JP2007101319A - Measuring instrument of transmission characteristics measuring method of transmission characteristics, program and recording medium - Google Patents

Measuring instrument of transmission characteristics measuring method of transmission characteristics, program and recording medium Download PDF

Info

Publication number
JP2007101319A
JP2007101319A JP2005290365A JP2005290365A JP2007101319A JP 2007101319 A JP2007101319 A JP 2007101319A JP 2005290365 A JP2005290365 A JP 2005290365A JP 2005290365 A JP2005290365 A JP 2005290365A JP 2007101319 A JP2007101319 A JP 2007101319A
Authority
JP
Japan
Prior art keywords
light
continuous wave
transfer characteristic
measuring device
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005290365A
Other languages
Japanese (ja)
Other versions
JP4819466B2 (en
Inventor
Hideshi Kato
英志 加藤
Tomotake Yamashita
友勇 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2005290365A priority Critical patent/JP4819466B2/en
Publication of JP2007101319A publication Critical patent/JP2007101319A/en
Application granted granted Critical
Publication of JP4819466B2 publication Critical patent/JP4819466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the transmission characteristics of an article to be measured. <P>SOLUTION: The measuring instrument of transmission characteristics includes a continuous wave light source 10 for forming continuous wave light L0, a terahertz light detector 32 for detecting the synthetic light of delay beams, which are delays by a teraheltz light delay circuit 30 from the response light transmitted through or reflected from the measuring target 2 of continuous wave light L0 and the continuous wave light L0, synthesized by a wave synthesizing device 24, and a characteristic measuring part 40 for measuring the transmission characteristics (amplitute characteristics and phase characteristics) of the measuring target 2 on the basis of the detection result of the terahertz photodetector 32. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定物のテラヘルツ領域の伝達特性の測定に関する。   The present invention relates to measurement of transfer characteristics in a terahertz region of an object to be measured.

従来より、被測定物のテラヘルツ領域の伝達特性を測定することが知られている。   Conventionally, it is known to measure the transfer characteristics of a terahertz region of an object to be measured.

例えば、非特許文献1のFig.4(a)を参照して、フェムト秒レーザを用いて、ポンプ・プローブ法によるサンプリングによって被測定物の時間領域における透過または反射波形を取得し、高速フーリエ変換(FFT)により伝達特性を得る装置が知られている。   For example, referring to Fig. 4 (a) of Non-Patent Document 1, a femtosecond laser is used to acquire a transmission or reflection waveform in the time domain of an object to be measured by sampling by the pump-probe method, and fast Fourier transform Devices that obtain transfer characteristics by (FFT) are known.

また、特許文献1の図1を参照して、強度変調されたテラヘルツ光を用いて、被測定物の伝達特性を得る装置も知られている。   Also, referring to FIG. 1 of Patent Document 1, there is also known an apparatus that obtains transfer characteristics of an object to be measured using intensity-modulated terahertz light.

国際公開第03/005002号パンフレットInternational Publication No. 03/005002 Pamphlet 阪井清美、「テラヘルツ時間領域分光法」、分光研究、2001年、第50巻、第6号、p.261−273Sakai Kiyomi, “Terahertz Time Domain Spectroscopy”, Spectroscopic Research, 2001, Vol. 50, No. 6, p. 261-273

しかしながら、フェムト秒レーザを用いた場合、フェムト秒パルスの再現性がよくないことがある。このような場合、測定結果を得るために複数回の測定を行い、測定データの平均化処理を行わなければならず、測定に時間を要する。また、フェムト秒パルス光源を必要とするため、装置が高価で大型になる。さらに、周波数分解能はポンプ光の光遅延の逆数によって決定されるが、最高でも数GHzの分解能である。   However, when a femtosecond laser is used, the reproducibility of femtosecond pulses may not be good. In such a case, in order to obtain a measurement result, a plurality of measurements must be performed and measurement data must be averaged, which takes time. Moreover, since a femtosecond pulse light source is required, the apparatus becomes expensive and large. Furthermore, although the frequency resolution is determined by the reciprocal of the optical delay of the pump light, it is a resolution of several GHz at the maximum.

また、強度変調されたテラヘルツ光を用いる装置は、構成が複雑であり、しかもかかる装置は大型かつ高価となる。   In addition, an apparatus using intensity-modulated terahertz light has a complicated configuration, and such an apparatus is large and expensive.

そこで、本発明は、被測定物の伝達特性を簡単な構成により得ることを課題とする。   Therefore, an object of the present invention is to obtain the transfer characteristic of the object to be measured with a simple configuration.

本発明にかかる伝達特性測定装置は、連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段と、前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定手段とを備えるように構成される。   A transfer characteristic measuring apparatus according to the present invention combines a continuous wave light source that generates continuous wave light, a response light in which the continuous wave light is transmitted or reflected by an object to be measured, and a delayed light obtained by delaying the continuous wave light. The combined light detecting means for detecting the combined light and the characteristic measuring means for measuring the transfer characteristic of the object to be measured based on the detection result of the combined light detecting means.

上記のように構成された伝達特性測定装置によれば、連続波光源は、連続波光を生成する。合波光検出手段は、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する。特性測定手段は、前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する。   According to the transfer characteristic measuring apparatus configured as described above, the continuous wave light source generates continuous wave light. The combined light detection means detects the combined light obtained by combining the response light, which is the continuous wave light transmitted or reflected from the object to be measured, and the delayed light obtained by delaying the continuous wave light. The characteristic measurement unit measures the transfer characteristic of the object to be measured based on the detection result of the combined light detection unit.

また、本発明にかかる伝達特性測定装置は、前記合波光検出手段が、前記合波光と、前記連続波光が前記被測定物に向かって進む光路から前記被測定物を無くした状態において得られる応答光である基準応答光および前記遅延光を合波した基準合波光とを検出するようにしてもよい。   Further, in the transfer characteristic measuring apparatus according to the present invention, the combined light detecting means is a response obtained in a state where the measured object is eliminated from the optical path where the combined light and the continuous wave light travel toward the measured object. Reference response light that is light and reference combined light obtained by combining the delayed light may be detected.

また、本発明にかかる伝達特性測定装置は、前記合波光検出手段が、前記合波光と、振幅特性および位相特性が既知である基準被測定物を前記可変波長光が透過または反射したものである基準応答光および前記遅延光を合波した基準合波光とを検出するようにしてもよい。   Further, in the transfer characteristic measuring apparatus according to the present invention, the combined light detection means transmits or reflects the combined light and the reference measured object whose amplitude characteristics and phase characteristics are known. The reference response light and the reference combined light obtained by combining the delayed light may be detected.

また、本発明にかかる伝達特性測定装置は、前記連続波光源が、可変波長光を生成する可変波長光源と、固定波長光を生成する固定波長光源と、前記可変波長光および前記固定波長光を受け、前記可変波長光の光周波数および前記固定波長光の光周波数の差の光周波数を有する前記連続波光を生成する光生成器とを有するようにしてもよい。   In the transfer characteristic measuring apparatus according to the present invention, the continuous wave light source includes a variable wavelength light source that generates variable wavelength light, a fixed wavelength light source that generates fixed wavelength light, the variable wavelength light, and the fixed wavelength light. And a light generator that generates the continuous wave light having an optical frequency that is a difference between an optical frequency of the variable wavelength light and an optical frequency of the fixed wavelength light.

また、本発明にかかる伝達特性測定装置は、前記可変波長光および前記固定波長光が、共に赤外光であるようにしてもよい。   In the transfer characteristic measuring apparatus according to the present invention, both the variable wavelength light and the fixed wavelength light may be infrared light.

また、本発明にかかる伝達特性測定装置は、前記連続波光源が後進波管であるようにしてもよい。   In the transfer characteristic measuring apparatus according to the present invention, the continuous wave light source may be a backward wave tube.

また、本発明にかかる伝達特性測定装置は、前記特性測定手段が、前記合波光検出手段の検出結果の余弦成分icosを導出する余弦成分導出手段と、前記合波光検出手段の検出結果の直交成分isinを導出する直交成分導出手段と、導出された前記余弦成分icosおよび前記直交成分isinを受け、(icos 2+isin 2)1/2に基づき前記被測定物の振幅特性を導出する振幅特性導出手段と、導出された前記余弦成分icosおよび前記直交成分isinを受け、tan-1(isin/icos)に基づき前記被測定物の位相特性を導出する位相特性導出手段とを有するようにしてもよい。 In the transfer characteristic measuring apparatus according to the present invention, the characteristic measuring means includes a cosine component deriving means for deriving a cosine component i cos of the detection result of the combined light detecting means, and an orthogonality of the detection result of the combined light detecting means. An orthogonal component deriving means for deriving a component i sin , the derived cosine component i cos and the orthogonal component i sin, and an amplitude characteristic of the measured object based on (i cos 2 + i sin 2 ) 1/2 A phase characteristic for deriving a phase characteristic of the object to be measured based on tan -1 (i sin / i cos ) by receiving the derived cosine component i cos and the orthogonal component i sin You may make it have a derivation | leading-out means.

本発明は、連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性を測定する方法であって、前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定工程を備えるように構成される。   The present invention detects a continuous wave light source that generates continuous wave light, a response light that is transmitted or reflected from the object to be measured, and a combined light that combines delayed light obtained by delaying the continuous wave light. A method for measuring transfer characteristics by a transfer characteristic measuring device having a combined light detecting means, comprising: a characteristic measuring step for measuring the transfer characteristics of the object to be measured based on a detection result of the combined light detecting means. Composed.

本発明は、連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性測定処理をコンピュータに実行させるためのプログラムであって、前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定処理をコンピュータに実行させるためのプログラムである。   The present invention detects a continuous wave light source that generates continuous wave light, a response light that is transmitted or reflected from the object to be measured, and a combined light that combines delayed light obtained by delaying the continuous wave light. A program for causing a computer to execute a transfer characteristic measurement process by a transfer characteristic measuring device having a combined light detecting means, wherein the transfer characteristic of the object to be measured is measured based on a detection result of the combined light detecting means A program for causing a computer to execute measurement processing.

本発明は、連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体であって、前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体である。   The present invention detects a continuous wave light source that generates continuous wave light, a response light that is transmitted or reflected from the object to be measured, and a combined light that combines delayed light obtained by delaying the continuous wave light. A computer-readable recording medium recording a program for causing a computer to execute a transfer characteristic measurement process by a transfer characteristic measuring device having a combined light detecting means, and based on a detection result of the combined light detecting means, The computer-readable recording medium stores a program for causing a computer to execute a characteristic measurement process for measuring a transfer characteristic of an object to be measured.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態にかかる伝達特性測定装置1の構成を示す機能ブロック図である。伝達特性測定装置1は、被測定物(DUT : Device Under Test)2にテラヘルツ光を与えたときに、被測定物2を透過する光または被測定物2により反射された光を測定し、被測定物2の伝達特性(例えば、振幅特性および位相特性)を測定するための装置である。伝達特性測定装置1は、連続波光源10、分波器22、合波器24、ミラー26、28、テラヘルツ光遅延回路30、テラヘルツ光検出器(合波光検出手段)32、特性測定部40を備える。   FIG. 1 is a functional block diagram showing a configuration of a transfer characteristic measuring apparatus 1 according to an embodiment of the present invention. When a terahertz light is applied to a device under test (DUT: Device Under Test) 2, the transfer characteristic measuring device 1 measures the light transmitted through the device under test 2 or the light reflected by the device under test 2. This is a device for measuring the transfer characteristics (for example, amplitude characteristics and phase characteristics) of the measurement object 2. The transfer characteristic measuring apparatus 1 includes a continuous wave light source 10, a demultiplexer 22, a multiplexer 24, mirrors 26 and 28, a terahertz light delay circuit 30, a terahertz light detector (combined light detection means) 32, and a characteristic measurement unit 40. Prepare.

連続波光源10は、CW(連続波:Continuous Wave)テラヘルツ光を生成する。すなわち、時間的に連続したテラヘルツ光を生成する。時間的に離散しているパルス光とは異なる。連続波光源10は、可変波長光源12、固定波長光源14、光生成器16を有する。   The continuous wave light source 10 generates CW (Continuous Wave) terahertz light. That is, temporally continuous terahertz light is generated. It differs from pulsed light that is discrete in time. The continuous wave light source 10 includes a variable wavelength light source 12, a fixed wavelength light source 14, and a light generator 16.

可変波長光源12は、可変波長光を生成する。可変波長光は赤外光である。また、可変波長光は、光周波数f1のCW光である。 The variable wavelength light source 12 generates variable wavelength light. The variable wavelength light is infrared light. Further, the variable wavelength light is CW light of the optical frequency f 1.

固定波長光源14は、固定波長光を生成する。固定波長光は赤外光である。また、固定波長光は、光周波数f2のCW光である。 The fixed wavelength light source 14 generates fixed wavelength light. The fixed wavelength light is infrared light. The fixed wavelength light is CW light of the optical frequency f 2.

なお、光周波数f1は、f2+Δflowからf2+Δfhighまで変化する(Δflow<Δfhigh)。 The optical frequency f 1 is changed from f 2 + Δf low to f 2 + Δf high (Δf low <Δf high).

光生成器16は、光合波器16a、テラヘルツ光発生器16bを有する。光合波器16aは、可変波長光および固定波長光を受けて合波して出力する。テラヘルツ光発生器(光生成器)16bは、光合波器16aから出力を受け、可変波長光の光周波数f1および前記固定波長光の光周波数f2の差(f1−f2)の光周波数を有する連続波光L0を生成する。この連続波光L0の光周波数は、ΔflowからΔfhighまで変化することになる。なお、連続波光L0はCWテラヘルツ光すなわち、時間的に連続したテラヘルツ光である。 The light generator 16 includes an optical multiplexer 16a and a terahertz light generator 16b. The optical multiplexer 16a receives the variable wavelength light and the fixed wavelength light, combines them, and outputs them. The terahertz light generator (light generator) 16b receives an output from the optical multiplexer 16a, and has a difference (f 1 −f 2 ) between the optical frequency f 1 of the variable wavelength light and the optical frequency f 2 of the fixed wavelength light. A continuous wave light L0 having a frequency is generated. The optical frequency of the continuous wave light L0 changes from Δf low to Δf high . The continuous wave light L0 is CW terahertz light, that is, terahertz light continuous in time.

なお、テラヘルツ光発生器16bはフォトミキサとも呼ばれる。フォトミキサは、低温成長ガリウム砒素(LT-GaAs)の光伝導膜上にアンテナを兼ねる金属の平行伝送線路を形成した光スイッチにより実現できる。また、フォトミキサは、単一キャリア走行フォトダイオード(UTC-PD)にアンテナを集積した素子により実現できる。   The terahertz light generator 16b is also called a photomixer. The photomixer can be realized by an optical switch in which a metal parallel transmission line that also serves as an antenna is formed on a low-temperature grown gallium arsenide (LT-GaAs) photoconductive film. The photomixer can be realized by an element in which an antenna is integrated in a single carrier traveling photodiode (UTC-PD).

分波器22は、連続波光L0をテラヘルツ光遅延回路30に進む第一連続波光L1と、被測定物2に進む第二連続波光L2とに分波する。なお、第二連続波光L2は、被測定物2を透過し、または被測定物2により反射される。第二連続波光L2が、被測定物2を透過し、または被測定物2により反射されたものを応答光という。応答光は、合波器24に与えられる。   The demultiplexer 22 demultiplexes the continuous wave light L0 into a first continuous wave light L1 that travels to the terahertz optical delay circuit 30 and a second continuous wave light L2 that travels to the DUT 2. The second continuous wave light L2 passes through the device under test 2 or is reflected by the device under test 2. The second continuous wave light L2 transmitted through the object to be measured 2 or reflected by the object to be measured 2 is called response light. The response light is given to the multiplexer 24.

ミラー26は、第一連続波光L1を反射してテラヘルツ光遅延回路30に与える。テラヘルツ光遅延回路30は、第一連続波光L1を遅延させる。ミラー28は、テラヘルツ光遅延回路30の出力を合波器24に与える。テラヘルツ光遅延回路30により、第一連続波光L1を遅延させた光を遅延光という。   The mirror 26 reflects the first continuous wave light L <b> 1 and applies it to the terahertz optical delay circuit 30. The terahertz light delay circuit 30 delays the first continuous wave light L1. The mirror 28 gives the output of the terahertz optical delay circuit 30 to the multiplexer 24. The light obtained by delaying the first continuous wave light L1 by the terahertz light delay circuit 30 is referred to as delayed light.

合波器24は、応答光および遅延光を合波する。応答光および遅延光を合波した光を合波光という。なお、第二連続波光L2が被測定物2に向かって進む光路から被測定物2を取り外した状態で得られる応答光を基準応答光という。すなわち、基準応答光は、第二連続波光L2をそのまま(被測定物2を経由しないで)合波器24に与えたものである。合波器24は基準応答光および遅延光を合波する。基準応答光および遅延光を合波した光を基準合波光という。   The multiplexer 24 combines the response light and the delayed light. The light obtained by combining the response light and the delayed light is called combined light. Note that the response light obtained in a state in which the device under test 2 is removed from the optical path along which the second continuous wave light L2 travels toward the device under test 2 is referred to as reference response light. That is, the reference response light is obtained by applying the second continuous wave light L2 to the multiplexer 24 as it is (without passing through the DUT 2). The multiplexer 24 combines the reference response light and the delayed light. The light obtained by combining the reference response light and the delayed light is referred to as reference combined light.

テラヘルツ光検出器(合波光検出手段)32は、合波光および基準合波光を検出する。テラヘルツ光検出器32は、テラヘルツ光に対して感度を有するボロメータやショットキーバリアダイオード(SBD)などにより実現できる。テラヘルツ光検出器32は、合波光および基準合波光をホモダイン検波し、合波光および基準合波光をアナログ電気信号に変換して出力する。   The terahertz light detector (combined light detection means) 32 detects the combined light and the reference combined light. The terahertz light detector 32 can be realized by a bolometer or a Schottky barrier diode (SBD) having sensitivity to terahertz light. The terahertz light detector 32 performs homodyne detection on the combined light and the reference combined light, converts the combined light and the reference combined light into an analog electric signal, and outputs the analog electric signal.

特性測定部40は、テラヘルツ光検出器32の検出結果に基づき、被測定物2の伝達特性を測定する。特性測定部40は、A/D変換器42、データ処理部44を有する。A/D変換器42は、テラヘルツ光検出器32の出力するアナログ電気信号をデジタル信号に変換して出力する。データ処理部44は、A/D変換器42の出力したデジタル信号を処理して被測定物2の伝達特性(本実施形態では、振幅特性および位相特性)を求める。   The characteristic measurement unit 40 measures the transfer characteristic of the DUT 2 based on the detection result of the terahertz light detector 32. The characteristic measurement unit 40 includes an A / D converter 42 and a data processing unit 44. The A / D converter 42 converts the analog electrical signal output from the terahertz photodetector 32 into a digital signal and outputs the digital signal. The data processing unit 44 processes the digital signal output from the A / D converter 42 to obtain the transfer characteristics (amplitude characteristics and phase characteristics in the present embodiment) of the DUT 2.

図2は、データ処理部44の構成を示す機能ブロック図である。特性測定部40は、余弦成分導出部442c、直交成分導出部442s、基準特性記録部444、実測特性記録部446、特性導出部448を有する。   FIG. 2 is a functional block diagram showing the configuration of the data processing unit 44. The characteristic measurement unit 40 includes a cosine component deriving unit 442c, an orthogonal component deriving unit 442s, a reference characteristic recording unit 444, an actual measurement characteristic recording unit 446, and a characteristic deriving unit 448.

余弦成分導出部442cは、テラヘルツ光検出器32の検出結果をデジタル信号に変換したものの余弦成分icosを導出する。 The cosine component deriving unit 442c derives a cosine component i cos obtained by converting the detection result of the terahertz light detector 32 into a digital signal.

直交成分導出部442sは、テラヘルツ光検出器32の検出結果をデジタル信号に変換したものの直交成分isinを導出する。具体的には、余弦成分icosをヒルベルト変換して求める。 Quadrature component deriving unit 442s derives the quadrature component i sin despite converts the detected result of the terahertz light detector 32 into a digital signal. Specifically, the cosine component i cos is obtained by Hilbert transform.

基準特性記録部444は、基準応答光をテラヘルツ光検出器32が検出した場合における、余弦成分icosおよび直交成分isinを記録する。すなわち、被測定物2を取り外した状態で、第二連続波光L2をそのまま(被測定物2を経由しないで)合波器24に与えた場合における余弦成分icosおよび直交成分isinを記録する。 The reference characteristic recording unit 444 records the cosine component i cos and the orthogonal component i sin when the terahertz light detector 32 detects the reference response light. That is, the cosine component i cos and the quadrature component i sin are recorded when the second continuous wave light L2 is applied to the multiplexer 24 as it is (without passing through the device 2) with the device 2 being removed. .

実測特性記録部446は、応答光をテラヘルツ光検出器32が検出した場合における、余弦成分icosおよび直交成分isinを記録する。すなわち、被測定物2を伝達特性測定装置1に取り付けた状態における余弦成分icosおよび直交成分isinを記録する。 Actual characteristic recording unit 446, when the terahertz light detector 32 responding light is detected, records the cosine component i cos and quadrature components i sin. That is, the cosine component i cos and the orthogonal component i sin in a state where the DUT 2 is attached to the transfer characteristic measuring device 1 are recorded.

特性導出部448は、余弦成分導出部442cにより導出された余弦成分icosおよび直交成分導出部442sにより導出された直交成分isinを、基準特性記録部444および実測特性記録部446から受け、(icos 2+isin 2)1/2に基づき被測定物2の振幅特性を導出する。 The characteristic deriving unit 448 receives the cosine component i cos derived by the cosine component deriving unit 442c and the orthogonal component i sin derived by the orthogonal component deriving unit 442s from the reference characteristic recording unit 444 and the actually measured characteristic recording unit 446. Based on i cos 2 + i sin 2 ) 1/2 , the amplitude characteristic of the DUT 2 is derived.

さらに、特性導出部448は、余弦成分導出部442cにより導出された余弦成分icosおよび直交成分導出部442sにより導出された直交成分isinを、基準特性記録部444および実測特性記録部446から受け、tan-1(isin/icos)に基づき被測定物2の位相特性を導出する。 Further, the characteristic deriving unit 448 receives the cosine component i cos derived by the cosine component deriving unit 442c and the orthogonal component i sin derived by the orthogonal component deriving unit 442s from the reference characteristic recording unit 444 and the actually measured characteristic recording unit 446. , Tan −1 (i sin / i cos ), the phase characteristic of the DUT 2 is derived.

次に、本発明の実施形態の動作を説明する。   Next, the operation of the embodiment of the present invention will be described.

図4は、本発明の実施形態の動作を示すフローチャートである。まず、伝達特性測定装置1に被測定物2を取り付けた状態で測定を行う(S10)。   FIG. 4 is a flowchart showing the operation of the embodiment of the present invention. First, measurement is performed with the DUT 2 attached to the transfer characteristic measuring apparatus 1 (S10).

まず、可変波長光源12が可変波長光を出力する。固定波長光源14が、固定波長光を出力する。可変波長光および固定波長光は光合波器16aにより合波され、テラヘルツ光発生器16bに与えられる。テラヘルツ光発生器16bは、可変波長光の光周波数f1および前記固定波長光の光周波数f2の差(f1−f2)の光周波数を有する連続波光L0を生成する。この連続波光の光周波数は、ΔflowからΔfhighまで変化することになる。 First, the variable wavelength light source 12 outputs variable wavelength light. The fixed wavelength light source 14 outputs fixed wavelength light. The variable wavelength light and the fixed wavelength light are combined by the optical combiner 16a and supplied to the terahertz light generator 16b. The terahertz light generator 16b generates continuous wave light L0 having an optical frequency of a difference (f 1 −f 2 ) between the optical frequency f 1 of variable wavelength light and the optical frequency f 2 of the fixed wavelength light. The optical frequency of the continuous wave light changes from Δf low to Δf high .

分波器22は、連続波光L0をテラヘルツ光遅延回路30に進む第一連続波光L1と、被測定物2に進む第二連続波光L2とに分波する。第一連続波光L1の電界をe1i(t)、第二連続波光L2の電界をe2i(t)とすると、e1i(t)およびe2i(t)は下記の式(1)のように表される。ただし、tは時間、ωTHzは連続波光L0の角周波数(テラヘルツの領域にある)である。 The demultiplexer 22 demultiplexes the continuous wave light L0 into a first continuous wave light L1 that travels to the terahertz optical delay circuit 30 and a second continuous wave light L2 that travels to the DUT 2. Assuming that the electric field of the first continuous wave light L1 is e 1i (t) and the electric field of the second continuous wave light L2 is e 2i (t), e 1i (t) and e 2i (t) are expressed by the following equation (1). It is expressed in Where t is time, and ω THz is the angular frequency (in the terahertz region) of the continuous wave light L0.

Figure 2007101319
第二連続波光L2は、被測定物2を透過し、または被測定物2により反射され、応答光となる。応答光は合波器24に与えられる。また、第一連続波光L1はミラー26により反射され、テラヘルツ光遅延回路30に与えられる。テラヘルツ光遅延回路30により、第一連続波光L1は遅延され、遅延光となる。遅延光は、ミラー28により反射され、合波器24に与えられる。
Figure 2007101319
The second continuous wave light L2 passes through the device under test 2 or is reflected by the device under test 2 and becomes response light. The response light is given to the multiplexer 24. Further, the first continuous wave light L 1 is reflected by the mirror 26 and given to the terahertz light delay circuit 30. The first continuous wave light L1 is delayed by the terahertz light delay circuit 30 and becomes delayed light. The delayed light is reflected by the mirror 28 and given to the multiplexer 24.

ここで、被測定物2の伝達関数をY(ω)とすると、Y(ω)は下記の式(2)のように表される。なお、被測定物2の振幅特性がA(ω)、位相特性がΦ(ω)となる。ただし、ωは、被測定物2に与えられる光の角周波数である。   Here, if the transfer function of the DUT 2 is Y (ω), Y (ω) is expressed as the following equation (2). The amplitude characteristic of the DUT 2 is A (ω) and the phase characteristic is Φ (ω). Here, ω is the angular frequency of light given to the DUT 2.

Figure 2007101319
また、テラヘルツ光遅延回路30の遅延時間をTsとすると、Tsは下記の式(3)のように表される。ただし、Lはテラヘルツ光遅延回路30の光路長、cは光速、nはテラヘルツ光遅延回路30の屈折率である。
Figure 2007101319
Further, when the delay time of the terahertz optical delay circuit 30 is T s , T s is expressed as the following equation (3). Here, L is the optical path length of the terahertz optical delay circuit 30, c is the speed of light, and n is the refractive index of the terahertz optical delay circuit 30.

Figure 2007101319
そこで、テラヘルツ領域の角周波数ωTHzにおける応答光の電界e1o(t)および遅延光の電界e2o(t)は下記の式(4)のように表される。
Figure 2007101319
Therefore, the electric field e 1o (t) of the response light and the electric field e 2o (t) of the delayed light at the angular frequency ω THz in the terahertz region are expressed by the following equation (4).

Figure 2007101319
合波器24は、応答光および遅延光を合波し、合波光を出力する。合波光はテラヘルツ光検出器32により、ある比例定数η1をもって二乗検波される。テラヘルツ光検出器32の検波結果io(t)は下記の式(5)のように表される。検波結果io(t)はアナログ電気信号であり、A/D変換器42に与えられる。
Figure 2007101319
The multiplexer 24 combines the response light and the delayed light and outputs the combined light. The combined light is square-detected by the terahertz light detector 32 with a certain proportionality constant η 1 . Detection result i o of the terahertz light detector 32 (t) is expressed by the following equation (5). The detection result i o (t) is an analog electric signal and is supplied to the A / D converter 42.

Figure 2007101319
A/D変換器42は、テラヘルツ光検出器32の出力するアナログ電気信号をデジタル信号に変換して出力する。
Figure 2007101319
The A / D converter 42 converts the analog electrical signal output from the terahertz photodetector 32 into a digital signal and outputs the digital signal.

余弦成分導出部442cは、A/D変換器42の出力の余弦成分icosを導出する。余弦成分icosは下記の式(6)のように表される。 The cosine component deriving unit 442c derives the cosine component i cos of the output of the A / D converter 42. The cosine component i cos is expressed as the following equation (6).

Figure 2007101319
直交成分導出部442sは、余弦成分icosをヒルベルト変換し、A/D変換器42の出力の直交成分isinを導出する。直交成分isinは下記の式(7)のように表される。
Figure 2007101319
The orthogonal component deriving unit 442 s performs Hilbert transform on the cosine component i cos and derives the orthogonal component i sin of the output of the A / D converter 42. The orthogonal component isin is expressed as the following formula (7).

Figure 2007101319
実測特性記録部446は、余弦成分icosおよび直交成分isinを記録する。
Figure 2007101319
The measured characteristic recording unit 446 records the cosine component i cos and the orthogonal component isin .

特性導出部448は、余弦成分icosおよび直交成分isinを実測特性記録部446から受ける。そして、下記の式(8)のようにして、被測定物2の振幅特性Magsamを導出する。 The characteristic deriving unit 448 receives the cosine component i cos and the orthogonal component i sin from the measured characteristic recording unit 446. Then, the amplitude characteristic Mag sam of the DUT 2 is derived as in the following equation (8).

Figure 2007101319
さらに、特性導出部448は、下記の式(9)のようにして、被測定物2の振幅特性Θsamを導出する。
Figure 2007101319
Further, the characteristic deriving unit 448 derives the amplitude characteristic Θ sam of the DUT 2 as shown in the following equation (9).

Figure 2007101319
次に、伝達特性測定装置1から被測定物2を取り外した状態で測定を行う(S20)。測定の際の動作は、被測定物2を取り付けた状態と同様である。ただし、基準特性記録部444が、余弦成分icosおよび直交成分isinを記録する。そして、被測定物2を取り付けないため、被測定物2を取り外した状態の振幅特性Magrefは、振幅特性MagsamにおけるA(ωTHz)を1としたものに等しく、下記の式(10)のように表される。
Figure 2007101319
Next, measurement is performed with the device under test 2 removed from the transfer characteristic measuring apparatus 1 (S20). The operation at the time of measurement is the same as the state in which the DUT 2 is attached. However, the reference characteristic recording unit 444 records the cosine component i cos and the orthogonal component isin . Since the device under test 2 is not attached, the amplitude characteristic Mag ref with the device under test 2 removed is equal to the amplitude characteristic Mag sam where A (ω THz ) is 1, and the following equation (10) It is expressed as

Figure 2007101319
また、被測定物2を取り外した状態の位相特性Θrefは、位相特性ΘsamにおけるΦ(ωTHz)を0としたものに等しく、下記の式(11)のように表される。
Figure 2007101319
Further, the phase characteristic Θ ref with the device under test 2 removed is equal to the phase characteristic Θ sam in which Φ (ω THz ) is 0, and is expressed by the following equation (11).

Figure 2007101319
最後に、特性導出部448が、被測定物2を取り付けた状態の振幅特性Magsam、位相特性Θsamおよび被測定物2を取り外した状態の振幅特性Magref、位相特性Θrefに基づき、テラヘルツ領域における被測定物2の振幅特性A(ωTHz)、位相特性Φ(ωTHz)を導出する(S30)。テラヘルツ領域における被測定物2の振幅特性A(ωTHz)、位相特性Φ(ωTHz)は、下記の式(12)のようにして導出する。
Figure 2007101319
Finally, the characteristic deriving unit 448 performs terahertz based on the amplitude characteristic Mag sam with the DUT 2 attached, the phase characteristic Θ sam, and the amplitude characteristic Mag ref with the DUT 2 removed, and the phase characteristic Θ ref. The amplitude characteristic A (ω THz ) and phase characteristic Φ (ω THz ) of the DUT 2 in the region are derived (S30). The amplitude characteristic A (ω THz ) and phase characteristic Φ (ω THz ) of the DUT 2 in the terahertz region are derived as shown in the following equation (12).

Figure 2007101319
本発明の実施形態によれば、被測定物2の伝達特性を簡単な構成により得ることができる。しかも、連続波光L0の線幅は、可変波長光と固定波長光との光周波数安定度(kHzオーダである)で決まる。よって、kHzオーダの周波数分解能で被測定物2の伝達特性が可能となる。すなわち周波数分解能が高い測定が実施できる。
Figure 2007101319
According to the embodiment of the present invention, the transfer characteristic of the DUT 2 can be obtained with a simple configuration. Moreover, the line width of the continuous wave light L0 is determined by the optical frequency stability (in the order of kHz) between the variable wavelength light and the fixed wavelength light. Therefore, the transfer characteristic of the DUT 2 can be achieved with a frequency resolution of the order of kHz. That is, measurement with high frequency resolution can be performed.

なお、連続波光源10のかわりにCWテラヘルツ光源を使用しても上記の実施形態を実現できる。図3は、連続波光源10のかわりにCWテラヘルツ光源19を利用した場合の伝達特性測定装置1の構成を示す機能ブロック図である。CWテラヘルツ光源19は、例えば、BWO(後進波管 : Backward-Wave Oscillator)により実現できる。また、CWテラヘルツ光源19は、光周波数がΔflowからΔfhighまで変化する連続波光を生成する。他の部分の構成は上記の実施形態と同様である。 Note that the above-described embodiment can also be realized by using a CW terahertz light source instead of the continuous wave light source 10. FIG. 3 is a functional block diagram showing a configuration of the transfer characteristic measuring apparatus 1 when a CW terahertz light source 19 is used instead of the continuous wave light source 10. The CW terahertz light source 19 can be realized by, for example, a BWO (Backward-Wave Oscillator). The CW terahertz light source 19 generates continuous wave light whose optical frequency changes from Δf low to Δf high . The configuration of other parts is the same as that of the above embodiment.

また、被測定物2を取り外す(S20)かわりに、振幅特性および位相特性が既知の基準被測定物を被測定物2にかえて接続してもよい。   Further, instead of removing the device under test 2 (S20), a reference device under test having known amplitude characteristics and phase characteristics may be connected instead of the device under test 2.

特性導出部448は、下記のようにして被測定物2の振幅特性A(ωTHz)および位相特性Φ(ωTHz)を導出する。 The characteristic deriving unit 448 derives the amplitude characteristic A (ω THz ) and the phase characteristic Φ (ω THz ) of the DUT 2 as follows.

基準被測定物を接続した状態の振幅特性Magrefおよび位相特性Θrefは、基準被測定物を連続波光L0が透過または反射したものである基準応答光をテラヘルツ光検出器32が検波した結果により求めることができる。基準被測定物を接続した状態の振幅特性Magrefは、振幅特性MagsamにおけるA(ωTHz)を既知の振幅特性に置き換えたものとなるので、2E1E2を振幅特性Magrefおよび既知の振幅特性から求めることができる。基準被測定物を接続した状態の位相特性Θrefは、位相特性ΘsamにおけるΦ(ωTHz)を既知の位相特性に置き換えたものとなるので、−ωTHzTsを位相特性Θrefおよび既知の位相特性から求めることができる。 The amplitude characteristic Mag ref and the phase characteristic Θ ref in the state in which the reference object is connected are determined by the result of the terahertz light detector 32 detecting the reference response light that is transmitted or reflected by the continuous wave light L0 through the reference object. Can be sought. The amplitude characteristic Mag ref in the state where the reference object is connected is obtained by replacing A (ω THz ) in the amplitude characteristic Mag sam with a known amplitude characteristic, so 2E 1 E 2 is replaced with the amplitude characteristic Mag ref and the known characteristic. It can be obtained from the amplitude characteristic. The phase characteristic Θ ref in the state in which the reference object is connected is obtained by replacing Φ (ω THz ) in the phase characteristic Θ sam with a known phase characteristic, so that −ω THz T s is replaced with the phase characteristic Θ ref and the known It can obtain | require from the phase characteristic.

よって、2E1E2および振幅特性Magsamから被測定物2の振幅特性A(ωTHz)を、−ωTHzTsおよび位相特性Θsamから被測定物2の位相特性Φ(ωTHz)を導出できる。 Therefore, the amplitude characteristic A (ω THz ) of the DUT 2 from 2E 1 E 2 and the amplitude characteristic Mag sam, and the phase characteristic Φ (ω THz ) of the DUT 2 from −ω THz T s and the phase characteristic Θ sam Can be derived.

さらに、被測定物2を取り付けた状態での測定(S10)を行う前に、被測定物2を取り外した状態での測定(S20)を行ってもよい。なお、被測定物2を取り外した状態での測定結果を予め基準特性記録部444に記録しておけば、被測定物2を取り付けた状態での測定(S10)の直後に、被測定物2の振幅特性A(ωTHz)、位相特性Φ(ωTHz)の導出(S30)が可能となる。 Further, the measurement (S20) with the device under test 2 removed may be performed before the measurement with the device under test 2 attached (S10). If the measurement result with the device under test 2 removed is recorded in the reference characteristic recording unit 444 in advance, immediately after the measurement with the device under test 2 attached (S10), the device under test 2 is measured. It is possible to derive (S30) the amplitude characteristic A (ω THz ) and the phase characteristic Φ (ω THz ).

なお、上記の実施形態において、CPU、ハードディスク、メディア(フロッピー(登録商標)ディスク、CD−ROMなど)読み取り装置を備えたコンピュータに、上記の各部分(例えば、データ処理部44の各部分)を実現するプログラムを記録したメディアを読み取らせて、ハードディスクにインストールする。このような方法でも、上記の実施形態を実現できる。   In the above embodiment, the above-described parts (for example, each part of the data processing unit 44) are added to a computer equipped with a CPU, a hard disk, and a medium (floppy (registered trademark) disk, CD-ROM, etc.) reading device. Read the media that records the program to be implemented and install it on the hard disk. The above embodiment can also be realized by such a method.

本発明の実施形態にかかる伝達特性測定装置1の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the transfer characteristic measuring apparatus 1 concerning embodiment of this invention. データ処理部44の構成を示す機能ブロック図である。3 is a functional block diagram showing a configuration of a data processing unit 44. FIG. 連続波光源10のかわりにCWテラヘルツ光源19を利用した場合の伝達特性測定装置1の構成を示す機能ブロック図である。2 is a functional block diagram showing a configuration of a transfer characteristic measuring apparatus 1 when a CW terahertz light source 19 is used instead of the continuous wave light source 10. FIG. 本発明の実施形態の動作を示すフローチャートである。It is a flowchart which shows operation | movement of embodiment of this invention.

符号の説明Explanation of symbols

1 伝達特性測定装置
12 可変波長光源
14 固定波長光源
16 光生成器
16a 光合波器
16b テラヘルツ光発生器
2 被測定物
10 連続波光源
19 CWテラヘルツ光源
22 分波器
24 合波器
30 テラヘルツ光遅延回路
32 テラヘルツ光検出器
40 特性測定部
44 データ処理部
442c 余弦成分導出部
442s 直交成分導出部
444 基準特性記録部
446 実測特性記録部
448 特性導出部
DESCRIPTION OF SYMBOLS 1 Transfer characteristic measuring device 12 Variable wavelength light source 14 Fixed wavelength light source 16 Light generator 16a Optical multiplexer 16b Terahertz light generator 2 DUT 10 Continuous wave light source 19 CW terahertz light source 22 Demultiplexer 24 Multiplexer 30 Terahertz optical delay Circuit 32 Terahertz photodetector 40 Characteristic measurement unit 44 Data processing unit 442c Cosine component deriving unit 442s Orthogonal component deriving unit 444 Reference characteristic recording unit 446 Actual measurement characteristic recording unit 448 Characteristic deriving unit

Claims (10)

連続波光を生成する連続波光源と、
前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段と、
前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定手段と、
を備えた伝達特性測定装置。
A continuous wave light source that generates continuous wave light;
A combined light detecting means for detecting a combined light obtained by combining the response light that is transmitted or reflected from the object to be measured and the delayed light obtained by delaying the continuous wave light;
Based on the detection result of the combined light detection means, characteristic measurement means for measuring the transfer characteristic of the object to be measured;
A transfer characteristic measuring device.
請求項1に記載の伝達特性測定装置であって、
前記合波光検出手段は、前記合波光と、前記連続波光が前記被測定物に向かって進む光路から前記被測定物を無くした状態において得られる応答光である基準応答光および前記遅延光を合波した基準合波光とを検出する、
伝達特性測定装置。
The transfer characteristic measuring device according to claim 1,
The combined light detection means combines the combined light with a reference response light and a delayed light which are response lights obtained in a state where the measured object is removed from an optical path along which the continuous wave light travels toward the measured object. To detect the wave of the combined reference light,
Transfer characteristic measuring device.
請求項1に記載の伝達特性測定装置であって、
前記合波光検出手段は、前記合波光と、振幅特性および位相特性が既知である基準被測定物を前記可変波長光が透過または反射したものである基準応答光および前記遅延光を合波した基準合波光とを検出する、
伝達特性測定装置。
The transfer characteristic measuring device according to claim 1,
The combined light detection means combines the combined light with a reference response light in which the variable wavelength light is transmitted or reflected from a reference measurement object whose amplitude characteristics and phase characteristics are known, and a reference obtained by combining the delayed light. Detecting the combined light,
Transfer characteristic measuring device.
請求項1ないし3のいずれか一項に記載の伝達特性測定装置であって、
前記連続波光源は、
可変波長光を生成する可変波長光源と、
固定波長光を生成する固定波長光源と、
前記可変波長光および前記固定波長光を受け、前記可変波長光の光周波数および前記固定波長光の光周波数の差の光周波数を有する前記連続波光を生成する光生成器と、
を有する伝達特性測定装置。
The transfer characteristic measuring device according to any one of claims 1 to 3,
The continuous wave light source is
A variable wavelength light source for generating variable wavelength light;
A fixed wavelength light source for generating fixed wavelength light;
A light generator that receives the variable wavelength light and the fixed wavelength light, and generates the continuous wave light having an optical frequency that is a difference between an optical frequency of the variable wavelength light and an optical frequency of the fixed wavelength light;
A transfer characteristic measuring device.
請求項4に記載の伝達特性測定装置であって、
前記可変波長光および前記固定波長光は、共に赤外光である、
伝達特性測定装置。
The transfer characteristic measuring device according to claim 4,
The variable wavelength light and the fixed wavelength light are both infrared light.
Transfer characteristic measuring device.
請求項1ないし3のいずれか一項に記載の伝達特性測定装置であって、
前記連続波光源は後進波管である、
伝達特性測定装置。
The transfer characteristic measuring device according to any one of claims 1 to 3,
The continuous wave light source is a backward wave tube;
Transfer characteristic measuring device.
請求項1ないし6のいずれか一項に記載の伝達特性測定装置であって、
前記特性測定手段は、
前記合波光検出手段の検出結果の余弦成分icosを導出する余弦成分導出手段と、
前記合波光検出手段の検出結果の直交成分isinを導出する直交成分導出手段と、
導出された前記余弦成分icosおよび前記直交成分isinを受け、(icos 2+isin 2)1/2に基づき前記被測定物の振幅特性を導出する振幅特性導出手段と、
導出された前記余弦成分icosおよび前記直交成分isinを受け、tan-1(isin/icos)に基づき前記被測定物の位相特性を導出する位相特性導出手段と、
を有する伝達特性測定装置。
The transfer characteristic measuring device according to any one of claims 1 to 6,
The characteristic measuring means includes
Cosine component deriving means for deriving the cosine component i cos of the detection result of the combined light detection means;
Orthogonal component derivation means for deriving an orthogonal component i sin of the detection result of the combined light detection means;
Amplitude characteristic deriving means for receiving the derived cosine component i cos and the orthogonal component i sin and deriving the amplitude characteristic of the object to be measured based on (i cos 2 + i sin 2 ) 1/2 ;
Phase characteristic deriving means for receiving the derived cosine component i cos and the orthogonal component i sin and deriving the phase characteristic of the device under test based on tan −1 (i sin / i cos );
A transfer characteristic measuring device.
連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性を測定する方法であって、
前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定工程、
を備えた伝達特性測定方法。
A continuous wave light source for generating continuous wave light; and a combined light detecting means for detecting a response light in which the continuous wave light is transmitted or reflected by an object to be measured and a combined light obtained by combining delayed light obtained by delaying the continuous wave light. A transfer characteristic measuring device having a transfer characteristic measuring device comprising:
A characteristic measurement step of measuring a transfer characteristic of the object to be measured based on a detection result of the combined light detection means;
A transfer characteristic measuring method comprising:
連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性測定処理をコンピュータに実行させるためのプログラムであって、
前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定処理、
をコンピュータに実行させるためのプログラム。
A continuous wave light source for generating continuous wave light; and a combined light detecting means for detecting a response light in which the continuous wave light is transmitted or reflected by an object to be measured and a combined light obtained by combining delayed light obtained by delaying the continuous wave light. A program for causing a computer to execute a transfer characteristic measurement process using a transfer characteristic measuring device having:
A characteristic measurement process for measuring a transfer characteristic of the object to be measured based on a detection result of the combined light detection means;
A program that causes a computer to execute.
連続波光を生成する連続波光源と、前記連続波光が被測定物を透過または反射したものである応答光および前記連続波光を遅延させた遅延光を合波した合波光を検出する合波光検出手段とを有する伝達特性測定装置により伝達特性測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体であって、
前記合波光検出手段の検出結果に基づき、前記被測定物の伝達特性を測定する特性測定処理、
をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体。
A continuous wave light source for generating continuous wave light; and a combined light detecting means for detecting a response light in which the continuous wave light is transmitted or reflected by an object to be measured and a combined light obtained by combining delayed light obtained by delaying the continuous wave light. A computer-readable recording medium storing a program for causing a computer to execute a transfer characteristic measurement process using a transfer characteristic measuring device having:
A characteristic measurement process for measuring a transfer characteristic of the object to be measured based on a detection result of the combined light detection means;
A computer-readable recording medium on which a program for causing a computer to execute is recorded.
JP2005290365A 2005-10-03 2005-10-03 Transfer characteristic measuring device, method, program, and recording medium Active JP4819466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290365A JP4819466B2 (en) 2005-10-03 2005-10-03 Transfer characteristic measuring device, method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290365A JP4819466B2 (en) 2005-10-03 2005-10-03 Transfer characteristic measuring device, method, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2007101319A true JP2007101319A (en) 2007-04-19
JP4819466B2 JP4819466B2 (en) 2011-11-24

Family

ID=38028412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290365A Active JP4819466B2 (en) 2005-10-03 2005-10-03 Transfer characteristic measuring device, method, program, and recording medium

Country Status (1)

Country Link
JP (1) JP4819466B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091558A (en) * 2008-09-19 2010-04-22 Goodrich Corp System and method for suppressing noise by frequency dither
JP2011117957A (en) * 2009-11-06 2011-06-16 Furukawa Electric Co Ltd:The Terahertz wave imaging device
JP2013032933A (en) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection-type electromagnetic wave spectroscopic measurement system
US20220303017A1 (en) * 2021-03-17 2022-09-22 Electronics And Telecommunications Reseach Institute Apparatus and method of generating terahertz signal using directly-modulated laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005002A1 (en) * 2001-07-02 2003-01-16 Advantest Corporation Propagation measurement apparatus and propagation measurement method
JP2003518617A (en) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド System and method for monitoring changes in the state of matter by terahertz radiation
JP2003525446A (en) * 2000-02-28 2003-08-26 テラビュー リミテッド Imaging device and method
JP2004101510A (en) * 2002-07-15 2004-04-02 Tochigi Nikon Corp Method of and apparatus for spectroscopic measurement using pulsed light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518617A (en) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド System and method for monitoring changes in the state of matter by terahertz radiation
JP2003525446A (en) * 2000-02-28 2003-08-26 テラビュー リミテッド Imaging device and method
WO2003005002A1 (en) * 2001-07-02 2003-01-16 Advantest Corporation Propagation measurement apparatus and propagation measurement method
JP2004101510A (en) * 2002-07-15 2004-04-02 Tochigi Nikon Corp Method of and apparatus for spectroscopic measurement using pulsed light

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091558A (en) * 2008-09-19 2010-04-22 Goodrich Corp System and method for suppressing noise by frequency dither
JP2011117957A (en) * 2009-11-06 2011-06-16 Furukawa Electric Co Ltd:The Terahertz wave imaging device
JP2013032933A (en) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> Homodyne detection-type electromagnetic wave spectroscopic measurement system
US20220303017A1 (en) * 2021-03-17 2022-09-22 Electronics And Telecommunications Reseach Institute Apparatus and method of generating terahertz signal using directly-modulated laser
US11799553B2 (en) * 2021-03-17 2023-10-24 Electronics And Telecommunications Research Institute Apparatus and method of generating terahertz signal using directly-modulated laser

Also Published As

Publication number Publication date
JP4819466B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP3828111B2 (en) Propagation measuring device and propagation measuring method
JP4565198B2 (en) High resolution and high speed terahertz spectrometer
JP5250736B2 (en) Criteria for beat spectrum of optical frequency comb
US8536530B2 (en) Terahertz wave transceiver and tomographic image acquisition apparatus
JP5713501B2 (en) Homodyne detection system electromagnetic spectrum measurement system
KR20110036945A (en) Fourier transform spectrometer with a frequency comb light source
US10451546B2 (en) Devices and methods for coherent detection using chirped laser pulses
JP2017156094A (en) Brillouin scattering measuring method and brillouin scattering measuring apparatus
JP2009025245A (en) Device for observing optical interference
JP2009300109A (en) Terahertz wave measuring method and terahertz spectroscopic device
JP2007071704A (en) Measuring device, method, program, and recording medium
AU2015327741B2 (en) Cavity enhanced spectroscopy using off-axis paths
WO2016132452A1 (en) Terahertz wave measurement device, terahertz wave measurement method, and computer program
JP4819466B2 (en) Transfer characteristic measuring device, method, program, and recording medium
JP2014045096A (en) Laser phase noise measuring apparatus and measuring method
JP3896532B2 (en) Terahertz complex permittivity measurement system
JP2018059789A (en) Distance measuring apparatus and distance measuring method
US10215845B2 (en) Simultaneous ranging and remote chemical sensing utilizing optical dispersion or absorption spectroscopy
JP2017078569A (en) Transient absorption response detection device and transient absorption response detection method
CN112424562B (en) Path fluctuation monitoring for frequency modulated interferometers
US20170082668A1 (en) Measuring apparatus, measuring method, and recording medium
JPH02102425A (en) Optical path difference zero point detecting device and optical interference signal averaging processor using same
JP7380382B2 (en) range finder
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
Zhang et al. Real-time Rapid-scanning Time-domain Terahertz Radiation Registration System with Single-digit Femtosecond Delay-axis Precision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250