JP2007093295A - Oxygen concentration measuring apparatus - Google Patents

Oxygen concentration measuring apparatus Download PDF

Info

Publication number
JP2007093295A
JP2007093295A JP2005280651A JP2005280651A JP2007093295A JP 2007093295 A JP2007093295 A JP 2007093295A JP 2005280651 A JP2005280651 A JP 2005280651A JP 2005280651 A JP2005280651 A JP 2005280651A JP 2007093295 A JP2007093295 A JP 2007093295A
Authority
JP
Japan
Prior art keywords
removal unit
oxygen sensor
oxygen concentration
oxygen
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005280651A
Other languages
Japanese (ja)
Other versions
JP4841917B2 (en
Inventor
Hideaki Kenhei
英明 権並
Takafumi Onishi
隆文 大西
Takanari Nishikawa
隆也 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2005280651A priority Critical patent/JP4841917B2/en
Priority to KR1020060065693A priority patent/KR101301474B1/en
Priority to TW095135461A priority patent/TWI420103B/en
Priority to CNA2006101595626A priority patent/CN1940549A/en
Publication of JP2007093295A publication Critical patent/JP2007093295A/en
Application granted granted Critical
Publication of JP4841917B2 publication Critical patent/JP4841917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4162Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen concentration measuring apparatus capable of removing substances which degenerate an oxygen sensor in gases to be measured before the gases to be measured reach the oxygen sensor and enabling the oxygen sensor to measure the concentration of oxygen with the substances which degenerate the oxygen sensor not contained. <P>SOLUTION: The oxygen concentration measuring apparatus comprises a suction pump 4 for drawing the gases to be measured from a suction opening 7 by suction, the oxygen sensor 3 for measure the concentration of oxygen, and a removal unit 2 located upstream from the oxygen sensor 3 for removing substances which degenerate the oxygen sensor from the gases to be measured, which are fed in from the suction pump 4, and feeding the gases to be measured to the oxygen sensor 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半田付け装置や半導体製造装置等における酸素濃度の監視や制御に用いられる酸素濃度測定装置に関するものである。   The present invention relates to an oxygen concentration measuring apparatus used for monitoring and controlling oxygen concentration in a soldering apparatus, a semiconductor manufacturing apparatus or the like.

半田付け装置等においては、酸素による半田の酸化によって半田の濡れ性が低下して半田付けの不良が発生することがある。そのため一般的に、前記半田付けの不良を防止する目的で半田付け雰囲気中の酸素濃度を半田に影響のない所定の数値(例えば、100ppm)内に監視して制御する目的で酸素濃度測定装置が用いられている。   In a soldering apparatus or the like, solder wettability may be reduced due to oxidation of solder by oxygen, resulting in poor soldering. Therefore, in general, an oxygen concentration measuring apparatus is used for the purpose of monitoring and controlling the oxygen concentration in the soldering atmosphere within a predetermined numerical value (for example, 100 ppm) that does not affect the solder in order to prevent the soldering failure. It is used.

また、半導体製造装置等においては、半導体の製造過程におけるシリコンウエハの処理が無酸素の状態で行われることが多い。(例えば、CVD、焼成、アニール等)。しかし、シリコンウエハの処理において加熱行程があると、シリコンウエハ表面のシリコンと酸素が結合し易くなってその結果、酸化シリコン(SiO)となる。この酸化シリコンは絶縁性のものであり、半導体の製造にとって不良品を発生させる要因となるものである。このことから、シリコンウエハ処理工程における雰囲気中の酸素濃度が半導体の製造にとって影響が大であるので、半導体の製造に影響が及ばない酸素濃度数値内に監視して制御する目的で酸素濃度測定装置が用いられている。 Moreover, in a semiconductor manufacturing apparatus or the like, a silicon wafer is often processed in an oxygen-free state during the semiconductor manufacturing process. (For example, CVD, firing, annealing, etc.). However, if there is a heating process in the processing of the silicon wafer, silicon and oxygen on the surface of the silicon wafer are easily bonded to each other, resulting in silicon oxide (SiO 2 ). This silicon oxide is insulative and becomes a factor that causes defective products for semiconductor manufacturing. For this reason, the oxygen concentration in the atmosphere in the silicon wafer processing step has a great influence on the manufacture of the semiconductor. Therefore, the oxygen concentration measuring device is used for monitoring and controlling the oxygen concentration within the numerical value that does not affect the semiconductor manufacture. Is used.

上述の酸素濃度測定装置には、酸素濃度を測定する酸素センサを有している。酸素センサは一般に、ジルコニア等の、高温において酸素イオン伝導性のある所定形状の固体電解質の両面に白金電極をそれぞれ設け、その一方の側の白金電極に酸素濃度一定の基準ガス(普通は大気)を接触させると共に、他方の側の白金電極には酸素濃度を測りたい測定対象ガスを接触させて、酸素濃度の差に基づく両電極間の起電力を測定することにより、ネルンストの理論式を用いて測定ガス中の酸素濃度を測定するものである。   The above oxygen concentration measuring apparatus has an oxygen sensor for measuring the oxygen concentration. In general, oxygen sensors are provided with platinum electrodes on both sides of a solid electrolyte with a predetermined shape, such as zirconia, which has oxygen ion conductivity at high temperatures, and a reference gas (usually atmospheric air) with a constant oxygen concentration on one side of the platinum electrode. The Nernst's theoretical formula is used by measuring the electromotive force between both electrodes based on the difference in oxygen concentration by contacting the gas to be measured whose oxygen concentration is to be measured with the platinum electrode on the other side. Thus, the oxygen concentration in the measurement gas is measured.

このような酸素センサの場合、白金電極が測定ガス中に含まれる不純物に接触するとその不純物が白金電極に付着して酸素分子の移動、すなわち、電子移動がスムーズに行われなくなり、短期間で応答の遅れ現象が生じ、最終的には電子移動ができなくなって酸素センサとしての機能が失われることになる。そのため、白金電極の劣化防止対策として従来からいろいろ提案がなされている。   In the case of such an oxygen sensor, when the platinum electrode comes into contact with impurities contained in the measurement gas, the impurities adhere to the platinum electrode, and oxygen molecules do not move smoothly, that is, electrons do not move smoothly. As a result, a phenomenon of delay occurs, and eventually the electron cannot move and the function as an oxygen sensor is lost. For this reason, various proposals have been made for preventing deterioration of platinum electrodes.

例えば、特許文献1には、Si被毒防止用酸素センサにおいて、排気ガスにさらされる側に、電極を被覆して周期律表IIa族元素からなる成分を含む保護層を備えてこの保護層にSiを吸着反応させる技術が開示されている。また、特許文献2には、酸素センサ内部の電極部上流側に劣化成分吸収剤(例えば、石英ウール)を充填して酸素センサを保護することが開示されている。   For example, in Patent Document 1, in an oxygen sensor for preventing Si poisoning, a protective layer containing a component composed of a group IIa element on the periodic table is provided on the side exposed to the exhaust gas, and this protective layer is provided with this protective layer. A technique for causing an adsorption reaction of Si is disclosed. Patent Document 2 discloses that the oxygen sensor is protected by filling a deterioration component absorbent (for example, quartz wool) on the upstream side of the electrode portion inside the oxygen sensor.

特開平2−222830号公報JP-A-2-222830 特開2002−22698号公報Japanese Patent Laid-Open No. 2002-22698

しかしながら、特許文献1の酸素センサでは測定電極に対する保護層は、容射、特にプラズマ容射によって形成されるが、細長い管状素子の奥深い内周部に測定電極が形成されている場合等では容射が非常に困難なことが問題となっている。また、特許文献2の酸素センサでは石英ウール等の劣化成分吸収剤はその吸収速度が遅いため多量の吸収剤が必要となるので、測定対象ガスが酸素センサに到達するまでの時間が長くなり、酸素センサとしての応答の遅れが問題となっている。   However, in the oxygen sensor of Patent Document 1, the protective layer for the measurement electrode is formed by spraying, particularly plasma spraying. However, in the case where the measurement electrode is formed in the deep inner periphery of the elongated tubular element, the protective layer is formed. The problem is that it is very difficult. In addition, in the oxygen sensor of Patent Document 2, a deterioration component absorbent such as quartz wool has a slow absorption rate, and thus a large amount of absorbent is required. Therefore, the time until the measurement target gas reaches the oxygen sensor becomes long. Response delay as an oxygen sensor is a problem.

本発明は、測定対象ガス中の酸素センサを劣化させる物質を、測定対象ガスが酸素センサに到達する前に除去し、酸素センサが酸素センサを劣化させる物質が含まれない状態で酸素濃度測定ができる酸素濃度測定装置を提供することを目的とする。   The present invention removes a substance that degrades the oxygen sensor in the measurement target gas before the measurement target gas reaches the oxygen sensor, and the oxygen concentration measurement is performed in a state where the oxygen sensor does not include a substance that degrades the oxygen sensor. It is an object of the present invention to provide an oxygen concentration measuring device that can be used.

本願発明は、酸素濃度測定装置において、酸素センサの上流側に、測定対象ガスに含まれた白金電極を劣化させる物質を除去する除去ユニットを設けたことを特徴としており、前記除去ユニットはセラミック管から成ってその内部に触媒を充填し、外周面にヒータを装着して除去ユニットを加熱するようになっている。   The present invention is characterized in that, in the oxygen concentration measurement apparatus, a removal unit for removing a substance that degrades the platinum electrode contained in the measurement target gas is provided upstream of the oxygen sensor, and the removal unit is a ceramic tube. The removal unit is heated by filling the inside with a catalyst and mounting a heater on the outer peripheral surface.

前記触媒がウール状の白金及び顆粒状の銀であって、ウール状の白金を前記セラミック管の中央部に、顆粒状の銀をそのウール状の白金の両側にそれぞれ充填すると共に、除去ユニットの加熱によって除去ユニットのセラミック管内部の中央部分を750℃以上とし、その部分から両側方向に500℃以下の温度分布が生じるよう温度制御される。   The catalyst is made of wool-like platinum and granular silver, and the wool-like platinum is filled in the central portion of the ceramic tube, and the granular silver is filled on both sides of the wool-like platinum. The central portion inside the ceramic tube of the removal unit is set to 750 ° C. or higher by heating, and the temperature is controlled so that a temperature distribution of 500 ° C. or lower is generated in both directions from that portion.

また、除去ユニットに前記温度分布が生じて除去ユニットが稼動可能な状態に達するまでの除去ユニットへの昇温時間が、前記酸素センサの温度が酸素センサが測定可能な温度に達するまでの昇温時間よりも短くなるように制御される。   Further, the temperature rise time until the removal unit reaches a state where the temperature distribution occurs in the removal unit and the removal unit can be operated is the temperature rise until the temperature of the oxygen sensor reaches a temperature that can be measured by the oxygen sensor. It is controlled to be shorter than time.

さらに、測定対象ガスを吸引する吸引ポンプを備え、前記除去ユニット及び酸素センサが稼動した後の所定時間後に、測定対象ガスを吸引して前記除去ユニット内に送り込むようにしたり、あるいは、測定対象ガスの流路にその流路を開閉する電磁式開閉弁を備え、前記除去ユニット及び酸素センサが稼動した後の所定時間後に、前記電磁式開閉弁を開にして前記測定対象ガスを前記除去ユニット内に送り込むようにすることも可能である。   Furthermore, a suction pump for sucking the measurement target gas is provided, and after a predetermined time after the removal unit and the oxygen sensor are operated, the measurement target gas is sucked and sent into the removal unit, or the measurement target gas An electromagnetic on-off valve that opens and closes the flow path, and after a predetermined time after the removal unit and the oxygen sensor are operated, the electromagnetic on-off valve is opened to allow the measurement target gas to flow into the removal unit. It is also possible to send them to

本発明の酸素濃度測定装置によれば、測定対象ガスに含まれる酸素センサを劣化させる物質が酸素センサの上流側に設けられた除去ユニットによって除去されるので、酸素センサを劣化させる物質が酸素センサに吸引されることがなく、酸素センサ自体に劣化防止対策を施す必要がない。その結果、酸素センサの測定感度、応答性等が格段に向上すると共に、酸素センサの長寿命化が可能となる。   According to the oxygen concentration measuring apparatus of the present invention, the substance that degrades the oxygen sensor contained in the measurement target gas is removed by the removal unit provided on the upstream side of the oxygen sensor, so that the substance that degrades the oxygen sensor is the oxygen sensor. It is not necessary to take measures for preventing the deterioration of the oxygen sensor itself. As a result, the measurement sensitivity and responsiveness of the oxygen sensor are remarkably improved, and the life of the oxygen sensor can be extended.

また、除去ユニットの加熱によって除去ユニットに温度分布を生じさせることにより、酸素センサを劣化させる代表的な物質である塩素及び有機シリコン等は、それぞれの除去ユニット内の触媒との反応温度のところで反応するので反応温度の異なる物質でも確実に除去することができる。   In addition, by generating a temperature distribution in the removal unit by heating the removal unit, chlorine, organic silicon, etc., which are representative substances that degrade the oxygen sensor, react at the reaction temperature with the catalyst in each removal unit. Therefore, even substances having different reaction temperatures can be reliably removed.

さらに、除去ユニット及び酸素センサが稼動した後の所定時間後に、測定対象ガスを除去ユニット内に送り込むようにしているので、除去ユニット内に送り込まれる測定対象ガスから確実に酸素センサを劣化させる物質が除去される。   Furthermore, since the measurement target gas is sent into the removal unit after a predetermined time after the removal unit and the oxygen sensor are operated, a substance that reliably deteriorates the oxygen sensor from the measurement target gas sent into the removal unit. Removed.

図1は本発明の酸素濃度測定装置の一実施例を示すブロック図であり、この酸素濃度測定装置には測定部1が設けられている。   FIG. 1 is a block diagram showing an embodiment of an oxygen concentration measuring apparatus according to the present invention. A measuring unit 1 is provided in the oxygen concentration measuring apparatus.

この測定部1は、吸引口7から測定対象ガスのダストを除去するフィルタ8を介して測定対象ガスを吸引する吸引ポンプ4と、酸素濃度を測定する個体電解質酸素センサ(以下、酸素センサ)3と、酸素センサ3の上流に位置して吸引ポンプ4から送り込まれた測定対象ガスから酸素センサを劣化させる物質を除去して酸素センサ3に測定対象ガスを送り込む除去ユニット2を有している。   The measurement unit 1 includes a suction pump 4 that sucks the measurement target gas through a filter 8 that removes dust of the measurement target gas from the suction port 7, and a solid electrolyte oxygen sensor (hereinafter, oxygen sensor) 3 that measures the oxygen concentration. And a removal unit 2 that is located upstream of the oxygen sensor 3 and removes a substance that degrades the oxygen sensor from the measurement target gas sent from the suction pump 4 and sends the measurement target gas to the oxygen sensor 3.

そして、酸素センサ3で酸素濃度が測定された後の測定対象ガスの流量を測定する流量計9と、流量計9を通過した測定対象ガスを測定部1の外部へ排出するガス排出口12が設けられている。また、除去ユニット2へ送り込まれる測定対象ガスの流量が所定の流量となるよう、吸引ポンプ4と除去ユニット2間に設けられたバイパス経路の流量調節弁10によって調節される。この調節のため一部のガスがバイパス排出口11から排出される。   A flow meter 9 that measures the flow rate of the measurement target gas after the oxygen concentration is measured by the oxygen sensor 3, and a gas discharge port 12 that discharges the measurement target gas that has passed through the flow meter 9 to the outside of the measurement unit 1. Is provided. In addition, the flow rate of the measurement target gas fed into the removal unit 2 is adjusted by a flow rate adjusting valve 10 in a bypass path provided between the suction pump 4 and the removal unit 2 so that the flow rate becomes a predetermined flow rate. A part of the gas is discharged from the bypass outlet 11 for this adjustment.

また、測定部1には、除去ユニット2を稼働させるための電圧源5と、除去ユニット2、酸素センサ3及び吸引ポンプ4の稼動制御や酸素センサ3からの酸素濃度信号を演算処理する制御演算部6が接続されている。   The measurement unit 1 also includes a voltage source 5 for operating the removal unit 2, operation control of the removal unit 2, the oxygen sensor 3 and the suction pump 4, and a control computation for computing oxygen concentration signals from the oxygen sensor 3. Part 6 is connected.

本発明の酸素濃度測定装置に用いられる酸素センサ3は、固体電解質の両面に白金電極が設けられた公知のものであって、高温(約700℃)下で基準ガス(大気)と測定対象ガスにおいて酸素イオン伝導が行われるときに酸素濃度の差に基づいて両電極間に発生する起電力を利用して酸素濃度を測定するものであるが、従来のように前記白金電極の劣化防止対策として容射による保護層を形成したり、劣化成分吸収剤を充填したりする必要はない。なぜなら、酸素センサ3に送り込まれる測定対象ガスからは既に酸素センサ3の上流に位置した除去ユニット2によって前記白金電極を劣化させる物質が除去されているからである。   The oxygen sensor 3 used in the oxygen concentration measuring apparatus of the present invention is a known sensor in which platinum electrodes are provided on both surfaces of a solid electrolyte, and a reference gas (atmosphere) and a measurement target gas at a high temperature (about 700 ° C.). Is used to measure the oxygen concentration using the electromotive force generated between the two electrodes based on the difference in oxygen concentration when oxygen ion conduction is performed. There is no need to form a protective layer by spraying or to fill the deterioration component absorbent. This is because the substance that degrades the platinum electrode is already removed from the measurement target gas sent to the oxygen sensor 3 by the removal unit 2 located upstream of the oxygen sensor 3.

ところで、酸素センサにおける白金電極を劣化させる物質としては、半田付け装置等に用いられるフラックスに多く含まれる塩素や、半導体製造装置等のチャンバ内に使用されるシリコンシール剤に多く含まれる有機シリコン等が代表的なものである。   By the way, as a substance which degrades the platinum electrode in the oxygen sensor, chlorine contained in a flux used in a soldering device or the like, organic silicon contained in a silicon sealant used in a chamber of a semiconductor manufacturing device or the like, etc. Is a typical one.

塩素においては、高温下で白金と化学反応を起こして塩化白金酸などを形成し、白金電極としての機能を奪うことになる。また、有機シリコンにおいては、高温下で酸素と結合してSiOの膜を電極表面に形成し、酸素透過を妨げることになる。 Chlorine causes a chemical reaction with platinum at a high temperature to form chloroplatinic acid and the like, thereby depriving the function as a platinum electrode. In addition, organic silicon combines with oxygen at a high temperature to form a SiO 2 film on the electrode surface, impeding oxygen permeation.

次に、本発明の酸素濃度測定装置に用いられる除去ユニット2について説明する。図2はこの除去ユニット2の軸方向の断面図である。   Next, the removal unit 2 used in the oxygen concentration measuring apparatus of the present invention will be described. FIG. 2 is a sectional view of the removal unit 2 in the axial direction.

除去ユニット2は、セラミック管21の両端部がそれぞれ支持ブロック30、31に挿嵌されて固定され、支持ブロック30、31がそれぞれベース32に取り付けられて一体的になっている。そして、支持ブロック30にセラミック管21の内径部と鉛直方向に連通してガス入口25が設けられ、支持ブロック31にもセラミック管21の内径部と鉛直方向に連通してガス出口26が設けられてガスの出入りができるようになっている。   In the removal unit 2, both end portions of the ceramic tube 21 are inserted and fixed to the support blocks 30 and 31, respectively, and the support blocks 30 and 31 are respectively attached to the base 32 and integrated. A gas inlet 25 is provided in the support block 30 in the vertical direction with the inner diameter portion of the ceramic tube 21, and a gas outlet 26 is also provided in the support block 31 in the vertical direction with the inner diameter portion of the ceramic tube 21. Gas can enter and exit.

セラミック管21の外周面には加熱のためのヒータ22が装着され電圧源5に接続されている。このとき、支持ブロック30、31側におけるセラミック管21の軸方向外周面に適当な距離でヒータの無い部分を設けることが必要である。なお、ヒータ22は、セラミック管21の外周面に白金線を巻回したものであり、このヒータ22は定電圧駆動で白金線の内部抵抗と温度飽和により最高温度点が800〜900℃に達するように白金の巻回数等が調節される。また、ヒータ22の外周面には断熱効果を得るため断熱材28が装着される。この断熱材28は不織布状のセラミックファイバーを幾重にも巻回したものである。なお、本発明の酸素濃度測定装置に用いられる酸素センサのヒータもこのヒータと略同様のものを使用する。   A heater 22 for heating is attached to the outer peripheral surface of the ceramic tube 21 and connected to the voltage source 5. At this time, it is necessary to provide a portion without a heater at an appropriate distance on the outer peripheral surface in the axial direction of the ceramic tube 21 on the support blocks 30 and 31 side. In addition, the heater 22 is obtained by winding a platinum wire around the outer peripheral surface of the ceramic tube 21, and the heater 22 reaches a maximum temperature point of 800 to 900 ° C. due to internal resistance and temperature saturation of the platinum wire by constant voltage driving. Thus, the number of windings of platinum is adjusted. In addition, a heat insulating material 28 is attached to the outer peripheral surface of the heater 22 to obtain a heat insulating effect. The heat insulating material 28 is obtained by winding a non-woven ceramic fiber several times. The heater of the oxygen sensor used in the oxygen concentration measuring device of the present invention is substantially the same as this heater.

支持ブロック30、31には、セラミック管21の軸方向にセラミック管21の内径部と連通して貫通孔が穿設されており、Oリング等のシール材33を介して蓋27が着脱自由に支持ブロック30、31に取り付けられている。   Through holes are formed in the support blocks 30 and 31 so as to communicate with the inner diameter portion of the ceramic tube 21 in the axial direction of the ceramic tube 21, and the lid 27 can be freely attached and detached via a sealing material 33 such as an O-ring. It is attached to the support blocks 30 and 31.

そして、蓋27を取り外してセラミック管21の内部中央部の空間領域に触媒としてウール状の白金23が充填され、その両側の空間領域に顆粒状の銀24が充填される。そして、セラミック管21の両端部内部に石英ウール29が詰め込まれて、前記触媒のセラミック管内での移動を防ぐようにしている。除去ユニット2の稼動時は蓋27が取り付けられることは言うまでもない。   Then, the lid 27 is removed, and the space region in the inner central part of the ceramic tube 21 is filled with wool-like platinum 23 as a catalyst, and the granular regions 24 are filled in the space regions on both sides thereof. Then, quartz wool 29 is packed inside both ends of the ceramic tube 21 to prevent the catalyst from moving in the ceramic tube. Needless to say, the lid 27 is attached when the removal unit 2 is in operation.

なお、前記触媒のウール状の白金23と顆粒状の銀24は消耗品であり、交換時期と判断されたならば蓋27部から詰め替えが可能である。   In addition, the wool-like platinum 23 and the granular silver 24 of the catalyst are consumables, and can be refilled from the lid 27 if it is determined that it is time for replacement.

除去ユニット2を稼動させるための加熱は、電圧源5からヒータ22への電力供給により行われ、セラミック管21の中央部が略900℃に到達した時点で図3に示めされるような温度分布が生じる。これは、前述したようにセラミック管21の両側にヒータ22の無い部分を設けているために生じるものである。   Heating for operating the removal unit 2 is performed by supplying power from the voltage source 5 to the heater 22, and the temperature as shown in FIG. 3 when the central portion of the ceramic tube 21 reaches approximately 900 ° C. Distribution occurs. This occurs because the portions without the heater 22 are provided on both sides of the ceramic tube 21 as described above.

具体的には、セラミック管21にL1、L2(両側2カ所)の3カ所の範囲を設定し、L1については略500〜略900℃の範囲、L2については略250〜500℃の範囲としている。したがって、セラミック管21内部に充填される触媒をこの3カ所の範囲になるよう配置する。つまり、L1部にはウール状の白金が、L2部にはそれぞれに顆粒状の銀24が充填される。   Specifically, three ranges of L1 and L2 (two places on both sides) are set in the ceramic tube 21, with L1 being in the range of about 500 to about 900 ° C. and L2 being in the range of about 250 to 500 ° C. . Therefore, the catalyst filled in the ceramic tube 21 is arranged in the range of these three places. That is, the L1 part is filled with wool-like platinum, and the L2 part is filled with granular silver 24, respectively.

これによって、周知のように塩素が400℃付近で銀と結合しやすい特性を持つものであり、有機シリコンについても周知のように600℃以上で白金に付着する特性を持つことからL1、L2の温度範囲内で2種類の物質が効率よく確実に除去される。   Thus, as is well known, chlorine has a characteristic of easily binding to silver at around 400 ° C., and organic silicon also has a characteristic of adhering to platinum at 600 ° C. or higher as is well known. Two kinds of substances are efficiently and reliably removed within the temperature range.

次に、本発明の酸素濃度測定装置における測定対象ガスから酸素センサを劣化させる物質を除去する作用について説明する。   Next, the effect | action which removes the substance which degrades an oxygen sensor from the measuring object gas in the oxygen concentration measuring apparatus of this invention is demonstrated.

酸素濃度測定装置の電源が入れられると、制御演算部6が稼動し、電圧源5から除去ユニット2のヒータ22へ電力が供給されて除去ユニット2の加熱が開始される。同時に酸素センサ3にも電力が供給されて酸素センサ3の加熱も開始される。このとき、除去ユニット2が稼動可能な温度900℃に達するまでの昇温時間が、酸素センサ3が酸素濃度測定可能な温度700℃に達するまでの昇温時間よりも短くなるように制御演算部6にプログラミングされている。これにより、測定対象ガスが除去すべき物質が完全に除去されずに酸素センサ3に送り込まれることはない。   When the power of the oxygen concentration measuring device is turned on, the control calculation unit 6 is operated, power is supplied from the voltage source 5 to the heater 22 of the removal unit 2, and heating of the removal unit 2 is started. At the same time, electric power is supplied to the oxygen sensor 3 and heating of the oxygen sensor 3 is also started. At this time, the control calculation unit is set so that the temperature rise time until the temperature at which the removal unit 2 can operate reaches 900 ° C. is shorter than the temperature rise time until the oxygen sensor 3 reaches the temperature 700 ° C. at which the oxygen concentration can be measured. 6 is programmed. Thereby, the substance to be removed from the measurement target gas is not completely removed and is not sent to the oxygen sensor 3.

そして、除去ユニット2と酸素センサ3共に所定の温度に達し、除去ユニット2に前述の温度分布が生じた後の所定時間後に、吸引ポンプ4が測定対象ガスを吸引口7からそのガスのダストを除去するフィルタ8を介して吸引し、除去ユニット2へガス入口25から送り込む。この除去ユニット2と酸素センサ3が稼動した後の所定時間後に吸引ポンプ4が稼動する制御は、除去ユニット2の温度分布範囲L1、L2部に備えた温度検知器(図示せず)の検知温度及び酸素センサ内の熱電対(図示せず)による内部温度の制御演算部6へのフィードバックによって行い、吸引ポンプ4が稼動するまでの時間は適宜設定する。   Then, both the removal unit 2 and the oxygen sensor 3 reach a predetermined temperature, and after a predetermined time after the temperature distribution is generated in the removal unit 2, the suction pump 4 removes the measurement target gas from the suction port 7 and the dust of the gas. Suction is performed through the filter 8 to be removed, and the gas is introduced into the removal unit 2 from the gas inlet 25. Control that the suction pump 4 is operated after a predetermined time after the removal unit 2 and the oxygen sensor 3 are operated is a temperature detected by a temperature detector (not shown) provided in the temperature distribution ranges L1 and L2 of the removal unit 2. The time until the suction pump 4 operates is set as appropriate by performing feedback to the control calculation unit 6 of the internal temperature by a thermocouple (not shown) in the oxygen sensor.

測定対象ガスの除去ユニット2及び酸素センサ3への導入手段については、測定対象ガスの流路を圧送流路とし、吸引ポンプ4に換えて電磁式開閉弁(図示せず)を備え、その開閉によって行うことも可能である。前記電磁式開閉弁の制御は吸引ポンプの場合と同様にすればよい。   Regarding the means for introducing the measurement target gas into the unit 2 and the oxygen sensor 3, the flow path of the measurement target gas is a pressure feed flow path, and an electromagnetic on-off valve (not shown) is provided in place of the suction pump 4, It is also possible to do this. The electromagnetic on-off valve may be controlled in the same manner as the suction pump.

除去ユニット2に送り込まれた測定対象ガスからは、除去ユニット2の温度分布範囲内において除去すべき物質が除去される。つまり、測定対象ガス内の塩素が温度分布範囲L2部で、有機シリコンが温度分布範囲L1部でそれぞれ除去される。   A substance to be removed within the temperature distribution range of the removal unit 2 is removed from the measurement target gas sent to the removal unit 2. That is, chlorine in the measurement target gas is removed in the temperature distribution range L2 and organic silicon is removed in the temperature distribution range L1.

塩素、有機シリコンが除去された測定対象ガスは除去ユニット2のガス出口26から酸素センサ3に送り込まれて酸素濃度が測定され、測定された酸素濃度は電気信号として制御演算部6に送信されて制御演算部6で酸素濃度表示が行われたり、あるいは、別途通信手段で外部に酸素濃度情報として伝えられる。   The measurement target gas from which chlorine and organic silicon have been removed is sent from the gas outlet 26 of the removal unit 2 to the oxygen sensor 3 to measure the oxygen concentration, and the measured oxygen concentration is transmitted to the control calculation unit 6 as an electrical signal. Oxygen concentration is displayed by the control calculation unit 6 or is transmitted to the outside as oxygen concentration information by a separate communication means.

酸素濃度が測定された後の測定対象ガスは、流量計9を通過してガス排出口12から測定部1の外部へ排出される。   The measurement target gas after the oxygen concentration is measured passes through the flow meter 9 and is discharged from the gas discharge port 12 to the outside of the measurement unit 1.

上述の除去ユニット2による除去すべき物質の除去を能率良く行うには、実験上、除去ユニット2のセラミック管21の内径寸法を4mmとし、セラミック管21内及び酸素センサ3内を通過する測定対象ガスの流量を100mL/min以下とし、流速を150mm/sec以下とするのが好ましい。なお、流量の調節は吸引ポンプ4と除去ユニット2間のバイパス経路の流量調整弁10によって行う。   In order to efficiently remove the substance to be removed by the removal unit 2 described above, the inner diameter of the ceramic tube 21 of the removal unit 2 is set to 4 mm in the experiment, and the measurement object passes through the ceramic tube 21 and the oxygen sensor 3. The gas flow rate is preferably 100 mL / min or less and the flow rate is preferably 150 mm / sec or less. The flow rate is adjusted by the flow rate adjusting valve 10 in the bypass path between the suction pump 4 and the removal unit 2.

測定対象ガスの流量を100mL/min以上とするには、セラミック管21の内径寸法を4mm以上とすればよいが、流速は150mm/sec以下とするのが好ましい。   In order to set the flow rate of the measurement target gas to 100 mL / min or more, the inner diameter of the ceramic tube 21 may be set to 4 mm or more, but the flow rate is preferably 150 mm / sec or less.

本発明による除去ユニット2において、充填する触媒を換えることで別の物質を除去することも可能である。例えば、石英ウールやセラミックファイバを充填することで、有機溶剤を燃焼させ、酸素センサに有機溶剤が侵入するのを防ぐことができる。   In the removal unit 2 according to the present invention, it is also possible to remove another substance by changing the catalyst to be filled. For example, by filling quartz wool or ceramic fiber, it is possible to burn the organic solvent and prevent the organic solvent from entering the oxygen sensor.

また、本発明による除去ユニット2の独立化、すなわち、酸素濃度測定装置への組み込み型ではなく、単独で稼動する装置として組み上げれば酸素センサ単位での使用ができ、除去ユニットとしての製品化が見込まれる。   In addition, the removal unit 2 according to the present invention is independent, that is, it can be used in units of oxygen sensors if it is assembled as a device that operates independently instead of being incorporated into an oxygen concentration measurement device, and can be commercialized as a removal unit. Expected.

本発明の酸素濃度測定装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the oxygen concentration measuring apparatus of this invention. 除去ユニットの軸方向の断面図である。It is sectional drawing of the axial direction of a removal unit. セラミック管内部の温度分布を示す図である。It is a figure which shows the temperature distribution inside a ceramic tube.

符号の説明Explanation of symbols

1 測定部
2 除去ユニット
3 酸素センサ
4 吸引ポンプ
5 電圧源
6 制御演算部
21 セラミック管
22 ヒータ
23 ウール状の白金
24 顆粒状の銀
29 石英ウール
DESCRIPTION OF SYMBOLS 1 Measuring part 2 Removal unit 3 Oxygen sensor 4 Suction pump 5 Voltage source 6 Control calculating part 21 Ceramic tube 22 Heater 23 Wool-like platinum 24 Granular silver 29 Quartz wool

Claims (6)

酸素イオン伝導により発生する起電力を取り出す白金電極を有して測定対象ガスの酸素濃度を測定する固体電解質酸素センサ(以下、酸素センサ)を備えた酸素濃度測定装置において、前記酸素センサの上流側に、前記測定対象ガスに含まれた前記白金電極を劣化させる物質を除去する除去ユニットを設けたことを特徴とする酸素濃度測定装置。 In the oxygen concentration measurement apparatus having a solid electrolyte oxygen sensor (hereinafter referred to as an oxygen sensor) having a platinum electrode for extracting an electromotive force generated by oxygen ion conduction and measuring the oxygen concentration of the measurement target gas, the upstream side of the oxygen sensor Further, an oxygen concentration measuring apparatus is provided, which is provided with a removal unit for removing a substance that degrades the platinum electrode contained in the measurement object gas. 前記除去ユニットはセラミック管から成っており、その内部に触媒を充填し、外周面にヒータを装着して除去ユニットを加熱することを特徴とする請求項1に記載の酸素濃度測定装置。 2. The oxygen concentration measuring apparatus according to claim 1, wherein the removing unit is made of a ceramic tube, and the inside of the removing unit is filled with a catalyst, and a heater is attached to the outer peripheral surface to heat the removing unit. 前記触媒がウール状の白金及び顆粒状の銀であって、ウール状の白金を前記セラミック管の中央部に、顆粒状の銀をそのウール状の白金の両側にそれぞれ充填すると共に、前記除去ユニットの加熱によって除去ユニットのセラミック管内部の中央部分を750℃以上とし、その部分から両側方向に500℃以下の温度分布が生じるよう温度制御することを特徴とする請求項2に記載の酸素濃度測定装置。 The catalyst is made of wool-like platinum and granular silver, the wool-like platinum is filled in the center of the ceramic tube, and the granular silver is filled on both sides of the wool-like platinum, and the removal unit 3. The oxygen concentration measurement according to claim 2, wherein the central portion inside the ceramic tube of the removal unit is set to 750 ° C. or more by heating the tube, and the temperature is controlled so that a temperature distribution of 500 ° C. or less is generated in both directions from that portion. apparatus. 前記除去ユニットに前記温度分布が生じて除去ユニットが稼動可能な状態に達するまでの除去ユニットへの昇温時間が、前記酸素センサの温度が酸素センサが測定可能な温度に達するまでの昇温時間よりも短くなるように制御することを特徴とする請求項2又は3に記載の酸素濃度測定装置。 The temperature rise time to the removal unit until the temperature distribution occurs in the removal unit and the removal unit reaches an operable state, and the temperature rise time until the temperature of the oxygen sensor reaches a temperature that can be measured by the oxygen sensor The oxygen concentration measuring device according to claim 2 or 3, wherein the oxygen concentration measuring device is controlled so as to be shorter. 測定対象ガスを吸引する吸引ポンプを備え、前記除去ユニット及び酸素センサが稼動した後の所定時間後に、測定対象ガスを吸引して前記除去ユニット内に送り込むようにしたことを特徴とする請求項1、2、3又は4に記載の酸素濃度測定装置。 A suction pump for sucking a measurement target gas is provided, and after a predetermined time after the removal unit and the oxygen sensor are operated, the measurement target gas is sucked and sent into the removal unit. 2. The oxygen concentration measuring device according to 2, 3, or 4. 測定対象ガスが圧送される流路にその流路の開閉を行う電磁式開閉弁を備え、前記除去ユニット及び酸素センサが稼動した後の所定時間後に、前記電磁式開閉弁を開にして測定対象ガスを前記除去ユニット内に送り込むようにしたことを特徴とする請求項1、2、3又は4に記載の酸素濃度測定装置。 An electromagnetic on-off valve that opens and closes the flow path of the gas to be measured is provided, and after a predetermined time after the removal unit and the oxygen sensor are operated, the electromagnetic on-off valve is opened to be measured. 5. The oxygen concentration measuring apparatus according to claim 1, wherein gas is fed into the removal unit.
JP2005280651A 2005-09-27 2005-09-27 Oxygen concentration measuring device Active JP4841917B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005280651A JP4841917B2 (en) 2005-09-27 2005-09-27 Oxygen concentration measuring device
KR1020060065693A KR101301474B1 (en) 2005-09-27 2006-07-13 Oxygen analyzer
TW095135461A TWI420103B (en) 2005-09-27 2006-09-26 Oxygen concentration measuring device
CNA2006101595626A CN1940549A (en) 2005-09-27 2006-09-27 Oxygen concentration determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280651A JP4841917B2 (en) 2005-09-27 2005-09-27 Oxygen concentration measuring device

Publications (2)

Publication Number Publication Date
JP2007093295A true JP2007093295A (en) 2007-04-12
JP4841917B2 JP4841917B2 (en) 2011-12-21

Family

ID=37958919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280651A Active JP4841917B2 (en) 2005-09-27 2005-09-27 Oxygen concentration measuring device

Country Status (4)

Country Link
JP (1) JP4841917B2 (en)
KR (1) KR101301474B1 (en)
CN (1) CN1940549A (en)
TW (1) TWI420103B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551378A (en) * 2008-12-30 2009-10-07 湖北宜化化工股份有限公司 Method and equipment for detecting oxygen content in coal gas
JP2016130666A (en) * 2015-01-13 2016-07-21 エナジーサポート株式会社 Oxygen concentration measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493030A (en) * 2021-06-11 2021-10-12 上海帆铭机械有限公司 Modified atmosphere fresh-keeping packaging machine with oxygen consumption type secondary deoxidization structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352058A (en) * 1986-08-22 1988-03-05 Karuto Kk Detection of concentration of organic gas
JPS63200761A (en) * 1987-02-15 1988-08-19 大森商機株式会社 Apparatus for disinfecting material
JPH11190719A (en) * 1997-12-26 1999-07-13 Shinko Electric Ind Co Ltd Gas sensor device
JP2001013048A (en) * 1999-07-02 2001-01-19 Shimadzu Corp Gas concentration measuring apparatus
JP2002071630A (en) * 2000-09-05 2002-03-12 Matsushita Electric Ind Co Ltd Gas sensor
WO2005068991A1 (en) * 2004-01-15 2005-07-28 The Boc Group Plc Electrochemical sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875990A (en) * 1986-08-28 1989-10-24 Ngk Insulators, Ltd. Oxygen concentration measuring device
KR950003455B1 (en) * 1991-03-15 1995-04-13 쌍용양회공업 주식회사 Electrode manufacturing method of oxygen sensor
JP2002022698A (en) * 2000-07-05 2002-01-23 Toray Eng Co Ltd Oxygen sensor
TWI228592B (en) * 2003-09-30 2005-03-01 Hon Hai Prec Ind Co Ltd Gas sensor of zinc oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352058A (en) * 1986-08-22 1988-03-05 Karuto Kk Detection of concentration of organic gas
JPS63200761A (en) * 1987-02-15 1988-08-19 大森商機株式会社 Apparatus for disinfecting material
JPH11190719A (en) * 1997-12-26 1999-07-13 Shinko Electric Ind Co Ltd Gas sensor device
JP2001013048A (en) * 1999-07-02 2001-01-19 Shimadzu Corp Gas concentration measuring apparatus
JP2002071630A (en) * 2000-09-05 2002-03-12 Matsushita Electric Ind Co Ltd Gas sensor
WO2005068991A1 (en) * 2004-01-15 2005-07-28 The Boc Group Plc Electrochemical sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551378A (en) * 2008-12-30 2009-10-07 湖北宜化化工股份有限公司 Method and equipment for detecting oxygen content in coal gas
JP2016130666A (en) * 2015-01-13 2016-07-21 エナジーサポート株式会社 Oxygen concentration measurement device

Also Published As

Publication number Publication date
KR101301474B1 (en) 2013-08-29
TW200728715A (en) 2007-08-01
KR20070035412A (en) 2007-03-30
TWI420103B (en) 2013-12-21
JP4841917B2 (en) 2011-12-21
CN1940549A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US7360395B2 (en) Gas sensor
WO2016103561A1 (en) Chemical substance concentrator and chemical substance detecting device
JP2010078609A (en) Method of manufacturing catalytic combustion type gas sensor
TW201007165A (en) Analysis method and analysis system
WO2020031909A1 (en) Mems type semiconductor gas detection element
EP2930503B1 (en) Sensor element and gas sensor
JP4841917B2 (en) Oxygen concentration measuring device
JP2011203007A (en) Detection sensor, and material detection system
JP6446604B2 (en) System with pre-separation unit
JP2004286726A (en) Gas analyzer
EP2176650A1 (en) Oxygen sensor and method for manufacturing the oxygen sensor
EP1772719B1 (en) Device and method for detecting the presence of test gas
JP4516309B2 (en) Gas measuring device
JP3432026B2 (en) Limit current type gas sensor
JPH09184829A (en) Gas chromatograph
EP0057393B1 (en) Probe for measuring partial pressure of oxygen
JP5371624B2 (en) Plasma emission analysis method and apparatus therefor
JP2021047029A (en) Gas sensor
JP2021047028A (en) Gas sensor
WO2007110657A1 (en) Solid-state gas purifier
US20180257934A1 (en) Method for supplying ozone gas and system for supplying ozone gas
JP2006153478A (en) Condensation prevention device of sensor, and condensation prevention method of sensor
JP2002122566A (en) Ultratrace oxygen analyzer in inert gas
US10914222B2 (en) Gas sensor
TW202415946A (en) Gas detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4841917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250