合には、その湾曲部分又は屈曲部分にさらに大きな曲げる応力が働き閉塞するおそれがあるので、そのいずれかの部分を比較的曲率の大きな金属管で構成することにより他の湾曲部分又は屈曲部分の曲がりが軽減されその液輸送路が閉塞するのを防止し、良好な液循環動作を確保できる。   Furthermore, if the positional relationship between the heat receiver and the radiator is constant, a plurality of cooling devices are mounted in the electronic device even if all the curved parts or bent parts are composed of flexible tubes and there is no risk of blockage. As a result, if the mutual positional relationship between the heat receiver and the radiator is non-uniform in each case, there is a possibility that a larger bending stress will act on the curved part or the bent part, so that either part thereof may be blocked. By using a metal tube having a relatively large curvature, the bending of other curved portions or bent portions can be reduced and the liquid transport path can be prevented from being blocked, and a good liquid circulation operation can be ensured.

本発明の請求項14記載の発明によれば、請求項1から13いずれか1項に記載の冷却装置を備え、冷却装置の受熱器が発熱電子部品と熱接続した電子機器なので、電子機器内での冷却性能を向上でき、その電子機器に搭載されたCPUなどの演算処理能力を向上し、動作状態の安定性を確保できる。また、電子機器の小型、薄型、軽量化への対応も容易となる。   According to the fourteenth aspect of the present invention, the cooling device according to any one of the first to thirteenth aspects is provided, and the heat receiver of the cooling device is an electronic device thermally connected to the heat generating electronic component. The cooling performance can be improved, the arithmetic processing capability of the CPU or the like mounted on the electronic device can be improved, and the stability of the operation state can be ensured. In addition, the electronic device can be easily reduced in size, thickness, and weight.

以下本発明の実施の形態について図面を用いて説明する。なお、各図面においてリザーブタンク側を上方、連通タンク側を下方として以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing, description will be given below with the reserve tank side as the upper side and the communication tank side as the lower side.

(実施の形態1)
図1〜図8において、図1は本発明の実施の形態1に係わる冷却装置の全体斜視図で、図2は本発明の実施の形態1に係わる冷却装置の正面図と背面図で、図3は本発明の実施の形態1に係わる冷却装置のリザーブタンクの構造を説明する一部切り欠き図とそのB−B矢視断面図で、図4はリザーブタンクの第一の変形例を説明する一部切り欠き図とそのC−C矢視断面図で、図5はリザーブタンクの第二の変形例を説明する斜視図とそのD−D矢視断面図で、図6はリザーブタンクの第三の変形例を説明する一部切り欠き図とそのE−E矢視断面図で、図7は図1のA−A矢視断面図で、図8は電子機器のラック型筐体内部への冷却装置の組み込み状態を示す斜視図と正面図である。
(Embodiment 1)
1 to 8, FIG. 1 is an overall perspective view of the cooling device according to the first embodiment of the present invention, and FIG. 2 is a front view and a rear view of the cooling device according to the first embodiment of the present invention. 3 is a partially cutaway view for explaining the structure of the reserve tank of the cooling device according to the first embodiment of the present invention and a cross-sectional view taken along the line BB, and FIG. 4 is a first modified example of the reserve tank. FIG. 5 is a perspective view for explaining a second modification of the reserve tank and its DD arrow sectional view, and FIG. 6 is a sectional view of the reserve tank. FIG. 7 is a partially cutaway view illustrating a third modification and a cross-sectional view taken along the line EE of FIG. 7, FIG. 7 is a cross-sectional view taken along the line AA of FIG. It is the perspective view and front view which show the assembly state of the cooling device in the.

まず、図1の本発明の実施の形態1に係わる冷却装置1の全体斜視図で示したように、後述する液循環用のポンプを内蔵しCPUなどの発熱電子部品(図示せず)と熱接続される受熱一体ポンプ2の液吐出側と液吸込側のそれぞれに、2本の液輸送路3、4が接続されている。   First, as shown in the overall perspective view of the cooling device 1 according to the first embodiment of the present invention shown in FIG. 1, a heat circulation electronic component (not shown) such as a CPU and a heat pump including a liquid circulation pump described later are incorporated. Two liquid transport paths 3 and 4 are connected to each of the liquid discharge side and the liquid suction side of the heat receiving integrated pump 2 to be connected.

液輸送路3は、フレキシブルでガス透過性の少ない高分子材料、例えばブチルゴムやフッ素ゴムなどを用いたフレキシブルチューブ3aとさらにその一方の屈曲部分には銅、アルミニウム、ステンレス鋼などの金属管3bがホースバンド3cで接続された構成となっており、液輸送路4も同様にフレキシブルチューブ4aと金属管4bがホースバンド4cで接続された構成で、いずれも液循環路の一部を構成している。   The liquid transport path 3 includes a flexible tube 3a using a flexible and low gas permeability polymer material such as butyl rubber or fluoro rubber, and a metal tube 3b made of copper, aluminum, stainless steel or the like at one bent portion. The hose band 3c is connected, and the liquid transport path 4 is similarly configured by connecting the flexible tube 4a and the metal pipe 4b with the hose band 4c, both of which constitute part of the liquid circulation path. Yes.

また、気液分離用の密閉型のリザーブタンク5はラジエータ6に対して重力方向での上方端に隣接配置され、ラジエータ6のコアチューブ6a(図2参照)の上方端を、そのリザーブタンク5の液流出管5aから離れる方向の片側に寄せて接続され、そのリザーブタンク5が液循環路の一部を構成することとなり、リザーブタンク5の液流出管5aには一方の液輸送路4を構成するフレキシブルチューブ4aがホースバンド4cで接続されている。   Further, the gas-liquid separation type reserve tank 5 is disposed adjacent to the upper end of the radiator 6 in the direction of gravity, and the upper end of the core tube 6a (see FIG. 2) of the radiator 6 is connected to the reserve tank 5 thereof. The reserve tank 5 constitutes a part of the liquid circulation path, and one liquid transport path 4 is connected to the liquid outflow pipe 5a of the reserve tank 5. The flexible tube 4a which comprises is connected by the hose band 4c.

そして、ラジエータ6の下方端には連通タンク7が接続され、さらには側面から見てコの字状となるようにラジエータ6を挟み込んでリザーブタンク5と連通タンク7がタンク連結部材8で連結され対向配置しているので、その間に風路が形成されている。   A communication tank 7 is connected to the lower end of the radiator 6, and the reserve tank 5 and the communication tank 7 are connected by a tank connecting member 8 with the radiator 6 sandwiched so as to have a U shape when viewed from the side. Since they face each other, an air passage is formed between them.

さらには、連通タンク7の液流入管7aには他方の液輸送路3を構成するフレキシブルチューブ3aがホースバンド3cで接続されている。   Furthermore, the flexible tube 3a which comprises the other liquid transport path 3 is connected to the liquid inflow pipe 7a of the communication tank 7 by the hose band 3c.

つまり、受熱一体ポンプ2は発熱電子部品と接触し内部を流れる液体冷媒と熱交換しながら熱を奪い、一方、その熱交換により高温に熱せられた液体冷媒は矢印で示した方向へ吐出された後、液輸送路3を矢印の方向へ通過して連通タンク7に流れ込み熱輸送を行う。   In other words, the heat receiving integrated pump 2 takes heat while exchanging heat with the liquid refrigerant flowing in contact with the heat generating electronic component, while the liquid refrigerant heated to high temperature by the heat exchange is discharged in the direction indicated by the arrow. Thereafter, the liquid passes through the liquid transport path 3 in the direction of the arrow and flows into the communication tank 7 to perform heat transport.

そして、連通タンク7はラジエータ6の一部を構成する複数のコアチューブ6a(図2参照)のそれぞれと接続され連通しているので、その液体冷媒はラジエータ6のコアチューブ6aの中を流通する間で熱交換し放熱した後、液循環路の一部を構成するリザーブタンク5の内部を流れ、液輸送路4を通過して受熱一体ポンプ2に戻る。   Since the communication tank 7 is connected to and communicates with each of a plurality of core tubes 6a (see FIG. 2) constituting a part of the radiator 6, the liquid refrigerant flows through the core tubes 6a of the radiator 6. After exchanging heat and radiating heat, it flows through the reserve tank 5 constituting a part of the liquid circulation path, passes through the liquid transport path 4, and returns to the heat receiving integrated pump 2.

このような液循環動作を繰り返し行うことで、発熱電子部品から熱を奪い有効な冷却効果が得られる。   By repeating such a liquid circulation operation, heat is removed from the heat generating electronic component, and an effective cooling effect is obtained.

なお、気液分離用の密閉型のリザーブタンク5には液流出管5aとは別に液補給管5bが設けられ、通常はキャップ5cで閉鎖された状態で密閉されているが、必要に応じてそのキャップ5cを取り外し消耗した液体冷媒を補給できるようにしている。   The sealed reservoir tank 5 for gas-liquid separation is provided with a liquid replenishing pipe 5b separately from the liquid outflow pipe 5a, and is normally sealed with the cap 5c closed. The cap 5c is removed to replenish the exhausted liquid refrigerant.

そして、以上のように、そのラジエータ6のコアチューブ6aの上方端が、密閉型のリザーブタンク5の液流出管5aから離れる方向の片側に寄せられて接続されている。   As described above, the upper end of the core tube 6a of the radiator 6 is connected to one side in a direction away from the liquid outflow pipe 5a of the closed type reserve tank 5.

つまり、気液分離用の密閉型のリザーブタンク5がラジエータ6と接続され、一体的な簡素な構造となり、ラジエータ6を挟み込んでリザーブタンク5と連通タンク7がタンク連結部材8で連結され対向配置しているので、その間に風路が形成され、ラジエータ6への風路を確保でき放熱性能を向上できる。   In other words, the gas-liquid separation type closed reserve tank 5 is connected to the radiator 6 to form an integrated simple structure. The reservoir tank 5 and the communication tank 7 are connected by the tank connecting member 8 with the radiator 6 interposed therebetween. As a result, an air passage is formed between them, and an air passage to the radiator 6 can be secured, so that the heat radiation performance can be improved.

また、従来の冷却装置で必要とされていた単なる貯留用のリザーブタンクを別に設ける必要がなくなりより小型化が図れる。   Moreover, it is not necessary to provide a separate reserve tank that is required in the conventional cooling device, and the size can be further reduced.

また、気液分離用のリザーブタンク5が密閉型であるので、可搬性の高い電子機器、或いは縦置き又は横置きの異なる設置方向で用いられる電子機器への適用も容易となる。   In addition, since the gas-liquid separation reserve tank 5 is a hermetically sealed type, it can be easily applied to highly portable electronic devices or electronic devices used in different installation directions of vertical installation or horizontal installation.

さらに、受熱一体ポンプ2はポンプ機能を内蔵しているので、2本の液輸送路3,4やラジエータ6などの液循環路内に液体冷媒の循環駆動用のポンプを別体で単独に設ける必要がなく、しかもこの冷却装置1の液輸送路を2本のみとしたので、従来の冷却装置では少なくとも3〜4本必要であった液輸送路が2本のみとなって液循環路長が短くなるので、ポンプに対する液循環路の流路抵抗が減少し、流量が増大することによって冷却性能を向上することができる。   Furthermore, since the heat receiving integrated pump 2 has a built-in pump function, a separate pump for driving the circulation of the liquid refrigerant is separately provided in the liquid circulation paths such as the two liquid transport paths 3 and 4 and the radiator 6. Since there is no need for this and the cooling device 1 has only two liquid transport paths, at least three to four liquid transport paths are required in the conventional cooling device, and the liquid circulation path length is increased. Since it becomes short, the flow resistance of the liquid circulation path with respect to the pump decreases, and the cooling performance can be improved by increasing the flow rate.

また、電子機器筐体内の発熱電子部品への搭載作業が容易となるばかりでなく、全体の液循環路長が短くなることで液体冷媒の水分蒸発も抑制できるので、その分リザーブタンク5の内部容量を小さくでき冷却装置1全体の小型化も可能となる。   Moreover, not only the mounting operation to the heat generating electronic components in the electronic device casing is facilitated, but also the evaporation of the moisture of the liquid refrigerant can be suppressed by shortening the entire liquid circulation path length. A capacity | capacitance can be made small and the cooling device 1 whole can also be reduced in size.

ここで、リザーブタンク5を、ラジエータ6に対して重力方向で上側に配置し液循環路内に混入した空気を十分収容できる程度の大きな内部容積を有する気液分離用の密閉型のタンクとしたので、例えば、フレキシブルチューブ3a、4aを透過した微量の空気が液循環路内に混入しても、このリザーブタンク5に空気を集め易くなり、安定した気液分離機能が得られ、良好な液循環動作を確保できる。   Here, the reserve tank 5 is an airtight tank for gas-liquid separation that is disposed above the radiator 6 in the gravitational direction and has a large internal volume enough to accommodate air mixed in the liquid circulation path. Therefore, for example, even if a small amount of air that has passed through the flexible tubes 3a and 4a is mixed in the liquid circulation path, it is easy to collect air in the reserve tank 5, and a stable gas-liquid separation function can be obtained. Circulating operation can be secured.

また、ラジエータ6のコアチューブ6aの下方端に、コアチューブ6aと液輸送路3とを連通する連通タンク7が接続され、リザーブタンク5と連通タンク7とをタンク連結部材8で連結したので、リザーブタンク5と連通タンク7がタンク連結部材8により上下2箇所の連結部8aで強固に保持することができ、そのタンク連結部材8を介して受熱一体ポンプ2と連結する場合や電子機器筐体の所定の位置に配置、固定する場合などの組み込み作業が容易となる。   Further, a communication tank 7 that connects the core tube 6 a and the liquid transport path 3 is connected to the lower end of the core tube 6 a of the radiator 6, and the reserve tank 5 and the communication tank 7 are connected by the tank connecting member 8. The reserve tank 5 and the communication tank 7 can be firmly held by the tank connecting member 8 at two upper and lower connecting portions 8a, and connected to the heat receiving integrated pump 2 via the tank connecting member 8 or an electronic device casing Assembling work becomes easier when it is arranged and fixed at a predetermined position.

なお、その場合において固定用孔部8bは図示しない固定用ビス等を用いて他の部材を締め付け固定するために設けられている。   In this case, the fixing hole 8b is provided to fasten and fix other members using a fixing screw or the like (not shown).

また、ラジエータ6を挟み込んでコの字状となるようにリザーブタンク5と連通タンク7が対向配置し、その間の空間で風路を形成したので、ラジエータ6への風路を確保でき放熱性能を向上できる。また、後述するがその風路に強制冷却のための送風ファンをその風路に組み込めばよりコンパクトな冷却装置1を構成できる。   In addition, the reserve tank 5 and the communication tank 7 are arranged so as to be U-shaped with the radiator 6 interposed therebetween, and an air passage is formed in the space between them, so that an air passage to the radiator 6 can be secured and heat radiation performance can be ensured. It can be improved. As will be described later, a more compact cooling device 1 can be configured by incorporating a blower fan for forced cooling into the air passage.

また、液輸送路3は、2箇所の湾曲部分を有し、フレキシブルチューブ3aとその一方の湾曲部分を曲率の大きな円弧状の金属管3bで構成したので、他方のフレキシブルチューブ3aの湾曲部分がその分小さな曲率となるので、その曲がりが軽減され閉塞するのを防止し、良好な液循環動作を確保できる。   In addition, the liquid transport path 3 has two curved portions, and the flexible tube 3a and one of the curved portions are configured by the arc-shaped metal tube 3b having a large curvature. Accordingly, the curvature becomes small, so that the bending is reduced and the blockage is prevented, and a good liquid circulation operation can be secured.

同様に、液輸送路4も、2箇所の湾曲部分を有し、フレキシブルチューブ4aとその一方の湾曲部分を比較的曲率の大きな円弧状の金属管4bで構成したので、他方のフレキシブルチューブ4aの湾曲部分がその分小さな曲率となるので、その曲がりが軽減され閉塞するのを防止し、良好な液循環動作を確保できる。   Similarly, the liquid transport path 4 also has two curved portions, and the flexible tube 4a and one curved portion thereof are configured by the arc-shaped metal tube 4b having a relatively large curvature. Since the curved portion has a smaller curvature, the bending is reduced and the blockage is prevented, and a good liquid circulation operation can be secured.

また、受熱一体ポンプ2とラジエータ6の湾曲部分又は屈曲部分がフレキシブルチューブ3a、4aで構成されてもその曲率が小さく閉塞するおそれがない場合でも、その冷却装置1が電子機器内に複数個搭載された結果、受熱一体ポンプ2とラジエータ6の相互の位置関係がそれぞれの冷却装置1において不均一となる場合には、その湾曲部分又は屈曲部分にさらに大きな曲げる応力が働き閉塞するおそれがあるので、そのいずれかの部分を比較的曲率の大きな金属管3b、4bで構成することにより他の湾曲部分又は屈曲部分の曲がりが軽減されその液輸送路3、4が閉塞するのを防止し、良好な液循環動作を確保できる。   Even if the curved portion or the bent portion of the heat receiving integrated pump 2 and the radiator 6 are constituted by the flexible tubes 3a and 4a, a plurality of the cooling devices 1 are mounted in the electronic device even if the curvature is small and there is no fear of closing. As a result, if the mutual positional relationship between the heat receiving integrated pump 2 and the radiator 6 becomes non-uniform in each cooling device 1, there is a possibility that a larger bending stress acts on the curved portion or the bent portion and the block is blocked. By configuring any of the portions with the metal tubes 3b and 4b having a relatively large curvature, the bending of other curved portions or bent portions is reduced, and the liquid transport paths 3 and 4 are prevented from being clogged. A safe liquid circulation operation.

さらに、金属管3b、4bは空気の透過や液体冷媒の水分蒸発を抑える作用も有するので、湾曲部分又は屈曲部分ではない直線部分に用いてもよい。   Furthermore, since the metal tubes 3b and 4b also have an action of suppressing air permeation and moisture evaporation of the liquid refrigerant, they may be used for straight portions that are not curved portions or bent portions.

なお、本実施の形態の場合は、液輸送路3、4に対して、それぞれ一方の湾曲部分のみを金属管3b、4bで構成したが、用いられるフレキシブルチューブの種類やサイズによって閉塞を防止する効果が不十分な場合には、全ての湾曲部分又は屈曲部分を金属管3b、4bで構成しても構わない。   In the case of the present embodiment, only one curved portion of each of the liquid transport paths 3 and 4 is configured by the metal tubes 3b and 4b. However, blocking is prevented depending on the type and size of the flexible tube used. When the effect is insufficient, all the curved portions or bent portions may be constituted by the metal tubes 3b and 4b.

また、受熱一体ポンプ2は基板への取り付け用としてのベースプレート2aに載置された状態で固定用ビス2bを用いて固定されており、この状態でCPUなどの発熱電子部品が実装された基板へ取り付け用ビス2cを用いて取り付けられる。   The heat receiving integrated pump 2 is fixed by using fixing screws 2b in a state of being mounted on a base plate 2a for attachment to the substrate. In this state, the heat receiving integrated pump 2 is mounted on a substrate on which a heat generating electronic component such as a CPU is mounted. It is attached using a mounting screw 2c.

このような構成にすることにより、CPUのサイズや基板との位置関係に対応してベースプレート2aや取り付け用ビス2cの形状や大きさを適宜変更することにより取り付けが容易となる。   With such a configuration, attachment is facilitated by appropriately changing the shape and size of the base plate 2a and the mounting screw 2c in accordance with the size of the CPU and the positional relationship with the substrate.

次に、図2(a)の本発明の実施の形態1に係わる冷却装置1の正面図で示したように、ラジエータ6の一部を構成する複数のコアチューブ6a間に波形のコルゲートフィン6bを設けたので、コアチューブ6aの中を流通する液体冷媒の熱がコルゲートフィン6bにまで熱伝導し、その放熱面積を大幅に増大させ効率のよい放熱が可能となる。   Next, as shown in the front view of the cooling device 1 according to the first embodiment of the present invention shown in FIG. 2 (a), the corrugated fin 6b having a waveform between the plurality of core tubes 6a constituting a part of the radiator 6. Since the heat of the liquid refrigerant flowing through the core tube 6a is conducted to the corrugated fins 6b, the heat radiation area is greatly increased, and efficient heat radiation becomes possible.

ここで、コルゲートフィン6bにまで良好な熱伝導性が確保できるように、平板状のコアチューブ6aとしては、アルミニウム、アルミニウム合金、銅、銅合金などの熱伝導性のよい金属材料を押出し成形により内部が空洞となるように加工し、一方、波形のコルゲートフィン6bも同様の熱伝導性の良好な金属材料をロール状にしたものを金型成形した後に、並列配置されたコアチューブ6aの間に密着挿入し銀、銅、亜鉛などのろう材を用いてろう付けされている。   Here, in order to ensure good thermal conductivity up to the corrugated fins 6b, as the flat core tube 6a, a metal material having good thermal conductivity such as aluminum, aluminum alloy, copper, and copper alloy is extruded. On the other hand, the corrugated fins 6b having corrugated corrugated fins 6b, which are made of a metal material having a good thermal conductivity and formed into a roll shape, are molded between the core tubes 6a arranged in parallel. It is tightly inserted and brazed using a brazing material such as silver, copper or zinc.

なお、所望の放熱冷却が得られればコルゲートフィン6bの形状は波形以外にも矩形、台形でも構わないが、金型成形に適した形状としたほうが加工費を軽減できる。   Note that the corrugated fin 6b may have a rectangular shape or a trapezoidal shape in addition to the corrugated shape as long as desired heat radiation cooling can be obtained.

また、タンク連結部材8は、ラジエータ6の左右の両側でコアチューブ6aと略平行な位置関係でリザーブタンク5と連通タンク7を連結している。   The tank connecting member 8 connects the reserve tank 5 and the communication tank 7 in a positional relationship substantially parallel to the core tube 6 a on both the left and right sides of the radiator 6.

そして、図2(b)の本発明の実施の形態1に係わる冷却装置1の背面図で示したように、受熱一体ポンプ2は取り付け用としてのベースプレート2aに載置された状態で固定用ビス2bを用いて固定されており、この状態でCPUなどの発熱電子部品が実装された基板へ取り付け用ビス2cを用いて取り付けられる。   Then, as shown in the rear view of the cooling device 1 according to the first embodiment of the present invention in FIG. 2B, the heat receiving integrated pump 2 is mounted on the base plate 2a for mounting and is a fixing screw. It is fixed using 2b, and in this state, it is attached to a substrate on which a heat generating electronic component such as a CPU is mounted using an attaching screw 2c.

次に、図3(a)の本発明の実施の形態1に係わる冷却装置1のリザーブタンク5の構造を説明する一部切り欠き図で前述した液輸送路3,4や受熱一体ポンプ2は省略して示している。この図で示したように、リザーブタンク5の液流出管5aの液流出口5dをリザーブタンク5内の略中央に配置したので、その冷却装置1が比較的可搬性の高いデスクトップパソコンやPCサーバーなどの電子機器に搭載され、その電子機器またはその筐体の一部が事務所内の配置換えやメンテナンス等で一時的に傾けられリザーブタンク5内の液体冷媒の液面が傾いた場合、或いは縦置き又は横置きのいずれの設置方向でも用いられる電子機器へ適用された場合でも、リザーブタンク5の液流出管5aの液流出口5dが液面以下となり、液面上の空気がその液流出口5dから受熱一体ポンプ2や液輸送路3、4などの液循環路に混入し冷却能力が低下するのを防止できる。   Next, the liquid transport paths 3 and 4 and the heat receiving integrated pump 2 described above in the partially cutaway view for explaining the structure of the reserve tank 5 of the cooling device 1 according to the first embodiment of the present invention shown in FIG. It is omitted. As shown in this figure, since the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 is arranged at the approximate center in the reserve tank 5, the cooling device 1 is a relatively portable desktop PC or PC server. When the electronic device or a part of its casing is temporarily tilted due to rearrangement or maintenance in the office and the liquid refrigerant liquid level in the reserve tank 5 is tilted, or vertically Even when applied to an electronic device that is used in either a horizontal or horizontal orientation, the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 is below the liquid level, and the air above the liquid level is the liquid outlet. It is possible to prevent the cooling capacity from being deteriorated by mixing in the liquid circulation paths such as the heat receiving integrated pump 2 and the liquid transport paths 3 and 4 from 5d.

つまり、図3(b)のB−B矢視断面図で示したように、仮に冷却装置1が破線の矢印で示した方向へ少し傾きリザーブタンク5内の液体冷媒9が破線で示した液面9aの状態に変化したとしても、液流出管5aの液流出口5dが液面9aの下側となるようにリザーブタンク5内の略中央に配置されている。   That is, as shown in the cross-sectional view taken along the line BB in FIG. 3B, the cooling device 1 is slightly inclined in the direction indicated by the dashed arrow, and the liquid refrigerant 9 in the reserve tank 5 is indicated by the broken line. Even if the state changes to the state of the surface 9a, the liquid outlet 5d of the liquid outflow pipe 5a is arranged at the approximate center in the reserve tank 5 so as to be below the liquid surface 9a.

また、冷却装置1が破線の矢印で示した方向と反対の方向へ少し傾いた場合も同様の効果が得られ、いずれの場合でも液流出管5aの中を実線の矢印の方向へ空気が流出するのを防止している。   The same effect can be obtained when the cooling device 1 is slightly tilted in the direction opposite to the direction indicated by the dashed arrow. In either case, the air flows out in the direction of the solid arrow in the liquid outlet pipe 5a. Is prevented.

つまり、リザーブタンク5を、ラジエータ6に対して重力方向で上側に配置し、液循環路内に混入した空気を十分収容できる程度の大きな内部容積を有する気液分離用の密閉型のタンクとし、前述のようにリザーブタンク5の液流出管5aの液流出口5dをリザーブタンク5内の略中央に配置したので、例えば、フレキシブルチューブ3a、4aを透過した微量の空気が液循環路内に混入しても、このリザーブタンク5に空気を集め易くなり、安定した気液分離機能が得られ、良好な液循環動作を確保できる。   In other words, the reserve tank 5 is arranged above the radiator 6 in the direction of gravity, and is a gas-liquid separation sealed tank having a large internal volume enough to accommodate the air mixed in the liquid circulation path. As described above, the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 is disposed at the approximate center in the reserve tank 5, so that, for example, a small amount of air that has passed through the flexible tubes 3a and 4a is mixed into the liquid circulation path. Even so, air can be easily collected in the reserve tank 5, a stable gas-liquid separation function can be obtained, and a good liquid circulation operation can be secured.

なお、本実施の形態のように、図3(a)のX、Y、Zの3方向の全てに対して略中央になるように液流出管5aの液流出口5dを配置するのが好ましいが、電子機器の設置後に上下方向が逆転することが考えられないような場合には、X,Yの2方向のみについて略中央になるように配置すればよく、Z方向については、液底面5eに近いほうに配置しても構わない。   As in the present embodiment, it is preferable to arrange the liquid outlet 5d of the liquid outlet pipe 5a so as to be substantially in the center with respect to all three directions X, Y, and Z in FIG. However, in the case where it is unlikely that the vertical direction is reversed after the electronic device is installed, the liquid bottom surface 5e may be arranged so as to be approximately in the center in only the two directions X and Y. It may be arranged closer to.

一方、図3(b)のB−B矢視断面図で示したように、リザーブタンク5もアルミニウム、アルミニウム合金、銅、銅合金などの熱伝導性のよい金属材料で箱型に成形し、ラジエータ6のコアチューブ6aの上方端が、そのリザーブタンク5の液流出管5aから離れる方向の片側に寄せられて、そのリザーブタンク5の内部まで導入された状態でその境界部分を銀、銅、亜鉛などのろう材を用いてろう付けにより接続されることにより、熱伝導性と密閉性が確保されている。   On the other hand, as shown in the cross-sectional view along the line BB in FIG. 3B, the reserve tank 5 is also formed into a box shape with a metal material having good thermal conductivity such as aluminum, aluminum alloy, copper, copper alloy, The upper end of the core tube 6a of the radiator 6 is brought to one side in the direction away from the liquid outflow pipe 5a of the reserve tank 5 and is introduced to the inside of the reserve tank 5 so that the boundary portion is made of silver, copper, By being connected by brazing using a brazing material such as zinc, thermal conductivity and hermeticity are secured.

従って、ラジエータ6のコアチューブ6aとリザーブタンク5とを熱接続したので、リザーブタンク5に貯留された液体冷媒9の熱がコアチューブ6aにも伝導されて放熱され、リザーブタンク5も放熱機能を有しその冷却装置1全体の冷却性能を向上できる。   Accordingly, since the core tube 6a of the radiator 6 and the reserve tank 5 are thermally connected, the heat of the liquid refrigerant 9 stored in the reserve tank 5 is also conducted to the core tube 6a to be dissipated, and the reserve tank 5 also has a heat dissipating function. The cooling performance of the entire cooling device 1 can be improved.

一方、ラジエータ6のコアチューブ6aと液輸送路3とを連通する連通タンク7は、液輸送路3から流れ込んできた液体冷媒をなるべく早くその連通タンク7と連通した複数のコアチューブ6aに送り込む必要があるので、内部での液体冷媒の滞留が少なくなるよう内部容積を小さくするのが好ましく、密閉型のリザーブタンク5と同様に、アルミニウム、アルミニウム合金、銅、銅合金などの熱伝導性のよい金属材料で箱型に成形し、その内側までラジエータ6のコアチューブ6aを導入した状態でその境界部分を銀、銅、亜鉛などのろう材を用いてろう付けして接続され、熱伝導性と密閉性を確保している。   On the other hand, the communication tank 7 that communicates the core tube 6a of the radiator 6 and the liquid transport path 3 needs to send the liquid refrigerant flowing from the liquid transport path 3 to the plurality of core tubes 6a that communicate with the communication tank 7 as soon as possible. Therefore, it is preferable to reduce the internal volume so that the liquid refrigerant stays in the interior. Like the closed type reserve tank 5, the thermal conductivity of aluminum, aluminum alloy, copper, copper alloy, etc. is good. Formed into a box shape with a metal material, with the core tube 6a of the radiator 6 being introduced to the inside, the boundary portion is brazed using a brazing material such as silver, copper, zinc, etc. Ensuring airtightness.

なお、それぞれの部材の接合をろう付けで行ったが、熱伝導性、密閉性、耐熱性、機械的強度など、所望の特性が確保できれば、他の接合、例えば溶接、接着、樹脂材料とのインサート成形など他の接合方法でも構わない。   In addition, although joining of each member was performed by brazing, if desired characteristics such as thermal conductivity, hermeticity, heat resistance, and mechanical strength can be ensured, other joining, for example, welding, adhesion, and resin material Other joining methods such as insert molding may be used.

また、図4(a)はリザーブタンク5の第一の変形例を説明する一部切り欠き図で、リザーブタンク5の液流出管5aの液流出口5dの液底面5e側に切り欠き部5fを形成したので、リザーブタンク5の液流出管5aの液流出口5dを起点とした渦流が液面9aの方向へ発生するのを抑制し、その渦流にリザーブタンク5内の液面9aの上の空気が巻き込まれて液流出口5dから受熱一体ポンプ2や液輸送路3、4などの液循環路に混入し冷却能力が低下するのを防止できる。   4A is a partially cutaway view for explaining a first modified example of the reserve tank 5. A cutout portion 5f on the liquid bottom surface 5e side of the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 is shown. Therefore, the vortex flow starting from the liquid outlet 5d of the liquid outflow pipe 5a of the reserve tank 5 is restrained from being generated in the direction of the liquid level 9a, and the vortex flows above the liquid level 9a in the reserve tank 5 It is possible to prevent the cooling capacity from being deteriorated by being entrained in the liquid circulation path such as the heat receiving integrated pump 2 and the liquid transport paths 3 and 4 from the liquid outlet 5d.

つまり、図4(b)のC−C矢視断面図で示したように、液体冷媒9の液面9aが矢印で示した方向へ徐々に低下していくと、液流出口5dを起点とした渦流が液面9aの方向へ発生し易くなるが、液流出口5dの液底面5e側に切り欠き部5fが形成されているので、その渦流の発生を抑制する作用がある。   That is, as shown in the cross-sectional view taken along the line CC in FIG. 4B, when the liquid level 9a of the liquid refrigerant 9 gradually decreases in the direction indicated by the arrow, the liquid outlet 5d starts. However, since the cutout portion 5f is formed on the liquid bottom surface 5e side of the liquid outlet 5d, the vortex flow is suppressed.

また、図5(a)はリザーブタンク5の第二の変形例を説明する斜視図で、リザーブタンク5の内壁からリザーブタンク5の液流出管5aの液流出口5dの液面9a方向に平面状の突出壁5gを形成したので、液面9a上の空気との遮蔽作用が働きリザーブタンク5の液流出管5aの液流出口5dを起点とした渦流が液面9aの方向へ発生するのを抑制し、その渦流にリザーブタンク5内の液面9aの上の空気が巻き込まれて液流出口5dから受熱一体ポンプ2や液輸送路3、4などの液循環路に混入し冷却能力が低下するのを防止できる。   FIG. 5A is a perspective view for explaining a second modification of the reserve tank 5, and is a plan view from the inner wall of the reserve tank 5 toward the liquid level 9 a of the liquid outlet 5 d of the liquid outlet pipe 5 a of the reserve tank 5. Since the protruding wall 5g is formed, the shielding action against the air on the liquid surface 9a is activated, and a vortex flow starting from the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 is generated in the direction of the liquid surface 9a. The air above the liquid surface 9a in the reserve tank 5 is entrained in the vortex and mixed into the liquid circulation path such as the heat receiving integrated pump 2 and the liquid transport paths 3 and 4 from the liquid outlet 5d, and the cooling capacity is increased. It can be prevented from lowering.

つまり、図5(b)のD−D矢視断面図で示したように、液体冷媒9の液面9aが矢印で示したように徐々に低下していくと、液流出口5dを起点とした渦流が液面9aの方向へ発生し易くなるが、リザーブタンク5の内壁からリザーブタンク5の液流出管5aの液流出口5dの液面9a方向に平面状の突出壁5gを形成したので、液面9a上の空気との遮蔽作用が働きその渦流の発生を抑制する作用がある。   That is, as shown in the cross-sectional view taken along the line DD in FIG. 5B, when the liquid level 9a of the liquid refrigerant 9 gradually decreases as indicated by the arrow, the liquid outlet 5d is the starting point. However, the flat protruding wall 5g is formed from the inner wall of the reserve tank 5 toward the liquid surface 9a of the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5. The shielding action against the air on the liquid surface 9a works to suppress the generation of the vortex.

ここで、突出壁5gは、リザーブタンク5の上壁の一部を下方向へ突出し液流出口5dの液面9a方向に形成されている。   Here, the protruding wall 5g protrudes downward from a part of the upper wall of the reserve tank 5 and is formed in the liquid surface 9a direction of the liquid outlet 5d.

また、図6(a)はリザーブタンク5の第三の変形例を説明する一部切り欠き図で、リザーブタンク5の内壁からリザーブタンク5の液流出管5aの液流出口5dの液面9a方向に平面状の突出壁5hを形成したので、液面9a上の空気との遮蔽作用が働きリザーブタンク5の液流出管5aの液流出口5dを起点とした渦流が液面9aの方向へ発生するのを抑制し、その渦流にリザーブタンク5内の液面9aの上の空気が巻き込まれてその液流出口5dから受熱一体ポンプ2や液輸送路3、4などの液循環路に混入し冷却能力が低下するのを防止できる。   FIG. 6A is a partially cutaway view illustrating a third modified example of the reserve tank 5. The liquid level 9 a from the inner wall of the reserve tank 5 to the liquid outlet 5 d of the liquid outlet pipe 5 a of the reserve tank 5 is shown. Since the flat protruding wall 5h is formed in the direction, the shielding action against the air on the liquid surface 9a works, and the vortex flow starting from the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5 moves in the direction of the liquid surface 9a. The generation of air is suppressed, and air on the liquid surface 9a in the reserve tank 5 is entrained in the vortex, and enters the liquid circulation path such as the heat receiving integrated pump 2 and the liquid transport paths 3 and 4 from the liquid outlet 5d. And it can prevent that cooling capacity falls.

つまり、図6(b)のE−E矢視断面図で示したように、液体冷媒9の液面9aが矢印で示した方向へ徐々に低下していくと、液流出口5dを起点とした渦流が液面9aの方向へ発生し易くなるが、リザーブタンク5の内壁からリザーブタンク5の液流出管5aの液流出口5dの液面9a方向に平面状の突出壁5hを形成したので、液面9a上の空気との遮蔽作用が働きその渦流の発生を抑制する作用がある。   That is, as shown in the cross-sectional view taken along the line E-E in FIG. 6B, when the liquid level 9a of the liquid refrigerant 9 gradually decreases in the direction indicated by the arrow, the liquid outlet 5d starts. However, the flat protruding wall 5h is formed from the inner wall of the reserve tank 5 toward the liquid surface 9a of the liquid outlet 5d of the liquid outlet pipe 5a of the reserve tank 5. The shielding action against the air on the liquid surface 9a works to suppress the generation of the vortex.

ここで、突出壁5hは、リザーブタンク5の上壁にコの字状金属部材を抵抗溶接、接着、かしめなどの方法で接合して形成されている。   Here, the protruding wall 5h is formed by joining a U-shaped metal member to the upper wall of the reserve tank 5 by a method such as resistance welding, adhesion, or caulking.

なお、以上の説明において、いずれの突出壁5g、5hも、リザーブタンク5の上壁から液流出管5aの液流出口5dに向けて突出した形態であるが、内壁であれば他の側壁や下壁から液流出管5aの液流出口5dの液面9a方向に突出するように形成してもよい。  In the above description, any of the protruding walls 5g and 5h protrudes from the upper wall of the reserve tank 5 toward the liquid outlet 5d of the liquid outlet pipe 5a. You may form so that it may protrude in the liquid surface 9a direction of the liquid outflow port 5d of the liquid outflow tube 5a from a lower wall.

また、突出壁5g、5hの形状についても本実施の形態のように、平面状である必要もなく液面9a上の空気との遮蔽作用が働く形状であれば湾曲面や凹凸面などの他の形状でも構わない。   Further, the shape of the protruding walls 5g and 5h is not required to be flat as in this embodiment, and other shapes such as a curved surface and an uneven surface can be used as long as the shape acts to shield air on the liquid surface 9a. The shape may be any.

さらに、リザーブタンク5の内壁に立方体、直方体、円柱体などの立体を付属させてその一面を突出壁として近接した形態でもよい。   Further, a solid body such as a cube, a rectangular parallelepiped, or a cylinder may be attached to the inner wall of the reserve tank 5 and one surface thereof may be close as a protruding wall.

次に、図7は図1のA−A矢視断面図で、この図に基づいて受熱一体ポンプ2の内部構造について説明する。羽根車10は受熱一体ポンプ2の略中心部に軸支され、オープン型の羽根10aが羽根車10の表面に略放射状に複数個立設され、羽根車10の中心部近傍には小孔10bが設けられ、マグネットロータ10cが羽根車10の内周側方に設けられている。   Next, FIG. 7 is a cross-sectional view taken along the line AA of FIG. 1, and the internal structure of the heat receiving integrated pump 2 will be described based on this drawing. The impeller 10 is pivotally supported at a substantially central portion of the heat receiving integrated pump 2, and a plurality of open-type blades 10a are provided substantially radially on the surface of the impeller 10, and a small hole 10b is provided in the vicinity of the central portion of the impeller 10. And the magnet rotor 10 c is provided on the inner peripheral side of the impeller 10.

ここで、羽根車10はマグネットロータ10cと別体で構成してもよいが、マグネットロータ10cとなる部分に着磁させた一体型の羽根車10とするのが好適である。   Here, the impeller 10 may be configured separately from the magnet rotor 10c, but it is preferable that the impeller 10 be magnetized in a portion that becomes the magnet rotor 10c.

この羽根車10が液体冷媒内で回転すると、羽根10aの外周側における液体冷媒の圧力は羽根10aの周縁の方が羽根車10の入口(図7のKで示した中央の部分)より高くなり、また羽根車10の入口の圧力は前述した小孔10bによって連通した羽根車10の裏側圧力と略同一であるから、液体冷媒は羽根車10の裏面を通り、小孔10bを抜けて入口へ少量還流する。これにより小孔10bがない場合と比較して羽根車10へスラスト力が軽減され羽根車10の回転がよりスムーズになる。   When the impeller 10 rotates in the liquid refrigerant, the pressure of the liquid refrigerant on the outer peripheral side of the vane 10a becomes higher at the peripheral edge of the vane 10a than at the inlet of the impeller 10 (the central portion indicated by K in FIG. 7). Further, since the pressure at the inlet of the impeller 10 is substantially the same as the back side pressure of the impeller 10 communicated by the small hole 10b described above, the liquid refrigerant passes through the back surface of the impeller 10 and passes through the small hole 10b to the inlet. Reflux for a small amount. Thereby, compared with the case where there is no small hole 10b, thrust force is reduced to the impeller 10, and rotation of the impeller 10 becomes smoother.

なお、本実施の形態の受熱一体ポンプ2は小型で一般の遠心ポンプに対して数十分の一、若しくは数百分の一以下の大きさであり、一例としてその諸元を示すと、厚さ3mm〜50mm、半径方向代表寸法10mm〜100mm、回転数は1000rpm〜8000rpm、ヘッド0.5m〜10m程度の遠心ポンプである。   In addition, the heat receiving integrated pump 2 of the present embodiment is small and has a size that is several tenths or one hundredth of that of a general centrifugal pump. This is a centrifugal pump having a length of 3 mm to 50 mm, a representative dimension in the radial direction of 10 mm to 100 mm, a rotation speed of 1000 rpm to 8000 rpm, and a head of about 0.5 m to 10 m.

次に、マグネットロータ10cの内周側にはステータ11が設けられ、磁界を発生させるコイル12がステータ11に巻かれ、回路基板13はコイル12に電流を流す電気回路が実装されている。   Next, a stator 11 is provided on the inner peripheral side of the magnet rotor 10 c, a coil 12 that generates a magnetic field is wound around the stator 11, and an electric circuit that allows current to flow through the coil 12 is mounted on the circuit board 13.

ここで、ステータ11は渦電流損失を少なくするため珪素鋼板を複数枚積層して構成されることが望ましく、コイル12としては絶縁皮膜のついた銅線が適しており、コイル12の線径と巻数は使用される電源電圧、線積率を鑑み最適化される。   Here, the stator 11 is preferably formed by laminating a plurality of silicon steel plates in order to reduce eddy current loss, and a copper wire with an insulating film is suitable as the coil 12. The number of turns is optimized in view of the power supply voltage used and the line factor.

そして、図示しないが、回路基板13上には、マグネットロータ10cの回転位置を検出するホール素子、電流方向切り替え用のトランジスタやダイオードが実装されている。   Although not shown, a Hall element that detects the rotational position of the magnet rotor 10c, a current direction switching transistor, and a diode are mounted on the circuit board 13.

また、第2ケーシング14は羽根車10を収容すると同時に羽根車10により推進力を与えられた液体冷媒をその側面に接続された吐出路14aの方向へ導き、また吸込口14bも第2ケーシング14の側面の同じ方向に接続されている。   In addition, the second casing 14 accommodates the impeller 10 and at the same time guides the liquid refrigerant given the driving force by the impeller 10 in the direction of the discharge path 14a connected to the side surface thereof, and the suction port 14b also serves as the second casing 14. Are connected in the same direction on the sides.

さらに、第2ケーシング14はその形状が複雑であり、加えてある程度の耐熱性が要求されることから、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート(PBT)等の樹脂成型での製作がより好適である。   Furthermore, since the shape of the second casing 14 is complicated and a certain degree of heat resistance is required, resin molding such as polyphenylene sulfide (PPS), polyphenylene ether (PPE), and polybutylene terephthalate (PBT) is used. Is more preferable.

反面、第2ケーシング14を金属で製作することは、ステータ11等の磁気回路が発生する磁束変動により渦電流損失を発生させるので好ましくない。   On the other hand, it is not preferable that the second casing 14 is made of metal because eddy current loss occurs due to magnetic flux fluctuations generated by the magnetic circuit such as the stator 11.

そして、第1ケーシング15は第2ケーシング14と嵌合され、その間には隔壁部材16が挟み込まれるように設けられ、第2ケーシング14と隔壁部材16との間に液体冷媒に液循環駆動用の推進力を与えるためのポンプ室17が形成されている。   The first casing 15 is fitted to the second casing 14, and the partition wall member 16 is sandwiched between the first casing 15, and the liquid refrigerant is driven between the second casing 14 and the partition wall member 16 for driving liquid circulation. A pump chamber 17 for providing a propulsive force is formed.

そのポンプ室17ではオープン型の羽根10aにより推進力を与えられた液体冷媒が吐出口14aへと導かれる。   In the pump chamber 17, the liquid refrigerant given the driving force by the open blade 10 a is guided to the discharge port 14 a.

一方、第1ケーシング15は熱伝導性グリース等(図示せず)を介し2点鎖線で示した発熱電子部品18と直接的に接触するので、その表面はなるべく平面度を高くし、高熱伝導率で放熱性のよい銅、銅合金、アルミニウム、アルミニウム合金等の金属材料を用いて、ダイカストなどの鋳造、鍛造、機械加工やこれらの組み合わせの加工方法により製作される。   On the other hand, since the first casing 15 is in direct contact with the heat generating electronic component 18 indicated by a two-dot chain line through a heat conductive grease or the like (not shown), the surface thereof has as high a flatness as possible and has a high heat conductivity. It is manufactured by using a metal material such as copper, copper alloy, aluminum, aluminum alloy or the like with good heat dissipation, by die casting or the like, forging, machining, or a combination thereof.

また、この第1ケーシング15は、発熱電子部品18から受け取った熱を液体冷媒と高効率で熱交換するために、内側に複数の放熱フィン15aを形成した構造が好ましく、次に、この第1ケーシング15について説明する。   The first casing 15 preferably has a structure in which a plurality of radiating fins 15a are formed on the inside in order to exchange heat received from the heat generating electronic component 18 with the liquid refrigerant with high efficiency. The casing 15 will be described.

第1ケーシング15の外周部には第2ケーシング14と当接する鍔部15bが形成され、その下部には2点鎖線で示した発熱電子部品18との接触面である受熱面15cが設けられ、その背面側には複数の放熱用突起である放熱フィン15aが配置され、その液体冷媒との接触面積を増大し熱伝導を促進し、発熱電子部品18から受け取った熱を効率的にその液体冷媒に伝える働きを行う。   A flange portion 15b that contacts the second casing 14 is formed on the outer peripheral portion of the first casing 15, and a heat receiving surface 15c that is a contact surface with the heat generating electronic component 18 indicated by a two-dot chain line is provided at a lower portion thereof, A plurality of heat dissipating fins 15a, which are heat dissipating projections, are arranged on the back side, increasing the contact area with the liquid refrigerant and promoting heat conduction, and efficiently receiving the heat received from the heat generating electronic component 18 in the liquid refrigerant. Do the work to tell.

そして、この液体冷媒は、第1ケーシング15と第2ケーシング14との間に挟み込まれるようにして設けられた隔壁部材16の略中央に位置する貫通穴(図示せず)を通過して、ポンプ室17の中央部に吸い込まれオープン型の羽根10aにより液循環駆動用の推進力が与えられる。   Then, the liquid refrigerant passes through a through hole (not shown) located substantially at the center of the partition wall member 16 provided so as to be sandwiched between the first casing 15 and the second casing 14 to be pumped. A suction force for driving liquid circulation is given by the open type blade 10a which is sucked into the central portion of the chamber 17.

なお、液体冷媒としては、エチレングリコール水溶液やプロピレングリコール水溶液等の不凍液が適当であるが、第1ケーシング15の材料として銅や銅合金等を使用するため、防食添加剤を添加するのが好ましい。   In addition, although antifreezing liquids, such as ethylene glycol aqueous solution and propylene glycol aqueous solution, are suitable as a liquid refrigerant, since copper, copper alloy, etc. are used as the material of the 1st casing 15, it is preferable to add an anticorrosive additive.

以上の説明のように、この受熱一体ポンプ2は隔壁部材16と第2ケーシング14との間に形成されたポンプ室17とその中で回転する羽根車10とにより構成されたポンプを内蔵しており、受熱機能とポンプ機能を併せ持ち、液循環路内の液循環駆動用のポンプを別体で設ける必要がないので、液循環路長も短くなり、より小型化が可能となる。   As described above, the heat receiving integrated pump 2 includes a pump constituted by the pump chamber 17 formed between the partition wall member 16 and the second casing 14 and the impeller 10 rotating in the pump chamber 17. In addition, since it has both a heat receiving function and a pump function and it is not necessary to provide a separate pump for driving the liquid circulation in the liquid circulation path, the length of the liquid circulation path is shortened, and the size can be further reduced.

さらに、図8は電子機器のラック型筐体内部への冷却装置の組み込み状態を示す斜視図と正面図で、ラック型筐体19の内部には強制冷却を要する2個の発熱電子部品(図示せず)が実装された基板20が配置されており、その基板20の実装面側にそれぞれの発熱電子部品に対応して2つの冷却装置1が搭載されている。   Further, FIG. 8 is a perspective view and a front view showing a state in which the cooling device is assembled in the rack-type casing of the electronic device. Inside the rack-type casing 19, two heat-generating electronic components that require forced cooling (see FIG. (Not shown) is disposed, and two cooling devices 1 are mounted on the mounting surface side of the substrate 20 in correspondence with the respective heat generating electronic components.

また、それぞれの冷却装置1において、ラジエータ6を挟み込んでコの字状となるようにリザーブタンク5と連通タンク7が対向配置され、その間に風路21が設けられ、しかもラジエータ6の通風面6cに送風ファン22の空気を送り出す送風面22aが対向配置されているので、この冷却装置1をラック型筐体19の内部で他の周辺装置や筐体壁に近接して設置したとしても、ラジエータ6への風路21を確保できラジエータ6に十分な風量の空気を図8(b)の矢印で示した方向へ送風できるのでラジエータ6の放熱性能を向上できる。   Further, in each cooling device 1, the reserve tank 5 and the communication tank 7 are disposed so as to be U-shaped with the radiator 6 interposed therebetween, and an air passage 21 is provided therebetween, and the ventilation surface 6 c of the radiator 6 is provided. Since the air blowing surface 22a that sends out the air of the air blowing fan 22 is disposed opposite to the air supply fan 22, even if the cooling device 1 is installed in the rack type housing 19 in the vicinity of other peripheral devices or the housing wall, the radiator 6 can be secured, and a sufficient amount of air can be blown to the radiator 6 in the direction indicated by the arrow in FIG. 8B, so that the heat dissipation performance of the radiator 6 can be improved.

つまり、電子機器内での冷却性能を向上でき、その電子機器に搭載されたCPUなどの演算処理能力を向上し、動作状態の安定性を確保できる。また、電子機器の小型、薄型、軽量化への対応も容易となる。   That is, the cooling performance in the electronic device can be improved, the arithmetic processing capability of a CPU or the like mounted on the electronic device can be improved, and the stability of the operation state can be ensured. In addition, the electronic device can be easily reduced in size, thickness, and weight.

(実施の形態2)
図9は本発明の実施の形態2に係わる冷却装置の斜視図と側面図で、ラジエータ6のコアチューブ6aの上方端には液体冷媒の液循環路の一部を構成するリザーブタンク5が隣接配置され、ラジエータ6のコアチューブ6a(図示せず)の上方端が、密閉型のリザーブタンク5の液流出管5aから離れる方向の片側に寄せられて接続されている。
(Embodiment 2)
FIG. 9 is a perspective view and a side view of a cooling device according to Embodiment 2 of the present invention. A reserve tank 5 constituting a part of a liquid circulation path for liquid refrigerant is adjacent to the upper end of the core tube 6a of the radiator 6. The upper end of the core tube 6a (not shown) of the radiator 6 is connected to one side in a direction away from the liquid outflow pipe 5a of the closed type reserve tank 5.

一方、そのラジエータ6のコアチューブ6aの下方端にも連通タンク7が一体化して接続され、リザーブタンク5と連通タンク7がタンク連結部材8で連結されている。   On the other hand, the communication tank 7 is integrally connected to the lower end of the core tube 6 a of the radiator 6, and the reserve tank 5 and the communication tank 7 are connected by a tank connecting member 8.

そして、さらにそのタンク連結部材8を介して受熱一体ポンプ2がそれらの下方に連結され、2本の液輸送路3、4はそれぞれ液循環路の一部を構成している。   Further, the heat receiving integrated pump 2 is connected to the lower side thereof via the tank connecting member 8, and the two liquid transport paths 3 and 4 respectively constitute a part of the liquid circulation path.

ここで、コの字状に板金加工された受熱器連結部材23は、タンク連通部材8の外側に重なり合うように配置され、固定用ビス23aで締め付け固定されており、さらにその受熱器連結部材23の底部23bは受熱一体ポンプ2を載置するように固定されたベースプレート2aと連結されている。そして、この状態でCPUなどの発熱電子部品18が実装された基板へ取り付け用ビス2cを用いて取り付けられるが、このような構成にすることにより、CPUのサイズや基板との位置関係に対応してベースプレート2aや取り付け用ビス2cの形状や大きさを適宜変更することにより取り付けが容易となる。   Here, the heat receiver connecting member 23 processed into a U-shape is disposed so as to overlap the outside of the tank communication member 8, and is fastened and fixed by a fixing screw 23 a, and further, the heat receiver connecting member 23. The bottom 23b is connected to a base plate 2a fixed so as to place the heat receiving integrated pump 2 thereon. In this state, the heat generating electronic component 18 such as a CPU is attached to the board on which the heat generating electronic component 18 is mounted using the mounting screw 2c. With such a configuration, the size of the CPU and the positional relationship with the board can be accommodated. Thus, the attachment is facilitated by appropriately changing the shape and size of the base plate 2a and the mounting screw 2c.

また、リザーブタンク5と連通タンク7を対向配置し、その間の空間で風路を形成し、その風路に強制冷却のために受熱器連結部材23の連結部(図示せず)と連結させて送風ファン22が組み込まれ、ラジエータ6の通風面(図示せず)に送風ファン22の送風面22aを密着するように対向配置したので、よりコンパクトな冷却装置1を構成できるだけではなく、この冷却装置1が搭載された電子機器筐体内で他の周辺装置や筐体壁に近接して設置されたとしても、ラジエータ6に十分な風量の空気を送風できるのでラジエータ6の放熱性能を向上できる。   Further, the reserve tank 5 and the communication tank 7 are arranged to face each other, an air passage is formed in a space between them, and the air passage is connected to a connecting portion (not shown) of the heat receiver connecting member 23 for forced cooling. Since the air blowing fan 22 is incorporated and the air blowing surface 22a of the air blowing fan 22 is disposed so as to be in close contact with the ventilation surface (not shown) of the radiator 6, not only the more compact cooling device 1 can be configured, but also this cooling device. Even if the electronic device 1 is installed in the vicinity of other peripheral devices or the housing wall in the electronic device housing, a sufficient amount of air can be blown to the radiator 6, so that the heat dissipation performance of the radiator 6 can be improved.

以上のように、受熱器連結部材23を介して受熱一体ポンプ2とタンク連結部材8とが連結されたので、冷却装置1全体がよりコンパクトで一体的になる。   As described above, since the heat receiving integrated pump 2 and the tank connecting member 8 are connected via the heat receiver connecting member 23, the entire cooling device 1 becomes more compact and integrated.

そして、発熱電子部品18の実装された基板上に受熱一体ポンプ2を固定するのみで、その受熱器連結部材23を介してタンク連結部材8とも連結され、さらにリザーブタンク5、連通タンク7、及びラジエータ6などの関連部材も同時設置可能となり、CPUなど冷却したい発熱電子部品18の交換作業も容易に行うことができる。   Then, only by fixing the heat receiving integrated pump 2 on the substrate on which the heat generating electronic component 18 is mounted, it is also connected to the tank connecting member 8 through the heat receiver connecting member 23, and further, the reserve tank 5, the communication tank 7, and Related members such as the radiator 6 can also be installed at the same time, and the heat generating electronic component 18 to be cooled such as a CPU can be easily replaced.

なお以上の実施の形態の説明において、小型化を図るためには受熱器としてポンプ機能を有する受熱一体ポンプ2を用いるのが好ましいが、必要に応じて受熱器とポンプを別体で設けてそれらを液輸送路3,4で接続するような構成にしても構わない。また、内蔵したポンプの駆動方式は遠心ポンプとしたが、所望の流量が得られ冷却性能に影響がなければ他の駆動方式のポンプでもよい。   In the above description of the embodiment, in order to reduce the size, it is preferable to use the heat receiving integrated pump 2 having a pump function as the heat receiving device. However, if necessary, the heat receiving device and the pump are provided separately. May be configured to be connected by the liquid transport paths 3 and 4. Although the built-in pump drive system is a centrifugal pump, a pump of another drive system may be used as long as a desired flow rate is obtained and the cooling performance is not affected.

液循環路内に微量に混入した空気がある場合でも、その浮力を利用して液循環路内に混入した空気を十分収容できる程度の大きな内部容積を有する気液分離用の密閉型のリザーブタンク5にその空気を集め易くし、より安定した気液分離機能を得て、良好な液循環動作を確保するためには、リザーブタンク5をラジエータ6に対して重力方向で上側に配置するのが好ましいが、液体冷媒の流れる方向を連通タンク7からラジエータ6を通ってリザーブタンク5の方向へ限定すれば、リザーブタンク5が密閉型であるので、縦置き、横置き、又はリザーブタンク5をラジエータ6に対して重力方向で下側となるようないずれの設置方向で用いられても安定した気液分離機能が得られ、良好な液循環動作を確保できる。   Even if there is a small amount of air in the liquid circulation path, a sealed reserve tank for gas-liquid separation with a large internal volume that can sufficiently accommodate the air mixed in the liquid circulation path using its buoyancy In order to make it easy to collect the air in 5 and to obtain a more stable gas-liquid separation function and to ensure a good liquid circulation operation, the reserve tank 5 is arranged above the radiator 6 in the direction of gravity. Preferably, if the flow direction of the liquid refrigerant is limited from the communication tank 7 to the direction of the reserve tank 5 through the radiator 6, the reserve tank 5 is hermetically sealed, so that the vertical, horizontal, or reserve tank 5 is disposed in the radiator. 6, a stable gas-liquid separation function can be obtained regardless of the installation direction which is lower in the direction of gravity with respect to 6, and good liquid circulation operation can be ensured.

また、液体冷媒を循環する方向については、高温に熱せられた液体媒体を途中で滞留させることなく、できるだけ短時間でラジエータ6より放熱を行えるように内部容積の小さい連通タンク7からラジエータ6を通ってリザーブタンク5の方向へ液体冷媒が流れるように液循環路を形成したが、リザーブタンク5での気液分離機能が得られ液体冷媒の滞留も少なく十分な冷却性能も得ることができれば、リザーブタンク5からラジエータ6を通って連通タンク7の方向へ液体冷媒を流すような液循環路を形成してもよい。   Further, with respect to the direction in which the liquid refrigerant is circulated, the liquid medium heated to a high temperature passes through the radiator 6 from the communication tank 7 having a small internal volume so that heat can be radiated from the radiator 6 in as short a time as possible without staying in the middle. The liquid circulation path is formed so that the liquid refrigerant flows in the direction of the reserve tank 5, but if the gas-liquid separation function in the reserve tank 5 is obtained and the liquid refrigerant stays little and sufficient cooling performance can be obtained, the reserve is provided. A liquid circulation path may be formed so that the liquid refrigerant flows from the tank 5 through the radiator 6 toward the communication tank 7.

また、以上の実施の形態において、リザーブタンク5については連通タンク7と比較して内部容積の大きなタンクとしたが、ガス透過性のあるフレキシブルチューブ3a、4aの全長が短く設定され液循環路内に混入する空気の量が微量である場合や別に気液分離機構が設けられ大きな内部容積を必要としない場合などには、その内部容積を小さくし連通タンク7よりも小さく設定しても構わない。   In the above embodiment, the reserve tank 5 has a larger internal volume than the communication tank 7, but the total length of the gas permeable flexible tubes 3a and 4a is set short so that the inside of the liquid circulation path. When the amount of air mixed into the tank is very small, or when a separate gas-liquid separation mechanism is provided and a large internal volume is not required, the internal volume may be reduced and set smaller than the communication tank 7. .

また、ラジエータ6は、一方向のみの液循環路を形成するのではなく、連通タンク7とリザーブタンク5をそれぞれ仕切り板で区切って、いずれかのタンク内で液循環路をターンさせてラジエータ6のコアチューブ6aにおいて双方向の液循環路を形成するターン型としても構わない。   In addition, the radiator 6 does not form a liquid circulation path in only one direction, but separates the communication tank 7 and the reserve tank 5 by partition plates, and turns the liquid circulation path in one of the tanks to turn the radiator 6. The core tube 6a may be a turn type that forms a bidirectional liquid circulation path.

さらに、ラジエータ6、リザーブタンク5、連通タンク7、及びそれらを接続する液輸送路3、4などの関連部材を含めて、その形態、材質、大きさ、数量、製作方法などについても、以上の実施の形態に限定されるものではなく、冷却性能、組み立て作業性、搭載される電子機器の筐体内での配置、スペース、保証寿命などを考慮して適宜選択すればよい。   Further, including the radiator 6, the reserve tank 5, the communication tank 7, and related members such as the liquid transport paths 3 and 4 that connect them, the form, material, size, quantity, manufacturing method, etc. The present invention is not limited to the embodiment, and may be appropriately selected in consideration of cooling performance, assembly workability, arrangement of electronic devices to be mounted in a casing, space, guaranteed life, and the like.

同様に、送風ファン22についても、十分な風量の得られる軸流ファンを用いたが、搭載するスペース上の関係などから薄型の遠心ファンを用いてもよいし、その送風方向についても、冷却効果や騒音などを考慮して適宜設定すればよい。   Similarly, although the axial fan from which sufficient air volume is obtained was used also about the ventilation fan 22, you may use a thin centrifugal fan from the relationship on the space to mount, etc., and the cooling effect is also about the ventilation direction. It may be set as appropriate in consideration of noise and noise.

本発明は、液体冷媒を循環させながら発熱電子部品を冷却する冷却装置及びそれを備えた電子機器に適用できる。   The present invention can be applied to a cooling device that cools a heat-generating electronic component while circulating a liquid refrigerant and an electronic device including the same.

本発明の実施の形態1に係わる冷却装置の全体斜視図1 is an overall perspective view of a cooling device according to Embodiment 1 of the present invention. 本発明の実施の形態1に係わる冷却装置の正面図と背面図The front view and back view of the cooling device concerning Embodiment 1 of this invention 本発明の実施の形態1に係わる冷却装置のリザーブタンクの構造を説明する一部切り欠き図とそのB−B矢視断面図The partial cutaway figure explaining the structure of the reserve tank of the cooling device concerning Embodiment 1 of this invention, and its BB arrow sectional drawing リザーブタンクの第一の変形例を説明する一部切り欠き図とそのC−C矢視断面図Partial cutaway view for explaining the first modified example of the reserve tank and its cross-sectional view taken along the line CC リザーブタンクの第二の変形例を説明する斜視図とそのD−D矢視断面図The perspective view explaining the 2nd modification of a reserve tank, and its DD arrow sectional drawing リザーブタンクの第三の変形例を説明する一部切り欠き図とそのE−E矢視断面図Partial cutaway view for explaining a third modified example of the reserve tank and its EE arrow cross-sectional view 図1のA−A矢視断面図AA arrow sectional view of FIG. 電子機器のラック型筐体内部への冷却装置の組み込み状態を示す斜視図と正面図A perspective view and a front view showing an assembled state of the cooling device in the rack-type housing of the electronic device 本発明の実施の形態2に係わる冷却装置の斜視図と側面図The perspective view and side view of the cooling device concerning Embodiment 2 of this invention (特許文献1)に記載の実施の形態の斜視図The perspective view of embodiment described in (patent document 1) (特許文献2)に記載の実施の形態の側面図Side view of the embodiment described in (Patent Document 2) (a)(特許文献3)に記載のリザーブタンクの概略を説明する斜視図、(b)(特許文献4)に記載のリザーブタンクの概略を説明する斜視図(A) The perspective view explaining the outline of the reserve tank as described in (patent document 3), The perspective view explaining the outline of the reserve tank as described in (b) (patent document 4)

符号の説明Explanation of symbols

1 冷却装置
2 受熱一体ポンプ
2a ベースプレート
2b 固定用ビス
2c 取り付け用ビス
3 液輸送路
3a フレキシブルチューブ
3b 金属管
3c ホースバンド
4 液輸送路
4a フレキシブルチューブ
4b 金属管
4c ホースバンド
5 リザーブタンク
5a 液流出管
5b 液補給管
5c キャップ
5d 液流出口
5e 液底面
5f 切り欠き部
5g 突出壁
5h 突出壁
6 ラジエータ
6a コアチューブ
6b コルゲートフィン
6c 通風面
7 連通タンク
7a 液流入管
8 タンク連結部材
8a 連結部
8b 固定用孔部
9 液体冷媒
9a 液面
10 羽根車
10a 羽根
10b 小孔
10c マグネットロータ
11 ステータ
12 コイル
13 回路基板
14 第2ケーシング
14a 吐出口
14b 吸込口
15 第1ケーシング
15a 放熱フィン
15b 鍔部
15c 受熱面
16 隔壁部材
17 ポンプ室
18 発熱電子部品
19 ラック型筐体
20 基板
21 風路
22 送風ファン
22a 送風面
23 受熱器連結部材
23a 固定用ビス
23b 底部
K 羽根車の入口
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heat receiving integrated pump 2a Base plate 2b Fixing screw 2c Mounting screw 3 Liquid transport path 3a Flexible tube 3b Metal pipe 3c Hose band 4 Liquid transport path 4a Flexible tube 4b Metal pipe 4c Hose band 5 Reserve tank 5a Liquid outflow pipe 5b Liquid supply pipe 5c Cap 5d Liquid outlet 5e Liquid bottom 5f Notch 5g Projection wall 5h Projection wall 6 Radiator 6a Core tube 6b Corrugated fin 6c Ventilation surface 7 Communication tank 7a Liquid inflow pipe 8 Tank connection member 8a Connection part 8a Connection part 8a Hole portion 9 Liquid refrigerant 9a Liquid surface 10 Impeller 10a Blade 10b Small hole 10c Magnet rotor 11 Stator 12 Coil 13 Circuit board 14 Second casing 14a Discharge port 14b Suction port 15 First casing 15a Radiating fin 1 b flange portion 15c heat receiving surface 16 partition member 17 the inlet of the pump chamber 18 heat-generating electronic component 19 rack-shaped casing 20 substrate 21 air path 22 blower fan 22a blowing surface 23 heat absorber connecting member 23a fixing screw 23b bottom K impeller

Claims (14)

液体冷媒を循環し、前記液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、その奪った熱を複数のコアチューブを有するラジエータで放熱する冷却装置であって、前記発熱電子部品と接触し内部を流れる液体冷媒と熱交換をさせるための受熱器と、前記受熱器に接続され、前記受熱器から前記ラジエータまでの間を接続する液輸送路と、液体冷媒を前記受熱器から前記液輸送路を通して前記ラジエータの方向へ循環駆動するポンプと、前記ラジエータのコアチューブの一方端を、片側に寄せて接続した気液分離用の密閉型のリザーブタンクと、を備え、前記リザーブタンクの液流出管の液流出口を前記リザーブタンク内の略中央に配置したことを特徴とする冷却装置。 A cooling device that circulates a liquid refrigerant, removes heat from a heat generating electronic component mounted on a substrate by heat exchange with the liquid refrigerant, and dissipates the heat removed by a radiator having a plurality of core tubes, the heat generating electron A heat receiver for exchanging heat with the liquid refrigerant flowing in contact with the components, a liquid transport path connected to the heat receiver and connecting between the heat receiver and the radiator, and a liquid refrigerant for the heat receiver A pump that circulates in the direction of the radiator through the liquid transport path, and a sealed reserve tank for gas-liquid separation in which one end of a core tube of the radiator is connected to one side, and the reserve is provided. A cooling device, wherein a liquid outlet of a liquid outlet pipe of the tank is arranged at a substantially center in the reserve tank. 前記受熱器は前記ポンプを内蔵した受熱一体ポンプとしたことを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the heat receiver is a heat receiving integrated pump including the pump. 前記液輸送路を2本のみとしたことを特徴とする請求項2記載の冷却装置。 The cooling apparatus according to claim 2, wherein only two liquid transport paths are provided. 前記リザーブタンクを前記ラジエータに対して重力方向で上側に配置したことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the reserve tank is disposed above the radiator in the direction of gravity. 前記リザーブタンクの液流出管の液流出口の液底面側に切り欠き部を形成したことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein a notch is formed on the liquid bottom side of the liquid outlet of the liquid outlet pipe of the reserve tank. 前記リザーブタンクの内壁から前記液流出管の液流出口の液面方向に突出壁を形成したことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein a protruding wall is formed from an inner wall of the reserve tank in a liquid surface direction of a liquid outlet of the liquid outlet pipe. 前記ラジエータのコアチューブの他方端に、そのコアチューブと前記液輸送路とを連通する連通タンクを接続し、前記リザーブタンクと前記連通タンクとをタンク連結部材で連結したことを特徴とする請求項1または2記載の冷却装置。 The communication tank connecting the core tube and the liquid transport path is connected to the other end of the core tube of the radiator, and the reserve tank and the communication tank are connected by a tank connecting member. 3. The cooling device according to 1 or 2. 前記リザーブタンクと前記連通タンクとを、前記ラジエータを挟み込んでコの字状となるように対向配置し、前記リザーブタンクと前記連通タンクとの空間に風路を形成したことを特徴とする請求項7記載の冷却装置。 The reserve tank and the communication tank are disposed so as to face each other in a U shape with the radiator interposed therebetween, and an air passage is formed in a space between the reserve tank and the communication tank. 7. The cooling device according to 7. 前記ラジエータの通風面に送風ファンの送風面を対向配置したことを特徴とする請求項7記載の冷却装置。 The cooling device according to claim 7, wherein a ventilation surface of the blower fan is disposed opposite to the ventilation surface of the radiator. 受熱器連結部材を介して前記受熱器と前記タンク連結部材とを連結したことを特徴とする請求項7記載の冷却装置。 The cooling device according to claim 7, wherein the heat receiver and the tank connecting member are connected via a heat receiver connecting member. 前記ラジエータの一部を構成する複数のコアチューブ間にコルゲートフィンを設けたことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein corrugated fins are provided between a plurality of core tubes constituting a part of the radiator. 前記ラジエータのコアチューブと前記リザーブタンクとを熱接続したことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the core tube of the radiator and the reserve tank are thermally connected. 前記液輸送路は湾曲部分または屈曲部分を有し、その湾曲部分または屈曲部分を金属管で構成したことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the liquid transport path has a curved portion or a bent portion, and the bent portion or the bent portion is constituted by a metal tube. 請求項1から13いずれか1項に記載の冷却装置を備え、前記冷却装置の前記受熱器が発熱電子部品と熱接続したことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1, wherein the heat receiver of the cooling device is thermally connected to a heat generating electronic component.
JP2005290955A 2005-10-04 2005-10-04 Cooling device and electronic apparatus including the same Pending JP2007103633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290955A JP2007103633A (en) 2005-10-04 2005-10-04 Cooling device and electronic apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290955A JP2007103633A (en) 2005-10-04 2005-10-04 Cooling device and electronic apparatus including the same

Publications (1)

Publication Number Publication Date
JP2007103633A true JP2007103633A (en) 2007-04-19

Family

ID=38030280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290955A Pending JP2007103633A (en) 2005-10-04 2005-10-04 Cooling device and electronic apparatus including the same

Country Status (1)

Country Link
JP (1) JP2007103633A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088051A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Cooling device for electronic instrument
JP2020065009A (en) * 2018-10-18 2020-04-23 日本電産株式会社 Cooling unit
TWI740156B (en) * 2019-06-06 2021-09-21 訊凱國際股份有限公司 Liquid storage device
CN117450716A (en) * 2023-12-21 2024-01-26 江苏鹏江电子科技有限公司 Liquid cooling source equipment capable of circulating cooling liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078271A (en) * 2001-09-04 2003-03-14 Hitachi Ltd Electronic apparatus
JP2004084958A (en) * 2002-06-28 2004-03-18 Hitachi Ltd Electronic equipment, liquid-cooling system and liquid-cooling tank
WO2005001674A1 (en) * 2003-06-27 2005-01-06 Nec Corporation Cooler for electronic equipment
JP2005228810A (en) * 2004-02-10 2005-08-25 Hitachi Cable Ltd Liquid circulation cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078271A (en) * 2001-09-04 2003-03-14 Hitachi Ltd Electronic apparatus
JP2004084958A (en) * 2002-06-28 2004-03-18 Hitachi Ltd Electronic equipment, liquid-cooling system and liquid-cooling tank
WO2005001674A1 (en) * 2003-06-27 2005-01-06 Nec Corporation Cooler for electronic equipment
JP2005228810A (en) * 2004-02-10 2005-08-25 Hitachi Cable Ltd Liquid circulation cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088051A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Cooling device for electronic instrument
JP2020065009A (en) * 2018-10-18 2020-04-23 日本電産株式会社 Cooling unit
JP7225666B2 (en) 2018-10-18 2023-02-21 日本電産株式会社 cooling unit
TWI740156B (en) * 2019-06-06 2021-09-21 訊凱國際股份有限公司 Liquid storage device
CN117450716A (en) * 2023-12-21 2024-01-26 江苏鹏江电子科技有限公司 Liquid cooling source equipment capable of circulating cooling liquid
CN117450716B (en) * 2023-12-21 2024-03-12 江苏鹏江电子科技有限公司 Liquid cooling source equipment capable of circulating cooling liquid

Similar Documents

Publication Publication Date Title
JP3994948B2 (en) Cooling device and electronic equipment
US20060162901A1 (en) Blower, cooling device including the blower, and electronic apparatus including the cooling device
JP4244703B2 (en) Cooling system
JP3594900B2 (en) Display integrated computer
JP4132680B2 (en) Electronic equipment cooling device
KR100634862B1 (en) Cooling unit having a heat radiating portion, and electronic apparatus incorporating a cooling unit
US20060171801A1 (en) Heatsink apparatus
EP1520993A2 (en) Electronic apparatus having cooling pump unit
JP4532422B2 (en) Heat sink with centrifugal fan
US7255154B2 (en) Cooling device
US20050178526A1 (en) Liquid cooling system, and electronic apparatus having the same therein
JP2006234255A (en) Radiator and liquid cooling system comprising the same
US20050183848A1 (en) Coolant tray of liquid based cooling device
JP2006039663A (en) Liquid-circulating system and liquid-cooling system using the same
JP4645420B2 (en) Heat receiver and cooling device provided with the same
US7217086B2 (en) Cooling fluid pump
JP2007103633A (en) Cooling device and electronic apparatus including the same
JP2005191452A (en) Radiator, cooling device, and electronic equipment having the same
JP5117287B2 (en) Electronic equipment cooling system
JP2004047922A (en) Cooling unit for electronic apparatus
JP4258292B2 (en) Cooling system
JP2007035901A (en) Heat receiver and cooling device equipped with it
US20200309153A1 (en) Water cooled pump system
JP2004094961A (en) Display unit integrated computer system and cooling module used for it
JP2006249966A (en) Centrifugal pump and cooling device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101004

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101022