JP2007092556A - Drive device and its manufacturing method - Google Patents

Drive device and its manufacturing method Download PDF

Info

Publication number
JP2007092556A
JP2007092556A JP2005280084A JP2005280084A JP2007092556A JP 2007092556 A JP2007092556 A JP 2007092556A JP 2005280084 A JP2005280084 A JP 2005280084A JP 2005280084 A JP2005280084 A JP 2005280084A JP 2007092556 A JP2007092556 A JP 2007092556A
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
alloy wire
tension
adjusting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280084A
Other languages
Japanese (ja)
Inventor
Koji Hamaguchi
浩二 濱口
Junichi Tanii
純一 谷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005280084A priority Critical patent/JP2007092556A/en
Publication of JP2007092556A publication Critical patent/JP2007092556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily adjust a tensile force of shape-memory alloy wire, after the assembly of the shape-memory alloy wire crossed over and fixed to the drive device. <P>SOLUTION: The shape-memory alloy wire is crossed between a first fixed body 11 and a rotating part 21 of a movable body 2, and a bias spring 4 is crossed between a second fixed body 12 and a movable body. A predetermined tensile force is applied to the shape-memory alloy wire by the bias spring 4. A tensile force adjusting member 5 made from thermoplastic resin is disposed between a reversed part 33 of the thermoplastic resin 3 and the rotating part 21. The tensile force adjusting member 5 has a contact part 51 brought into contact with shape-memory alloy wire 3, and the reversed part 33 of the shape-memory alloy wire 3 bites into the tensile force adjusting member 5 depending on a predetermined tensile force adjustment value in the contact part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定体に相対的に移動可能とされている可動体の駆動源として、形状記憶合金線を使用した駆動装置及びその製造方法に関するものである。   The present invention relates to a drive device using a shape memory alloy wire as a drive source of a movable body that is movable relative to a fixed body, and a manufacturing method thereof.

予め所定の形状が記憶された形状記憶合金線を用いた線アクチュエータと、この線アクチュエータに駆動電圧を印加して通電加熱し記憶形状に復元させる駆動手段とを備えた駆動装置が知られている。このような駆動装置は、例えば特許文献1に開示されているように、自動車エンジンのクランク軸やカム軸等の回転軸を相互連結するベルトの張力を調整する用途等に用いることが知られている。   2. Description of the Related Art A driving device is known that includes a line actuator that uses a shape memory alloy wire in which a predetermined shape is stored in advance, and a driving unit that applies a driving voltage to the line actuator to apply current and heat to restore the memory shape. . Such a driving device is known to be used for adjusting the tension of a belt that interconnects rotating shafts such as a crankshaft and a camshaft of an automobile engine, as disclosed in Patent Document 1, for example. Yes.

また、形状記憶合金線を用いた線アクチュエータを、例えばデジタルカメラ等の撮像装置における手振れ補正機構に適用することが検討されている。この場合、例えば形状記憶合金線を用いた線アクチュエータを、可動体としてのレンズ鏡筒等と本体ボディ等の固定体との間に架設し、形状記憶合金線に適宜通電加熱して前記レンズ鏡筒を振れ補正駆動させる手段を取ることができる。具体的には、形状記憶合金線とバイアスバネ等を組み合わせ、前記形状記憶合金線に張力を付与する構成、或いは2本の形状記憶合金線を拮抗させて互いに張力を付与する構成等を採用することができる。
特開平8−334154号公報
In addition, it has been studied to apply a line actuator using a shape memory alloy wire to a camera shake correction mechanism in an imaging apparatus such as a digital camera. In this case, for example, a line actuator using a shape memory alloy wire is installed between a lens barrel as a movable body and a fixed body such as a main body body, and the lens mirror is appropriately energized and heated. A means for driving the cylinder to be shake-corrected can be taken. Specifically, a configuration in which a shape memory alloy wire and a bias spring are combined to apply tension to the shape memory alloy wire, or a configuration in which two shape memory alloy wires are antagonized to apply tension to each other is adopted. be able to.
JP-A-8-334154

形状記憶合金線からなる線アクチュエータを用いた駆動装置においては、可動体に架設された前記線アクチュエータの張力を所定の値に設定することが必要となる。しかしながら、形状記憶合金線の架設時における張力調整のばらつきや固定体への端部固定の際における張力変動等により、各々の駆動装置において形状記憶合金線の張力を一定化させることが困難であるという問題があった。   In a drive device using a line actuator made of a shape memory alloy wire, it is necessary to set the tension of the line actuator installed on the movable body to a predetermined value. However, it is difficult to make the tension of the shape memory alloy wire constant in each drive device due to variations in tension adjustment when laying the shape memory alloy wire, tension fluctuations when the end portion is fixed to the fixed body, and the like. There was a problem.

また、形状記憶合金線を可動体に架設し、端部を固定体に固定した後に、前記形状記憶合金線の張力を調整しようとする場合、駆動装置内に張力調整機構を具備させる必要があるが、例えば撮像装置の手振れ補正機構に用いられるような小型の駆動装置の場合、そのような張力調整機構を設置することがスペース的に困難であり、また張力調整自体も困難であるという問題があった。   In addition, when the shape memory alloy wire is installed on the movable body and the end portion is fixed to the fixed body and then the tension of the shape memory alloy wire is to be adjusted, it is necessary to provide a tension adjusting mechanism in the driving device. However, in the case of a small drive device used for, for example, a camera shake correction mechanism of an imaging apparatus, it is difficult to install such a tension adjustment mechanism in terms of space, and the tension adjustment itself is also difficult. there were.

本発明は、以上のような問題点に鑑みてなされたもので、形状記憶合金線を架設し固定して駆動装置に組み付けた後に、前記形状記憶合金線の張力を容易に調整することができる駆動装置、及びその製造方法(張力調整方法)を提供することを目的とする。   The present invention has been made in view of the above problems, and after the shape memory alloy wire is installed and fixed and assembled to the drive device, the tension of the shape memory alloy wire can be easily adjusted. It is an object of the present invention to provide a driving device and a manufacturing method (tension adjusting method) thereof.

本発明の請求項1にかかる駆動装置は、形状記憶合金線と、前記形状記憶合金線の少なくとも一端を保持する固定体と、前記形状記憶合金線が架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体と、前記可動体に作用し前記形状記憶合金線に所定の張力を与える補助部材とを備える駆動装置において、前記形状記憶合金線の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記形状記憶合金線と接する接触部を有し、前記形状記憶合金線は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする。   According to a first aspect of the present invention, there is provided a drive device comprising: a shape memory alloy wire; a fixed body that holds at least one end of the shape memory alloy wire; the shape memory alloy wire; In the drive device comprising: a movable body that is movable relative to the fixed body by performing an operation; and an auxiliary member that acts on the movable body and applies a predetermined tension to the shape memory alloy wire. A tension adjusting member for adjusting the tension of the memory alloy wire is provided, the tension adjusting member has a contact portion in contact with the shape memory alloy wire, and the shape memory alloy wire has a predetermined tension adjustment at the contact portion. The tension adjusting member is bitten in accordance with the value.

この構成によれば、前記補助部材により張力を与えられた前記形状記憶合金線は、前記張力調整部材に対する食い込みの度合いにより架設経路が変更されるようになる。例えば、前記補助部材により張力を与えられることで所定の伸びが前記形状記憶合金線に与えられている場合、前記張力調整部材の接触部において前記形状記憶合金線が食い込めば、その食い込み量に応じて架設経路が短くなり、つまり前記「伸び」が緩和され、その分だけ前記形状記憶合金線の張力を低下させることができる。従って、前記張力調整部材を加熱軟化させる等して前記形状記憶合金線の前記接触部における食い込み量を調整することで、架設後においても前記形状記憶合金線の張力を調整することが可能になる。なお、形状記憶合金線は、断面円形、断面楕円形、断面矩形のものの他、箔状のもの等も含み、複数の線状体を編み込んだり撚り合わせたりしたものも含む。   According to this configuration, the erection path of the shape memory alloy wire given tension by the auxiliary member is changed depending on the degree of biting into the tension adjusting member. For example, when a predetermined elongation is given to the shape memory alloy wire by being given tension by the auxiliary member, if the shape memory alloy wire bites into the contact portion of the tension adjusting member, the amount of biting depends on the amount of biting. Thus, the installation route is shortened, that is, the “elongation” is relieved, and the tension of the shape memory alloy wire can be reduced accordingly. Therefore, the tension of the shape memory alloy wire can be adjusted even after erection by adjusting the amount of biting in the contact portion of the shape memory alloy wire by heating and softening the tension adjusting member. . Shape memory alloy wires include those having a circular cross section, an elliptical cross section, a rectangular cross section, a foil shape, and the like, and also including a plurality of linear bodies knitted or twisted together.

本発明の請求項2にかかる駆動装置は、第1及び第2の形状記憶合金線と、前記第1及び第2の形状記憶合金線の少なくとも一端をそれぞれ保持する第1及び第2の固定体と、前記第1及び第2の形状記憶合金線がそれぞれ架設され、前記第1の形状記憶合金線が形状回復動作を行うことで第1の方向に移動し、前記第2の形状記憶合金線が形状回復動作を行うことで前記第1の方向とは異なる第2の方向に移動することが可能とされた可動体とを有し、前記第1及び第2の形状記憶合金線が拮抗することで、それぞれが所定の張力を有するよう組み付けられてなる駆動装置において、前記第1及び/又は第2の形状記憶合金線の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記第1及び/又は第2の形状記憶合金線と接する接触部を有し、前記第1及び/又は第2の形状記憶合金線は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする。   According to a second aspect of the present invention, there is provided a driving device including first and second shape memory alloy wires and first and second fixed bodies that respectively hold at least one ends of the first and second shape memory alloy wires. And the first and second shape memory alloy wires are respectively constructed, and the first shape memory alloy wire moves in a first direction by performing a shape recovery operation, and the second shape memory alloy wire Has a movable body that can move in a second direction different from the first direction by performing a shape recovery operation, and the first and second shape memory alloy wires antagonize Thus, each of the drive devices assembled so as to have a predetermined tension includes a tension adjusting member for adjusting the tension of the first and / or second shape memory alloy wire, and the tension adjusting member. Is the first and / or second shape memory alloy It has a contact portion in contact with, the first and / or the second shape memory alloy wire is characterized by being wedged in the tension adjustment member according to a predetermined tension adjustment value in the contact portion.

この構成によれば、第1及び第2の形状記憶合金線が拮抗することで、それぞれが所定の張力を与えられている前記第1及び/又は第2の形状記憶合金線は、前記張力調整部材に対する食い込みの度合いにより架設経路が変更されるようになる。すなわち、この場合は第1及び第2の形状記憶合金線が拮抗することで各々の形状記憶合金線に所定の伸びが与えられていることになるが、例えば前記張力調整部材の接触部においていずれか一方の形状記憶合金線が食い込めば、食い込まされた方の形状記憶合金線の架設経路がその食い込み量に応じて短くなり、これにより前記「伸び」が緩和され、その分だけ形状記憶合金線の張力を低下させることができる。これにより、架設後においても前記形状記憶合金線の張力を調整することが可能になる。   According to this configuration, the first and / or second shape memory alloy wires antagonize each other, so that the first and / or second shape memory alloy wires, each of which is given a predetermined tension, The erection route is changed depending on the degree of biting into the member. In other words, in this case, the first and second shape memory alloy wires antagonize to give each shape memory alloy wire a predetermined elongation. For example, at the contact portion of the tension adjusting member, If one of the shape memory alloy wires bites in, the installation path of the bite shape memory alloy wire is shortened according to the amount of biting, thereby reducing the “elongation” and the shape memory alloy wire by that amount. The tension can be reduced. This makes it possible to adjust the tension of the shape memory alloy wire even after erection.

上記請求項1又は2にかかる駆動装置において、前記張力調整部材が、下記(a)〜(c)からなる群のいずれか、若しくは複数の箇所に備えられている構成とすることができる(請求項3)。
(a)可動体の所定位置
(b)固定体の所定位置
(c)可動体と固定体との中間位置
In the driving device according to claim 1 or 2, the tension adjusting member may be provided in any one of a group consisting of the following (a) to (c) or in a plurality of locations (claim). Item 3).
(A) Predetermined position of movable body (b) Predetermined position of fixed body (c) Intermediate position between movable body and fixed body

本発明の請求項4にかかる駆動装置は、形状記憶合金線と、線状部を備え前記形状記憶合金線に所定の張力を与える補助部材と、前記形状記憶合金線の少なくとも一端を保持する第1の固定体と、前記補助部材の一端を保持する第2の固定体と、前記形状記憶合金線及び前記補助部材の線状部がそれぞれ架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体とを備える駆動装置において、前記形状記憶合金線及び/又は前記補助部材の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記形状記憶合金線及び/又は前記補助部材の線状部と接する接触部を有し、前記形状記憶合金線及び/又は前記補助部材の線状部は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする。   According to a fourth aspect of the present invention, there is provided a driving device that includes a shape memory alloy wire, an auxiliary member that includes a linear portion and applies a predetermined tension to the shape memory alloy wire, and a first member that holds at least one end of the shape memory alloy wire. The first fixed body, the second fixed body holding one end of the auxiliary member, the shape memory alloy wire and the linear portion of the auxiliary member are respectively constructed, and the shape memory alloy wire performs a shape recovery operation. And a movable body that is movable relative to the fixed body with a tension adjusting member for adjusting the tension of the shape memory alloy wire and / or the auxiliary member, The tension adjusting member has a contact portion in contact with the shape memory alloy wire and / or the linear portion of the auxiliary member, and the shape memory alloy wire and / or the linear portion of the auxiliary member is a predetermined portion in the contact portion. According to tension adjustment value Characterized in that it is cutting into the tensioning member.

この構成によれば、前記補助部材により張力を与えられた前記形状記憶合金線は、前記張力調整部材に対する食い込みの度合いにより架設経路が変更されるようになる。また、前記補助部材も同様に、その線状部の張力調整部材に対する食い込みの度合いにより架設経路が変更されるようになる。従って、前記張力調整部材を加熱軟化させる等して前記形状記憶合金線の前記接触部における食い込み量を調整することで、若しくは補助部材の線状部の前記接触部における食い込み量を調整することで、架設後においても前記形状記憶合金線の張力を調整することが可能になる。   According to this configuration, the erection path of the shape memory alloy wire given tension by the auxiliary member is changed depending on the degree of biting into the tension adjusting member. Similarly, the construction route of the auxiliary member is changed depending on the degree of biting of the linear portion with respect to the tension adjusting member. Therefore, by adjusting the amount of biting in the contact portion of the shape memory alloy wire by heating and softening the tension adjusting member, or by adjusting the amount of biting in the contact portion of the linear portion of the auxiliary member Even after installation, the tension of the shape memory alloy wire can be adjusted.

上記請求項4にかかる駆動装置において、前記張力調整部材が、下記(d)〜(i)からなる群のいずれか、若しくは複数の箇所に備えられている構成とすることができる(請求項5)。
(d)可動体の所定位置であって形状記憶合金線と接する位置
(e)可動体の所定位置であって補助部材の線状部と接する位置
(f)第1の固定体の所定位置
(g)第2の固定体の所定位置
(h)可動体と第1の固定体との中間位置
(i)可動体と第2の固定体との中間位置
The drive device according to claim 4 may be configured such that the tension adjusting member is provided at any one of a group consisting of the following (d) to (i) or at a plurality of locations (claim 5). ).
(D) A predetermined position of the movable body and a position in contact with the shape memory alloy wire (e) A predetermined position of the movable body and a position in contact with the linear portion of the auxiliary member (f) A predetermined position of the first fixed body ( g) Predetermined position of the second fixed body (h) Intermediate position between the movable body and the first fixed body (i) Intermediate position between the movable body and the second fixed body

上記構成において、前記張力調整部材が熱可塑性樹脂からなり、前記形状記憶合金線が可動体に架設された後、前記張力調整部材が加熱軟化されることで、前記形状記憶合金線が前記張力調整部材に所定深さだけ食い込まされていることが望ましい(請求項6)。この構成によれば、熱可塑性樹脂からなる張力調整部材を加熱軟化させるという簡便な手段で前記形状記憶合金線の張力調整が行えるようになる。   In the above configuration, the tension adjusting member is made of a thermoplastic resin, and after the shape memory alloy wire is installed on the movable body, the tension adjusting member is heated and softened so that the shape memory alloy wire is adjusted to the tension. It is desirable that the member is bitten by a predetermined depth (claim 6). According to this configuration, the tension of the shape memory alloy wire can be adjusted by a simple means of heating and softening a tension adjusting member made of a thermoplastic resin.

この場合、前記張力調整部材が、少なくとも前記形状記憶合金線がオーステナイト相へ逆変態する第1の温度では軟化せず、前記第1の温度よりも所定温度だけ高い第2の温度において軟化する熱可塑性樹脂からなることが望ましい(請求項7)。この構成によれば、形状記憶合金線を加熱しマルテンサイト相〜オーステナイト相へ相変化させて駆動させても熱可塑性樹脂からなる張力調整部材は加熱軟化することはなく、前記形状記憶合金線の張力を所定の値に維持できる。   In this case, the tension adjusting member does not soften at least at the first temperature at which the shape memory alloy wire reversely transforms into the austenite phase, but softens at a second temperature that is higher than the first temperature by a predetermined temperature. It is desirable to be made of a plastic resin (claim 7). According to this configuration, even if the shape memory alloy wire is heated and driven by changing the phase from the martensite phase to the austenite phase, the tension adjusting member made of the thermoplastic resin is not heated and softened. The tension can be maintained at a predetermined value.

また、前記可動体に、前記形状記憶合金線が略180度反転されて架け渡される転回部が備えられており、前記張力調整部材が、前記転回部において、前記形状記憶合金線の反転部と接するように設けられている構成とすることができる(請求項8)。この構成によれば、前記形状記憶合金線の反転部を前記張力調整部材に食い込ませることで、前記形状記憶合金線の張力調整が行われる。   Further, the movable body is provided with a turning portion where the shape memory alloy wire is turned over by being inverted by about 180 degrees, and the tension adjusting member includes a turning portion of the shape memory alloy wire at the turning portion. It can be set as the structure provided so that it may contact | connect. According to this configuration, the tension of the shape memory alloy wire is adjusted by causing the inverted portion of the shape memory alloy wire to bite into the tension adjusting member.

さらに、前記可動体に、前記形状記憶合金線が略180度反転されて架け渡される転回部が備えられており、前記転回部において、前記形状記憶合金線の反転部と接するように設けられている第1の張力調整部材と、前記形状記憶合金線の反転部の前後において該形状記憶合金線と接するように設けられている第2の張力調整部材とを具備する構成とすることが望ましい(請求項9)。この構成によれば、前記形状記憶合金線の反転部の、前記第1の張力調整部材に対する食い込み量を変化させることで経路変化が大きくなり、形状記憶合金線の伸び度合いが比較的大きく変化することから、前記第1の張力調整部材において前記形状記憶合金線の全体張力の粗調整を行うことができる。また、前記形状記憶合金線の反転部の前又は後の部分において、前記第2の張力調整部材に対する食い込み量を変化させても、前記反転部における場合とは異なり経路変化は僅かであり、従って前記第2の張力調整部材において形状記憶合金線の張力の微調整を行うことができる。   Furthermore, the movable body is provided with a turning portion where the shape memory alloy wire is reversed by being rotated by approximately 180 degrees and is provided in contact with the reversing portion of the shape memory alloy wire at the turning portion. It is desirable that the first tension adjusting member includes a first tension adjusting member and a second tension adjusting member provided in contact with the shape memory alloy wire before and after the reversing portion of the shape memory alloy wire ( Claim 9). According to this configuration, the path change is increased by changing the amount of biting of the reversing portion of the shape memory alloy wire with respect to the first tension adjusting member, and the degree of elongation of the shape memory alloy wire changes relatively greatly. Accordingly, the overall tension of the shape memory alloy wire can be roughly adjusted in the first tension adjusting member. Further, even if the amount of biting into the second tension adjusting member is changed before or after the reversing portion of the shape memory alloy wire, the path change is slight unlike the case of the reversing portion. The second tension adjusting member can finely adjust the tension of the shape memory alloy wire.

上記請求項1又は4にかかる駆動装置において、前記補助部材が、バイアスバネからなる構成とすることができる(請求項10)。   In the driving device according to claim 1 or 4, the auxiliary member may be configured by a bias spring (claim 10).

また、上記請求項1〜5のいずれかの駆動装置において、前記形状記憶合金線が、前記固定体にかしめ方式又は圧入ピン方式で保持されている構成とすることができる(請求項11)。   In the driving device according to any one of the first to fifth aspects, the shape memory alloy wire may be held on the fixed body by a caulking method or a press-fit pin method (claim 11).

本発明の請求項12にかかる駆動装置の製造方法は、形状記憶合金線と、前記形状記憶合金線の少なくとも一端を保持する固定体と、前記形状記憶合金線が架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体と、前記可動体に作用し前記形状記憶合金線に所定の張力を与える補助部材とを備える駆動装置の製造方法であって、前記形状記憶合金線の張力を調整するための張力調整部材を、前記形状記憶合金線と接する接触部を有するように所定の箇所に配置し、所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記形状記憶合金線を当該張力調整部材に食い込ませることで前記形状記憶合金線の張力調整を行う張力調整ステップを具備することを特徴とする。   According to a twelfth aspect of the present invention, there is provided a method of manufacturing a drive device, comprising: a shape memory alloy wire; a fixed body that holds at least one end of the shape memory alloy wire; and the shape memory alloy wire is installed. A drive device comprising: a movable body that is movable relative to the fixed body by performing a shape recovery operation; and an auxiliary member that acts on the movable body and applies a predetermined tension to the shape memory alloy wire. In the manufacturing method, a tension adjusting member for adjusting the tension of the shape memory alloy wire is disposed at a predetermined position so as to have a contact portion in contact with the shape memory alloy wire, and the tension is applied by a predetermined heating means. Tension adjustment step of adjusting the tension of the shape memory alloy wire by heating and softening the adjustment member and causing the shape memory alloy wire to bite into the tension adjustment member according to a predetermined tension adjustment value at the contact portion Characterized by comprising.

また、本発明の請求項13にかかる駆動装置の製造方法は、第1及び第2の形状記憶合金線と、前記第1及び第2の形状記憶合金線の少なくとも一端をそれぞれ保持する第1及び第2の固定体と、前記第1及び第2の形状記憶合金線がそれぞれ架設され、前記第1の形状記憶合金線が形状回復動作を行うことで第1の方向に移動し、前記第2の形状記憶合金線が形状回復動作を行うことで前記第1の方向とは異なる第2の方向に移動することが可能とされた可動体とを有し、前記第1及び第2の形状記憶合金線が拮抗することで、それぞれが所定の張力を有するよう組み付けられてなる駆動装置の製造方法であって、前記第1及び/又は第2の形状記憶合金線の張力を調整するための張力調整部材を、前記第1及び/又は第2の形状記憶合金線と接する接触部を有するように所定の箇所に配置し、所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記第1及び/又は第2の形状記憶合金線を当該張力調整部材に食い込ませることで前記第1及び/又は第2の形状記憶合金線の張力調整を行う張力調整ステップを具備することを特徴とする。   According to a thirteenth aspect of the present invention, there is provided a method of manufacturing a drive device, wherein the first and second shape memory alloy wires and the first and second shape memory alloy wires holding at least one end of the first and second shape memory alloy wires, respectively. A second fixed body and the first and second shape memory alloy wires are respectively constructed, and the first shape memory alloy wire moves in a first direction by performing a shape recovery operation, and the second The shape memory alloy wire has a movable body that is capable of moving in a second direction different from the first direction by performing a shape recovery operation, and the first and second shape memories A drive device manufacturing method in which alloy wires are antagonized to be assembled so as to have a predetermined tension, and tension for adjusting the tension of the first and / or second shape memory alloy wires. The adjusting member is the first and / or second shape memory alloy. The tension adjusting member is heated and softened by a predetermined heating means so as to have a contact portion in contact with the first and / or second in accordance with a predetermined tension adjustment value at the contact portion. There is provided a tension adjusting step for adjusting the tension of the first and / or second shape memory alloy wire by causing the shape memory alloy wire to penetrate into the tension adjusting member.

さらに、本発明の請求項14にかかる駆動装置の製造方法は、形状記憶合金線と、線状部を備え前記形状記憶合金線に所定の張力を与える補助部材と、前記形状記憶合金線の少なくとも一端を保持する第1の固定体と、前記補助部材の一端を保持する第2の固定体と、前記形状記憶合金線及び前記補助部材の線状部がそれぞれ架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体とを備える駆動装置の製造方法であって、前記形状記憶合金線及び/又は前記補助部材の張力を調整するための張力調整部材を、前記形状記憶合金線及び/又は前記補助部材の線状部と接する接触部を有するように所定の箇所に配置し、所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記形状記憶合金線及び/又は前記補助部材の線状部を当該張力調整部材に食い込ませることで前記形状記憶合金線及び/又は前記補助部材の線状部の張力調整を行う張力調整ステップを具備することを特徴とする。   Furthermore, a manufacturing method of a drive device according to a fourteenth aspect of the present invention includes a shape memory alloy wire, an auxiliary member that includes a linear portion and applies a predetermined tension to the shape memory alloy wire, and at least the shape memory alloy wire. A first fixed body for holding one end, a second fixed body for holding one end of the auxiliary member, the shape memory alloy wire and the linear portion of the auxiliary member are respectively constructed, and the shape memory alloy wire is shaped. A method of manufacturing a drive device including a movable body that is movable relative to the fixed body by performing a recovery operation, wherein the tension of the shape memory alloy wire and / or the auxiliary member is adjusted. The tension adjusting member is disposed at a predetermined position so as to have a contact portion that contacts the shape memory alloy wire and / or the linear portion of the auxiliary member, and the tension adjusting member is heated and softened by a predetermined heating means. To the contact part The shape memory alloy wire and / or the linear portion of the auxiliary member are bitten into the tension adjusting member according to a predetermined tension adjustment value. A tension adjusting step for adjusting the tension is provided.

上記請求項12〜14にかかる駆動装置の製造方法によれば、前記張力調整部材を加熱軟化させることで、前記接触部において所定の張力調整値に応じて前記形状記憶合金線(第1、第2の形状記憶合金線)や前記補助部材の線状部を所定深さだけ食い込ませ、これにより前記形状記憶合金線や前記補助部材の線状部の架設経路を事後的に変更することができる。従って、例えば形状記憶合金線或いは補助部材の線状部に規定値以上の張力を与えて固定体及び可動体に組み付けた後に、前記張力調整部材を加熱軟化させて形状記憶合金線及び補助部材の線状部を適量だけ食い込ませて張力を規定値まで低下させるという手法で、これらを適正な張力に調整することができるようになる。   According to the method for manufacturing a drive device according to the above-described claims 12 to 14, the shape memory alloy wire (first, first, and second) according to a predetermined tension adjustment value at the contact portion by heating and softening the tension adjustment member. No. 2 shape memory alloy wire) and the linear portion of the auxiliary member are bitten by a predetermined depth, and thereby the construction route of the shape memory alloy wire and the linear portion of the auxiliary member can be changed afterwards. . Therefore, for example, after a tension of a prescribed value or more is applied to the shape memory alloy wire or the linear portion of the auxiliary member and assembled to the fixed body and the movable body, the tension adjusting member is heated and softened to form the shape memory alloy wire and the auxiliary member. These can be adjusted to an appropriate tension by a technique of biting the appropriate amount of the linear portion and reducing the tension to a specified value.

上記請求項12〜14の駆動装置の製造方法において、前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段としてレーザー光照射手段が用いられ、前記レーザー光照射手段から発せられるレーザー光を前記張力調整部材の接触部に照射することで、前記接触部を加熱軟化させる構成とすることができる(請求項15)。この構成によれば、前記レーザー光のスポット径を絞ることで、前記張力調整部材の所要部位(接触部)のみを効果的に加熱軟化させることができる。   15. The method of manufacturing a driving device according to claim 12, wherein the tension adjusting member is made of a thermoplastic resin, a laser beam irradiation unit is used as the heating unit, and a laser beam emitted from the laser beam irradiation unit is used as the tension. By irradiating the contact portion of the adjustment member, the contact portion can be heated and softened (claim 15). According to this configuration, it is possible to effectively heat and soften only a required portion (contact portion) of the tension adjusting member by narrowing the spot diameter of the laser beam.

また、請求項12〜14の駆動装置の製造方法において、前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段として熱線若しくは熱風発生手段が用いられ、前記熱線若しくは熱風発生手段から発せられる熱線若しくは熱風により、前記張力調整部材を加熱軟化させる構成とすることができる(請求項16)。この構成によれば、熱線若しくは熱風により前記張力調整部材を全体的に加熱軟化させることが可能となる。   Moreover, in the manufacturing method of the drive device of Claims 12-14, the said tension adjustment member consists of thermoplastic resins, a hot wire or a hot air generating means is used as the said heating means, and the hot wire emitted from the said hot wire or a hot air generating means or The tension adjusting member can be heated and softened by hot air (claim 16). According to this configuration, it is possible to heat and soften the tension adjusting member as a whole with hot wire or hot air.

さらに、請求項12〜14の駆動装置の製造方法において、前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段として前記形状記憶合金線への通電加熱手段が用いられ、前記通電加熱手段による通電によって前記形状記憶合金線が発するジュール熱により、前記張力調整部材の接触部を加熱軟化させる構成とすることができる(請求項17)。この構成によれば、形状記憶合金線自身を発熱源として前記張力調整部材の接触部を加熱軟化させることが可能となる。   Furthermore, in the manufacturing method of the drive device of Claims 12-14, the said tension adjustment member consists of a thermoplastic resin, and the electricity heating means to the said shape memory alloy wire is used as said heating means, and electricity supply by the said electricity heating means Thus, the contact portion of the tension adjusting member can be heated and softened by Joule heat generated by the shape memory alloy wire (claim 17). According to this configuration, the contact portion of the tension adjusting member can be heated and softened using the shape memory alloy wire itself as a heat source.

上記請求項12〜17のいずれかにかかる駆動装置の製造方法において、前記張力調整部材を前記加熱手段にて加熱軟化させるに際し、前記形状記憶合金線に振動を与えると共にその振動数を検出することで、当該形状記憶合金線の張力をモニタしつつ加熱軟化させることが望ましい(請求項18)。この構成によれば、張力をモニタしつつ加熱軟化させるので、その食い込み量を正確に制御でき、形状記憶合金線や補助部材の張力調整を一層正確に行えるようになる。   18. The method of manufacturing a drive device according to claim 12, wherein when the tension adjusting member is heated and softened by the heating means, vibration is applied to the shape memory alloy wire and its frequency is detected. Thus, it is desirable to heat soften while monitoring the tension of the shape memory alloy wire (claim 18). According to this configuration, since the heat softening is performed while monitoring the tension, the amount of biting can be accurately controlled, and the tension of the shape memory alloy wire and the auxiliary member can be adjusted more accurately.

請求項1に係る発明によれば、形状記憶合金線に対して補助部材により所定の張力を与えるべく構成された駆動装置において、形状記憶合金線を固定体及び可動体に架設及び固定して駆動装置に組み付けた後であっても、前記形状記憶合金線の張力を事後的に調整することができるので、前記形状記憶合金線の張力を適切な値に容易に調整できるようになる。また、駆動装置を量産する場合においても、各駆動装置において形状記憶合金線の張力を一定化できるので、アクチュエータの動作性能を均質化できるという利点がある。   According to the first aspect of the present invention, in the drive device configured to apply a predetermined tension to the shape memory alloy wire by the auxiliary member, the shape memory alloy wire is installed and fixed to the fixed body and the movable body. Even after being assembled in the apparatus, the tension of the shape memory alloy wire can be adjusted afterwards, so that the tension of the shape memory alloy wire can be easily adjusted to an appropriate value. In addition, even in mass production of drive devices, the tension of the shape memory alloy wire can be made constant in each drive device, so that there is an advantage that the operation performance of the actuator can be made uniform.

請求項2に係る発明によれば、2本の形状記憶合金線を拮抗させてなる駆動装置において、形状記憶合金線を固定体及び可動体に架設及び固定して駆動装置に組み付けた後であっても、前記形状記憶合金線の張力を事後的に調整することができるので、前記形状記憶合金線の張力を適切な値に容易に調整できるようになる。   According to the second aspect of the present invention, in the drive device in which the two shape memory alloy wires are antagonized, the shape memory alloy wire is installed and fixed to the fixed body and the movable body and assembled to the drive device. However, since the tension of the shape memory alloy wire can be adjusted afterwards, the tension of the shape memory alloy wire can be easily adjusted to an appropriate value.

請求項3に係る発明によれば、可動体や固定体の構造、大きさ、配置関係等に応じて張力調整部材を適正な箇所に配置することができる。   According to the invention which concerns on Claim 3, according to the structure of a movable body or a fixed body, a magnitude | size, arrangement | positioning relationship, etc., a tension adjustment member can be arrange | positioned in an appropriate location.

請求項4に係る発明によれば、形状記憶合金線に対して補助部材により所定の張力を与えるべく構成された駆動装置において、形状記憶合金線及び補助部材を固定体及び可動体に架設及び固定して駆動装置に組み付けた後であっても、形状記憶合金線及び/又は補助部材の張力を事後的に調整することができるので、前記形状記憶合金線及び/又は補助部材の張力を適切な値に容易に調整できるようになる。   According to the fourth aspect of the present invention, in the drive device configured to apply a predetermined tension to the shape memory alloy wire by the auxiliary member, the shape memory alloy wire and the auxiliary member are installed and fixed to the fixed body and the movable body. Since the tension of the shape memory alloy wire and / or the auxiliary member can be adjusted afterwards even after being assembled to the drive device, the tension of the shape memory alloy wire and / or the auxiliary member can be appropriately set. The value can be easily adjusted.

請求項5に係る発明によれば、可動体や第1、第2固定体の構造、大きさ、配置関係等に応じて張力調整部材を適正な箇所に配置することができる。   According to the invention which concerns on Claim 5, according to the structure of a movable body or a 1st, 2nd fixed body, a magnitude | size, arrangement | positioning relationship, etc., a tension adjustment member can be arrange | positioned in an appropriate location.

請求項6に係る発明によれば、熱可塑性樹脂からなる張力調整部材を加熱軟化させるという簡便な手段で前記形状記憶合金線の張力調整が行えるので、当該駆動装置の生産性を向上させることができる。   According to the invention of claim 6, since the tension of the shape memory alloy wire can be adjusted by a simple means of heating and softening a tension adjusting member made of a thermoplastic resin, the productivity of the driving device can be improved. it can.

請求項7に係る発明によれば、形状記憶合金線を実際に動作させても張力調整部材は加熱軟化することはなく、前記形状記憶合金線の張力を所定の値に維持できる。   According to the seventh aspect of the present invention, even if the shape memory alloy wire is actually operated, the tension adjusting member is not heated and softened, and the tension of the shape memory alloy wire can be maintained at a predetermined value.

請求項8に係る発明によれば、形状記憶合金線の反転部を張力調整部材に食い込ませることで、形状記憶合金線の張力調整を簡単且つ効果的に行うことができる。   According to the invention which concerns on Claim 8, the tension adjustment of a shape memory alloy wire can be performed simply and effectively by making the inversion part of a shape memory alloy wire bite into a tension adjustment member.

請求項9に係る発明によれば、張力の粗調整と微調整とを選択的に行うことができるので、張力調整を効率良く、しかも正確に実施することができる。さらに、可動体に架け渡されている形状記憶合金線の反転部を境とした片側のみの張力調整も行うことができ、張力調整の自由度を格段に向上させることができる。   According to the ninth aspect of the invention, since the coarse and fine adjustments of the tension can be selectively performed, the tension adjustment can be performed efficiently and accurately. Furthermore, it is possible to perform tension adjustment only on one side with the reversal portion of the shape memory alloy wire spanning the movable body as a boundary, and the degree of freedom of tension adjustment can be greatly improved.

請求項10に係る発明によれば、補助部材の構成を簡略化でき、駆動装置のコストダウンを図ることができる。   According to the invention which concerns on Claim 10, the structure of an auxiliary member can be simplified and the cost of a drive device can be reduced.

請求項11に係る発明によれば、形状記憶合金線の固定体への保持構造を簡素化することができる。   According to the invention which concerns on Claim 11, the holding structure to the fixing body of a shape memory alloy wire can be simplified.

請求項12〜14に係る発明によれば、例えば形状記憶合金線或いは補助部材の線状部に規定値以上の張力を与えて固定体及び可動体に組み付けた後に、前記張力調整部材を加熱軟化させて形状記憶合金線及び補助部材の線状部を適量だけ食い込ませて張力を規定値まで低下させるという簡易な手法で張力調整を行うことができるので張力調整ステップを簡素化でき、当該駆動装置の生産性を向上させることができるようになる。   According to the inventions according to claims 12 to 14, for example, the tension adjusting member is heated and softened after the tension is applied to the linear portion of the shape memory alloy wire or the auxiliary member to a fixed body and a movable body by applying a tension higher than a specified value. The tension adjustment step can be simplified since the tension adjustment can be performed by a simple method of reducing the tension to a specified value by biting in an appropriate amount of the shape memory alloy wire and the linear portion of the auxiliary member. It becomes possible to improve productivity.

請求項15に係る発明によれば、張力調整部材の所要部位(接触部)のみを狙って効果的に加熱軟化させることができるので、形状記憶合金線等の食い込み量の調整を的確に行うことができる。   According to the fifteenth aspect of the present invention, it is possible to effectively heat and soften only the required portion (contact portion) of the tension adjusting member, and therefore, the amount of biting of the shape memory alloy wire or the like can be adjusted accurately. Can do.

請求項16に係る発明によれば、熱線若しくは熱風により張力調整部材を全体的に加熱軟化させることが可能であるので、複数の張力調整部材を用いるような場合に、作業性を向上させることができる。   According to the invention of claim 16, the tension adjusting member can be heated and softened as a whole by hot wire or hot air, so that workability can be improved when a plurality of tension adjusting members are used. it can.

請求項17に係る発明によれば、形状記憶合金線自身を発熱源として張力調整部材の接触部を加熱軟化させるので、別途の加熱手段の準備が不要となる。   According to the seventeenth aspect of the present invention, since the contact portion of the tension adjusting member is heated and softened using the shape memory alloy wire itself as a heat source, it is not necessary to prepare a separate heating means.

請求項18に係る発明によれば、張力をモニタしつつ加熱軟化させるので、その食い込み量を正確に制御でき、形状記憶合金線や補助部材の張力調整を一層正確に行えるようになる。従って、駆動装置の歩留まり等を向上させることができる。   According to the eighteenth aspect of the present invention, heat softening is performed while monitoring the tension, so that the amount of biting can be accurately controlled, and the tension of the shape memory alloy wire and the auxiliary member can be adjusted more accurately. Accordingly, the yield of the driving device can be improved.

以下、図面に基づいて、本発明の各種実施形態につき説明する。
[第1実施形態]
図1は、本発明の第1実施形態にかかる駆動装置S1の構成を示す概略構成図であり、図2は、図1のA−A線断面図である。この駆動装置S1は、第1の固定体11及び第2の固定体12、これら第1の固定体11及び第2の固定体12に揺動可能に支持される可動体2、該可動体2に駆動力を与える形状記憶合金線3、該形状記憶合金線3に所定の張力を与えるバイアスバネ4(補助部材)及び前記形状記憶合金線3の張力を調整するための張力調整部材5を備えて構成されている。
Hereinafter, various embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic configuration diagram illustrating a configuration of a drive device S1 according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. The driving device S1 includes a first fixed body 11 and a second fixed body 12, a movable body 2 supported by the first fixed body 11 and the second fixed body 12 in a swingable manner, and the movable body 2 A shape memory alloy wire 3 for applying a driving force to the shape memory, a bias spring 4 (auxiliary member) for applying a predetermined tension to the shape memory alloy wire 3, and a tension adjusting member 5 for adjusting the tension of the shape memory alloy wire 3. Configured.

周知のように、形状記憶合金はオーステナイト相(母相)とマルテンサイト相とを有し、形状記憶合金を所定の温度以下(マルテンサイト変態終了温度以下)に冷却するとマルテンサイト変態が生じ、オーステナイト相からマルテンサイト相に変化する。逆に、所定の温度以上(逆変態終了温度以上)に加熱されると、マルテンサイト相からオーステナイト相に変化する。形状記憶合金は前記マルテンサイト相では弾性係数が低い状態であり、この状態で所定の張力を与えられると、全長に対して数%程度の伸び(塑性変形)が発生する。一方、伸びが発生している状態で逆変態終了温度以上に加熱しオーステナイト相に戻して弾性係数が高い状態にすることで、元の長さに形状回復させることができる。本実施形態にかかる駆動装置S1は、このような形状記憶合金の性質を利用し、形状記憶合金線3の形状回復力並びにバイアスバネ4の付勢力により、可動体2を第1の固定体11及び第2の固定体12に対して相対的に移動させるようにした駆動装置である。   As is well known, a shape memory alloy has an austenite phase (parent phase) and a martensite phase, and when the shape memory alloy is cooled to a predetermined temperature or lower (below the martensitic transformation end temperature), martensitic transformation occurs, and austenite Change from phase to martensite phase. On the other hand, when heated to a predetermined temperature or higher (reverse transformation end temperature or higher), the martensite phase changes to the austenite phase. The shape memory alloy has a low elastic modulus in the martensite phase, and when given a predetermined tension in this state, elongation (plastic deformation) of about several percent with respect to the entire length occurs. On the other hand, the shape can be recovered to the original length by heating to the reverse transformation end temperature or higher and returning to the austenite phase to obtain a high elastic modulus in a state where elongation occurs. The drive device S1 according to the present embodiment utilizes such properties of the shape memory alloy, and moves the movable body 2 to the first fixed body 11 by the shape recovery force of the shape memory alloy wire 3 and the biasing force of the bias spring 4. And a driving device that is moved relative to the second fixed body 12.

第1の固定体11及び第2の固定体12は、所定の方向に移動される可動体2に対しての不動体であり、可動体2は第1の固定体11及び第2の固定体12のポジションに対して相対的に位置変動される。第1の固定体11及び第2の固定体12は、一体化された部材で構成することができ(勿論、別部材で構成しても良い)、例えば筐体内に可動部品(可動体2)を揺動自在に支持させた構造の駆動装置S1とする場合は、前記筐体の第1側壁部分を第1の固定体11とし、前記第1側壁と対向する筐体の第2側壁部分を第2の固定体12とすることができる。   The first fixed body 11 and the second fixed body 12 are non-moving bodies with respect to the movable body 2 that is moved in a predetermined direction, and the movable body 2 is the first fixed body 11 and the second fixed body. The position is changed relative to the 12 positions. The first fixed body 11 and the second fixed body 12 can be constituted by an integrated member (of course, it may be constituted by another member), for example, a movable part (movable body 2) in a housing. When the drive device S1 has a structure in which the first side wall portion of the housing is supported by the first fixed body 11 and the second side wall portion of the housing opposite to the first side wall is used. The second fixed body 12 can be used.

具体的には、デジタルカメラやカメラ付携帯電話機等における撮影レンズユニットを手振れ補正駆動する手振れ補正機構に当該駆動装置S1を適用する場合は、前記デジタルカメラやカメラ付携帯電話機等の本体ボディの一部が第1の固定体11及び第2の固定体12とされる。そして、前記本体ボディに適宜な支持機構(ジンバル支持機構等)で支持される前記撮像レンズユニットが、可動体2として手振れを打ち消す方向に揺動駆動されることとなる。   Specifically, when the driving device S1 is applied to a camera shake correction mechanism that performs camera shake correction driving of a photographing lens unit in a digital camera, a camera-equipped mobile phone, etc., one body body of the digital camera, the camera-equipped mobile phone, etc. The parts are the first fixed body 11 and the second fixed body 12. Then, the imaging lens unit supported by the main body body with an appropriate support mechanism (gimbal support mechanism or the like) is driven to swing as the movable body 2 in a direction that cancels camera shake.

形状記憶合金線3は、例えばNi−Ti合金等の形状記憶合金(SMA)製のワイヤからなり、線アクチュエータとして機能するものである。この形状記憶合金線3は、低温で弾性係数が低い状態(マルテンサイト相)においてバイアスバネ4から所定の張力を与えられることで伸長する。そして、前記伸長状態において熱が与えられると相変態して弾性係数が高い状態(オーステナイト相)に移行し、伸長状態から元の長さに形状回復するものである。なお、形状記憶合金線3は、断面円形、断面楕円形、断面矩形のものの他、箔状のもの等であっても良く、或いは複数の形状記憶合金線状体を編み込んだり撚り合わせたりしたものであっても良い。   The shape memory alloy wire 3 is made of a wire made of a shape memory alloy (SMA) such as a Ni—Ti alloy, for example, and functions as a line actuator. The shape memory alloy wire 3 is stretched by applying a predetermined tension from the bias spring 4 in a state where the elastic modulus is low (martensite phase) at a low temperature. Then, when heat is applied in the stretched state, the phase is transformed to shift to a state having a high elastic modulus (austenite phase), and the shape is restored from the stretched state to the original length. In addition, the shape memory alloy wire 3 may be a foil-like one in addition to a circular cross-section, an elliptical cross-section, a rectangular cross-section, or a plurality of shape memory alloy linear bodies knitted or twisted together It may be.

ここで、形状記憶合金線3をオーステナイト相に移行させるために熱を与える方法には特に制限はないが、本実施形態では、形状記憶合金線3を通電加熱することで、上述の相変態を行わせる構成が採用されている(後記図6参照)。すなわち、形状記憶合金線3は所定の抵抗値を有する導体であることから、当該形状記憶合金線3自身に通電することでジュール熱を発生させ、該ジュール熱に基づく自己加熱によりマルテンサイト相からオーステナイト相へ変態させる構成とされている。このようにジュール熱により自己加熱させる方法は、温度制御の容易性、正確性に優れていることから好ましい。   Here, there is no particular limitation on the method of applying heat to transfer the shape memory alloy wire 3 to the austenite phase, but in the present embodiment, the above-described phase transformation is performed by energizing and heating the shape memory alloy wire 3. The structure to perform is employ | adopted (refer FIG. 6 mentioned later). That is, since the shape memory alloy wire 3 is a conductor having a predetermined resistance value, Joule heat is generated by energizing the shape memory alloy wire 3 itself, and from the martensite phase by self-heating based on the Joule heat. It is configured to transform to an austenite phase. Thus, the method of self-heating by Joule heat is preferable since it is excellent in temperature control and accuracy.

形状記憶合金線3は、その端部が第1の固定体11において保持(固定)された状態で、可動体2に架け渡されている。すなわち、形状記憶合金線3の一端である第1端部31と、他端である第2端部32は、第1の固定体11に固着されている第1かしめ部材111、第2かしめ部材112により保持され、これにより形状記憶合金線3は180度反転するループを形成する態様で、可動体2に架設されている。なお、形状記憶合金線3は、反転ループを形成する態様ではなく、その第1端部31が第1の固定体11に保持され、第2端部32が可動体2に保持されるように、直線状に架設される態様であっても良い。但し、可動体2の移動量を長くする観点からは、図1に示すように形状記憶合金線3を、反転ループを形成する態様で可動体2に架設することが望ましい。   The shape memory alloy wire 3 is stretched over the movable body 2 in a state where the end portion thereof is held (fixed) by the first fixed body 11. That is, the first end 31 that is one end of the shape memory alloy wire 3 and the second end 32 that is the other end are the first caulking member 111 and the second caulking member that are fixed to the first fixed body 11. 112. Thus, the shape memory alloy wire 3 is installed on the movable body 2 in such a manner that a loop that inverts 180 degrees is formed. Note that the shape memory alloy wire 3 is not in the form of forming an inversion loop, so that the first end 31 is held by the first fixed body 11 and the second end 32 is held by the movable body 2. Further, it may be an embodiment that is installed in a straight line. However, from the viewpoint of increasing the amount of movement of the movable body 2, it is desirable to lay the shape memory alloy wire 3 on the movable body 2 in a manner that forms an inversion loop as shown in FIG. 1.

図3は、形状記憶合金線3端部の第1の固定体11における保持方法を示す説明図である。ここでは、形状記憶合金線3の第1端部31を第1かしめ部材111で固定する方法(かしめ方式)を図示している。第1かしめ部材111は、図3(a)に示すように非圧着時においては側面視で折り曲げ部111aとベース部111bとを有するL字型を呈している。なお、前記ベース部111bは、第1の固定体11の表面に溶着或いはネジ止め等の方法で固定されている(図2参照)。   FIG. 3 is an explanatory view showing a method of holding the end portion of the shape memory alloy wire 3 in the first fixed body 11. Here, a method (caulking method) of fixing the first end portion 31 of the shape memory alloy wire 3 with the first caulking member 111 is illustrated. As shown in FIG. 3A, the first caulking member 111 has an L-shape having a bent portion 111a and a base portion 111b in a side view when not crimped. The base portion 111b is fixed to the surface of the first fixed body 11 by a method such as welding or screwing (see FIG. 2).

そして、形状記憶合金線3の第1端部31を位置合わせした後、図3(b)に示すように、プレス装置等を用い、前記折り曲げ部111aをベース部111bに密着する方向に折り曲げて圧接する。これにより第1端部31は、第1かしめ部材111に固着され、第1の固定体11に保持されるようになる。なお、図3(c)は、図3(b)の圧接状態を上面から見た図である。第2かしめ部材112による、第2端部32の保持方法も同様である。   And after aligning the 1st end part 31 of the shape memory alloy wire 3, as shown in FIG.3 (b), using the press apparatus etc., bend | fold the said bending part 111a in the direction closely_contact | adhered to the base part 111b. Press contact. As a result, the first end portion 31 is fixed to the first caulking member 111 and is held by the first fixed body 11. FIG. 3C is a view of the pressure contact state of FIG. 3B as viewed from above. The method for holding the second end 32 by the second caulking member 112 is also the same.

図4は、形状記憶合金線3端部の第1の固定体11における他の保持方法を示す説明図である。ここでは、形状記憶合金線3の第1端部31を、圧入固定部材113と圧入ピン115とを用いて固定する方法(圧入ピン方式)を図示している。圧入固定部材113は、圧入ピン115を圧入可能な受容孔114を有し、その一面が第1の固定体11の適所に固着される。図4(a)に示すように、形状記憶合金線3の第1端部31を受容孔114の上を通るように位置合わせする。その後、図4(b)、(c)に示すように、受容孔114へ圧入ピン115を、形状記憶合金線3の第1端部31の一部を受容孔114へ抱き込むように圧入する。これにより第1端部31は、圧入固定部材113に固着され、第1の固定体11に保持されるようになる。   FIG. 4 is an explanatory view showing another holding method for the first fixed body 11 at the end of the shape memory alloy wire 3. Here, a method (press-fit pin method) for fixing the first end portion 31 of the shape memory alloy wire 3 using the press-fit fixing member 113 and the press-fit pin 115 is illustrated. The press-fit fixing member 113 has a receiving hole 114 into which the press-fit pin 115 can be press-fitted, and one surface thereof is fixed to an appropriate position of the first fixed body 11. As shown in FIG. 4A, the first end portion 31 of the shape memory alloy wire 3 is aligned so as to pass over the receiving hole 114. Thereafter, as shown in FIGS. 4B and 4C, the press-fit pin 115 is press-fitted into the receiving hole 114 so as to embed a part of the first end portion 31 of the shape memory alloy wire 3 into the receiving hole 114. . Accordingly, the first end portion 31 is fixed to the press-fit fixing member 113 and is held by the first fixing body 11.

このように、形状記憶合金線3の第1端部31及び第2端部は第1の固定体11に保持されるが、形状記憶合金線3の中間部、つまり形状記憶合金線3の延在方向が180度反転する反転部33は、可動体2に引っ掛けられている。すなわち、図1、図2に示すように、可動体2に円筒状の転回部21が突設され、第1端部31から可動体2の方向に延びる形状記憶合金線3が、この転回部21の外周を半周回して180度方向転換し、第2端部32が第1の固定体11に戻るようというように、形状記憶合金線3が可動体2の転回部21に架け渡されている。なお、形状記憶合金線3の反転部33と転回部21との間には、張力調整部材5が介在されている。この点については後記で詳述する。   As described above, the first end 31 and the second end of the shape memory alloy wire 3 are held by the first fixed body 11, but the intermediate portion of the shape memory alloy wire 3, that is, the extension of the shape memory alloy wire 3. The reversing part 33 whose direction of reversal is 180 degrees is hooked on the movable body 2. That is, as shown in FIG. 1 and FIG. 2, a cylindrical turning part 21 protrudes from the movable body 2, and the shape memory alloy wire 3 extending in the direction of the movable body 2 from the first end 31 is formed by this turning part. The shape memory alloy wire 3 is stretched over the turning portion 21 of the movable body 2 such that the outer circumference of the outer circumference 21 is rotated by 180 degrees and turned around 180 degrees, and the second end portion 32 returns to the first fixed body 11. Yes. A tension adjusting member 5 is interposed between the reversing part 33 and the turning part 21 of the shape memory alloy wire 3. This will be described in detail later.

バイアスバネ4は、形状記憶合金線3に規定された張力を与える収縮コイルバネである。このバイアスバネ4の両端には、係止用の第1線状部41及び第2線状部42がそれぞれ延設されている。当該バイアスバネ4としては、マルテンサイト相にある形状記憶合金線に所定の伸長力を与えつつ拮抗する一方で、オーステナイト相では形状記憶合金線3の形状回復力により引き伸ばされるようなバネ力(収縮力)を有するものが選択される。なお、バイアスバネ4に代えて、形状記憶合金線3に対して張力を付与し得る適宜な張力付与機構を採用しても良い。   The bias spring 4 is a contraction coil spring that applies a prescribed tension to the shape memory alloy wire 3. At both ends of the bias spring 4, a first linear portion 41 and a second linear portion 42 for locking are extended. As the bias spring 4, the shape memory alloy wire in the martensite phase is antagonized while giving a predetermined elongation force, while in the austenite phase, the spring force (shrinkage) is stretched by the shape recovery force of the shape memory alloy wire 3. Is selected. Instead of the bias spring 4, an appropriate tension applying mechanism that can apply tension to the shape memory alloy wire 3 may be adopted.

バイアスバネ4の第1線状部41は、その終端部が第2の固定体12に固定されている。具体的には、第2の固定体12の適所に設けられている固定部121に、第1線状部41の終端部が固定されている。また、バイアスバネ4の第2線状部42は、その終端部が可動体2に固定されている。具体的には、可動体2が具備する前記転回部21の頂面に設けられている固定部22に、第2線状部42の終端部が固定されている。   The terminal portion of the first linear portion 41 of the bias spring 4 is fixed to the second fixed body 12. Specifically, the terminal portion of the first linear portion 41 is fixed to the fixing portion 121 provided at an appropriate position of the second fixing body 12. Further, the terminal end of the second linear portion 42 of the bias spring 4 is fixed to the movable body 2. Specifically, the terminal portion of the second linear portion 42 is fixed to the fixing portion 22 provided on the top surface of the turning portion 21 provided in the movable body 2.

張力調整部材5は、可動体2に架設されている形状記憶合金線3の張力を、予め定められた規定値に調整するための部材である。該張力調整部材5は、略三日月型を呈する部材からなり、可動体2の転回部21の外周面であって、形状記憶合金線3の反転部33と対向する位置に取り付けられている。すなわち張力調整部材5は、形状記憶合金線3が転回部21に架け渡されることにより形状記憶合金線3と接する円弧状の接触部51を有している。   The tension adjusting member 5 is a member for adjusting the tension of the shape memory alloy wire 3 installed on the movable body 2 to a predetermined specified value. The tension adjusting member 5 is formed of a member having a substantially crescent shape, and is attached to the outer peripheral surface of the turning portion 21 of the movable body 2 at a position facing the reversing portion 33 of the shape memory alloy wire 3. That is, the tension adjusting member 5 has an arc-shaped contact portion 51 that comes into contact with the shape memory alloy wire 3 when the shape memory alloy wire 3 is stretched over the rolling portion 21.

張力調整部材5は、熱可塑性樹脂から構成されている。そして、図5に示すように、形状記憶合金線3が可動体2(転回部21)に架設された後に、この張力調整部材5が加熱軟化されることで、形状記憶合金線3の張力が設計通りの規定値になるように、形状記憶合金線3の反転部33が、張力調整部材5に所定深さだけ食い込まされている。図5(a)において点線で示す接触部51は、反転部33が食い込んでいる状態を示す。また図5(b)は、反転部33における断面図である。   The tension adjusting member 5 is made of a thermoplastic resin. Then, as shown in FIG. 5, after the shape memory alloy wire 3 is installed on the movable body 2 (turning part 21), the tension adjusting member 5 is heated and softened, whereby the tension of the shape memory alloy wire 3 is increased. The reversing part 33 of the shape memory alloy wire 3 is bitten into the tension adjusting member 5 by a predetermined depth so that the specified value is as designed. A contact portion 51 indicated by a dotted line in FIG. 5A indicates a state in which the reversing portion 33 is biting. FIG. 5B is a cross-sectional view of the reversing part 33.

この構成によれば、バイアスバネ4により張力を与えられている形状記憶合金線3は、張力調整部材5に対する食い込みの度合いにより架設経路が変更されるようになる。すなわち、バイアスバネ4により張力を与えられることで所定の伸びが形状記憶合金線3に与えられている場合、張力調整部材5の接触部51において形状記憶合金線3の反転部33が食い込めば、その食い込み量に応じて形状記憶合金線3の架設経路が短くなり、つまり前記「伸び」が緩和され、その分だけ形状記憶合金線3の張力を低下させることができる。従って、張力調整部材5を外部加熱する等して軟化させ、反転部33の接触部51における食い込み量を調整することで、架設後においても形状記憶合金線3の張力調整が行えるようになる。   According to this configuration, the erection path of the shape memory alloy wire 3 given tension by the bias spring 4 is changed depending on the degree of biting into the tension adjusting member 5. That is, when a predetermined elongation is given to the shape memory alloy wire 3 by applying a tension by the bias spring 4, if the reversing portion 33 of the shape memory alloy wire 3 bites in the contact portion 51 of the tension adjusting member 5, The construction path of the shape memory alloy wire 3 is shortened in accordance with the amount of biting, that is, the “elongation” is relaxed, and the tension of the shape memory alloy wire 3 can be lowered accordingly. Accordingly, the tension adjusting member 5 is softened by external heating or the like, and the amount of biting in the contact portion 51 of the reversing portion 33 is adjusted, so that the tension of the shape memory alloy wire 3 can be adjusted even after erection.

実際は、図7、図8に基づき後記でも説明するが、規定値よりも高い張力をもって形状記憶合金線3を転回部21に架け渡し、形状記憶合金線3の張力をモニタしながら張力調整部材5に熱を与えて加熱軟化させて、反転部33を張力調整部材5の接触部51において徐々に食い込ませ、形状記憶合金線3の張力が規定値となった段階で張力調整部材5の加熱軟化を停止させることで、反転部33が張力調整部材5に所定深さだけ食い込まされる。   Actually, as will be described later with reference to FIG. 7 and FIG. 8, the tension adjusting member 5 is passed over the shape memory alloy wire 3 with the tension higher than the specified value, and is passed over the rotating portion 21 while monitoring the tension of the shape memory alloy wire 3. Is heated and softened so that the reversing portion 33 gradually bites in the contact portion 51 of the tension adjusting member 5, and the tension adjusting member 5 is heated and softened when the tension of the shape memory alloy wire 3 reaches a specified value. Is stopped, the reversing part 33 is bitten into the tension adjusting member 5 by a predetermined depth.

張力調整部材5は、少なくとも形状記憶合金線3がオーステナイト相への逆変態が完了する第1の温度(逆変態温度;90〜100℃程度)では軟化せず、前記第1の温度よりも所定温度(例えば20〜30℃程度以上)だけ高い第2の温度において軟化する熱可塑性樹脂を用いることが望ましい。かかる熱可塑性樹脂からなる張力調整部材5を用いれば、形状記憶合金線3を加熱しマルテンサイト相〜オーステナイト相へ相変化させて駆動させても張力調整部材5は加熱軟化することはなく、前記形状記憶合金線3の張力を所定の値に維持できる。このような熱可塑性樹脂としては、例えばポリカーボネート、ポリアセタール、ポリイミド、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリアリレート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド樹脂等を例示することができる。   The tension adjusting member 5 does not soften at least at the first temperature at which the shape memory alloy wire 3 completes the reverse transformation to the austenite phase (reverse transformation temperature; about 90 to 100 ° C.), and is higher than the first temperature. It is desirable to use a thermoplastic resin that softens at a second temperature that is higher by a temperature (for example, about 20 to 30 ° C. or higher). If the tension adjusting member 5 made of such a thermoplastic resin is used, the tension adjusting member 5 will not be softened by heating even if the shape memory alloy wire 3 is heated and driven by changing the phase from a martensite phase to an austenite phase. The tension of the shape memory alloy wire 3 can be maintained at a predetermined value. Examples of such thermoplastic resins include polycarbonate, polyacetal, polyimide, modified polyphenylene ether, polybutylene terephthalate, polyarylate, polysulfone, polyphenylene sulfide, polyether ether ketone, and polyimide resin.

次に、以上の通り構成された駆動装置S1の動作について、図6(a)〜(c)に基づいて説明する。ここでは、形状記憶合金線3の第1端部31及び第2端部32をそれぞれ第1の固定体11に固定する第1かしめ部材111及び第2かしめ部材112を、形状記憶合金線3に対する通電電極として利用し、電源EからスイッチSWを介して駆動電圧が形状記憶合金線3の第1端部31及び第2端部32に印加される構成を例示している。なお、実際はスイッチSWの開閉動作のみによる通電制御ではなく、マイクロコンピュータ等を備えた駆動制御手段により、形状記憶合金線3に対する通電量が制御されるが、図6では簡略的にスイッチSWで表している。   Next, the operation of the driving device S1 configured as described above will be described with reference to FIGS. Here, the first caulking member 111 and the second caulking member 112 that respectively fix the first end portion 31 and the second end portion 32 of the shape memory alloy wire 3 to the first fixing body 11 are connected to the shape memory alloy wire 3. A configuration in which a drive voltage is applied to the first end portion 31 and the second end portion 32 of the shape memory alloy wire 3 from the power source E via the switch SW is illustrated as an energization electrode. Actually, the energization amount to the shape memory alloy wire 3 is controlled not by the energization control only by the opening / closing operation of the switch SW but by the drive control means equipped with a microcomputer or the like. In FIG. ing.

図6(a)は、スイッチSWが「開」とされ、電源Eから形状記憶合金線3へ駆動電圧が与えられていない状態(通電OFF)を示している。この場合、形状記憶合金線3は通電加熱されていないことからマルテンサイト相に変態しており、弾性係数が低く易変形性である。従って、バイアスバネ4の収縮力が可動体2を介して形状記憶合金線3に作用することで、形状記憶合金線3は所定長さだけ伸長された状態となっている。   FIG. 6A shows a state where the switch SW is “open” and no driving voltage is applied from the power source E to the shape memory alloy wire 3 (energization OFF). In this case, since the shape memory alloy wire 3 is not energized and heated, it is transformed into a martensite phase and has a low elastic modulus and is easily deformable. Accordingly, the contraction force of the bias spring 4 acts on the shape memory alloy wire 3 via the movable body 2 so that the shape memory alloy wire 3 is extended by a predetermined length.

一方、図6(b)は、スイッチSWが「閉」とされ、電源Eから形状記憶合金線3へ所定の駆動電圧が与えられている状態(通電ON)を示している。この場合、形状記憶合金線3に電流iが流れ、形状記憶合金線3は自身の電流抵抗によってジュール熱を発生し、自己加熱されるようになる。これにより、形状記憶合金線3はオーステナイト相に逆変態して弾性係数が高くなり、伸長状態から元の長さの記憶形状に復帰する。すなわち、形状記憶合金線3は、バイアスバネ4の収縮力に打ち勝って形状回復し、結果として可動体2は図中矢印F1の方向へ移動されることとなる。   On the other hand, FIG. 6B shows a state in which the switch SW is “closed” and a predetermined drive voltage is applied from the power source E to the shape memory alloy wire 3 (energization ON). In this case, the current i flows through the shape memory alloy wire 3, and the shape memory alloy wire 3 generates Joule heat due to its own current resistance and is self-heated. As a result, the shape memory alloy wire 3 is reversely transformed into the austenite phase, the elastic modulus is increased, and the memory shape of the original length is restored from the stretched state. That is, the shape memory alloy wire 3 recovers its shape by overcoming the contraction force of the bias spring 4, and as a result, the movable body 2 is moved in the direction of the arrow F1 in the figure.

そして、図6(c)に示すように、スイッチSWを再び「開」とし、電源Eから形状記憶合金線3へ駆動電圧が与えられていない状態にするとジュール熱の発生は止まり、形状記憶合金線3は外気等で冷却されマルテンサイト相に変態し、弾性係数が低い状態に戻るようになる。この場合、バイアスバネ4の収縮力が形状記憶合金線3に作用し、再び形状記憶合金線3は所定長さだけ伸長された状態になることから、結果として可動体2は図中矢印F2の方向へ移動されることとなる。このような動作が繰り返されることで、可動体2が所望の位置へ移動されるものである。   Then, as shown in FIG. 6C, when the switch SW is set to “open” again and no driving voltage is applied from the power source E to the shape memory alloy wire 3, the generation of Joule heat stops, and the shape memory alloy is stopped. The wire 3 is cooled by the outside air or the like and transformed into a martensite phase, and returns to a state where the elastic modulus is low. In this case, the contraction force of the bias spring 4 acts on the shape memory alloy wire 3, and the shape memory alloy wire 3 is again extended by a predetermined length. As a result, the movable body 2 is indicated by the arrow F2 in the figure. Will be moved in the direction. By repeating such an operation, the movable body 2 is moved to a desired position.

続いて、第1実施形態にかかる駆動装置S1の製造方法について説明する。図7(a)〜(c)は、駆動装置S1を製造するに際しての、形状記憶合金線3の張力調整ステップを模式的に示す図である。この張力調整ステップは、形状記憶合金線3に規定値以上の張力を与えて第1の固定体11及び可動体2に組み付けた後に、張力調整部材5を加熱軟化させて形状記憶合金線3を適量だけ食い込ませることで、その張力を規定値まで低下させるステップである。   Then, the manufacturing method of drive device S1 concerning 1st Embodiment is demonstrated. FIGS. 7A to 7C are diagrams schematically showing a tension adjusting step of the shape memory alloy wire 3 when the driving device S1 is manufactured. In this tension adjustment step, the shape memory alloy wire 3 is applied with a tension of a specified value or more and assembled to the first fixed body 11 and the movable body 2, and then the tension adjustment member 5 is heated and softened to form the shape memory alloy wire 3. This is a step of reducing the tension to a specified value by biting in an appropriate amount.

先ず、図7(a)に示すように、可動体2を一時的に固定する適宜な固定部材60により、可動体2を固定する。この状態で形状記憶合金線3を第1の固定体11と可動体2との間に架設する。すなわち、先に図1に基づき説明した通り、形状記憶合金線3を可動体2の転回部21へ180度反転するように架け渡し、その第1端部31及び第2端部32を第1かしめ部材111及び第2かしめ部材にて固定する。この際、形状記憶合金線3の架設張力として、設計値として規定されている規定値よりもやや大き目の張力(伸び量)が付与される。なお、転回部21と形状記憶合金線3の反転部33との間に張力調整部材5が介在される状態で、形状記憶合金線3を架設する。また、所定の収縮バネ力を有するバイアスバネ4も、第2の固定体12と可動体2(転回部21)との間に架設する。   First, as shown in FIG. 7A, the movable body 2 is fixed by an appropriate fixing member 60 that temporarily fixes the movable body 2. In this state, the shape memory alloy wire 3 is installed between the first fixed body 11 and the movable body 2. That is, as described above with reference to FIG. 1, the shape memory alloy wire 3 is bridged over the rotating portion 21 of the movable body 2 so as to be inverted 180 degrees, and the first end portion 31 and the second end portion 32 are connected to the first end portion 31. It is fixed with the caulking member 111 and the second caulking member. At this time, a tension (elongation amount) slightly larger than a specified value specified as a design value is applied as the installation tension of the shape memory alloy wire 3. The shape memory alloy wire 3 is installed in a state where the tension adjusting member 5 is interposed between the turning portion 21 and the reversing portion 33 of the shape memory alloy wire 3. Further, the bias spring 4 having a predetermined contraction spring force is also installed between the second fixed body 12 and the movable body 2 (the turning portion 21).

次に、図7(b)に示すように、形状記憶合金線3の張力調整のために、張力検出手段61により形状記憶合金線3の張力をモニタしつつ、レーザー光照射手段62(加熱手段)により張力調整部材5へレーザー光Lが照射され、張力調整部材5が加熱軟化される。このレーザー光照射手段62から張力調整部材5に対するレーザー光Lの照射(張力調整部材5の加熱軟化)は、形状記憶合金線3が張力調整部材5に所定量だけ食い込み、形状記憶合金線3の張力が規定値になるまで継続される。   Next, as shown in FIG. 7 (b), in order to adjust the tension of the shape memory alloy wire 3, the tension detecting means 61 monitors the tension of the shape memory alloy wire 3, and the laser light irradiation means 62 (heating means). ), The tension adjusting member 5 is irradiated with the laser beam L, and the tension adjusting member 5 is softened by heating. The irradiation of the laser beam L from the laser beam irradiation means 62 to the tension adjusting member 5 (heating and softening of the tension adjusting member 5) causes the shape memory alloy wire 3 to bite into the tension adjusting member 5 by a predetermined amount. Continue until the tension reaches the specified value.

図8は、図7(b)における張力調整部材5の部分を拡大して示す図であり、この図8に基づき、上記形状記憶合金線3の張力調整につき詳しく説明する。張力調整部材5が加熱軟化されていない状態では、形状記憶合金線3の反転部33は、張力調整部材5の接触部51に食い込むことなく接している。つまり、形状記憶合金線3は、図8の実線で示す架設経路にて、第1の固定体11と可動体2との間に架設されている。   FIG. 8 is an enlarged view showing a portion of the tension adjusting member 5 in FIG. 7B, and the tension adjustment of the shape memory alloy wire 3 will be described in detail based on FIG. In a state where the tension adjusting member 5 is not heated and softened, the reversing portion 33 of the shape memory alloy wire 3 is in contact with the contact portion 51 of the tension adjusting member 5 without biting. That is, the shape memory alloy wire 3 is installed between the first fixed body 11 and the movable body 2 through the installation path indicated by the solid line in FIG.

一方、レーザー光照射手段62からレーザー光Lが、張力調整部材5の接触部51に向けて照射され、張力調整部材5が接触部51において加熱軟化されると、形状記憶合金線3は張力を保有していることから、張力調整部材5に食い込むようになり、図中矢印Cで示すように、接触部51が張力調整部材5の内部へ没入するようになる。これにより形状記憶合金線3の架設経路は、図8の点線で示す架設経路に変更される。つまり、張力調整部材5の接触部51において形状記憶合金線3の反転部33が食い込んだことで、反転部33の位置が第1の固定体11寄りに移動し、形状記憶合金線3の架設経路が当初より短くなる。   On the other hand, when the laser beam L is irradiated from the laser beam irradiation means 62 toward the contact portion 51 of the tension adjusting member 5 and the tension adjusting member 5 is heated and softened at the contact portion 51, the shape memory alloy wire 3 has a tension. Since it possesses, it comes to bite into the tension adjustment member 5, and as shown by the arrow C in the figure, the contact part 51 comes into the inside of the tension adjustment member 5. As a result, the erection route of the shape memory alloy wire 3 is changed to the erection route indicated by the dotted line in FIG. That is, when the reversing portion 33 of the shape memory alloy wire 3 bites into the contact portion 51 of the tension adjusting member 5, the position of the reversing portion 33 moves closer to the first fixed body 11, and the shape memory alloy wire 3 is installed. The route is shorter than the beginning.

かかる架設経路の短縮により、形状記憶合金線3に当初与えられた「伸び」が緩和され、その分だけ形状記憶合金線3の張力が低下するようになる。従って、レーザー光Lを接触部51に照射して反転部33を徐々に食い込ませつつ形状記憶合金線3の張力低下を張力検出手段61にてモニタし、形状記憶合金線3の張力が規定値になった段階でレーザー光Lの照射を停止して反転部33の食い込みを抑止することで、形状記憶合金線3の張力を規定値に調整することができる。   By shortening the installation path, the “elongation” initially given to the shape memory alloy wire 3 is relaxed, and the tension of the shape memory alloy wire 3 is lowered accordingly. Accordingly, the tension detecting means 61 monitors the decrease in tension of the shape memory alloy wire 3 while irradiating the reversing portion 33 by irradiating the laser beam L to the contact portion 51, and the tension of the shape memory alloy wire 3 is a specified value. At this stage, the tension of the shape memory alloy wire 3 can be adjusted to a specified value by stopping the irradiation of the laser light L and suppressing the biting of the reversing part 33.

しかる後、図7(c)に示すように、固定部材60が取り除かれて可動体2の固定状態が解除されると、バイアスバネ4のバイアス力が可動体2に作用し、形状記憶合金線3とバイアスバネ4とは拮抗するようになる。このとき、バイアスバネ4は設計値に応じたバイアス力を発生し、また形状記憶合金線3の張力が規定値になるよう、反転部33の張力調整部材5に対する食い込み量も調整されていることから、可動体2は所定の位置に落ち着くようになる。   Thereafter, as shown in FIG. 7C, when the fixed member 60 is removed and the fixed state of the movable body 2 is released, the bias force of the bias spring 4 acts on the movable body 2, and the shape memory alloy wire. 3 and the bias spring 4 antagonize. At this time, the bias spring 4 generates a bias force according to the design value, and the amount of biting of the reversing portion 33 with respect to the tension adjusting member 5 is adjusted so that the tension of the shape memory alloy wire 3 becomes a specified value. Therefore, the movable body 2 comes to settle at a predetermined position.

以上のような張力調整を行うことにより、形状記憶合金線3の張力を、アクチュエータ動作を行わせるに際しての望ましい規定値に設定できるようになる。すなわち、形状記憶合金線3の張力が規定値から外れてしまうと、形状記憶合金線3を通電加熱し形状回復させるときの応答性が悪化したり、形状記憶合金線3とバイアスバネ4との張力バランスが崩れ、可動体2の初期位置に偏りが生じたりする不都合があるが、上述のような張力調整ステップを経ることでかかる不都合を回避できるようになる。   By performing the tension adjustment as described above, the tension of the shape memory alloy wire 3 can be set to a desired specified value for performing the actuator operation. That is, if the tension of the shape memory alloy wire 3 deviates from the specified value, the response when the shape memory alloy wire 3 is heated by energization to recover the shape deteriorates, or the shape memory alloy wire 3 and the bias spring 4 Although there is a disadvantage that the tension balance is lost and the initial position of the movable body 2 is biased, such a disadvantage can be avoided by performing the tension adjustment step as described above.

なお、形状記憶合金線3の張力を調整する方法として、第1の固定体11における形状記憶合金線3の第1端部31及び第2端部32の固定位置を機械的にシフトさせる方法も考えられるが、機械的な機構を採用した場合、張力の経時変化や緩みズレが生じ易く、また特別な機械的機構を付加する必要があることから駆動装置S1が大型化するという問題がある。これに対し、本実施形態にかかる張力調整方法によれば、レーザー光照射手段62から発せられるレーザー光Lで熱可塑性樹脂からなる張力調整部材5を加熱軟化させ、形状記憶合金線3の架設経路を変更させることで張力調整を行うものであるので、形状記憶合金線3を架設組み付けした後に部分的な加熱作業を行うだけで簡単且つ短時間で張力調整が行える。また、張力調整後(加熱停止後)に張力調整部材5は固化することから、形状記憶合金線3の張力の経時変化等が生じることはない。   In addition, as a method of adjusting the tension of the shape memory alloy wire 3, a method of mechanically shifting the fixing positions of the first end portion 31 and the second end portion 32 of the shape memory alloy wire 3 in the first fixed body 11 is also possible. Although it is conceivable, when a mechanical mechanism is adopted, there is a problem that the change in tension with time and loosening are likely to occur, and a special mechanical mechanism needs to be added. On the other hand, according to the tension adjusting method according to the present embodiment, the tension adjusting member 5 made of thermoplastic resin is heated and softened by the laser light L emitted from the laser light irradiation means 62, and the erection route of the shape memory alloy wire 3 is set. Therefore, the tension can be adjusted easily and in a short time only by performing a partial heating operation after the shape memory alloy wire 3 is installed and assembled. Further, since the tension adjusting member 5 is solidified after the tension adjustment (after heating is stopped), the change in the tension of the shape memory alloy wire 3 with time does not occur.

張力検出手段61としては、形状記憶合金線3の張力を非接触で計測出来る張力計を用いることが望ましく、例えば音波式の張力計(例えば、ゲイツ・ユニッタ・アジア株式会社製、音波式ベルト張力計U−507)を用いることができる。すなわち、形状記憶合金線3に音波(空気振動)を照射して形状記憶合金線3を振動させ、このときの張力と相関性のある振動音をマイクロフォンで拾い、その振動音信号を分析して振動数を求めることで形状記憶合金線3の張力を測定する方法を採用することが望ましい。なお、形状記憶合金線3に音波を照射する代わりに、形状記憶合金線3にパルス電圧を印加し、相変化を連続的に惹起させることで、形状記憶合金線3を振動させるようにしても良い。   As the tension detecting means 61, it is desirable to use a tension meter that can measure the tension of the shape memory alloy wire 3 in a non-contact manner. For example, a sonic tension meter (for example, a sonic belt tension manufactured by Gates Unitta Asia Co., Ltd.). A total of U-507) can be used. That is, the shape memory alloy wire 3 is irradiated with a sound wave (air vibration) to vibrate the shape memory alloy wire 3, and a vibration sound having a correlation with the tension at this time is picked up by a microphone, and the vibration sound signal is analyzed. It is desirable to employ a method of measuring the tension of the shape memory alloy wire 3 by determining the frequency. Instead of irradiating the shape memory alloy wire 3 with sound waves, a pulse voltage is applied to the shape memory alloy wire 3 to continuously induce a phase change so that the shape memory alloy wire 3 is vibrated. good.

また、レーザー光照射手段62としては、レーザー光Lを発生する半導体発光素子と、該半導体発光素子を駆動するドライバと、レーザー光Lを所定のスポット径で射出させる光学系等を有するものを用いることができる。このようなレーザー光照射手段62を張力調整部材5の加熱手段として用いれば、レーザー光Lのスポット径を絞ることで、張力調整部材5の所要部位(接触部51)のみを効果的に加熱軟化させることができる。なお、レーザー光Lは、張力調整部材5の所要部位に照射して直接的に加熱軟化させても、形状記憶合金線3(反転部33)に照射して間接的に加熱軟化させても良い。   Further, as the laser light irradiation means 62, a semiconductor light emitting element that generates the laser light L, a driver that drives the semiconductor light emitting element, and an optical system that emits the laser light L with a predetermined spot diameter are used. be able to. If such a laser beam irradiation unit 62 is used as a heating unit for the tension adjusting member 5, only the required portion (contact portion 51) of the tension adjusting member 5 is effectively heated and softened by narrowing the spot diameter of the laser beam L. Can be made. The laser beam L may be irradiated directly on the required portion of the tension adjusting member 5 to be directly heated and softened, or may be irradiated to the shape memory alloy wire 3 (reversing portion 33) and indirectly heated and softened. .

なお、上記レーザー光照射手段62に代わる加熱手段として、熱線若しくは熱風発生手段を用い、この熱線若しくは熱風発生手段から発せられる熱線若しくは熱風により、前記張力調整部材5を加熱軟化させる構成としても良い。この構成によれば、熱線若しくは熱風により張力調整部材5を全体的に加熱軟化させることが可能となり、複数の張力調整部材5を用いるような場合に、作業性を向上させることができる。このような熱線若しくは熱風発生手段としては、マイクロヒータや温風ブロワー等を例示することができる。   In addition, it is good also as a structure which heat-softens the said tension | tensile_strength adjustment member 5 with the hot wire or hot air emitted from this hot wire or a hot air generation means as a heating means instead of the said laser beam irradiation means 62. According to this configuration, it is possible to heat and soften the tension adjustment member 5 as a whole with hot wire or hot air, and workability can be improved when a plurality of tension adjustment members 5 are used. Examples of such hot wire or hot air generating means include a micro heater and a hot air blower.

或いは、加熱手段として形状記憶合金線3を通電加熱する通電加熱手段を用いることもできる。すなわち、通電加熱手段による通電によって形状記憶合金線3が発するジュール熱により、張力調整部材5の接触部51を加熱軟化させる構成としても良い。この場合、例えば図6に示したような、形状記憶合金線3を駆動するための電源Eを含む回路を用いて形状記憶合金線3を通電加熱することができる。この構成によれば、形状記憶合金線3自身を発熱源として張力調整部材5の接触部51を加熱軟化させるので、別途の加熱手段の準備が不要となるという利点がある。但し、張力調整部材5を加熱軟化させる程の熱を形状記憶合金線3が発するような通電を長時間行うと、形状記憶合金線3がダメージを受けてしまう場合があることから、瞬間的な通電を繰り返すようにすることが望ましい。   Alternatively, an energization heating unit that energizes and heats the shape memory alloy wire 3 can also be used as the heating unit. That is, the contact portion 51 of the tension adjusting member 5 may be heated and softened by Joule heat generated by the shape memory alloy wire 3 by energization by the energization heating means. In this case, the shape memory alloy wire 3 can be energized and heated using a circuit including a power source E for driving the shape memory alloy wire 3 as shown in FIG. 6, for example. According to this configuration, since the shape memory alloy wire 3 itself is used as a heat source to heat and soften the contact portion 51 of the tension adjusting member 5, there is an advantage that it is not necessary to prepare a separate heating means. However, if the energization is performed for a long time so that the shape memory alloy wire 3 generates heat enough to heat and soften the tension adjusting member 5, the shape memory alloy wire 3 may be damaged. It is desirable to repeat energization.

以上説明した実施形態では、張力調整部材5を、可動体2に設けた転回部21に設置した例を示したが、可動体2の転回部21以外の箇所に設けても良く、また第1の固定体11と可動体2との間に架設されている形状記憶合金線3と接触できる位置であれば、可動体2以外の箇所に設置しても良い。また、張力調整部材5を一箇所だけではなく、複数箇所に設けるようにしても良い。すなわち、張力調整部材5は、下記(a)〜(c)のいずれかの位置、若しくはこれらの位置の複数に配置することができる。なお、可動体2の転回部21に張力調整部材5を設けた図1に示す駆動装置S1は、下記(a)の態様の一例を示すものである。
(a)可動体2の所定位置
(b)第1の固定体11の所定位置
(c)可動体2と第1の固定体11との中間位置
In the embodiment described above, the example in which the tension adjusting member 5 is installed in the turning portion 21 provided in the movable body 2 has been shown. However, the tension adjusting member 5 may be provided in a place other than the turning portion 21 of the movable body 2. As long as the position can contact the shape memory alloy wire 3 installed between the fixed body 11 and the movable body 2, the fixed body 11 may be installed at a place other than the movable body 2. Moreover, you may make it provide the tension adjustment member 5 not only in one place but in multiple places. That is, the tension adjusting member 5 can be disposed at any one of the following positions (a) to (c) or at a plurality of these positions. In addition, the drive device S1 shown in FIG. 1 in which the tension adjusting member 5 is provided in the turning portion 21 of the movable body 2 shows an example of the following mode (a).
(A) Predetermined position of movable body 2 (b) Predetermined position of first fixed body 11 (c) Intermediate position between movable body 2 and first fixed body 11

図9は、図1に示す駆動装置S1の変形実施形態であって、上記(b)の態様を例示する概略構成図である。ここでは、張力調整部材52を第1の固定体11側に配置し、可動体2の転回部21には張力調整部材を介在させない態様を例示している(勿論、転回部21にも張力調整部材を介在させても良い)。   FIG. 9 is a modified embodiment of the drive device S1 shown in FIG. 1, and is a schematic configuration diagram illustrating the above-described aspect (b). Here, the tension adjustment member 52 is disposed on the first fixed body 11 side, and the tension adjustment member is not interposed in the turning portion 21 of the movable body 2 (of course, the tension adjustment is also applied to the turning portion 21. A member may be interposed).

前記張力調整部材52は、形状記憶合金線3の第1端部31の近傍、及び第2端部32の近傍において、それぞれ形状記憶合金線3と接する上端接触部521及び下端接触部522を備える熱可塑性樹脂からなる部材である。前記上端接触部521は、形状記憶合金線3の反転部33を境とした前半部分3aの張力を専ら調整するためのもので、前記下端接触部522は、その後半部分3bの張力を専ら調整するためのものである。なお、図9では、上端接触部521及び下端接触部522が一体化されている張力調整部材52を例示しているが、上端接触部521と下端接触部522とが別離された態様としても良い。   The tension adjusting member 52 includes an upper end contact portion 521 and a lower end contact portion 522 that are in contact with the shape memory alloy wire 3 in the vicinity of the first end portion 31 and the second end portion 32 of the shape memory alloy wire 3, respectively. It is a member made of a thermoplastic resin. The upper end contact portion 521 is for exclusively adjusting the tension of the first half portion 3a with the reversal portion 33 of the shape memory alloy wire 3 as a boundary, and the lower end contact portion 522 is exclusively for adjusting the tension of the second half portion 3b. Is to do. 9 illustrates the tension adjusting member 52 in which the upper end contact portion 521 and the lower end contact portion 522 are integrated, but the upper end contact portion 521 and the lower end contact portion 522 may be separated from each other. .

図10は、上端接触部521の部分を拡大して示す説明図である。張力調整部材52(上端接触部521)が加熱軟化されていない状態では、図10(a)に示すように、形状記憶合金線3は張力調整部材52に食い込むことなく接する。一方、張力調整部材52が加熱軟化されると、図10(b)に示すように、形状記憶合金線3は張力調整部材52に食い込み、上端接触部521は張力調整部材52の内部に没入するようになる。これにより、形状記憶合金線3の架設経路が食い込み量に応じて短くなり、その分だけ形状記憶合金線3の張力が低減されることとなる。下端接触部522も同様である。従って、上端接触部521及び下端接触部522における形状記憶合金線3の食い込み量を調整することで、形状記憶合金線3の張力を調整することができる。   FIG. 10 is an explanatory view showing the upper end contact portion 521 in an enlarged manner. In a state where the tension adjusting member 52 (upper end contact portion 521) is not heated and softened, the shape memory alloy wire 3 contacts the tension adjusting member 52 without biting as shown in FIG. On the other hand, when the tension adjusting member 52 is heated and softened, the shape memory alloy wire 3 bites into the tension adjusting member 52 and the upper end contact portion 521 is immersed inside the tension adjusting member 52 as shown in FIG. It becomes like this. Thereby, the erection route of the shape memory alloy wire 3 is shortened according to the amount of biting, and the tension of the shape memory alloy wire 3 is reduced accordingly. The same applies to the lower end contact portion 522. Therefore, the tension of the shape memory alloy wire 3 can be adjusted by adjusting the amount of biting of the shape memory alloy wire 3 in the upper end contact portion 521 and the lower end contact portion 522.

図11は、図1に示す駆動装置S1の他の変形実施形態であって、上記(c)の態様を例示する概略構成図である。ここでは、張力調整部材53を第1の固定体11と可動体2の中間位置に配置し、可動体2の転回部21や第1の固定体11の近傍には張力調整部材を介在させない態様を例示している(勿論、転回部21や第1の固定体11の近傍にも張力調整部材を介在させても良い)。   FIG. 11 is another schematic embodiment of the drive device S1 shown in FIG. 1, and is a schematic configuration diagram illustrating the aspect (c). Here, the tension adjusting member 53 is disposed at an intermediate position between the first fixed body 11 and the movable body 2, and no tension adjusting member is interposed in the vicinity of the turning portion 21 of the movable body 2 or the first fixed body 11. (Of course, a tension adjusting member may also be interposed in the vicinity of the turning portion 21 and the first fixed body 11).

前記張力調整部材53は、第1の固定体11と可動体2との間に180度反転して往復架設されている形状記憶合金線3の中間付近において、形状記憶合金線3と接する上端接触部531及び下端接触部532を備える熱可塑性樹脂からなる部材である。前記上端接触部531は、形状記憶合金線3の反転部33を境とした前半部分3aの張力を専ら調整するためのもので、前記下端接触部532は、その後半部分3bの張力を専ら調整するためのものである。この変形実施形態においても、図9、図10の場合と同様に、上端接触部531及び下端接触部532における形状記憶合金線3の食い込み量を調整することで、形状記憶合金線3の張力を調整することができる。   The tension adjusting member 53 is in contact with the shape memory alloy wire 3 in the vicinity of the middle of the shape memory alloy wire 3 that is reversed 180 degrees between the first fixed body 11 and the movable body 2 and reciprocally mounted. It is a member made of a thermoplastic resin provided with a portion 531 and a lower end contact portion 532. The upper end contact portion 531 is for exclusively adjusting the tension of the first half portion 3a with the reversal portion 33 of the shape memory alloy wire 3 as a boundary, and the lower end contact portion 532 exclusively adjusts the tension of the second half portion 3b. Is to do. Also in this modified embodiment, the tension of the shape memory alloy wire 3 is adjusted by adjusting the amount of biting of the shape memory alloy wire 3 in the upper end contact portion 531 and the lower end contact portion 532 as in the case of FIGS. Can be adjusted.

[第2実施形態]
図12は、本発明の第2実施形態にかかる駆動装置S2の構成を示す概略構成図であり、図13は、図12のD−D線断面図である。この駆動装置S2は、第1の固定体13及び第2の固定体14、これら第1の固定体13及び第2の固定体14に揺動可能に支持される可動体20、該可動体20に駆動力を与える第1の形状記憶合金線310及び第2の形状記憶合金線320、第1の形状記憶合金線310及び第2の形状記憶合金線320の張力をそれぞれ調整するための第1の張力調整部材54及び第2の張力調整部材55を備えて構成されている。
[Second Embodiment]
FIG. 12 is a schematic configuration diagram showing the configuration of the drive device S2 according to the second embodiment of the present invention, and FIG. 13 is a cross-sectional view taken along the line DD of FIG. The driving device S2 includes a first fixed body 13 and a second fixed body 14, a movable body 20 supported by the first fixed body 13 and the second fixed body 14 in a swingable manner, and the movable body 20 The first shape memory alloy wire 310 and the second shape memory alloy wire 320 that apply driving force to the first shape memory alloy wire 320, and the first shape memory alloy wire 310 and the first shape memory alloy wire 320 for adjusting the tension respectively. The tension adjusting member 54 and the second tension adjusting member 55 are provided.

この駆動装置S2においても、第1の固定体13及び第2の固定体14は、所定の方向に移動される可動体20に対しての不動体であり、可動体20は第1の固定体13及び第2の固定体14のポジションに対して相対的に位置変動される点は、先の第1実施形態に係る駆動装置S1と同様であるが、形状記憶合金線3の形状回復力並びにバイアスバネ4の付勢力に基づくのではなく、2組の形状記憶合金線、つまり第1の形状記憶合金線310及び第2の形状記憶合金線320による所謂プッシュプル駆動により、可動体20が移動される点において駆動装置S1と相違している。このため、可動体20には、第1の形状記憶合金線310を架設するための第1転回部201と、第2の形状記憶合金線320を架設するための第2転回部202とが備えられている。   Also in this drive device S2, the first fixed body 13 and the second fixed body 14 are non-moving bodies with respect to the movable body 20 moved in a predetermined direction, and the movable body 20 is the first fixed body. 13 and the second fixed body 14 are relatively moved relative to the positions of the driving device S1 according to the first embodiment, but the shape recovery force of the shape memory alloy wire 3 and Rather than based on the biasing force of the bias spring 4, the movable body 20 moves by so-called push-pull driving by two sets of shape memory alloy wires, that is, the first shape memory alloy wire 310 and the second shape memory alloy wire 320. This is different from the driving device S1. For this reason, the movable body 20 includes a first turning portion 201 for laying the first shape memory alloy wire 310 and a second turning portion 202 for laying the second shape memory alloy wire 320. It has been.

第1の形状記憶合金線310は、その端部が第1の固定体13において保持(固定)された状態で、可動体20に架け渡されている。すなわち、第1の形状記憶合金線310の一端である第1端部311と、他端である第2端部312は、第1の固定体13に固着されている第1かしめ部材131、第2かしめ部材132により保持され、これにより第1の形状記憶合金線310は180度反転するループを形成する態様で、可動体20に架設されている。具体的には、第1の形状記憶合金線310の延在方向が180度反転する反転部313が、可動体20の第1転回部201に架け渡されている。そして、第1の形状記憶合金線310の反転部313と第1転回部201との間には、第1の張力調整部材54が介在されている。かかる構成は、第1実施形態と実質的に同一である。   The first shape memory alloy wire 310 is stretched over the movable body 20 with the end portion held (fixed) by the first fixed body 13. That is, the first end 311 that is one end of the first shape memory alloy wire 310 and the second end 312 that is the other end are connected to the first caulking member 131 and the first end fixed to the first fixed body 13. The first shape memory alloy wire 310 is held by the two caulking members 132, whereby the first shape memory alloy wire 310 is installed on the movable body 20 in a form that forms a loop that is inverted by 180 degrees. Specifically, a reversing portion 313 in which the extending direction of the first shape memory alloy wire 310 is reversed by 180 degrees is spanned over the first turning portion 201 of the movable body 20. A first tension adjusting member 54 is interposed between the reversing part 313 and the first turning part 201 of the first shape memory alloy wire 310. Such a configuration is substantially the same as that of the first embodiment.

第2の形状記憶合金線320は、第1実施形態におけるバイアスバネ4に代替して配置されるもので、その端部が第2の固定体14において保持(固定)された状態で、可動体20に架け渡されている。すなわち、第2の形状記憶合金線320の一端である第1端部321と、他端である第2端部322は、第2の固定体14に固着されている第1かしめ部材141、第2かしめ部材142により保持され、これにより第2の形状記憶合金線320は180度反転するループを形成する態様で、可動体20に架設されている。具体的には、第2の形状記憶合金線320の延在方向が180度反転する反転部323が、可動体20の第2転回部202に架け渡されている。そして、第2の形状記憶合金線320の反転部323と第2転回部202との間には、第2の張力調整部材55が介在されている。この構成は、第1の形状記憶合金線310の架設態様と実質的に同一である。   The second shape memory alloy wire 320 is arranged in place of the bias spring 4 in the first embodiment, and the movable body in the state where the end portion is held (fixed) by the second fixed body 14. 20 over. That is, the first end portion 321 that is one end of the second shape memory alloy wire 320 and the second end portion 322 that is the other end are the first caulking member 141 fixed to the second fixed body 14, The second shape memory alloy wire 320 is held by the two caulking members 142, and thus the second shape memory alloy wire 320 is installed on the movable body 20 in a form that forms a loop that is inverted by 180 degrees. Specifically, an inversion part 323 in which the extending direction of the second shape memory alloy wire 320 is inverted by 180 degrees is spanned over the second turning part 202 of the movable body 20. A second tension adjusting member 55 is interposed between the reversing part 323 and the second turning part 202 of the second shape memory alloy wire 320. This configuration is substantially the same as the construction mode of the first shape memory alloy wire 310.

第1の形状記憶合金線310と第2の形状記憶合金線320とは、所定の張力をもって可動体20に架設されており、両者が拮抗している状態とされている。そして、図14に基づき後述するが、可動体20は、第1の形状記憶合金線310が形状回復動作を行うことで第1の固定体13側(第1の方向)に移動し、第2の形状記憶合金線320が形状回復動作を行うことで第2の固定体14側(第2の方向)に移動されるようになっている。   The first shape memory alloy wire 310 and the second shape memory alloy wire 320 are erected on the movable body 20 with a predetermined tension, and are in a state of antagonizing each other. Then, as will be described later based on FIG. 14, the movable body 20 moves to the first fixed body 13 side (first direction) by the first shape memory alloy wire 310 performing the shape recovery operation, and the second The shape memory alloy wire 320 is moved to the second fixed body 14 side (second direction) by performing the shape recovery operation.

このような構成において、第1の形状記憶合金線310及び第2の形状記憶合金線320の張力は、それぞれ第1の張力調整部材54及び第2の張力調整部材55により予め定められた規定値に調整される。第1の張力調整部材54は、略三日月型を呈する部材からなり、可動体20の第1転回部201の外周面であって、第1の形状記憶合金線310の反転部313と対向する位置に取り付けられている。すなわち第1の張力調整部材54は、第1の形状記憶合金線310が第1転回部201に架け渡されることにより第1の形状記憶合金線310と接する円弧状の接触部541を有している。第2の張力調整部材55も同様に、略三日月型を呈する部材からなり、可動体20の第2転回部202の外周面であって、第2の形状記憶合金線320の反転部323と対向する位置に取り付けられている。すなわち第2の張力調整部材55は、第2の形状記憶合金線320が第2転回部202に架け渡されることにより第2の形状記憶合金線320と接する円弧状の接触部551を有している。   In such a configuration, the tension of the first shape memory alloy wire 310 and the second shape memory alloy wire 320 is a predetermined value determined in advance by the first tension adjusting member 54 and the second tension adjusting member 55, respectively. Adjusted to The first tension adjusting member 54 is formed of a member having a substantially crescent shape, and is an outer peripheral surface of the first turning portion 201 of the movable body 20 and is opposed to the reversing portion 313 of the first shape memory alloy wire 310. Is attached. That is, the first tension adjusting member 54 has an arc-shaped contact portion 541 that comes into contact with the first shape memory alloy wire 310 when the first shape memory alloy wire 310 is stretched over the first turning portion 201. Yes. Similarly, the second tension adjusting member 55 is formed of a member having a substantially crescent shape, and is an outer peripheral surface of the second turning portion 202 of the movable body 20 and is opposed to the reversing portion 323 of the second shape memory alloy wire 320. It is attached to the position to be. That is, the second tension adjusting member 55 has an arc-shaped contact portion 551 that comes into contact with the second shape memory alloy wire 320 when the second shape memory alloy wire 320 is stretched over the second turning portion 202. Yes.

第1及び第2の張力調整部材54、55は、前述の通りポリカーボネート等の熱可塑性樹脂から構成されている。そして、第1及び第2の形状記憶合金線310、320が可動体20(第1、第2転回部201、202)に架設された後に、第1及び第2の張力調整部材54、55が加熱軟化されることで、第1及び第2の形状記憶合金線310、320の張力がそれぞれ設計通りの規定値になるように、各々の反転部313、323が、第1及び第2の張力調整部材54、55に所定深さだけ食い込まされている。   As described above, the first and second tension adjusting members 54 and 55 are made of a thermoplastic resin such as polycarbonate. Then, after the first and second shape memory alloy wires 310 and 320 are installed on the movable body 20 (first and second turning portions 201 and 202), the first and second tension adjusting members 54 and 55 are moved. Each reversing portion 313, 323 has the first and second tensions so that the tension of the first and second shape memory alloy wires 310, 320 becomes a specified value as designed by being heated and softened. The adjusting members 54 and 55 are bitten by a predetermined depth.

次に、以上の通り構成された駆動装置S2の動作について、図14(a)〜(c)に基づいて説明する。ここでは、第1の形状記憶合金線310の第1端部311及び第2端部312をそれぞれ第1の固定体13に固定する第1かしめ部材131及び第2かしめ部材132を、第1の形状記憶合金線310に対する通電電極として利用し、第1電源E1から第1スイッチSW1を介して駆動電圧が第1の形状記憶合金線310に印加される構成を例示している。同様に、第2の形状記憶合金線320に対しても、第1端部321及び第2端部322をそれぞれ第2の固定体14に固定する第1かしめ部材141及び第2かしめ部材142を通電電極として利用し、第2電源E2から第2スイッチSW2を介して駆動電圧が第2の形状記憶合金線320に印加される構成を例示している。   Next, operation | movement of drive device S2 comprised as mentioned above is demonstrated based on Fig.14 (a)-(c). Here, the first caulking member 131 and the second caulking member 132 for fixing the first end portion 311 and the second end portion 312 of the first shape memory alloy wire 310 to the first fixing body 13, respectively, A configuration in which a drive voltage is applied to the first shape memory alloy wire 310 from the first power supply E1 via the first switch SW1 is illustrated as an energization electrode for the shape memory alloy wire 310. Similarly, the first caulking member 141 and the second caulking member 142 for fixing the first end portion 321 and the second end portion 322 to the second fixing body 14 are also provided for the second shape memory alloy wire 320. A configuration in which a driving voltage is applied to the second shape memory alloy wire 320 from the second power source E2 via the second switch SW2 is illustrated as an energization electrode.

この駆動装置S2は、2組の形状記憶合金線のプッシュプル駆動により可動体20が移動される。すなわち、この駆動装置S2は、第1及び第2の形状記憶合金線310、320を相対的に通電加熱して、一方の形状記憶合金線が形状回復するときは、他方の形状記憶合金線が前記形状回復力により伸ばされる関係で動作する。   In the driving device S2, the movable body 20 is moved by push-pull driving of two sets of shape memory alloy wires. That is, when the drive device S2 heats the first and second shape memory alloy wires 310 and 320 relatively energized and one shape memory alloy wire recovers in shape, the other shape memory alloy wire It operates in a relationship of being stretched by the shape recovery force.

図14(a)は、第1スイッチSW1及び第2スイッチSW2が共に「開」とされ、第1電源E及び第2電源E2から第1の形状記憶合金線310及び第2の形状記憶合金線320へ駆動電圧が与えられていない状態(通電OFF)を示している。この場合、第1及び第2の形状記憶合金線310、320は通電加熱されていないことからマルテンサイト相に変態しており、弾性係数が低く易変形性である。このときの第1及び第2の形状記憶合金線310、320の初期張力は、それぞれ若干の伸びが与えられる程度の張力とされている。   In FIG. 14A, both the first switch SW1 and the second switch SW2 are “open”, and the first shape memory alloy wire 310 and the second shape memory alloy wire are connected from the first power source E and the second power source E2. 320 shows a state where no drive voltage is applied to 320 (energization OFF). In this case, since the first and second shape memory alloy wires 310 and 320 are not energized and heated, the first and second shape memory alloy wires 310 and 320 are transformed into a martensite phase, have a low elastic modulus, and are easily deformable. The initial tensions of the first and second shape memory alloy wires 310 and 320 at this time are set to such a degree that some elongation is given.

一方、図14(b)は、第1スイッチSW1のみが「閉」とされ、第1電源E1から第1の形状記憶合金線310へ所定の駆動電圧が与えられている状態(通電ON)を示している。この場合、第1の形状記憶合金線310に電流i1が流れ、第1の形状記憶合金線310は自身の電流抵抗によってジュール熱を発生し、自己加熱されるようになる。これにより、第1の形状記憶合金線310はオーステナイト相に逆変態して弾性係数が高くなり、伸長状態から元の長さの記憶形状に復帰する。他方、第2の形状記憶合金線320は通電加熱されていないことから弾性係数が低い状態であり、第1の形状記憶合金線310の形状回復力により伸長されるようになる。この結果、可動体20は図中矢印F3の方向へ移動されることとなる。   On the other hand, FIG. 14B shows a state in which only the first switch SW1 is “closed” and a predetermined drive voltage is applied from the first power supply E1 to the first shape memory alloy wire 310 (energization ON). Show. In this case, the current i1 flows through the first shape memory alloy wire 310, and the first shape memory alloy wire 310 generates Joule heat due to its own current resistance and is self-heated. As a result, the first shape memory alloy wire 310 reversely transforms into the austenite phase and the elastic modulus increases, and the memory shape of the original length is restored from the stretched state. On the other hand, since the second shape memory alloy wire 320 is not energized and heated, it has a low elastic coefficient and is stretched by the shape recovery force of the first shape memory alloy wire 310. As a result, the movable body 20 is moved in the direction of the arrow F3 in the drawing.

次に、図14(c)は、第1スイッチSW1が「開」とされると共に第2スイッチSW2が「閉」とされ、第2電源E2から第2の形状記憶合金線320へ所定の駆動電圧が与えられている状態(通電ON)を示している。この場合、第2の形状記憶合金線320に電流i2が流れ、第2の形状記憶合金線320はジュール熱により自己加熱されるようになる。これにより、第2の形状記憶合金線320はオーステナイト相に逆変態して弾性係数が高くなり、伸長状態から元の長さの記憶形状に復帰する。他方、第1の形状記憶合金線310は、通電加熱が停止され外気等で冷却されマルテンサイト相に変態し、弾性係数が低い状態に戻るようになる。従って、第2の形状記憶合金線320の形状回復力により、第1の形状記憶合金線310は伸長されるようになる。この結果、可動体20は図中矢印F4の方向へ移動されることとなる。このような動作が繰り返されることで、可動体2が所望の位置へ移動されるものである。   Next, in FIG. 14C, the first switch SW1 is “open” and the second switch SW2 is “closed”, and a predetermined drive from the second power source E2 to the second shape memory alloy wire 320 is performed. A state in which a voltage is applied (energization ON) is shown. In this case, the current i2 flows through the second shape memory alloy wire 320, and the second shape memory alloy wire 320 is self-heated by Joule heat. As a result, the second shape memory alloy wire 320 reversely transforms into the austenite phase and the elastic modulus increases, and the memory shape of the original length is restored from the stretched state. On the other hand, the first shape memory alloy wire 310 is cooled to the martensite phase by being stopped by energization heating, and is returned to a state having a low elastic modulus. Accordingly, the first shape memory alloy wire 310 is stretched by the shape recovery force of the second shape memory alloy wire 320. As a result, the movable body 20 is moved in the direction of the arrow F4 in the drawing. By repeating such an operation, the movable body 2 is moved to a desired position.

続いて、第2実施形態にかかる駆動装置S2の製造方法について説明する。図15(a)〜(c)は、駆動装置S2を製造するに際しての、第1及び第2の形状記憶合金線310、320の張力調整ステップを模式的に示す図である。この張力調整ステップは、第1及び第2の形状記憶合金線310、320を第1、第2の固定体13、14及び可動体20に組み付けた後に、第1及び/又は第2の張力調整部材54、55を加熱軟化させて第1及び/又は第2の形状記憶合金線310、320を適量だけ食い込ませることで、その張力を規定値に調整するステップである。   Next, a method for manufacturing the drive device S2 according to the second embodiment will be described. FIGS. 15A to 15C are diagrams schematically showing tension adjusting steps of the first and second shape memory alloy wires 310 and 320 when the driving device S2 is manufactured. In this tension adjustment step, after the first and second shape memory alloy wires 310 and 320 are assembled to the first and second fixed bodies 13 and 14 and the movable body 20, the first and / or second tension adjustment is performed. This is a step of adjusting the tension to a specified value by softening the members 54 and 55 and causing the first and / or second shape memory alloy wires 310 and 320 to bite in an appropriate amount.

先ず、図15(a)に示すように、可動体20を一時的に固定する適宜な固定部材60により、可動体20を固定する。この状態で、第1の形状記憶合金線310を第1の固定体13と可動体20の第1転回部201との間に架設すると共に、第2の形状記憶合金線320を第2の固定体14と可動体20の第2転回部202との間に架設する。なお、第1、第2転回部201、202と各々の反転部313、314との間に、第1及び第2の張力調整部材54、55が介在される状態で、第1及び第2の形状記憶合金線310、320を架設する。   First, as shown in FIG. 15A, the movable body 20 is fixed by an appropriate fixing member 60 that temporarily fixes the movable body 20. In this state, the first shape memory alloy wire 310 is installed between the first fixed body 13 and the first turning portion 201 of the movable body 20, and the second shape memory alloy wire 320 is fixed to the second fixed body. It is installed between the body 14 and the second turning part 202 of the movable body 20. In addition, the first and second tension adjusting members 54 and 55 are interposed between the first and second rotating portions 201 and 202 and the reversing portions 313 and 314, respectively. Shape memory alloy wires 310 and 320 are installed.

そして、張力検出手段61により、第1及び第2の形状記憶合金線310、320の張力が規定値であるか否かを測定する。なお、前記架設の際に、第1及び第2の形状記憶合金線310、320の架設張力として、設計値として規定されている規定値よりもやや大き目の張力(伸び量)を付与するようにして架設しても良い。   Then, the tension detecting means 61 measures whether or not the tension of the first and second shape memory alloy wires 310 and 320 is a specified value. During the installation, a tension (elongation amount) slightly larger than the specified value specified as the design value is applied as the installation tension of the first and second shape memory alloy wires 310 and 320. May be installed.

ここで、例えば第1の形状記憶合金線310の張力が既定値よりも高いことが判明した場合、図15(b)に示すように、第1の形状記憶合金線310の張力調整のために、張力検出手段61により第1の形状記憶合金線310の張力をモニタしつつ、レーザー光照射手段62(加熱手段)により第1の張力調整部材54へレーザー光Lが照射され、第1の張力調整部材54が加熱軟化される。このレーザー光照射手段62から第1の張力調整部材54に対するレーザー光Lの照射(第1の張力調整部材54の加熱軟化)は、第1の形状記憶合金線310が第1の張力調整部材54に所定量だけ食い込み、その張力が規定値になるまで継続される。   Here, for example, when it is found that the tension of the first shape memory alloy wire 310 is higher than a predetermined value, the tension of the first shape memory alloy wire 310 is adjusted as shown in FIG. While the tension of the first shape memory alloy wire 310 is monitored by the tension detecting means 61, the first tension adjusting member 54 is irradiated with the laser light L by the laser light irradiating means 62 (heating means), and the first tension is applied. The adjustment member 54 is softened by heating. When the laser light L is irradiated from the laser light irradiation means 62 to the first tension adjusting member 54 (heat softening of the first tension adjusting member 54), the first shape memory alloy wire 310 is used for the first tension adjusting member 54. Is continued until the tension reaches a specified value.

これにより、第1の形状記憶合金線310の架設経路が当初より短くなり、第1の形状記憶合金線310に当初与えられた「伸び」が緩和され、その分だけ第1の形状記憶合金線310の張力が低下する。もし、第2の形状記憶合金線320の張力も既定値よりも高い場合は、同様な張力調整作業が行われる。また、第1及び第2の形状記憶合金線310、320の架設時に、予め設計値よりも高い張力を意図的に具備させるようにしている場合は、第1及び第2の形状記憶合金線310、320双方の張力調整作業が必然的に行われる。   As a result, the installation path of the first shape memory alloy wire 310 is shortened from the beginning, and the “elongation” initially given to the first shape memory alloy wire 310 is relaxed, and the first shape memory alloy wire is correspondingly reduced. The tension of 310 decreases. If the tension of the second shape memory alloy wire 320 is also higher than the predetermined value, a similar tension adjustment operation is performed. In addition, when the first and second shape memory alloy wires 310 and 320 are installed, if the tension higher than the design value is intentionally provided in advance, the first and second shape memory alloy wires 310 are provided. 320, the tension adjustment work of both is necessarily performed.

しかる後、図15(c)に示すように、固定部材60が取り除かれて可動体20の固定状態が解除されると、第1及び第2の形状記憶合金線310、320の張力が可動体20に作用し、両者は拮抗するようになる。すなわち、可動体20は所定の初期位置に落ち着くこととなる。以上のような張力調整を行うことにより、第1及び第2の形状記憶合金線310、320の張力を、アクチュエータ動作を行わせるに際しての望ましい規定値に設定できるようになる。   Thereafter, as shown in FIG. 15C, when the fixed member 60 is removed and the fixed state of the movable body 20 is released, the tension of the first and second shape memory alloy wires 310 and 320 is changed to the movable body. It acts on 20 and both come to antagonize. That is, the movable body 20 settles at a predetermined initial position. By performing the tension adjustment as described above, the tension of the first and second shape memory alloy wires 310 and 320 can be set to a desired specified value when the actuator operation is performed.

以上説明した実施形態では、第1、第2張力調整部材54、55を、可動体20に設けた第1、第2転回部201、202に設置した例を示したが、可動体20の第1、第2転回部201、202以外の箇所に設けても良く、また第1、第2の形状記憶合金線310、320と接触できる位置であれば、可動体20以外の箇所に設置しても良い。また、第1、第2張力調整部材54、55と同様な役目を果たす張力調整部材を複数箇所に設けるようにしても良い。   In the embodiment described above, an example in which the first and second tension adjusting members 54 and 55 are installed in the first and second turning portions 201 and 202 provided in the movable body 20 has been described. It may be provided at a place other than the first and second rolling parts 201 and 202, and it may be installed at a place other than the movable body 20 as long as it can contact the first and second shape memory alloy wires 310 and 320. Also good. Moreover, you may make it provide the tension adjustment member which plays the role similar to the 1st, 2nd tension adjustment members 54 and 55 in several places.

[第3実施形態]
図16は、本発明の第3実施形態にかかる駆動装置S3の構成を示す概略構成図である。この駆動装置S3は、第1実施形態にかかる駆動装置S1の構成に加えて、バイアスバネ4(補助部材)についても張力調整が行えるようにしている点で、第1実施形態と相違している。以下、この相違点を中心に説明する。
[Third Embodiment]
FIG. 16 is a schematic configuration diagram showing the configuration of the drive device S3 according to the third embodiment of the present invention. This drive device S3 is different from the first embodiment in that the tension adjustment can be performed for the bias spring 4 (auxiliary member) in addition to the configuration of the drive device S1 according to the first embodiment. . Hereinafter, this difference will be mainly described.

可動体2Aには、先に説明した転回部21に加えて、バイアスバネ4が架け渡される突起部23が設けられている。バイアスバネ4の両端には、係止用の第1線状部41及び第2線状部42が備えられているが、このうち第2線状部42は、前記突起部23を経由して、その終端部が可動体2Aの転回部21の頂面に設けられている固定部22に固定されている。このように突起部23を経由することで、第2線状部42には湾曲部421が形成されることになるが、この湾曲部421と突起部23との間に、補助部材用張力調整部材56が介在されている。   In addition to the turning portion 21 described above, the movable body 2A is provided with a protrusion 23 on which the bias spring 4 is bridged. At both ends of the bias spring 4, a first linear portion 41 and a second linear portion 42 for locking are provided. Of these, the second linear portion 42 passes through the protrusion 23. The terminal portion is fixed to a fixing portion 22 provided on the top surface of the turning portion 21 of the movable body 2A. As described above, the curved portion 421 is formed in the second linear portion 42 by passing through the protruding portion 23, and the tension adjustment for the auxiliary member is performed between the curved portion 421 and the protruding portion 23. A member 56 is interposed.

これにより、補助部材用張力調整部材56は、第2線状部42との接触部561を有している。そして、前記接触部561において、第2線状部42の湾曲部421が、バイアスバネ4に対する張力調整値に応じて所定深さだけ食い込まされている。   Accordingly, the auxiliary member tension adjusting member 56 has a contact portion 561 with the second linear portion 42. In the contact portion 561, the curved portion 421 of the second linear portion 42 is bitten by a predetermined depth according to the tension adjustment value for the bias spring 4.

図17は、駆動装置S3を製造するに際しての、形状記憶合金線3及びバイアスバネ4の張力調整ステップを模式的に示す図である。この駆動装置S3の場合、可動体2を固定部材60にて一時的に固定した状態で、可動体2を固定形状記憶合金線3の張力調整のために、図略の張力検出手段により形状記憶合金線3の張力をモニタしつつ、レーザー光照射手段62により張力調整部材5を加熱軟化させて張力調整を行うと共に、第2線状部42の張力をモニタしつつ、レーザー光照射手段62により補助部材用張力調整部材56を加熱軟化させてバイアスバネ4に対する張力調整も行う。これにより、形状記憶合金線3だけでなく、バイアスバネ4についても、架設後において適正な張力に調整することができるようになる。   FIG. 17 is a diagram schematically showing tension adjusting steps of the shape memory alloy wire 3 and the bias spring 4 when the driving device S3 is manufactured. In the case of this drive device S3, the shape of the movable body 2 is memorized by a tension detecting means (not shown) for adjusting the tension of the fixed shape memory alloy wire 3 while the movable body 2 is temporarily fixed by the fixing member 60. While the tension of the alloy wire 3 is monitored, the tension adjusting member 5 is heated and softened by the laser light irradiation means 62 to adjust the tension, and the tension of the second linear portion 42 is monitored and the laser light irradiation means 62 is used. The tension adjustment member 56 for the auxiliary member is heated and softened to adjust the tension with respect to the bias spring 4. As a result, not only the shape memory alloy wire 3 but also the bias spring 4 can be adjusted to an appropriate tension after installation.

図16に示す駆動装置S3では、可動体2の転回部21に張力調整部材5を、また可動体2の突起部23に補助部材用張力調整部材56をそれぞれ設置した例を示したが、いずれか一方のみに張力調整部材を設けるようにしても良い。また、可動体2以外の箇所に張力調整部材を設置しても良く、張力調整部材を各々一箇所だけではなく、複数箇所に設けるようにしても良い。すなわち、張力調整部材は、下記(d)〜(i)のいずれかの位置、若しくはこれらの位置の複数に配置することができる。なお、図16示す駆動装置S3は、下記(d),(e)を含む態様の一例を示すものである。
(d)可動体2の所定位置であって形状記憶合金線3と接する位置
(e)可動体2の所定位置であってバイアスバネ4の第2線状部42と接する位置
(f)第1の固定体13の所定位置であって形状記憶合金線3と接する位置
(g)第2の固定体14の所定位置であってバイアスバネ4の第1線状部41と接する位置
(h)可動体2と第1の固定体13との中間位置であって形状記憶合金線3と接する位置
(i)可動体2と第2の固定体14との中間位置であってバイアスバネ4の第1線状部41又は第2線状部42と接する位置
In the driving device S3 shown in FIG. 16, the tension adjusting member 5 and the auxiliary member tension adjusting member 56 are installed on the rotating portion 21 and the protruding portion 23 of the movable body 2 respectively. Only one of them may be provided with a tension adjusting member. In addition, tension adjusting members may be installed in places other than the movable body 2, and the tension adjusting members may be provided in a plurality of places instead of only one place. That is, the tension adjusting member can be disposed at any one of the following positions (d) to (i) or at a plurality of these positions. Note that the drive device S3 shown in FIG. 16 shows an example of a mode including the following (d) and (e).
(D) A predetermined position of the movable body 2 and a position in contact with the shape memory alloy wire 3 (e) A predetermined position of the movable body 2 and a position in contact with the second linear portion 42 of the bias spring 4 (f) First (G) A predetermined position of the second fixed body 14 and a position in contact with the first linear portion 41 of the bias spring 4 (h) A movable position. (I) An intermediate position between the movable body 2 and the second fixed body 14 and the first position of the bias spring 4. Position in contact with the linear part 41 or the second linear part 42

[第4実施形態]
図18は、本発明の第4実施形態にかかる駆動装置S4の構成を示す概略構成図である。この駆動装置S4は、固定体100と、撮像レンズユニットのような可動体200とを同心状に配置し、可動体200をX軸方向、Y軸方向に揺動可能に(手振れ補正駆動可能に)固定体100にて支持させた駆動装置(例えば特開平11−337996号公報に示されている)である。
[Fourth Embodiment]
FIG. 18 is a schematic configuration diagram showing the configuration of the drive device S4 according to the fourth embodiment of the present invention. In the driving device S4, a fixed body 100 and a movable body 200 such as an imaging lens unit are arranged concentrically so that the movable body 200 can swing in the X-axis direction and the Y-axis direction (to enable camera shake correction driving). ) A driving device supported by the fixed body 100 (for example, disclosed in Japanese Patent Application Laid-Open No. 11-337996).

円筒状を呈する可動体200の外周面には、第1〜第4の形状記憶合金線34、35、36、37が、可動体200を取り囲むように配置されている。第1〜第4の形状記憶合金線34、35、36、37は、可動体200の外周面とそれぞれ当接されて湾曲されており、また所定の張力(伸び量)を有する状態で、各々の両端部が固定体100に取り付けられている。例えば第1形状記憶合金線34は、可動体200の外周面と正面視で「0時」の方向において接するようY軸方向に架設され、その両端部341、342が固定体100に取り付けられている。以下、90度単位で方位を変えて、第2〜第4の形状記憶合金線35、36、37が架設され、その各両端部351、352、361、362、371、372がそれぞれ固定体100に取り付けられている。   First to fourth shape memory alloy wires 34, 35, 36, and 37 are disposed on the outer peripheral surface of the movable body 200 having a cylindrical shape so as to surround the movable body 200. The first to fourth shape memory alloy wires 34, 35, 36, and 37 are curved in contact with the outer peripheral surface of the movable body 200, respectively, and have a predetermined tension (elongation amount). Are attached to the fixed body 100. For example, the first shape memory alloy wire 34 is installed in the Y-axis direction so as to be in contact with the outer peripheral surface of the movable body 200 in the “0 o'clock” direction in front view, and both end portions 341 and 342 are attached to the fixed body 100. Yes. Hereinafter, the second to fourth shape memory alloy wires 35, 36, and 37 are installed while changing the direction in units of 90 degrees, and both end portions 351, 352, 361, 362, 371, and 372 are respectively fixed bodies 100. Is attached.

そして、所定の伸びが与えられている第1〜第4の形状記憶合金線34、35、36、37を適宜通電加熱することにより形状回復(縮小)させることで、可動体200がX軸方向又はY軸方向に揺動されるものである。   Then, the first to fourth shape memory alloy wires 34, 35, 36, and 37 to which a predetermined elongation is given are appropriately energized and heated to recover (shrink) the shape of the movable body 200 in the X-axis direction. Alternatively, it is swung in the Y-axis direction.

このような構成において、第1〜第4の形状記憶合金線34、35、36、37と可動体200の外周面との接触部には、第1〜第4の張力調整部材571、572、573、574が配置されている。そして、第1〜第4の形状記憶合金線34、35、36、37の張力調整値に応じて、所定深さだけ各々が第1〜第4の張力調整部材571、572、573、574に食い込まされている。これにより、第1〜第4の形状記憶合金線34、35、36、37を固定体100及び可動体200に架設した後であっても、第1〜第4の張力調整部材571、572、573、574を適宜加熱軟化させて各々の食い込み量を調整することで、第1〜第4の形状記憶合金線34、35、36、37の張力を調整することができる。   In such a configuration, the contact portions between the first to fourth shape memory alloy wires 34, 35, 36, 37 and the outer peripheral surface of the movable body 200 have first to fourth tension adjusting members 571, 572, 573 and 574 are arranged. Then, according to the tension adjustment values of the first to fourth shape memory alloy wires 34, 35, 36, and 37, the first to fourth tension adjustment members 571, 572, 573, and 574 each have a predetermined depth. Have been bitten. Thus, even after the first to fourth shape memory alloy wires 34, 35, 36, 37 are installed on the fixed body 100 and the movable body 200, the first to fourth tension adjusting members 571, 572, The tensions of the first to fourth shape memory alloy wires 34, 35, 36, and 37 can be adjusted by appropriately heating and softening 573 and 574 to adjust the amount of each bite.

[その他変形実施形態の説明]
以上、本発明の実施形態につき説明したが、本発明はこれら実施形態に限定されるものではなく、例えば次のような変形実施形態を取ることができる。
[1]図1他に示した実施形態では、転回部21に1つの張力調整部材5(1つの接触部51)を配置する例について説明したが、転回部21に複数の張力調整部材(複数の接触部)を設けるようにしても良い。この場合、形状記憶合金線3に対する張力調整部材の当接位置を適宜選択し、形状記憶合金線3の張力を粗調整するための張力調整部材と、張力を微調整するための張力調整部材とを設置することが望ましい。
[Description of Other Modified Embodiments]
As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to these embodiment, For example, the following modified embodiment can be taken.
[1] In the embodiment shown in FIG. 1 and others, an example in which one tension adjusting member 5 (one contact portion 51) is arranged in the turning portion 21 has been described. However, a plurality of tension adjusting members (a plurality of tension adjusting members are provided in the turning portion 21). May be provided. In this case, a contact position of the tension adjusting member with respect to the shape memory alloy wire 3 is appropriately selected, a tension adjusting member for coarsely adjusting the tension of the shape memory alloy wire 3, and a tension adjusting member for finely adjusting the tension; It is desirable to install.

図19は、転回部21に複数の張力調整部材を設けた例を示す構成図である。この転回部21には、形状記憶合金線3が略180度反転されて架け渡されている。そして、該転回部21と形状記憶合金線3との間には、形状記憶合金線3の張力を粗調整するための粗調整用張力調整部材581(第1の張力調整部材)と、張力を粗調整するための第1微調整用張力調整部材582及び第2微調整用張力調整部材583(第2の張力調整部材)とが介在されている。   FIG. 19 is a configuration diagram illustrating an example in which a plurality of tension adjusting members are provided in the rolling unit 21. The shape memory alloy wire 3 is reversed and spanned by approximately 180 degrees on the turning portion 21. And between this rolling part 21 and the shape memory alloy wire 3, the tension adjusting member 581 for rough adjustment (the first tension adjusting member) for roughly adjusting the tension of the shape memory alloy wire 3, and the tension A first fine adjustment tension adjustment member 582 and a second fine adjustment tension adjustment member 583 (second tension adjustment member) for coarse adjustment are interposed.

粗調整用張力調整部材581は、形状記憶合金線3の張力を全体的に調整するためのもので、形状記憶合金線3の反転部330と接する接触部5811を有するように転回部21に取り付けられている。また第1微調整用張力調整部材582は、前記反転部330を境とした形状記憶合金線3の前半部分3aの張力を専ら調整するためのもので、反転部330の前方側(図1の第1端部31側)に位置する第1当接点331と接する接触部5821を有するように転回部21に取り付けられている。さらに第2微調整用張力調整部材583は、反転部330を境とした形状記憶合金線3の後半部分3bの張力を専ら調整するためのもので、反転部330の後方側(図1の第2端部32側)に位置する第2当接点332と接する接触部5831を有するように転回部21に取り付けられている。   The coarse adjustment tension adjusting member 581 is for adjusting the tension of the shape memory alloy wire 3 as a whole, and is attached to the turning portion 21 so as to have a contact portion 5811 in contact with the reversing portion 330 of the shape memory alloy wire 3. It has been. The first fine-adjustment tension adjusting member 582 is used to exclusively adjust the tension of the first half portion 3a of the shape memory alloy wire 3 with the reversing portion 330 as a boundary. It is attached to the turning part 21 so as to have a contact part 5821 in contact with the first contact point 331 located on the first end part 31 side. Further, the second fine adjustment tension adjusting member 583 is used to exclusively adjust the tension of the rear half portion 3b of the shape memory alloy wire 3 with the reversing portion 330 as a boundary. It is attached to the turning part 21 so as to have a contact part 5831 in contact with the second contact point 332 located on the second end part 32 side.

このように構成すれば、図20(a)に示すように、形状記憶合金線3の反転部330の、粗調整用張力調整部材581の接触部5811に対する食い込み量を変化させることで、比較的大きく形状記憶合金線3の架設経路を変化させる(短くさせる)ことができる。すなわち、形状記憶合金線3の伸び度合いを比較的大きく変化させることに適していることから、前記接触部5811においてその食い込み量を調整することで形状記憶合金線3の全体張力の粗調整を行うことができる。   If comprised in this way, as shown to Fig.20 (a), by changing the amount of biting with respect to the contact part 5811 of the tension adjustment member 581 for rough adjustment of the inversion part 330 of the shape memory alloy wire 3, The construction route of the shape memory alloy wire 3 can be largely changed (shortened). That is, since it is suitable for changing the degree of elongation of the shape memory alloy wire 3 relatively large, the overall tension of the shape memory alloy wire 3 is roughly adjusted by adjusting the amount of biting in the contact portion 5811. be able to.

これに対し、図20(b)に示すように、第1微調整用張力調整部材582の接触部5821に対する食い込み量を変化させても、形状記憶合金線3の架設経路変化は僅かである。これは、第2微調整用張力調整部材583の接触部5831でも同様である。従って、形状記憶合金線3の伸び度合いを比較的小さく変化させることに適していることから、前記接触部5821、5831においてその食い込み量を調整することで形状記憶合金線3の前半部分3a又は後半部分3bの張力の微調整、ひいては全体張力の微調整を行うことができる。   On the other hand, as shown in FIG. 20B, even if the amount of biting into the contact portion 5821 of the first fine adjustment tension adjustment member 582 is changed, the construction path change of the shape memory alloy wire 3 is slight. The same applies to the contact portion 5831 of the second fine adjustment tension adjusting member 583. Accordingly, since the degree of elongation of the shape memory alloy wire 3 is suitable to be changed relatively small, the first half portion 3a or the second half of the shape memory alloy wire 3 is adjusted by adjusting the amount of biting in the contact portions 5821 and 5831. Fine adjustment of the tension of the portion 3b, and hence fine adjustment of the overall tension can be performed.

以上のことから、形状記憶合金線3の全体張力の粗調整を行う場合は粗調整用張力調整部材581を加熱軟化させて反転部330の食い込み度合いを調整し、形状記憶合金線3の前半部分3a又は後半部分3bの張力の微調整、或いは全体張力の微調整を行う場合は、第1微調整用張力調整部材582及び/又は第2微調整用張力調整部材583を加熱軟化させて第1当接点331及び/又は第2当接点332の食い込み度合いを調整することで、効率よく且つ精密に張力調整を行うことができる。   From the above, when rough adjustment of the total tension of the shape memory alloy wire 3 is performed, the rough adjustment tension adjusting member 581 is heated and softened to adjust the degree of biting of the reversing portion 330, and the first half of the shape memory alloy wire 3. When fine adjustment of the tension of 3a or the latter half portion 3b or fine adjustment of the entire tension is performed, the first fine adjustment tension adjustment member 582 and / or the second fine adjustment tension adjustment member 583 is heated and softened to perform the first adjustment. By adjusting the biting degree of the contact 331 and / or the second contact point 332, the tension can be adjusted efficiently and precisely.

[2]図7においては、形状記憶合金線3の張力を張力検出手段61でモニタしつつ張力調整部材5を加熱軟化させる例を示したが、生産性を向上させるため、張力調整部材5の加熱時間と形状記憶合金線3の張力変動との関係を予めテーブル化しておき、形状記憶合金線3の架設後に初期張力のみを測定し、その初期張力に応じた時間だけ、レーザー光照射手段62により張力調整部材5を加熱するようにしても良い。 [2] Although FIG. 7 shows an example in which the tension adjusting member 5 is heated and softened while the tension of the shape memory alloy wire 3 is monitored by the tension detecting means 61, in order to improve productivity, The relationship between the heating time and the tension fluctuation of the shape memory alloy wire 3 is tabulated in advance, and only the initial tension is measured after the shape memory alloy wire 3 is installed, and the laser beam irradiation means 62 is used for the time corresponding to the initial tension. Thus, the tension adjusting member 5 may be heated.

[3]可動体としては、各種の被駆動部材を対象とすることができる。上述の手振れ補正駆動される撮像レンズユニットの他、ズーミングやフォーカシングのために駆動されるレンズ等であっても良い。また撮像装置の構成部品に限らず、例えば配管路等において開閉動作を行う弁体、内視鏡等における首振りヘッド等を可動体としても良い。 [3] As the movable body, various driven members can be targeted. In addition to the above-described imaging lens unit that is driven to correct camera shake, a lens that is driven for zooming or focusing may be used. Further, not limited to the components of the imaging apparatus, for example, a valve body that performs an opening / closing operation in a pipe line, a swing head in an endoscope, and the like may be used as a movable body.

本発明の第1実施形態にかかる駆動装置S1の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of drive device S1 concerning 1st Embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 形状記憶合金線3の保持方法を示す説明図であり、(a)は圧着前の側面図、(b)は圧着後の側面図、(c)は圧着後の上面図である。It is explanatory drawing which shows the holding method of the shape memory alloy wire 3, (a) is a side view before crimping, (b) is a side view after crimping, (c) is a top view after crimping. 形状記憶合金線3の他の保持方法を示す説明図であり、(a)は圧入ピン挿入前の側面図、(b)は圧入ピン挿入後の側面図、(c)は圧入ピン挿入後の側断面図である。It is explanatory drawing which shows the other holding | maintenance methods of the shape memory alloy wire 3, (a) is a side view before press-fit pin insertion, (b) is a side view after press-fit pin insertion, (c) is after press-fit pin insertion. It is a sectional side view. (a)は張力調整部材5の取り付け部分の拡大図、(b)は、反転部33における張力調整部材5の断面図である。(A) is an enlarged view of the attachment part of the tension adjustment member 5, (b) is sectional drawing of the tension adjustment member 5 in the inversion part 33. FIG. (a)〜(c)は、駆動装置S1の動作を順次示す説明図である。(A)-(c) is explanatory drawing which shows operation | movement of drive device S1 sequentially. (a)〜(c)は、駆動装置S1の製造手順を順次示す説明図である。(A)-(c) is explanatory drawing which shows the manufacture procedure of drive device S1 sequentially. 図7(b)における張力調整部材5の部分を拡大して示す拡大図である。It is an enlarged view which expands and shows the part of the tension adjustment member 5 in FIG.7 (b). 駆動装置S1の変形実施形態を示す概略構成図である。It is a schematic block diagram which shows the deformation | transformation embodiment of drive device S1. 図9の要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of FIG. 駆動装置S1の他の変形実施形態を示す概略構成図である。It is a schematic block diagram which shows other modified embodiment of drive device S1. 本発明の第2実施形態にかかる駆動装置S2の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of drive device S2 concerning 2nd Embodiment of this invention. 図12のD−D線断面図である。It is the DD sectional view taken on the line of FIG. (a)〜(c)は、駆動装置S2の動作を順次示す説明図である。(A)-(c) is explanatory drawing which shows operation | movement of drive device S2 sequentially. (a)〜(c)は、駆動装置S2の製造手順を順次示す説明図である。(A)-(c) is explanatory drawing which shows the manufacture procedure of drive device S2 sequentially. 本発明の第3実施形態にかかる駆動装置S3の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of drive device S3 concerning 3rd Embodiment of this invention. 駆動装置S3の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of drive device S3. 本発明の第4実施形態にかかる駆動装置S4の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of drive device S4 concerning 4th Embodiment of this invention. 転回部21に複数の張力調整部材を設けた例を示す構成図である。It is a block diagram which shows the example which provided the several tension adjustment member in the rolling part. (a)は張力の粗調整を示す説明図、(b)は張力の微調整を示す説明図である。(A) is explanatory drawing which shows rough adjustment of tension | tensile_strength, (b) is explanatory drawing which shows fine adjustment of tension | tensile_strength.

符号の説明Explanation of symbols

11、13 第1の固定体(固定体)
12、14 第2の固定体
2、20 可動体
21 転回部
3 形状記憶合金線
310 第1の形状記憶合金線
320 第2の形状記憶合金線
4 バイアスバネ(補助部材)
5 張力調整部材
51 接触部
54 第1の張力調整部材
55 第2の張力調整部材
56 補助部材用張力調整部材
571〜574 第1〜第4の張力調整部材
581 粗調整用張力調整部材
582 第1微調整用張力調整部材
583 第2微調整用張力調整部材
61 張力検出手段
62 レーザー光照射手段(加熱手段)
S1、S2、S3、S4 駆動装置
11, 13 First fixed body (fixed body)
DESCRIPTION OF SYMBOLS 12, 14 2nd fixed body 2, 20 Movable body 21 Turning part 3 Shape memory alloy wire 310 1st shape memory alloy wire 320 2nd shape memory alloy wire 4 Bias spring (auxiliary member)
5 Tension Adjustment Member 51 Contact Portion 54 First Tension Adjustment Member 55 Second Tension Adjustment Member 56 Auxiliary Member Tension Adjustment Member 571-574 First to Fourth Tension Adjustment Member 581 Coarse Adjustment Tension Adjustment Member 582 First Tension adjusting member for fine adjustment 583 Tension adjusting member for second fine adjustment 61 Tension detection means 62 Laser light irradiation means (heating means)
S1, S2, S3, S4 Drive device

Claims (18)

形状記憶合金線と、
前記形状記憶合金線の少なくとも一端を保持する固定体と、
前記形状記憶合金線が架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体と、
前記可動体に作用し前記形状記憶合金線に所定の張力を与える補助部材とを備える駆動装置において、
前記形状記憶合金線の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記形状記憶合金線と接する接触部を有し、
前記形状記憶合金線は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする駆動装置。
A shape memory alloy wire;
A fixed body for holding at least one end of the shape memory alloy wire;
A movable body constructed such that the shape memory alloy wire is installed and movable relative to the fixed body by performing a shape recovery operation of the shape memory alloy wire;
In a driving device comprising an auxiliary member that acts on the movable body and applies a predetermined tension to the shape memory alloy wire,
A tension adjusting member for adjusting the tension of the shape memory alloy wire, and the tension adjusting member has a contact portion in contact with the shape memory alloy wire;
The driving device according to claim 1, wherein the shape memory alloy wire is bitten into the tension adjusting member in accordance with a predetermined tension adjustment value at the contact portion.
第1及び第2の形状記憶合金線と、
前記第1及び第2の形状記憶合金線の少なくとも一端をそれぞれ保持する第1及び第2の固定体と、
前記第1及び第2の形状記憶合金線がそれぞれ架設され、前記第1の形状記憶合金線が形状回復動作を行うことで第1の方向に移動し、前記第2の形状記憶合金線が形状回復動作を行うことで前記第1の方向とは異なる第2の方向に移動することが可能とされた可動体とを有し、
前記第1及び第2の形状記憶合金線が拮抗することで、それぞれが所定の張力を有するよう組み付けられてなる駆動装置において、
前記第1及び/又は第2の形状記憶合金線の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記第1及び/又は第2の形状記憶合金線と接する接触部を有し、
前記第1及び/又は第2の形状記憶合金線は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする駆動装置。
First and second shape memory alloy wires;
First and second fixed bodies that respectively hold at least one ends of the first and second shape memory alloy wires;
The first and second shape memory alloy wires are respectively installed, the first shape memory alloy wire moves in a first direction by performing a shape recovery operation, and the second shape memory alloy wire has a shape. A movable body capable of moving in a second direction different from the first direction by performing a recovery operation;
In the drive device that is assembled so that each of the first and second shape memory alloy wires antagonizes each other to have a predetermined tension,
A tension adjusting member for adjusting the tension of the first and / or second shape memory alloy wire is provided, and the tension adjusting member has a contact portion in contact with the first and / or second shape memory alloy wire. Have
The drive device according to claim 1, wherein the first and / or second shape memory alloy wire is bitten into the tension adjusting member in accordance with a predetermined tension adjustment value at the contact portion.
前記張力調整部材が、下記(a)〜(c)からなる群のいずれか、若しくは複数の箇所に備えられていることを特徴とする請求項1又は2に記載の駆動装置。
(a)可動体の所定位置
(b)固定体の所定位置
(c)可動体と固定体との中間位置
3. The driving device according to claim 1, wherein the tension adjusting member is provided in any one of a group consisting of the following (a) to (c) or a plurality of locations.
(A) Predetermined position of movable body (b) Predetermined position of fixed body (c) Intermediate position between movable body and fixed body
形状記憶合金線と、
線状部を備え前記形状記憶合金線に所定の張力を与える補助部材と、
前記形状記憶合金線の少なくとも一端を保持する第1の固定体と、
前記補助部材の一端を保持する第2の固定体と、
前記形状記憶合金線及び前記補助部材の線状部がそれぞれ架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体とを備える駆動装置において、
前記形状記憶合金線及び/又は前記補助部材の張力を調整するための張力調整部材を備えると共に、該張力調整部材は前記形状記憶合金線及び/又は前記補助部材の線状部と接する接触部を有し、
前記形状記憶合金線及び/又は前記補助部材の線状部は、前記接触部において所定の張力調整値に応じて前記張力調整部材に食い込まされていることを特徴とする駆動装置。
A shape memory alloy wire;
An auxiliary member that includes a linear portion and applies a predetermined tension to the shape memory alloy wire;
A first fixed body for holding at least one end of the shape memory alloy wire;
A second fixed body for holding one end of the auxiliary member;
The shape memory alloy wire and the linear portion of the auxiliary member are respectively constructed, and the shape memory alloy wire performs a shape recovery operation so that the drive includes a movable body that is movable relative to the fixed body. In the device
A tension adjusting member for adjusting the tension of the shape memory alloy wire and / or the auxiliary member is provided, and the tension adjusting member has a contact portion in contact with the shape memory alloy wire and / or the linear portion of the auxiliary member. Have
The driving device according to claim 1, wherein the shape memory alloy wire and / or the linear portion of the auxiliary member are bitten into the tension adjusting member in accordance with a predetermined tension adjustment value at the contact portion.
前記張力調整部材が、下記(d)〜(i)からなる群のいずれか、若しくは複数の箇所に備えられていることを特徴とする請求項4に記載の駆動装置。
(d)可動体の所定位置であって形状記憶合金線と接する位置
(e)可動体の所定位置であって補助部材の線状部と接する位置
(f)第1の固定体の所定位置
(g)第2の固定体の所定位置
(h)可動体と第1の固定体との中間位置
(i)可動体と第2の固定体との中間位置
The drive device according to claim 4, wherein the tension adjusting member is provided in any one of a group consisting of the following (d) to (i) or in a plurality of locations.
(D) A predetermined position of the movable body and a position in contact with the shape memory alloy wire (e) A predetermined position of the movable body and a position in contact with the linear portion of the auxiliary member (f) A predetermined position of the first fixed body ( g) Predetermined position of the second fixed body (h) Intermediate position between the movable body and the first fixed body (i) Intermediate position between the movable body and the second fixed body
前記張力調整部材が熱可塑性樹脂からなり、
前記形状記憶合金線が可動体に架設された後、前記張力調整部材が加熱軟化されることで、前記形状記憶合金線が前記張力調整部材に所定深さだけ食い込まされていることを特徴とする請求項1〜5のいずれかに記載の駆動装置。
The tension adjusting member is made of a thermoplastic resin,
After the shape memory alloy wire is installed on the movable body, the shape adjusting alloy member is bitten into the tension adjusting member by a predetermined depth by heating and softening the tension adjusting member. The drive apparatus in any one of Claims 1-5.
前記張力調整部材が、少なくとも前記形状記憶合金線がオーステナイト相へ逆変態する第1の温度では軟化せず、前記第1の温度よりも所定温度だけ高い第2の温度において軟化する熱可塑性樹脂からなることを特徴とする請求項6に記載の駆動装置。   The tension adjusting member is not softened at least at a first temperature at which the shape memory alloy wire is reversely transformed into an austenite phase, and is softened at a second temperature higher by a predetermined temperature than the first temperature. The drive device according to claim 6, wherein 前記可動体に、前記形状記憶合金線が略180度反転されて架け渡される転回部が備えられており、
前記張力調整部材が、前記転回部において、前記形状記憶合金線の反転部と接するように設けられていることを特徴とする請求項6に記載の駆動装置。
The movable body is provided with a turning portion on which the shape memory alloy wire is reversed and bridged by approximately 180 degrees,
The drive device according to claim 6, wherein the tension adjusting member is provided in the turning portion so as to be in contact with the reversing portion of the shape memory alloy wire.
前記可動体に、前記形状記憶合金線が略180度反転されて架け渡される転回部が備えられており、
前記転回部において、前記形状記憶合金線の反転部と接するように設けられている第1の張力調整部材と、
前記形状記憶合金線の反転部の前後において該形状記憶合金線と接するように設けられている第2の張力調整部材と
を具備することを特徴とする請求項6に記載の駆動装置。
The movable body is provided with a turning portion on which the shape memory alloy wire is reversed and bridged by approximately 180 degrees,
A first tension adjusting member provided in contact with the reversal part of the shape memory alloy wire in the turning part;
The drive device according to claim 6, further comprising: a second tension adjusting member provided so as to be in contact with the shape memory alloy wire before and after the reversal portion of the shape memory alloy wire.
前記補助部材が、バイアスバネからなることを特徴とする請求項1又は4に記載の駆動装置。   The drive device according to claim 1, wherein the auxiliary member includes a bias spring. 前記形状記憶合金線が、前記固定体にかしめ方式又は圧入ピン方式で保持されていることを特徴とする請求項1〜5のいずれかに記載の駆動装置。   The drive device according to claim 1, wherein the shape memory alloy wire is held on the fixed body by a caulking method or a press-fit pin method. 形状記憶合金線と、前記形状記憶合金線の少なくとも一端を保持する固定体と、前記形状記憶合金線が架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体と、前記可動体に作用し前記形状記憶合金線に所定の張力を与える補助部材とを備える駆動装置の製造方法であって、
前記形状記憶合金線の張力を調整するための張力調整部材を、前記形状記憶合金線と接する接触部を有するように所定の箇所に配置し、
所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記形状記憶合金線を当該張力調整部材に食い込ませることで前記形状記憶合金線の張力調整を行う張力調整ステップを具備することを特徴とする駆動装置の製造方法。
A shape memory alloy wire, a fixed body that holds at least one end of the shape memory alloy wire, and the shape memory alloy wire is installed and relative to the fixed body by performing a shape recovery operation. A movable body movable to the movable body, and an auxiliary member that acts on the movable body and applies a predetermined tension to the shape memory alloy wire,
A tension adjusting member for adjusting the tension of the shape memory alloy wire is disposed at a predetermined position so as to have a contact portion in contact with the shape memory alloy wire,
The tension adjusting member is heated and softened by a predetermined heating means, and the shape memory alloy wire is bitten into the tension adjusting member according to a predetermined tension adjustment value at the contact portion, thereby adjusting the tension of the shape memory alloy wire. The manufacturing method of the drive device characterized by comprising the tension adjustment step to perform.
第1及び第2の形状記憶合金線と、前記第1及び第2の形状記憶合金線の少なくとも一端をそれぞれ保持する第1及び第2の固定体と、前記第1及び第2の形状記憶合金線がそれぞれ架設され、前記第1の形状記憶合金線が形状回復動作を行うことで第1の方向に移動し、前記第2の形状記憶合金線が形状回復動作を行うことで前記第1の方向とは異なる第2の方向に移動することが可能とされた可動体とを有し、前記第1及び第2の形状記憶合金線が拮抗することで、それぞれが所定の張力を有するよう組み付けられてなる駆動装置の製造方法であって、
前記第1及び/又は第2の形状記憶合金線の張力を調整するための張力調整部材を、前記第1及び/又は第2の形状記憶合金線と接する接触部を有するように所定の箇所に配置し、
所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記第1及び/又は第2の形状記憶合金線を当該張力調整部材に食い込ませることで前記第1及び/又は第2の形状記憶合金線の張力調整を行う張力調整ステップを具備することを特徴とする駆動装置の製造方法。
First and second shape memory alloy wires, first and second fixed bodies that respectively hold at least one ends of the first and second shape memory alloy wires, and the first and second shape memory alloys The first shape memory alloy wire moves in the first direction by performing a shape recovery operation, and the second shape memory alloy wire performs the shape recovery operation. A movable body capable of moving in a second direction different from the direction, and the first and second shape memory alloy wires antagonize so that each has a predetermined tension. A manufacturing method of a drive device, comprising:
A tension adjusting member for adjusting the tension of the first and / or second shape memory alloy wire is provided at a predetermined position so as to have a contact portion in contact with the first and / or second shape memory alloy wire. Place and
The tension adjusting member is heated and softened by a predetermined heating means, and the first and / or second shape memory alloy wires are bitten into the tension adjusting member according to a predetermined tension adjustment value at the contact portion. A drive device manufacturing method comprising a tension adjusting step for adjusting the tension of the first and / or second shape memory alloy wire.
形状記憶合金線と、線状部を備え前記形状記憶合金線に所定の張力を与える補助部材と、前記形状記憶合金線の少なくとも一端を保持する第1の固定体と、前記補助部材の一端を保持する第2の固定体と、前記形状記憶合金線及び前記補助部材の線状部がそれぞれ架設され該形状記憶合金線が形状回復動作を行うことで前記固定体に対して相対的に移動可能とされた可動体とを備える駆動装置の製造方法であって、
前記形状記憶合金線及び/又は前記補助部材の張力を調整するための張力調整部材を、前記形状記憶合金線及び/又は前記補助部材の線状部と接する接触部を有するように所定の箇所に配置し、
所定の加熱手段により前記張力調整部材を加熱軟化させ、前記接触部において所定の張力調整値に応じて前記形状記憶合金線及び/又は前記補助部材の線状部を当該張力調整部材に食い込ませることで前記形状記憶合金線及び/又は前記補助部材の線状部の張力調整を行う張力調整ステップを具備することを特徴とする駆動装置の製造方法。
A shape memory alloy wire, an auxiliary member that includes a linear portion and applies a predetermined tension to the shape memory alloy wire, a first fixed body that holds at least one end of the shape memory alloy wire, and one end of the auxiliary member. The second fixed body to be held, the shape memory alloy wire, and the linear portions of the auxiliary member are respectively installed, and the shape memory alloy wire can move relative to the fixed body by performing a shape recovery operation. A method of manufacturing a drive device comprising a movable body,
A tension adjusting member for adjusting the tension of the shape memory alloy wire and / or the auxiliary member is provided at a predetermined position so as to have a contact portion in contact with the shape memory alloy wire and / or the linear portion of the auxiliary member. Place and
The tension adjusting member is heated and softened by a predetermined heating means, and the shape memory alloy wire and / or the linear portion of the auxiliary member is bitten into the tension adjusting member according to a predetermined tension adjustment value at the contact portion. And a tension adjusting step for adjusting the tension of the shape memory alloy wire and / or the linear portion of the auxiliary member.
前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段としてレーザー光照射手段が用いられ、
前記レーザー光照射手段から発せられるレーザー光を前記張力調整部材の接触部に照射することで、前記接触部を加熱軟化させることを特徴とする請求項12〜14のいずれかに記載の駆動装置の製造方法。
The tension adjusting member is made of a thermoplastic resin, laser light irradiation means is used as the heating means,
The drive device according to any one of claims 12 to 14, wherein the contact portion is heated and softened by irradiating the contact portion of the tension adjusting member with laser light emitted from the laser light irradiation means. Production method.
前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段として熱線若しくは熱風発生手段が用いられ、
前記熱線若しくは熱風発生手段から発せられる熱線若しくは熱風により、前記張力調整部材を加熱軟化させることを特徴とする請求項12〜14のいずれかに記載の駆動装置の製造方法。
The tension adjusting member is made of a thermoplastic resin, and a hot wire or hot air generating means is used as the heating means,
15. The method for manufacturing a driving device according to claim 12, wherein the tension adjusting member is heated and softened by a hot wire or hot air emitted from the hot wire or hot air generating means.
前記張力調整部材が熱可塑性樹脂からなり、前記加熱手段として前記形状記憶合金線への通電加熱手段が用いられ、
前記通電加熱手段による通電によって前記形状記憶合金線が発するジュール熱により、前記張力調整部材の接触部を加熱軟化させることを特徴とする請求項12〜14のいずれかに記載の駆動装置の製造方法。
The tension adjusting member is made of a thermoplastic resin, and the heating means is an energization heating means to the shape memory alloy wire,
The method for manufacturing a driving device according to claim 12, wherein the contact portion of the tension adjusting member is heated and softened by Joule heat generated by the shape memory alloy wire when energized by the energization heating unit. .
前記張力調整部材を前記加熱手段にて加熱軟化させるに際し、
前記形状記憶合金線に振動を与えると共にその振動数を検出することで、当該形状記憶合金線の張力をモニタしつつ加熱軟化させることを特徴とする請求項12〜17のいずれかに記載の駆動装置の製造方法。
In softening the tension adjusting member by the heating means,
The drive according to any one of claims 12 to 17, wherein the shape memory alloy wire is softened by heating while applying vibration to the shape memory alloy wire and detecting the frequency thereof. Device manufacturing method.
JP2005280084A 2005-09-27 2005-09-27 Drive device and its manufacturing method Pending JP2007092556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280084A JP2007092556A (en) 2005-09-27 2005-09-27 Drive device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280084A JP2007092556A (en) 2005-09-27 2005-09-27 Drive device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007092556A true JP2007092556A (en) 2007-04-12

Family

ID=37978574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280084A Pending JP2007092556A (en) 2005-09-27 2005-09-27 Drive device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007092556A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049157A (en) * 2008-08-25 2010-03-04 Konica Minolta Opto Inc Stress adjuster for shape memory alloy
JP2010054211A (en) * 2008-08-26 2010-03-11 Konica Minolta Opto Inc Inspection device and inspection method
JPWO2012023605A1 (en) * 2010-08-20 2013-10-28 株式会社青電舎 Shock-driven actuator
WO2015115129A1 (en) * 2014-01-28 2015-08-06 株式会社 村田製作所 Drive device
US20170158173A1 (en) * 2014-09-02 2017-06-08 Murata Manufacturing Co., Ltd. Driving device
JP6284110B1 (en) * 2017-03-03 2018-02-28 国立大学法人大阪大学 Repeater device connectable to flexible endoscope and endoscope system using the same
JP2018514679A (en) * 2015-03-06 2018-06-07 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated Shape memory alloy wire mounting structure for suspension assembly
WO2018173743A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device, production method therefor, and control method therefor
KR20200052698A (en) * 2018-11-07 2020-05-15 국방과학연구소 Hybrid drive device
US10775638B2 (en) 2014-12-02 2020-09-15 Hutchinson Technology Incorporated Ball-bearing retainers
JP2021071494A (en) * 2019-10-29 2021-05-06 日本電産サンキョー株式会社 Optical unit with shake correction function
JP2021071495A (en) * 2019-10-29 2021-05-06 日本電産サンキョー株式会社 Optical unit with shake correction function
US11409070B2 (en) 2016-06-09 2022-08-09 Hutchinson Technology Incorporated Shape memory alloy wire attachment structures with adhesive for a suspension assembly

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049157A (en) * 2008-08-25 2010-03-04 Konica Minolta Opto Inc Stress adjuster for shape memory alloy
JP2010054211A (en) * 2008-08-26 2010-03-11 Konica Minolta Opto Inc Inspection device and inspection method
JP5878869B2 (en) * 2010-08-20 2016-03-08 株式会社青電舎 Shock-driven actuator
JPWO2012023605A1 (en) * 2010-08-20 2013-10-28 株式会社青電舎 Shock-driven actuator
WO2015115129A1 (en) * 2014-01-28 2015-08-06 株式会社 村田製作所 Drive device
JPWO2015115129A1 (en) * 2014-01-28 2017-03-23 株式会社村田製作所 Drive device
US20170158173A1 (en) * 2014-09-02 2017-06-08 Murata Manufacturing Co., Ltd. Driving device
US11073702B2 (en) 2014-12-02 2021-07-27 Hutchinson Technology Incorporated Camera lens suspension with limiter
US11635631B2 (en) 2014-12-02 2023-04-25 Hutchinson Technology Incorporated Integrated camera lens suspension
US10775638B2 (en) 2014-12-02 2020-09-15 Hutchinson Technology Incorporated Ball-bearing retainers
US10969602B2 (en) 2014-12-02 2021-04-06 Hutchinson Technology Incorporated Integrated camera lens suspension
JP2018514679A (en) * 2015-03-06 2018-06-07 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated Shape memory alloy wire mounting structure for suspension assembly
US11782286B2 (en) 2015-03-06 2023-10-10 Hutchinson Technology Incorporated Shape memory alloy wire attachment structures for a suspension assembly
JP7185400B2 (en) 2015-03-06 2022-12-07 ハッチンソン テクノロジー インコーポレイテッド Shape memory alloy wire mounting structure for suspension assembly
US11409070B2 (en) 2016-06-09 2022-08-09 Hutchinson Technology Incorporated Shape memory alloy wire attachment structures with adhesive for a suspension assembly
JP6284110B1 (en) * 2017-03-03 2018-02-28 国立大学法人大阪大学 Repeater device connectable to flexible endoscope and endoscope system using the same
WO2018159814A1 (en) * 2017-03-03 2018-09-07 国立大学法人大阪大学 Relay apparatus connectable to flexible endoscope, and endoscope system using same
JP2018143461A (en) * 2017-03-03 2018-09-20 国立大学法人大阪大学 Relay device connectable to soft endoscope, and endoscope system using the same
JP2018161010A (en) * 2017-03-23 2018-10-11 株式会社デンソー Movable device, manufacturing method of movable device, and control method of movable device
WO2018173743A1 (en) * 2017-03-23 2018-09-27 株式会社デンソー Movable device, production method therefor, and control method therefor
KR102113216B1 (en) * 2018-11-07 2020-05-20 국방과학연구소 Hybrid drive device
KR20200052698A (en) * 2018-11-07 2020-05-15 국방과학연구소 Hybrid drive device
US11708820B2 (en) 2018-11-07 2023-07-25 Agency For Defense Development Hybrid drive device
JP2021071495A (en) * 2019-10-29 2021-05-06 日本電産サンキョー株式会社 Optical unit with shake correction function
JP2021071494A (en) * 2019-10-29 2021-05-06 日本電産サンキョー株式会社 Optical unit with shake correction function
JP7376313B2 (en) 2019-10-29 2023-11-08 ニデックインスツルメンツ株式会社 Optical unit with shake correction function

Similar Documents

Publication Publication Date Title
JP2007092556A (en) Drive device and its manufacturing method
JP2007046561A (en) Driving device using shape-memory alloy and method for manufacturing shape-memory alloy used in driving device
US7614228B2 (en) System and method of manufacturing actuator
JP5250544B2 (en) Camera lens drive device
JP5194622B2 (en) Drive mechanism, drive device, and lens drive device
EP1914422A1 (en) Drive device, lens barrel, imaging device, lens drive method, and method of producing shape memory alloy
JP5126362B2 (en) Lens drive device
JP4539784B2 (en) Shape memory alloy drive unit
JP4862703B2 (en) DRIVE DEVICE, DRIVE MECHANISM, AND IMAGING DEVICE
JP2007139862A (en) Lens driving mechanism
JP2009229781A (en) Drive mechanism and drive device
US20100293940A1 (en) Drive mechanism and drive device
JP5029260B2 (en) Drive device
JP2010532276A (en) MEMS device having bidirectional element
WO2011111686A1 (en) Driving mechanism, driving device, and method of manufacturing driving device
WO2015005056A1 (en) Imaging device
JP5321132B2 (en) Driving device and lens driving device
JP5035192B2 (en) Drive mechanism, drive device
WO2011145463A1 (en) Apparatus and method for driving actuator
WO2011108209A1 (en) Position control device, position control method, driving device and imaging device
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
JP2008276750A (en) Position controller, drive unit, and imaging device
JPH0622903A (en) Speedily deformable piezoelectric actuator
JP2006337533A (en) Method for manufacturing driving device and driving device
JP2013114028A (en) Driving device