JP2007092091A - Hard film coated sintered member, and its manufacturing method - Google Patents

Hard film coated sintered member, and its manufacturing method Download PDF

Info

Publication number
JP2007092091A
JP2007092091A JP2005279068A JP2005279068A JP2007092091A JP 2007092091 A JP2007092091 A JP 2007092091A JP 2005279068 A JP2005279068 A JP 2005279068A JP 2005279068 A JP2005279068 A JP 2005279068A JP 2007092091 A JP2007092091 A JP 2007092091A
Authority
JP
Japan
Prior art keywords
film
hard film
coated
hard
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279068A
Other languages
Japanese (ja)
Inventor
Toshiaki Ito
俊朗 伊藤
Katsuji Uchimura
内村  勝次
Kimitaka Saka
公恭 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2005279068A priority Critical patent/JP2007092091A/en
Publication of JP2007092091A publication Critical patent/JP2007092091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film coated sintered member capable of realizing a tough hard film coated on a base material formed of a sintered body to prolong the lifetime. <P>SOLUTION: Any one of a ceramic film, a BCN-based super-hard material film, and a mixed film of metal and ceramic is coated on a surface of a base material formed of the sintered body, and has a dislocation structure having the dislocation density of the uniformly distributed, straight dislocation being 1×10<SP>4</SP>to 9×10<SP>10</SP>cm<SP>-2</SP>in a range of tens of μm or under from the interface of the base material formed of the sintered body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、硬質膜被覆焼結部材およびその製造方法に係り、より詳しくは、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材およびその製造方法に関する。 The present invention relates to a hard film-coated sintered member and a method for producing the same, and more specifically, a hard film having a high hardness is coated on the surface of a sintered substrate such as cemented carbide, cermet or ceramic sintered body. And a method for manufacturing the same.

従来、上述の焼結体製基材の表面に、窒化チタン(TiN)、炭窒化チタン(TiCN)、炭化チタン(TiC)、窒化クロム(CrN)、窒化アルミチタン(TiAlN)、酸化アルミニウム(Al23)、ダイヤモンドライクカーボン(DLC)等の硬質膜を、化学蒸着法(以下、CVD法と略称する)、物理蒸着法(以下、PVD法と略称する)あるいはプラズマCVD法などにより被覆して成る硬質膜被覆焼結部材は、硬質膜の耐摩耗性、摺動特性、装飾性、耐食性、耐熱性など各種の特性に基づき、切削工具,耐摩耗工具,金型、自動車のエンジン部品、軸受摺動部材等の機械関連部品や、耐食性部品、ガスタービンブレード等の耐熱性部品や、ハードディスク、磁気ヘッド等の電気部品や、ゴルフヘッド等のスポーツ用部品として幅広く活用されている。 Conventionally, titanium nitride (TiN), titanium carbonitride (TiCN), titanium carbide (TiC), chromium nitride (CrN), aluminum titanium nitride (TiAlN), aluminum oxide (Al 2 O 3 ), diamond-like carbon (DLC) or other hard film is coated by chemical vapor deposition (hereinafter abbreviated as CVD), physical vapor deposition (hereinafter abbreviated as PVD) or plasma CVD. Based on various characteristics such as wear resistance, sliding characteristics, decoration, corrosion resistance, and heat resistance of hard films, the hard film coated sintered member consists of cutting tools, wear resistant tools, molds, automotive engine parts, Machine-related parts such as bearing sliding members, corrosion-resistant parts, heat-resistant parts such as gas turbine blades, electrical parts such as hard disks and magnetic heads, and sports parts such as golf heads It has been widely used.

ところで、上述の硬質膜被覆焼結部材を特に機械関連部品として活用する場合には、硬質膜自体が脆弱であるうえに、焼結体製基材と硬質膜との密着性に課題があることもあって、硬質膜に一度微小損傷が発生すると、その硬質膜の焼結体製基材からの剥離が急速に進行し、その結果、機械関連部品は、急激に摩耗して寿命が低下するという問題があった。 By the way, especially when utilizing the above-mentioned hard film coated sintered member as a machine-related part, the hard film itself is fragile and there is a problem in the adhesion between the sintered body base material and the hard film. For this reason, once micro damage occurs in the hard film, the hard film is rapidly peeled off from the sintered base material, and as a result, machine-related parts are rapidly worn and their life is shortened. There was a problem.

そのため、従来は、超硬合金基材の表面に硬質層を被覆したのちにショットを投射して耐摩耗特性および耐欠損性を向上させたり、超硬合金部材の表面に硬質層を被覆したのちに粒径10〜1000μmの金属製、ガラス製またはセラミック製のショットを、投射速度140〜500m/sで投射して耐欠損性、耐摩耗性を向上させたりしている。
特開平2−254144号公報 特許3232778号公報
Therefore, conventionally, after coating a hard layer on the surface of a cemented carbide substrate, a shot is projected to improve wear resistance and fracture resistance, or after coating the surface of a cemented carbide member with a hard layer. A metal, glass or ceramic shot having a particle size of 10 to 1000 μm is projected at a projection speed of 140 to 500 m / s to improve fracture resistance and wear resistance.
JP-A-2-254144 Japanese Patent No. 3232778

しかし、このように構成された従来の超硬合金基材における硬質膜の強化方法では、破壊靱性、耐摩耗性、疲労強度、耐熱衝撃性、耐熱疲労性あるいは摺動特性について十分なものを得ることができず、まだ寿命が短いなどの問題があった。   However, the conventional method for strengthening a hard film in a cemented carbide base material configured as described above can provide sufficient fracture toughness, wear resistance, fatigue strength, thermal shock resistance, thermal fatigue resistance, or sliding characteristics. There was a problem that the service life was still short.

本発明は、上記の事情に鑑みてなされたもので、その目的は、焼結体製基材に被覆した硬質膜を強靭にしてその寿命を延ばすようにした硬質膜被覆焼結部材およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to harden a hard film coated on a sintered body base material and to extend its life, and to manufacture the same. It is to provide a method.

本発明者らは、硬質膜被覆焼結部材について鋭意研究した結果、硬質膜被覆焼結部材の破壊靱性、耐摩耗性、疲労強度、耐熱衝撃性、耐熱疲労性または摺動特性を向上させるためには、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、化学蒸着法(CVD法)、物理蒸着法(PVD法)またはプラズマCVD法により形成されたセラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかを、硬質膜として焼結体製基材の表面に被覆したのち、硬質膜を被覆した焼結体製基材に、硬度が硬質膜のそれよりも低くかつ粒径が10〜100μmである球状の噴射材を、所定の噴射条件で噴射して前記硬質膜―焼結体製基材界面の基材側に転位を形成させる方法が、非常に有効であることを見出した。
そして、こうして得た硬質膜被覆焼結部材は、均一に分布した直線状の転位の転位密度が1×10〜9×1010cm-2である転位組織を、前記焼結体製基材界面から数10μm以下の範囲で生成されていた。
As a result of intensive studies on the hard film-coated sintered member, the present inventors have improved the fracture toughness, wear resistance, fatigue strength, thermal shock resistance, thermal fatigue resistance or sliding characteristics of the hard film-coated sintered member. The ceramic film formed on the surface of a substrate made of a sintered body such as cemented carbide, cermet or ceramic sintered body by chemical vapor deposition method (CVD method), physical vapor deposition method (PVD method) or plasma CVD method After coating the surface of the sintered base material as a hard film, either a BCN-based ultra-hard material film or a metal / ceramic mixture film, the hardness of the sintered base material coated with the hard film is A spherical injection material having a particle size of 10 to 100 μm lower than that of the hard film is injected under predetermined injection conditions to form dislocations on the substrate side of the hard film-sintered substrate interface. We have found that the method is very effective.
The hard film-coated sintered member thus obtained has a dislocation structure in which the dislocation density of uniformly distributed linear dislocations is 1 × 10 4 to 9 × 10 10 cm −2. It was generated in the range of several tens of μm or less from the interface.

上記の目的を達成するために請求項1の発明における硬質膜被覆焼結部材は、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材であって、セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかが前記硬質膜として前記焼結体製基材の表面に被覆され、かつ、均一に分布した直線状の転位の転位密度が1×10〜9×1010cm-2である転位組織を、前記焼結体製基材界面から数10μm以下の範囲で有していることを特徴とする。 In order to achieve the above object, the hard film-coated sintered member according to the first aspect of the present invention provides a hard film with a high hardness on the surface of a substrate made of a sintered body such as cemented carbide, cermet or ceramic sintered body. A hard film-coated sintered member formed by coating, wherein a ceramic film, a BCN ultra-hard material film, or a mixed film of metal and ceramic is coated on the surface of the sintered body substrate as the hard film. And having a dislocation structure in which the dislocation density of uniformly distributed linear dislocations is 1 × 10 4 to 9 × 10 10 cm −2 within a range of several tens of μm or less from the base material interface of the sintered body. It is characterized by.

また、請求項2の発明における硬質膜被覆焼結部材の製造方法は、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材を製造する方法であって、前記焼結体製基材の表面に、セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかを、化学蒸着法(CVD法)、物理蒸着法(PVD法)またはプラズマCVD法により前記硬質膜として被覆し、前記硬質膜を被覆した前記焼結体製基材に、硬度が前記硬質膜のそれよりも低くかつ粒径が10〜100μmである球状の噴射材を所定の噴射条件で噴射して前記硬質膜−焼結体製基材界面の基材側に転位を形成させて膜密着強度を改善し、これにより、破壊靭性、耐摩耗性、疲労強度、耐熱衝撃性、耐熱疲労性または摺動特性を向上させて寿命を延ばすことを特徴とする。   According to a second aspect of the present invention, there is provided a method for producing a hard film-coated sintered member comprising: a hard substrate having a high hardness is coated on a surface of a substrate made of a sintered body such as cemented carbide, cermet or ceramic sintered body. A method of producing a hard film-coated sintered member comprising a ceramic film, a BCN-based ultra-hard material film, a metal-ceramic mixture film on the surface of the sintered base material, and a chemical vapor deposition method. (CVD method), physical vapor deposition method (PVD method) or plasma CVD method coated as the hard film, the sintered body coated with the hard film, the hardness is lower than that of the hard film and A spherical propellant having a particle size of 10 to 100 μm is sprayed under predetermined spraying conditions to form dislocations on the substrate side of the hard film-sintered substrate interface, thereby improving the film adhesion strength. Fracture toughness, wear resistance, fatigue strength, thermal shock resistance, To improve the fatigue resistance or sliding characteristics, characterized in that to extend the life.

なお、本発明における硬質膜は、窒化チタン(TiN)、炭窒化チタン(TiCN)、炭化チタン(TiC)、窒化クロム(CrN)、窒化アルミチタン(TiAlN)、酸化アルミニウム(Al23)、ダイヤモンドライクカーボン(DLC)等の硬質物質またはこの硬質物質を含む混合物で形成された1種の単層または2層以上の積層で成るものである。 The hard film in the present invention includes titanium nitride (TiN), titanium carbonitride (TiCN), titanium carbide (TiC), chromium nitride (CrN), aluminum titanium nitride (TiAlN), aluminum oxide (Al 2 O 3 ), It consists of one kind of single layer or a laminate of two or more layers formed of a hard material such as diamond-like carbon (DLC) or a mixture containing this hard material.

またなお、本発明における硬質膜被覆焼結部材は、均一に分布した直線状の転位の転位密度が1×10〜9×1010cm-2である転位組織を、前記焼結体製基材界面から数10μm以下の範囲で有している。この転位密度は、1×10〜9×1010cm-2が望ましく、1×10〜9×10cm-2が好適である。転位密度が1×10cm-2未満では、硬質膜の強度および靭性に一段の向上効果が得られず、また9×1010cm-2を超えると応力集中によって硬質膜が破壊し易くなり、硬質膜の高靭性を保持することができないうえに硬質膜の剥離や破損も生じる。
ただし、前記転位密度は透過型電子顕微鏡による測定値を示す。
In addition, the hard film-coated sintered member of the present invention has a dislocation structure in which the dislocation density of uniformly distributed linear dislocations is 1 × 10 4 to 9 × 10 10 cm −2. It has a range of several tens of μm or less from the material interface. The dislocation density is preferably 1 × 10 4 to 9 × 10 10 cm −2 , and preferably 1 × 10 5 to 9 × 10 9 cm −2 . If the dislocation density is less than 1 × 10 4 cm −2 , no further improvement in the strength and toughness of the hard film can be obtained, and if it exceeds 9 × 10 10 cm −2 , the hard film tends to break due to stress concentration. In addition, the high toughness of the hard film cannot be maintained, and the hard film is peeled off or damaged.
However, the dislocation density is a value measured by a transmission electron microscope.

またなお、本発明における噴射材は、形が出来得るだけ真球に近いものが好ましく、しかも、硬質膜よりも硬度の低いセラミックス製のものが特に好適である。そして、噴射材の粒径としては、数μm〜500μmが好ましく、特に10〜100μmが好適である。具体的な噴射材としては、ジルコン、ムライト、ジルコニア、アルミナ、窒化ケイ素、炭化ケイ素などが挙げられる。 In addition, the injection material in the present invention is preferably as close to a true sphere as possible, and a ceramic material having a lower hardness than the hard film is particularly preferable. And as a particle size of an injection material, several micrometers-500 micrometers are preferable, and 10-100 micrometers is especially suitable. Specific examples of the propellant include zircon, mullite, zirconia, alumina, silicon nitride, and silicon carbide.

またなお、本発明における噴射材の噴射速度は20〜150m/sが好適である。20m/s未満では硬質膜の強靭性が得られず、また150m/sを超えると硬質膜のチッピングが顕著となり、また硬質膜の剥離が発生する。
またなお、本発明における噴射密度は0.03〜100g/cmが好適である。0.03g/cm未満では硬質膜の強靭性が得られず、また100g/cmを超えると硬質膜のチッピングが顕著となり、また硬質膜の剥離が発生する。
またなお、本発明本における噴射時間は0.1〜20秒/cmが好適である。0.1秒/cm未満では硬質膜の強靭性が得られず、また20秒/cmを超えると硬質膜のチッピングが顕著となり、また硬質膜の剥離が発生する。
In addition, the jetting speed of the propellant in the present invention is preferably 20 to 150 m / s. If it is less than 20 m / s, the toughness of the hard film cannot be obtained, and if it exceeds 150 m / s, chipping of the hard film becomes remarkable and peeling of the hard film occurs.
In addition, the spray density in the present invention is preferably 0.03 to 100 g / cm 2 . If it is less than 0.03 g / cm 2 , the toughness of the hard film cannot be obtained, and if it exceeds 100 g / cm 2 , chipping of the hard film becomes significant, and peeling of the hard film occurs.
In addition, the jetting time in the present invention is preferably 0.1 to 20 seconds / cm 2 . If it is less than 0.1 sec / cm 2 , the toughness of the hard film cannot be obtained, and if it exceeds 20 sec / cm 2 , the chipping of the hard film becomes significant, and peeling of the hard film occurs.

以上の説明から明らかなように請求項1の発明は、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材であって、セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかが前記硬質膜として前記焼結体製基材の表面に被覆され、かつ、均一に分布した直線状の転位の転位密度が1×10〜9×1010cm-2である転位組織を前記焼結体製基材界面から数10μm以下の範囲で有しているから、従来のこの種の硬質膜被覆焼結部材と比較して硬質膜が強靭になり、寿命が大幅に延びるなどの優れた実用的効果を奏する。 As apparent from the above description, the invention of claim 1 is a hard film coating obtained by coating a surface of a sintered body such as cemented carbide, cermet or ceramic sintered body with a hard film having high hardness. It is a sintered member, and any one of a ceramic film, a BCN-based ultra-hard material film, and a mixed film of metal and ceramic is coated on the surface of the sintered base as the hard film and is uniformly distributed. This type of conventional dislocation structure having a dislocation density of linear dislocations of 1 × 10 4 to 9 × 10 10 cm −2 is within a range of several tens of μm or less from the base material interface of the sintered body. Compared with the hard film-coated sintered member, the hard film becomes tough and has excellent practical effects such as a significant increase in life.

また、請求項2の発明は、超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材を製造する方法であって、前記焼結体製基材の表面に、セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかを、化学蒸着法(CVD法)、物理蒸着法(PVD法)またはプラズマCVD法により前記硬質膜として被覆し、前記硬質膜を被覆した前記焼結体製基材に、硬度が前記硬質膜のそれよりも低くかつ粒径が10〜100μmである球状の噴射材を所定の噴射条件で噴射して前記硬質膜−焼結体製基材界面の基材側に転位を形成させて膜密着強度を改善し、これにより、破壊靭性、耐摩耗性、疲労強度、耐熱衝撃性、耐熱疲労性または摺動特性を向上させて寿命を延ばすから、硬質膜だけでなく、硬質膜−焼結体製基材界面の基材側の破壊靱性が格段に向上し、さらに、焼結体製基材の界面が硬質膜と一緒に塑性変形をして硬質膜と基材との密着強度が強化されるため、硬質膜被覆焼結部材の寿命が大幅に延びるなどの優れた実用的効果を奏する。 According to a second aspect of the present invention, there is provided a hard film-coated sintered member obtained by coating a surface of a sintered body such as cemented carbide, cermet or ceramic sintered body with a hard film having a high hardness. A ceramic vapor deposition method (CVD method), a physical vapor deposition method (PVD), or any one of a ceramic film, a BCN ultra-hard material film, and a metal / ceramic mixture film is formed on the surface of the substrate made of the sintered body. Method) or plasma CVD method as the hard film, and the sintered base material coated with the hard film has a spherical shape having a hardness lower than that of the hard film and a particle size of 10 to 100 μm. The injection material is injected under predetermined injection conditions to form dislocations on the substrate side of the hard film-sintered substrate interface to improve the film adhesion strength, thereby providing fracture toughness, wear resistance, fatigue Improved lifespan by improving strength, thermal shock resistance, thermal fatigue resistance or sliding characteristics Therefore, not only the hard film but also the fracture toughness on the base side of the hard film-sintered base material interface is greatly improved, and the interface of the sintered base material is plastic together with the hard film. Since the adhesive strength between the hard film and the base material is enhanced by deformation, excellent practical effects such as a significant increase in the life of the hard film-coated sintered member are obtained.

なお、本発明を適用して製造した硬質膜被覆焼結部材の特性は、以下に示すようにして調べた。まず、TEM観察用の薄膜試料は集束イオンビーム装置(Hitachi F−2000)で作製し、透過型電子顕微鏡(TEM)、日本電子(株)製JEOL−200CX(加圧電圧200kV)により組織観察を行った。転位密度は、単位体積あたりの転位の長さを求めることによって得られ、具体的には、(1)薄膜試料の厚さを測定、(2)転位密度を測定する場所のTEM観察像を得る、(3)TEM観察像から単位面積に含まれる転位の長さを測定する、という過程を経て転位密度を測定した。 The characteristics of the hard film coated sintered member produced by applying the present invention were examined as follows. First, a thin film sample for TEM observation was prepared with a focused ion beam device (Hitachi F-2000), and the structure was observed with a transmission electron microscope (TEM) and JEOL-200CX (pressurized voltage 200 kV) manufactured by JEOL Ltd. went. The dislocation density is obtained by calculating the length of dislocation per unit volume. Specifically, (1) the thickness of the thin film sample is measured, and (2) a TEM observation image of the place where the dislocation density is measured is obtained. (3) The dislocation density was measured through a process of measuring the length of dislocations contained in the unit area from the TEM observation image.

またなお、本発明を適用して製造した硬質膜被覆焼結部材の特性は、以下に示すようにして評価した。すなわち、JIS R 1607で規定する破壊靱性試験法(IF法)により、硬質膜被覆焼結部材の試験片の表面を、#600,#1000,#3000などの各種のダイヤ研磨紙により研磨したのち、1μmおよび1/4μmのダイヤモンド懸濁液で順次研磨処理し、続いて、1kgf、2kgf、5kgf、10kgf、30kgfおよび50kgfから試験片の材質に基づき選択した最適値の押込み荷重でビッカース圧子を試験片の表面に15秒間押し込み、その後、ビッカース圧子の押込みにより形成された圧痕の4角から発生する亀裂長さを測定する。次いで、α=Ca/Cの式により硬質膜の強靭化効果を得た。
ここで、αは亀裂長さ減少率(−)、Cは強靭化前の亀裂長さ(μm)、Caは強靭化後の亀裂長さ(μm)である。αの値が1より小さいほど強靭化効果が大きいことを示している。
In addition, the characteristics of the hard film coated sintered member produced by applying the present invention were evaluated as follows. That is, after the surface of the test piece of the hard film-coated sintered member was polished with various diamond polishing papers such as # 600, # 1000, and # 3000 by the fracture toughness test method (IF method) specified in JIS R 1607 Sequential polishing with 1 μm and 1/4 μm diamond suspensions, followed by testing the Vickers indenter with an optimal indentation load selected from 1 kgf, 2 kgf, 5 kgf, 10 kgf, 30 kgf, and 50 kgf based on the specimen material After pressing into the surface of the piece for 15 seconds, the crack length generated from the four corners of the indentation formed by the indentation of the Vickers indenter is measured. Then, to obtain a toughening effect of the hard film by the equation of α = Ca / C b.
Here, α is the crack length reduction rate (−), C b is the crack length (μm) before toughening, and C a is the crack length (μm) after toughening. It shows that the toughening effect is larger as the value of α is smaller than 1.

焼結体製基材としての超硬合金K10で製作した直径10mm、高さ10mmの円柱状の試験片の端面を研磨処理して表面粗さ0.2S以下に鏡面仕上げしたのち、その仕上げ面に、PVD法およびCVD法により、TiN(窒化ケイ素)膜、TICN(炭窒化チタン)膜、TIAlN(窒化アルミチタン)膜、CrN(窒化クロム)膜、Al2O3(二酸化アルミニウム)膜などの厚さ5μmの単層硬質膜をそれぞれ被覆し、硬質膜を被覆した試料表面に、平均粒子径100μm、50μm、20のμmなどのアルミナ、窒化ケイ素、ジルコンあるいはムライトなどの噴射材を、各種の噴射圧力および各種の噴射速度で垂直方向から所定時間噴射し、続いて、上述の透過型電子顕微鏡により加速電圧200kVの下で、噴射材を噴射した試料表面を観察するとともに観察像をえて、その後、その観察像から単位面積に含まれる転位の長さを測定して転位密度を得る。次いで、噴射材を噴射した試料表面にビッカース圧子を押し込んで圧痕を形成し、続いて、圧痕の4角から発生する亀裂長さ測定する。次いで、上述のα=Ca/Cの式により、試料の強靭化効果を得た。その結果を、表1に示す。
なお、焼結体製基材の組織の結晶内における硬質膜の転位密度が大きいほど亀裂長さ減少率αは小さく、硬質膜被覆焼結部材の破壊靭性が改善される傾向がある。
The end surface of a cylindrical test piece with a diameter of 10 mm and a height of 10 mm made of cemented carbide K10 as a sintered base material is polished to a mirror finish to a surface roughness of 0.2 S or less, and then the finished surface In addition, a TiN (silicon nitride) film, a TICN (titanium carbonitride) film, a TIAlN (aluminum titanium nitride) film, a CrN (chromium nitride) film, an Al 2 O 3 (aluminum dioxide) film, etc. by PVD and CVD methods A single-layer hard film having a thickness of 5 μm is coated, and a spray material such as alumina, silicon nitride, zircon or mullite having an average particle diameter of 100 μm, 50 μm, 20 μm, etc. Inject for a predetermined time from the vertical direction at the injection pressure and various injection speeds, and then observe the sample surface on which the injection material was injected under the accelerating voltage of 200 kV with the transmission electron microscope described above. And give a Rutotomoni observation image, then, obtain the dislocation density by measuring the length of dislocations contained in the unit area from the observed image. Next, a Vickers indenter is pushed into the surface of the sample onto which the spray material has been sprayed to form an indentation, and subsequently, the crack length generated from the four corners of the indentation is measured. Then, by the above equation of α = Ca / C b, to obtain a toughening effect of the sample. The results are shown in Table 1.
Note that the crack length reduction rate α decreases as the dislocation density of the hard film in the crystal of the structure of the sintered body base material increases, and the fracture toughness of the hard film-coated sintered member tends to be improved.

表1から次のことが分かる。本発明を適用した試験片は、いずれも亀裂長さの減少率αが1より小さくなっている。これは、硬質膜と焼結体製基材との界面付近において、精密加工噴射により、硬質膜を介して焼結体製基材中の組織に塑性変形を起こさせ、その組織の結晶内に転位が導入されて、硬質膜および硬質膜直下の焼結体製基材の破壊靭性が改善されたためである。特に実施例6の窒化クロム膜は大幅な強靭化による改善が得られている。 Table 1 shows the following. All the test pieces to which the present invention is applied have a crack length reduction rate α of less than 1. This is because, in the vicinity of the interface between the hard film and the sintered base material, plastic deformation is caused in the structure of the sintered body base material through the hard film by precision machining injection, and in the crystal of the structure. This is because the dislocation was introduced and the fracture toughness of the hard film and the base material made of a sintered body immediately below the hard film was improved. In particular, the chromium nitride film of Example 6 has been improved by significant toughening.

焼結体製基材としての超硬合金K10で製作した試験片の端面を研磨処理して表面粗さ0.2S以下に鏡面仕上げしたのち、その仕上げ面に厚さ3μmのCrN(窒化クロム)膜をPVD法により被覆し、窒化クロム膜を被覆した試料表面に、平均粒子径50μm、硬さ1400HVの窒化ケイ素製噴射材を、噴射速度60m/s、噴射密度10g/cmで垂直方向から噴射し、続いて、窒化クロム膜の超硬合金K10への密着性および窒化クロム膜の耐摩耗性について評価すべく、スクラッチ試験およびボールオンディスク式摩耗試験を行い、その測定結果を表2に示す。 After polishing the end face of the test piece made of cemented carbide K10 as the sintered base material and mirror-finishing it to a surface roughness of 0.2S or less, CrN (chromium nitride) with a thickness of 3 μm on the finished surface A silicon nitride propellant having an average particle diameter of 50 μm and a hardness of 1400 HV is applied to the surface of the sample coated with the PVD method and coated with a chromium nitride film from the vertical direction at an injection speed of 60 m / s and an injection density of 10 g / cm 2. Next, in order to evaluate the adhesion of the chromium nitride film to the cemented carbide K10 and the wear resistance of the chromium nitride film, a scratch test and a ball-on-disk wear test were performed. Show.


表2から次のことが分かる。実施例13では、スクラッチ試験によって窒化クロム膜にクラックの発生する負荷臨界荷重が、比較例4のそれと比較すると約1.4倍大きくなり、また、スクラッチ試験によって窒化クロム膜の全剥離に至る時の負荷臨界荷重も、比較例4のそれと比較すると1・5倍大きくなっている。これは、窒化クロム膜が噴射材の噴射により破壊靭性が向上し、さらに、超硬合金K10の界面が窒化クロムと一緒に塑性変形をして窒化クロムとの接合強度が向上し、かつ、硬質膜と焼結体製基材との界面付近において、精密加工噴射により、硬質膜を介して焼結体製基材中の組織に塑性変形を起こさせ、その組織の結晶内に転位が導入されて、硬質膜および硬質膜直下の焼結体製基材の破壊靭性が改善されたためである。   Table 2 shows the following. In Example 13, the load critical load at which cracks occur in the chromium nitride film by the scratch test is about 1.4 times larger than that in Comparative Example 4, and when the chromium nitride film is completely peeled by the scratch test. The load critical load is also 1.5 times larger than that of Comparative Example 4. This is because the chromium nitride film is improved in fracture toughness by the injection of the spray material, and the interface of the cemented carbide K10 is plastically deformed together with the chromium nitride to improve the bonding strength with the chromium nitride and is hard. In the vicinity of the interface between the film and the sintered compact substrate, precision processing injection causes plastic deformation of the structure in the sintered compact substrate via the hard film, and dislocations are introduced into the crystals of the structure. This is because the fracture toughness of the hard film and the substrate made of a sintered body immediately below the hard film was improved.

また、実施例13においては試験片の摩耗面積が比較例4のそれより約20%小さくなっている。これは、スクラッチ試験結果から明らかなように、実施例13の試験片はクラックの発生および窒化クロム膜の剥離が生じる臨界荷重が比較例4より大きくすることが可能であり、クラックの発生や窒化クロム膜の剥離に起因する摩耗が減少して耐摩耗性が向上したと考えられる。 In Example 13, the wear area of the test piece is about 20% smaller than that of Comparative Example 4. As is clear from the scratch test results, the test piece of Example 13 can have a larger critical load than that of Comparative Example 4 at which cracks are generated and the chromium nitride film is peeled off. It is thought that the wear due to the peeling of the chromium film was reduced and the wear resistance was improved.

なお、スクラッチ試験には直径10mm、高さ10mmの円柱状の試験片を、またボールオンディスク式摩耗試験には縦50mm、横50mm、厚さ8mmの平板状の試験片をそれぞれ使用した。
またなお、スクラッチ試験は、先端半径200μmのダイヤモンド製圧子を、負荷速度200N/minおよびスクラッチ速度10mm/minで荷重して行った。
また、摩耗試験条件は、トライボメーター試験機を用い、直径6.35mmのSiCボールを静止相手材として、負荷荷重10N、回転半径3.0mm、回転速度10.0cm/sで、摩耗面積は60,000回転後の摩耗痕の断面形状を測定することによって算出した。
A cylindrical specimen having a diameter of 10 mm and a height of 10 mm was used for the scratch test, and a flat specimen having a length of 50 mm, a width of 50 mm, and a thickness of 8 mm was used for the ball-on-disk wear test.
The scratch test was performed by loading a diamond indenter having a tip radius of 200 μm at a load speed of 200 N / min and a scratch speed of 10 mm / min.
The wear test conditions were as follows: a tribometer tester using a SiC ball having a diameter of 6.35 mm as a stationary counterpart, a load of 10 N, a rotation radius of 3.0 mm, a rotation speed of 10.0 cm / s, and a wear area of 60 It was calculated by measuring the cross-sectional shape of the wear scar after 1,000 rotations.

硬質膜を被覆した京セラ製のインサートチップ(PVDサーメットPV7020、工具品番;TPMT110308GP)に平均粒子径50μmの窒化ケイ素製噴射材を噴射速度100m/s、噴射密度5g/cmで噴射したものと、窒化ケイ素製噴射材を噴射しないインサートチップとをCNC旋盤にそれぞれ取り付けて、切削速度170 m/min、送り速度0.25 mm/revでクロムモリブデン鋼(SCM415)を切削し、それぞれの寿命を調査した結果、窒化ケイ素製噴射材を噴射したインサートチップは900個のクロムモリブデン鋼を切削することができたが、窒化ケイ素製噴射材を噴射しないインサートチップは300個しか加工することができなかった。窒化ケイ素製噴射材の噴射によりインサートチップの耐摩耗性が向上した。 A silicon nitride injection material having an average particle diameter of 50 μm was injected at an injection speed of 100 m / s and an injection density of 5 g / cm 2 on a Kyocera insert chip (PVD cermet PV7020, tool part number: TPMT110308GP) coated with a hard film. Insert inserts that do not inject silicon nitride injection material on CNC lathes, cut chromium molybdenum steel (SCM415) at a cutting speed of 170 m / min and feed speed of 0.25 mm / rev, and investigate the life of each. As a result, the insert tip injected with the silicon nitride injection material was able to cut 900 chrome molybdenum steels, but only 300 insert tips that were not injected with the silicon nitride injection material could be processed. . The wear resistance of the insert tip was improved by the injection of the silicon nitride injection material.

硬質膜を被覆した不二越製アクアドリルに平均粒子径50μmのアルミナ製噴射材を噴射速度60m/s、噴射密度15g/cmで噴射したものと、アルミナ製噴射材を噴射しない不二越製アクアドリルとを用いて、切削速度80 m/min、送り速度0.24 mm/rev、穴深さ23mm通し孔で、炭素鋼(S53C)に穴あけ加工を行い、それぞれの寿命を調査した結果、アルミナ製噴射材を噴射したドリルは1260個の炭素鋼の穴あけが可能であったが、アルミナ製噴射材を噴射しないドリルは、720個でバリが出始めた。アルミナ製噴射材の噴射によりドリルの寿命が175%延びた。 A Fujikoshi-made aqua drill coated with a hard film and injected with an alumina injection material having an average particle diameter of 50 μm at an injection speed of 60 m / s and an injection density of 15 g / cm 2 ; As a result of drilling in carbon steel (S53C) with a cutting speed of 80 m / min, feed rate of 0.24 mm / rev, and a hole depth of 23 mm, and investigating the life of each, injection of alumina The drill that injected the material was capable of drilling 1260 carbon steels, but 720 drills that did not spray the alumina injection material began to flash. The lifetime of the drill was increased by 175% by the injection of the alumina injection material.

厚さ3μmの窒化チタン膜をPVD法により被覆した超硬V30製のパンチ型用金型に、平均粒子径50μmの窒化ケイ素製噴射材を、噴射速度80m/s、噴射密度30g/cmで噴射したものと、窒化ケイ素製噴射材を噴射しないパンチ型用金型とを用いて直径20mmのキャップ穴形状自動車部品(材質;SCR416)を冷間鍛造しその寿命を比較した結果、窒化ケイ素製噴射材を噴射した金型は、20万ショット以上でも窒化チタン膜は健全であったが、窒化ケイ素製噴射材を噴射しない金型は、1万5000ショットで窒化チタン膜が剥離して破損した。窒化ケイ素製噴射材を噴射すると窒化チタン膜の寿命が13倍以上延びた。 An injection material made of silicon nitride having an average particle diameter of 50 μm is applied to a die for punch die made of carbide V30 coated with a 3 μm thick titanium nitride film by PVD method at an injection speed of 80 m / s and an injection density of 30 g / cm 2 . As a result of cold forging the cap hole-shaped automotive part (material: SCR416) with a diameter of 20mm using the sprayed one and the punch mold that does not inject the silicon nitride propellant, the lifespan was compared. The mold in which the spray material was injected had a healthy titanium nitride film even after 200,000 shots or more, but the mold in which the silicon nitride spray material was not sprayed was damaged by peeling off the titanium nitride film after 15,000 shots. . When the silicon nitride spray material was sprayed, the lifetime of the titanium nitride film was extended 13 times or more.

厚さ3μmのTiCN膜をPVD法により被覆した超硬V30製のダイス型用金型に、平均粒子径100μmのアルミナ製噴射材を、噴射速度80m/s、噴射密度5.0g/cmで噴射したものと、アルミナ製噴射材を噴射しないダイス型用金型とを用いて、直径40mmの継ぎ手自動車部品(材質;SCR416)を冷間鍛造しその寿命を比較した結果、アルミナ製噴射材を噴射した金型は、24万ショット以上でもTiCN膜は健全であったが、アルミナ製噴射材を噴射しない金型は、8万ショットでTiCN膜が剥離した。アルミナ製噴射材を噴射するとTiCN膜の寿命が3倍以上延びた。

An alumina injection material having an average particle diameter of 100 μm is applied to a die die for cemented carbide V30 coated with a 3 μm thick TiCN film by the PVD method at an injection speed of 80 m / s and an injection density of 5.0 g / cm 2 . As a result of cold forging 40 mm diameter joint automobile parts (material: SCR416) using the injected one and a die mold that does not inject the alumina injection material, Although the TiCN film was sound even when the injected mold was 240,000 shots or more, the TiCN film peeled off after 80,000 shots of the mold that did not inject the alumina injection material. When the alumina injection material was injected, the life of the TiCN film was extended by more than three times.

Claims (3)

超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材であって、
セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかが前記硬質膜として前記焼結体製基材の表面に被覆され、かつ、均一に分布した直線状の転位の転位密度が1×10〜9×1010cm-2である転位組織を前記焼結体製基材界面から数10μm以下の範囲で表面に有していることを特徴とする硬質膜被覆焼結部材。
A hard film-coated sintered member formed by coating a surface of a substrate made of a sintered body such as cemented carbide, cermet or ceramic sintered body with a hard film having high hardness,
Dislocation density of linear dislocations in which a ceramic film, a BCN ultra-hard material film, or a metal / ceramic mixture film is coated on the surface of the sintered body substrate as the hard film and distributed uniformly A hard film-coated sintered member having a dislocation structure of 1 × 10 4 to 9 × 10 10 cm −2 on the surface within a range of several tens μm or less from the base material interface of the sintered body .
超硬合金、サーメットまたはセラミックス焼結体などの焼結体製基材の表面に、高硬度の硬質膜を被覆して成る硬質膜被覆焼結部材を製造する方法であって、
前記焼結体製基材の表面に、セラミックス膜、BCN系超硬質材膜、金属とセラミックスの混合物膜のいずれかを、化学蒸着法(CVD法)、物理蒸着法(PVD法)またはプラズマCVD法により前記硬質膜として被覆し、前記硬質膜を被覆した前記焼結体製基材に、硬度が前記硬質膜のそれよりも低くかつ粒径が10〜100μmである球状の噴射材を所定の噴射条件で噴射して前記硬質膜−焼結体製基材界面の基材側に転位を形成させて膜密着強度を改善し、これにより、破壊靭性、耐摩耗性、疲労強度、耐熱衝撃性、耐熱疲労性または摺動特性を向上させて寿命を延ばすことを特徴とする硬質膜被覆焼結部材の製造方法。
A method for producing a hard film-coated sintered member formed by coating a surface of a sintered body such as cemented carbide, cermet or ceramic sintered body with a hard film having high hardness,
Any one of a ceramic film, a BCN-based ultra-hard material film, and a metal / ceramic mixture film is formed on the surface of the sintered body substrate by chemical vapor deposition (CVD), physical vapor deposition (PVD), or plasma CVD. The spherical base material having a hardness lower than that of the hard film and having a particle diameter of 10 to 100 μm is coated on the sintered base material coated with the hard film by the method. Injecting under injection conditions to form dislocations on the substrate side of the hard film-sintered substrate interface to improve film adhesion strength, thereby providing fracture toughness, wear resistance, fatigue strength, thermal shock resistance A method for producing a hard film-coated sintered member, which improves heat fatigue resistance or sliding characteristics and extends the life.
請求項2に記載の硬質膜被覆焼結部材の製造方法において、
前記噴射材の噴射条件は、噴射速度が20〜150m/s、噴射密度が0.03〜100g/cm、噴射時間が0.1〜20秒/cmであることを特徴とする硬質膜被覆焼結部材の製造方法。


In the manufacturing method of the hard film covering sintered member according to claim 2,
The hard film is characterized in that the spraying conditions of the spray material are a spray speed of 20 to 150 m / s, a spray density of 0.03 to 100 g / cm 2 , and a spray time of 0.1 to 20 seconds / cm 2. A method for producing a coated sintered member.


JP2005279068A 2005-09-27 2005-09-27 Hard film coated sintered member, and its manufacturing method Pending JP2007092091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279068A JP2007092091A (en) 2005-09-27 2005-09-27 Hard film coated sintered member, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279068A JP2007092091A (en) 2005-09-27 2005-09-27 Hard film coated sintered member, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007092091A true JP2007092091A (en) 2007-04-12

Family

ID=37978142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279068A Pending JP2007092091A (en) 2005-09-27 2005-09-27 Hard film coated sintered member, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007092091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531090A (en) * 2014-08-08 2017-10-19 ぺムヴィックス コーポレーションFemvix Corp. CVD process chamber parts with aluminum fluoride formation prevention film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254144A (en) * 1989-03-27 1990-10-12 Nippon Steel Corp Manufacture of coated cutting tool having excellent wear resistance and chipping resistance
JPH08118163A (en) * 1994-10-21 1996-05-14 Hitachi Tool Eng Ltd Manufacture of coated hard metal cutting tool
WO2004103615A1 (en) * 2003-05-26 2004-12-02 Japan Science And Technology Agency Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254144A (en) * 1989-03-27 1990-10-12 Nippon Steel Corp Manufacture of coated cutting tool having excellent wear resistance and chipping resistance
JPH08118163A (en) * 1994-10-21 1996-05-14 Hitachi Tool Eng Ltd Manufacture of coated hard metal cutting tool
WO2004103615A1 (en) * 2003-05-26 2004-12-02 Japan Science And Technology Agency Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531090A (en) * 2014-08-08 2017-10-19 ぺムヴィックス コーポレーションFemvix Corp. CVD process chamber parts with aluminum fluoride formation prevention film

Similar Documents

Publication Publication Date Title
Vereschaka et al. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools
CN107636190B (en) Cutting tool with multilayer arc PVD coating
KR102345375B1 (en) clad cutting tool
TW201741075A (en) Structure of cutting edge of machining tool, and surface treatment method for same
JP2002536194A (en) Method of making cutting tool and cutting tool
JP2015006728A (en) Coated cutting tools having platinum group metal concentration gradient and related processes
US8092561B2 (en) Cutting tool
JP6034579B2 (en) Durable coated tool
KR101503128B1 (en) Surface-coated cutting tool
JP2008080352A (en) Hard material coated die for plastic working having excellent durability
Zheng et al. Wear mechanisms of coated tools in high-speed hard turning of high strength steel
JPWO2004103615A1 (en) Surface toughening method of sintered body cutting tool and long-life sintered body cutting tool
JP2012092433A (en) Durable coating tool and method of manufacturing the same
US20060147631A1 (en) Method for making diamond coated substrates, articles made therefrom, and method of drilling
JPH0558065B2 (en)
JP4827204B2 (en) Coated mold for plastic working and manufacturing method thereof
KR940011212B1 (en) Drill bit having a diamond-coated sintered body
JP6569376B2 (en) Carbide tool and manufacturing method thereof
JP2007092091A (en) Hard film coated sintered member, and its manufacturing method
Caicedo et al. TiN [BCN/BN] n/c-BN system improves the surface properties of machining tools used in industrial applications
JP2005224902A (en) Substrate processing method of base material surface, base material having substrate processed surface by this method and product
JP2011127205A (en) Coated die having excellent lubricant adhesiveness and durability, and method for producing the same
KR101130454B1 (en) Coated cemented carbide cutting tools and method for pre-treating and coating to produce cemented carbide cutting tools
Escobar et al. Hafnium and vanadium nitride heterostrutures applied to machining devices
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100524