JP2007091650A - Method for producing polymerizable compound - Google Patents

Method for producing polymerizable compound Download PDF

Info

Publication number
JP2007091650A
JP2007091650A JP2005284097A JP2005284097A JP2007091650A JP 2007091650 A JP2007091650 A JP 2007091650A JP 2005284097 A JP2005284097 A JP 2005284097A JP 2005284097 A JP2005284097 A JP 2005284097A JP 2007091650 A JP2007091650 A JP 2007091650A
Authority
JP
Japan
Prior art keywords
general formula
group
compound represented
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284097A
Other languages
Japanese (ja)
Other versions
JP4929663B2 (en
Inventor
Masanao Hayashi
正直 林
Sadao Takehara
貞夫 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2005284097A priority Critical patent/JP4929663B2/en
Publication of JP2007091650A publication Critical patent/JP2007091650A/en
Application granted granted Critical
Publication of JP4929663B2 publication Critical patent/JP4929663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a side chain-type radically polymerizable compound. <P>SOLUTION: The method for producing the compound represented by general formula (5) by using a compound represented by general formula (1) as a starting material, and introducing substituents to hydroxy groups of the compound in order is provided. (In the formulas, R<SP>1</SP>is an alkyl group; R<SP>2</SP>is an alkyl group which may be substituted; R<SP>3</SP>is H or a methyl group; R<SP>4</SP>and R<SP>5</SP>are each an alkylene group; Y<SP>1</SP>, Y<SP>3</SP>and Y<SP>4</SP>are each a carbonyl group or a single bond; and Y<SP>2</SP>is a single bond or oxygen). The side chain-type radically polymerizable compound can be efficiently produced by the production method. The light scattering type liquid crystal device containing the polymerizable compound as a constituent member is useful as a constituent member of a light-scattering type liquid crystal device because of being driven at a low voltage even in a wide temperature range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は新規重合性化合物の製造方法に関し、更に詳しくは、幅広い温度範囲において低電圧駆動が可能で電気光学特性に優れる光散乱型液晶デバイスの調光層形成材料に好適に使用できる重合性化合物の製造方法に関する。   The present invention relates to a method for producing a novel polymerizable compound, and more specifically, a polymerizable compound that can be suitably used as a light control layer forming material for a light-scattering liquid crystal device that can be driven at a low voltage in a wide temperature range and has excellent electro-optical characteristics. It relates to the manufacturing method.

情報化社会の進展に伴い、情報通信材料の需要がますます高まっている。特に、光散乱型の液晶デバイスは、偏光板が不要なことや視野角依存性が少ないことから、広告板、装飾表示板、時計、コンピューター、プロジェクション、デジタルペーパー、携帯用情報端末、光シャッター、などに用いる液晶表示素子又は光学素子として大きく期待されている。   With the development of the information society, the demand for information and communication materials is increasing. In particular, light-scattering liquid crystal devices do not require polarizing plates and have little viewing angle dependency, so advertising boards, decorative display boards, watches, computers, projections, digital paper, portable information terminals, optical shutters, It is highly expected as a liquid crystal display element or an optical element used for the above.

光散乱型液晶デバイスとして、ラジカル重合性組成物と液晶組成物とからなる調光層形成材料に光照射又は加熱して得られる、ポリマーマトリックスと液晶組成物とからなる調光層を有する液晶デバイスが知られている。
該デバイスには、使用する液晶化合物の種類には左右されず、−20℃から70℃程度の幅広い温度範囲において駆動電圧の変化が小さいこと、且つ、駆動電圧の絶対値は20V以下であることが求められている。特に液晶駆動方式がTFT駆動の場合は10V以下の低電圧化と不純物の除去が不可欠であり、これらの特性を満たすような、重合性化合物の開発が進められており、次の一般式(E)で模式的に表されるような側鎖型ラジカル重合性化合物が開発されている。
A liquid crystal device having a light control layer comprising a polymer matrix and a liquid crystal composition, which is obtained by irradiating or heating a light control layer forming material comprising a radical polymerizable composition and a liquid crystal composition as a light scattering liquid crystal device. It has been known.
The device does not depend on the type of liquid crystal compound used, and the change in drive voltage is small in a wide temperature range of about -20 ° C to 70 ° C, and the absolute value of the drive voltage is 20 V or less. Is required. In particular, when the liquid crystal driving method is TFT driving, it is indispensable to lower the voltage to 10 V or less and to remove impurities, and the development of a polymerizable compound that satisfies these characteristics is in progress, and the following general formula (E Side-chain type radically polymerizable compounds as schematically represented by) have been developed.

Figure 2007091650
(式中、Mcは主鎖を表し、Sc1は側鎖1を表し、Sc2は側鎖2を表すが、Sc1>Sc2であり、Mc及びScは主に炭素原子により構成される。)
当該側鎖型ラジカル重合性化合物の製造は、従来次に示すようなグリシジルエーテルを用いて行われていた(特許文献1及び2参照。)。
Figure 2007091650
(In the formula, Mc represents a main chain, Sc 1 represents a side chain 1, Sc 2 represents a side chain 2, Sc 1 > Sc 2 , and Mc and Sc are mainly composed of carbon atoms. .)
The production of the side chain radically polymerizable compound has heretofore been performed using glycidyl ether as shown below (see Patent Documents 1 and 2).

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表し、R及びYは一般式(4)と同じ意味を表す。)しかしながら、当該製造方法では、原料として用いられたグリシジルエーテルの開環反応時に2級水酸基の他に、1級水酸基を生成する反応由来の不純物を取り除くことが困難であり、液晶表示素子の構成部材として用いることが可能な高純度の側鎖型ラジカル重合性化合物を製造することは困難であった。
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), R 2 and Y 1 represent the same meaning as in general formula (2), and R 5 and Y 4 represent the same meaning as in general formula (4). However, in this production method, it is difficult to remove impurities derived from the reaction that generates primary hydroxyl groups in addition to secondary hydroxyl groups during the ring-opening reaction of glycidyl ether used as a raw material. It was difficult to produce a high-purity side-chain type radical polymerizable compound that can be used as a constituent member.

又、側鎖型ラジカル重合性化合物の製造方法としては、多価水酸基化合物と脂肪酸および、アクリル酸を同時に混合してエステル化反応を行うことによる製造方法が開示されている(特許文献3参照。)。しかしながら、当該引用文献記載の製造方法では目的物以外の構造が多量に生成してしまい、最終生成物に不純物が混入するため重合性液晶組成物として必要とされる特性を得ることがでず、液晶デバイスを構成した際の品質に大きなばらつきを生じる問題があった。特にTFT駆動用の光散乱型液晶デバイスにおいては不純物の混入を最小限に抑える必要があり、製造工程において目的化合物以外の類似構造体、極性不純物等は取り除く必要がある。しかしながら、当該引用文献記載の製造方法により得られた混合物から目的とする化合物のみを効率よく取り出すことは困難であり、製造効率を大幅に低下させる問題があった。
このような状況下、側鎖型ラジカル重合性化合物を効率的に製造する方法として、次に示すようなオキセタン誘導体を用いる方法が開発された(特許文献4参照。)。
Moreover, as a manufacturing method of a side chain type radically polymerizable compound, the manufacturing method by mixing a polyhydric hydroxyl compound, a fatty acid, and acrylic acid simultaneously, and performing esterification is disclosed (refer patent document 3). ). However, in the production method described in the cited document, a structure other than the target product is produced in a large amount, and impurities required to be mixed into the final product cannot obtain the characteristics required as a polymerizable liquid crystal composition. There has been a problem that the quality of the liquid crystal device varies greatly. In particular, in a light-scattering liquid crystal device for driving a TFT, it is necessary to minimize the mixing of impurities, and it is necessary to remove similar structures other than the target compound, polar impurities, and the like in the manufacturing process. However, it is difficult to efficiently extract only the target compound from the mixture obtained by the production method described in the cited document, and there is a problem that production efficiency is greatly reduced.
Under such circumstances, a method using an oxetane derivative as shown below has been developed as a method for efficiently producing a side chain type radically polymerizable compound (see Patent Document 4).

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表す。)しかしながら、当該方法を用いても目的物の純度は必ずしも十分ではなく、側鎖型ラジカル重合性化合物を効率的に製造する方法としてより効率的な方法の開発が求められていた。
Figure 2007091650
(In the formula, R 1 has the same meaning as in the general formula (1).) However, even if this method is used, the purity of the target product is not always sufficient, and a side chain type radical polymerizable compound is efficiently produced. The development of more efficient methods has been demanded.

特開平11−29527号公報JP-A-11-29527 特開2002−293827号公報JP 2002-293828 A 特開2004−352851号公報JP 2004-352851 A 特開2005−225831号公報JP 2005-225831 A

本発明が解決しようとする課題は、側鎖型ラジカル重合性化合物効率的な製造方法を提供することにある。   The problem to be solved by the present invention is to provide an efficient production method of a side chain type radical polymerizable compound.

本願発明者らは、側鎖型ラジカル重合性化合物の製造方法に関して様々な検討を行った結果、特定の構造を有するアルコール誘導体を用いて製造を行うことにより前述の課題を解決できることを見出し本願発明を完成するに至った。
本願発明は、一般式(1)
As a result of various studies on the production method of the side chain type radical polymerizable compound, the present inventors have found that the above-mentioned problems can be solved by producing an alcohol derivative having a specific structure. It came to complete.
The present invention provides a general formula (1)

Figure 2007091650
(式中、Rは、炭素原子数1〜15のアルキル基を表す。)で表される化合物に、一般式(2)
Figure 2007091650
(Wherein R 1 represents an alkyl group having 1 to 15 carbon atoms), and the compound represented by the general formula (2)

Figure 2007091650
(式中、Rは炭素原子数1〜20の直鎖又は分岐アルキル基を表し、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、Yはカルボニル基又は単結合を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表すが、Yがカルボニル基を表し、Xが水酸基を表す場合、当該化合物の酸無水物であっても良い。)で表される化合物、一般式(3)
Figure 2007091650
(In the formula, R 2 represents a linear or branched alkyl group having 1 to 20 carbon atoms, and one or two or more carbon atoms present in the group are such that oxygen atoms are not directly bonded to each other. A single bond between one or more carbons which may be replaced by an oxygen atom and which is present in the group may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group May be substituted by halogen, Y 1 represents a carbonyl group or a single bond, X 1 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen, Y 1 represents a carbonyl group, and X 1 represents a hydroxyl group. In this case, it may be an acid anhydride of the compound.), A compound represented by the general formula (3)

Figure 2007091650
(式中、Rは水素原子又はメチル基を表し、Rは炭素原子数1〜6の直鎖又は分岐アルキレン基又は単結合を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、Yは単結合又は酸素原子を表し、Yはカルボニル基又は単結合を表し、を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表すが、Yがカルボニル基を表し、Xが水酸基を表す場合、当該化合物の酸無水物であっても良い。)で表される化合物及び一般式(4)
Figure 2007091650
(In the formula, R 3 represents a hydrogen atom or a methyl group, and R 4 represents a linear or branched alkylene group having 1 to 6 carbon atoms or a single bond, but one or two or more present in the group. Carbon atoms may be replaced by oxygen atoms as if the oxygen atoms are not directly bonded to each other, and single bonds between one or more carbons present in the group may be double bonds or triple bonds The hydrogen atom present in the group may be substituted by a halogen, Y 2 represents a single bond or an oxygen atom, Y 3 represents a carbonyl group or a single bond, and X 2 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen, and when Y 3 represents a carbonyl group and X 2 represents a hydroxyl group, the compound may be an acid anhydride of the compound. General formula (4)

Figure 2007091650
(式中、Rは直鎖であっても分岐していていても良い炭素原子数5〜25のアルキレン基又はアルカントリイル基を表し、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、nは2又は3を表し、Yはカルボニル基又は単結合を表し、を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表す。)で表される化合物をそれぞれ反応させることによる一般式(5)
Figure 2007091650
(In the formula, R 5 represents a linear or branched alkylene group having 5 to 25 carbon atoms or alkanetriyl group, and one or more carbon atoms present in the group. An atom may be replaced by an oxygen atom as if the oxygen atoms are not directly bonded to each other, and a single bond between one or more carbons present in the group may be a double bond or a triple bond. And n 4 represents 2 or 3, Y 4 represents a carbonyl group or a single bond, and X 3 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen. General formula (5) by reacting each

Figure 2007091650
(式中、R及びnは一般式(4)と同じ意味を表し、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表し、R、R、Y及びYは一般式(3)と同じ意味を表す。)で表される重合性化合物の製造方法である。
Figure 2007091650
(Wherein R 5 and n represent the same meaning as in general formula (4), R 1 represents the same meaning as in general formula (1), and R 2 and Y 1 represent the same meaning as in general formula (2). , R 3 , R 4 , Y 2 and Y 3 represent the same meaning as in the general formula (3).).

本発明の製造方法により側鎖型ラジカル重合性化合物を効率的に製造することが可能となる。当該重合性化合物を構成部材とする光散乱型液晶デバイスは、幅広い温度範囲においても低電圧駆動可能であることから表示素子として有用である。   The production method of the present invention makes it possible to efficiently produce a side chain type radically polymerizable compound. A light-scattering liquid crystal device including the polymerizable compound as a constituent member is useful as a display element because it can be driven at a low voltage even in a wide temperature range.

本願発明の製造方法は、一般式(1)で表される化合物に、一般式(2)、一般式(3)及び一般式(3)で表される化合物を反応させることを特徴とするものである。一般式(2)、一般式(3)及び一般式(3)で表される化合物の反応の順番はどの化合物から始めることは可能である。しかし、中間体の精製のし易さの点から、一般式(1)で表される化合物に、一般式(2)で表されるハロゲン化合物、カルボン酸又はこれらの誘導体を反応させることにより一般式(6)   The production method of the present invention is characterized in that the compound represented by the general formula (1) is reacted with the compound represented by the general formula (2), the general formula (3) and the general formula (3). It is. The order of reaction of the compounds represented by the general formula (2), the general formula (3) and the general formula (3) can be started from any compound. However, from the viewpoint of ease of purification of the intermediate, the compound represented by the general formula (1) is generally reacted with the halogen compound represented by the general formula (2), a carboxylic acid or a derivative thereof. Formula (6)

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表す。)で表される化合物とした後、一般式(3)で表されるアルコール、カルボン酸又はこれらの誘導体を反応させることにより、一般式(7)
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), and R 2 and Y 1 represent the same meaning as in general formula (2)), and then the general formula (3) Is reacted with an alcohol, carboxylic acid or a derivative thereof represented by the general formula (7)

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表し、R、R、Y及びYは一般式(3)と同じ意味を表す。)で表される化合物とした後、一般式(4)で表される化合物を反応させることが好ましい。
Figure 2007091650
(In the formula, R 1 represents the same meaning as in general formula (1), R 2 and Y 1 represent the same meaning as in general formula (2), and R 3 , R 4 , Y 2 and Y 3 represent the general formula ( It is preferable to react the compound represented by the general formula (4) after the compound represented by the same meaning as 3).

一般式(1)で表されるトリメチロールプロパン誘導体と一般式(2)で表される化合物により一般式(6)で表される化合物を生成する反応は、トリエチルアミン、ピリジン等の塩基性化合物存在下行うことが好ましい。反応溶媒には原料アルコールとの溶解性が高い溶媒を選択する。溶解性の小さい溶媒を用い原料アルコールが分散された状態で反応を行うと、ジアルキル体、トリアルキル体が多く生成してしまうので好ましくない。反応温度は室温付近で実施することが好ましく、一般式(2)で表される化合物の滴下速度を抑えることが好ましい。
反応の際副生するジアルキル体、トリアルキル体は、ヘキサン、ヘプタン等の炭化水素系溶媒とジメチルスルホキシド(以下DMSOと略す)やN,N−ジメチルホルムアミド(以下DMFと略す)、メタノールなどの極性溶媒による2液分離により、炭化水素系溶媒側に移行するため、(目的物は極性溶媒に移行)容易に除去することができる。その後極性溶媒から目的物を抽出する。、更に再結晶又は蒸留により高純度の一般式(6)で表されるジアルコール誘導体を得ることができる。
特にヘキサン又はヘプタンとメタノール又はメタノール/水混合溶媒との組み合わせは、分離能が高いだけでなく、分離後の溶媒除去が容易であり好適である。
The reaction for producing the compound represented by the general formula (6) from the trimethylolpropane derivative represented by the general formula (1) and the compound represented by the general formula (2) is a basic compound such as triethylamine or pyridine. It is preferable to perform the following. A solvent having high solubility with the raw material alcohol is selected as the reaction solvent. It is not preferable to carry out the reaction in a state in which the raw material alcohol is dispersed using a solvent having low solubility because a large amount of dialkyl and trialkyl forms are generated. The reaction temperature is preferably about room temperature, and it is preferable to suppress the dropping rate of the compound represented by the general formula (2).
Dialkyl and trialkyl compounds by-produced in the reaction are polar solvents such as hexane, heptane and other hydrocarbon solvents, dimethyl sulfoxide (hereinafter abbreviated as DMSO), N, N-dimethylformamide (hereinafter abbreviated as DMF), methanol, and the like. Since it moves to the hydrocarbon solvent side by two-liquid separation with a solvent, the target product can be easily removed (transfer to a polar solvent). Thereafter, the target product is extracted from the polar solvent. Furthermore, a dialcohol derivative represented by the general formula (6) having a high purity can be obtained by recrystallization or distillation.
In particular, a combination of hexane or heptane and methanol or a methanol / water mixed solvent is preferable because it not only has a high resolution, but also facilitates removal of the solvent after the separation.

又、一般式(1)で表される化合物の二つの水酸基を環状アセタール誘導体として保護した後、一般式(2)で表される化合物を反応させその後環状アセタールを外すことにより一般式(6)で表される化合物を得る工程を経由することも好ましい。
この場合、保護に用いるケトン誘導体は特に制限はないが、入手の容易さ、価格の点から炭素原子数10以下のケトン誘導体が好ましく、アセトン、メチルエチルケトン等が好適である。
保護工程を加えた場合、中間体の環状アセタール誘導体は具体的には、一般式(8)
Further, after protecting the two hydroxyl groups of the compound represented by the general formula (1) as a cyclic acetal derivative, the compound represented by the general formula (2) is reacted, and then the cyclic acetal is removed to remove the general formula (6). It is also preferable to go through a step of obtaining a compound represented by:
In this case, the ketone derivative used for protection is not particularly limited, but a ketone derivative having 10 or less carbon atoms is preferable from the viewpoint of availability and cost, and acetone, methyl ethyl ketone, and the like are preferable.
When the protection step is added, the intermediate cyclic acetal derivative is specifically represented by the general formula (8)

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びRはそれぞれ独立して水素原子又はアルキル基を表す。)で表される化合物が好ましい。
特に、Yが単結合を表す場合、保護工程を経由する方法が好ましい。
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), and R 5 and R 6 each independently represents a hydrogen atom or an alkyl group).
In particular, when Y 1 represents a single bond, a method through a protection step is preferable.

一般式(1)で表されるトリメチロールプロパン誘導体とアルキルハライドを直接エーテル化反応させるとジアルキル体、トリアルキル体が生成することがあり、目的物の収率が十分向上しないこともある。この場合、一般式(1)で表されるトリメチロールプロパン誘導体をアセトン、ジメトキシプロパン等を用いて、二つの水酸基を保護した後、エーテル下反応を行うことが好ましい。
保護基の導入は、アセトン(R=R=水素原子)又は2,2−ジメトキシプロパン(R=R=メチル基)の場合、p−トルエンスルホン酸等の酸触媒存在下で実施することが好ましい。この場合の反応溶媒には種々の有機溶媒を用いることが可能であり、代表的な溶媒としてトルエン、DMF、THF、アセトニトリル等が挙げられるが、反応時間、収率の点でアセトニトリルが好ましい。
アセトンを用いて水酸基を保護する場合は、反応後にアセトンを水洗で取り除かないと溶媒留去中に脱保護反応が起きてしまい収率が低下するため、保護基を導入した化合物が水との溶解性が高く、水洗によりアセトンのみを効率的に除去することができない場合は、2,2−ジメトキシプロパンによる保護が好ましい。
When the trimethylolpropane derivative represented by the general formula (1) is directly etherified with an alkyl halide, a dialkyl or trialkyl form may be produced, and the yield of the target product may not be sufficiently improved. In this case, the trimethylolpropane derivative represented by the general formula (1) is preferably protected with ether after using acetone, dimethoxypropane or the like to protect the two hydroxyl groups.
In the case of acetone (R 5 = R 6 = hydrogen atom) or 2,2-dimethoxypropane (R 5 = R 6 = methyl group), the protective group is introduced in the presence of an acid catalyst such as p-toluenesulfonic acid. It is preferable to do. Various organic solvents can be used as the reaction solvent in this case, and typical solvents include toluene, DMF, THF, acetonitrile, and the like. Acetonitrile is preferred in terms of reaction time and yield.
When protecting the hydroxyl group with acetone, if the acetone is not removed by washing with water after the reaction, the deprotection reaction will occur during the distillation of the solvent and the yield will be reduced. In the case where the property is high and only acetone cannot be efficiently removed by washing with water, protection with 2,2-dimethoxypropane is preferred.

一般式(8)で表される化合物とアルキルハライドの反応による一般式(8)で表される化合物   Compound represented by general formula (8) by reaction of compound represented by general formula (8) and alkyl halide

Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びRはそれぞれ独立して水素原子又はアルキル基を表し、R及びYは一般式(2)と同じ意味を表す。)の製造は、塩基性条件による一般的な方法で実施することができる。その際、テトラブチルアンモニウムブロミド等の相間移動触媒存在下に行うことが好ましい。反応溶媒としては、無溶媒でも反応を行うことはできるがDMSO、DMF、N−メチルピロリジノン等の非水系極性溶媒を用いることが好ましく、反応収率の点でDMSOを用いることが特に好ましい。
保護基の除去は、酸性条件下溶媒中で行う一般的な方法を用いることができるが、エタノール等のアルコール中で希塩酸等を用い、加熱条件下行う方法が好ましい。保護基を除去することにより、一般式(6)で表される化合物を得ることができ前述の2液分離により、同様に純度の高い中間体を得ることができる。
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group, and R 2 and Y 1 have the same meaning as in general formula (2). Can be produced by a general method under basic conditions. In that case, it is preferable to carry out in the presence of a phase transfer catalyst such as tetrabutylammonium bromide. As the reaction solvent, the reaction can be carried out without a solvent, but a nonaqueous polar solvent such as DMSO, DMF, N-methylpyrrolidinone is preferably used, and DMSO is particularly preferably used in view of the reaction yield.
The removal of the protecting group can be performed by a general method performed in a solvent under acidic conditions, but a method performed under heating conditions using dilute hydrochloric acid or the like in an alcohol such as ethanol is preferable. By removing the protecting group, the compound represented by the general formula (6) can be obtained, and an intermediate having a high purity can be obtained by the above-described two-liquid separation.

一般式(6)で表される化合物に、一般式(3)で表される化合物及び一般式(4)で表される化合物を順次反応させるが、反応の効率を考慮すると一般式(3)で表される化合物を反応させて一般式(7)で表される化合物を得た後、一般式(4)で表される化合物を反応させることが好ましい。
一般式(7)で表される化合物の製造は、一般式(6)及び一般式(3)で表される化合物を酸触媒によるエステル化又は1,3−ジシクロヘキシルカルボジイミド(DCC)、N−エチル−N’−(3−ジメチルアミノプロピル)カルボジイミド(WSC)等の脱水縮合剤によるエステル化により行うことができるが、反応収率の点で脱水縮合剤を用いることが好ましい。
アクリル酸誘導体の替わりにアクリル酸塩化物(一般式(3)においてXがハロゲンを表す場合。)を、アミン触媒存在下に反応させることも可能であるが、アクリル酸誘導体を用いる場合がよりジアクリル体の生成を抑えることが可能であることから好ましい。
アクリル酸塩化物を用いる場合、アクリル酸塩化物の反応性が、出発物質である一般式(6)より生成した一般式(7)でより高い問題がある。この場合、反応系内にテトラブチルアンモニウムブロミド、セチルジメチルエチルアンモニウムブロミド等の相関移動触媒を用いるとジアクリル体の生成を抑制することができる。
また、アクリル酸および、アクリル酸塩化物の代わりにクロロプロピオン酸、クロロプロピオン酸クロリドを用いて、脱塩酸によりアクリル化することも可能である。
このように合成した反応物は前記と同様な極性−非極性の2液分離、若しくはシリカゲルカラムにより容易に精製することができる。
The compound represented by the general formula (6) is sequentially reacted with the compound represented by the general formula (3) and the compound represented by the general formula (4). In consideration of the efficiency of the reaction, the general formula (3) It is preferable to react the compound represented by General Formula (4) after reacting the compound represented by General Formula (7).
The compound represented by the general formula (7) is produced by esterifying the compound represented by the general formula (6) and the general formula (3) with an acid catalyst or 1,3-dicyclohexylcarbodiimide (DCC), N-ethyl. Although it can be performed by esterification with a dehydrating condensing agent such as —N ′-(3-dimethylaminopropyl) carbodiimide (WSC), it is preferable to use a dehydrating condensing agent in terms of reaction yield.
An acrylic acid chloride (when X 2 represents halogen in the general formula (3)) can be reacted in the presence of an amine catalyst instead of the acrylic acid derivative, but the acrylic acid derivative is more often used. It is preferable because the production of diacrylic body can be suppressed.
When an acrylate is used, the reactivity of the acrylate is higher in the general formula (7) generated from the general formula (6) as a starting material. In this case, when a phase transfer catalyst such as tetrabutylammonium bromide or cetyldimethylethylammonium bromide is used in the reaction system, the production of diacrylic body can be suppressed.
It is also possible to acrylate by dehydrochlorination using acrylic acid and chloropropionic acid or chloropropionic acid chloride instead of acrylic acid chloride.
The reaction product thus synthesized can be easily purified by the same polar-nonpolar two-liquid separation as described above, or a silica gel column.

一般式(7)で表される化合物に一般式(4)で表される化合物を反応させることにより最終物である一般式(5)を製造する。この場合、一般式(4)で表される化合物の内カルボン酸誘導体を前述の脱水縮合剤存在下エステル化するか、一般式(4)で表される化合物の内カルボン酸ハライドを用いて目的とする一般式(5)で表される化合物を製造することができる。この場合においても、脱水縮合剤を用いることがより好ましい。
更に、ヘキサン、ヘプタン等の炭化水素系溶媒とDMSO、DMF、メタノールなどの極性溶媒による2液分離により、目的物を炭化水素系溶媒側に移行させ、原料、カルボジイミド、副生する尿素化合物を容易に除去できる。特にヘキサン又はヘプタンとメタノール又はメタノール/水混合溶媒との組み合わせは、分離能が高いだけでなく、分離後の溶媒除去が容易であり好適である。
By reacting the compound represented by the general formula (7) with the compound represented by the general formula (4), the general formula (5) as the final product is produced. In this case, the inner carboxylic acid derivative of the compound represented by the general formula (4) is esterified in the presence of the aforementioned dehydration condensing agent, or the inner carboxylic acid halide of the compound represented by the general formula (4) is used for the purpose. A compound represented by the general formula (5) can be produced. Even in this case, it is more preferable to use a dehydrating condensing agent.
Furthermore, by two-liquid separation using a hydrocarbon solvent such as hexane and heptane and a polar solvent such as DMSO, DMF, and methanol, the target product is transferred to the hydrocarbon solvent side, and raw materials, carbodiimide, and by-product urea compounds are easily obtained. Can be removed. In particular, a combination of hexane or heptane and methanol or a methanol / water mixed solvent is preferable because it not only has a high resolution, but also facilitates removal of the solvent after the separation.

一般式(1)において、Rは炭素原子数1から10のアルキル基が好ましく、更に炭素原子数1から4の直鎖アルキル基がより好ましい。一般式(1)に示されるトリヒドロキシメチルアルカン化合物は、対応するアルデヒド化合物とパラホルムによる縮合反応により得ることができる。
一般式(2)において、Rは炭素原子数5から20の直鎖又は分岐アルキル基が好ましく、更に炭素原子数5〜14の直鎖アルキル、炭素原子数8〜18の分岐アルキル基がより好ましい。具体的には、n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−ウンデシル基、n−トリデシル基、n−テトラデシル基、n−オクタデシル基、2−n−ヘプチルノニル基、イソミリスチル基、2−エチルヘキシル基、ブトキシエチル基、ヘキシロキシエチル基、n−ブトキシエトキシメチル基、シクロヘキシル基、ポリエチレングリコールモノエーテル基、4−オクチルシクロヘキシル基等があげられる。
一般式(2)において、Yはカルボニル基又は単結合を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表すが、Yがカルボニル基であり、Xがハロゲンである化合物、又はYが単結合であり、Xがハロゲンである化合物による製造方法が、低コスト化の観点から好ましい。
In the general formula (1), R 1 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably a linear alkyl group having 1 to 4 carbon atoms. The trihydroxymethylalkane compound represented by the general formula (1) can be obtained by a condensation reaction with a corresponding aldehyde compound and paraform.
In the general formula (2), R 2 is preferably a linear or branched alkyl group having 5 to 20 carbon atoms, more preferably a linear alkyl group having 5 to 14 carbon atoms, or a branched alkyl group having 8 to 18 carbon atoms. preferable. Specifically, n-hexyl group, 2-ethylhexyl group, n-octyl group, n-undecyl group, n-tridecyl group, n-tetradecyl group, n-octadecyl group, 2-n-heptylnonyl group, isomyristyl group 2-ethylhexyl group, butoxyethyl group, hexyloxyethyl group, n-butoxyethoxymethyl group, cyclohexyl group, polyethylene glycol monoether group, 4-octylcyclohexyl group and the like.
In General Formula (2), Y 1 represents a carbonyl group or a single bond, X 1 represents a hydroxyl group, a substituted sulfonyloxy group, or a halogen, Y 1 is a carbonyl group, and X 1 is a halogen, or A production method using a compound in which Y 1 is a single bond and X 1 is halogen is preferable from the viewpoint of cost reduction.

一般式(3)において、Rは水素又はメチル基を表すが、反応性の高さから水素がより好ましい。
一般式(3)において、Rは単結合であるか又は炭素原子数が1から2であることが好ましく、Yは酸素原子、Yは単結合又はカルボニル基、Xは水酸基が好ましい。具体的な化合物としては、アクリル酸、アクリル酸ダイマー、又はヒドロキシエチルアクリレートが挙げられる。
一般式(4)において、Rは炭素原子数5〜26のアルキレン基又はアルカントリイル基が好ましく、炭素原子数5〜22のアルキレン基がより好ましい。Yはカルボニル基、Xは水酸基又はハロゲンが好ましい。具体的な化合物としては、アジピン酸、スベリン酸、セバシン酸、長鎖二塩基酸、およびこれらの酸塩化物が挙げられる。
In the general formula (3), R 3 represents hydrogen or a methyl group, and hydrogen is more preferable because of high reactivity.
In the general formula (3), R 4 is preferably a single bond or preferably having 1 to 2 carbon atoms, Y 2 is an oxygen atom, Y 3 is a single bond or a carbonyl group, and X 3 is preferably a hydroxyl group. . Specific compounds include acrylic acid, acrylic acid dimer, or hydroxyethyl acrylate.
In the general formula (4), R 5 is preferably an alkylene group having 5 to 26 carbon atoms or an alkanetriyl group, and more preferably an alkylene group having 5 to 22 carbon atoms. Y 4 is preferably a carbonyl group, and X 3 is preferably a hydroxyl group or a halogen. Specific examples of the compound include adipic acid, suberic acid, sebacic acid, long-chain dibasic acid, and acid chlorides thereof.

一般式(8)において、R及びRはそれぞれ独立して炭素原子数1から5のアルキル基が好ましく、更に炭素原子数1から2がより好ましい。 In the general formula (8), R 5 and R 6 are each independently preferably an alkyl group having 1 to 5 carbon atoms, and more preferably 1 to 2 carbon atoms.

このようにして得られた一般式(5)で表される重合性化合物と液晶組成物との組成物は、光散乱型液晶デバイス用の調光層形成材料として特に有用である。 The composition of the polymerizable compound represented by the general formula (5) and the liquid crystal composition thus obtained is particularly useful as a light control layer forming material for a light scattering liquid crystal device.

以下に、本発明の実施例を示し、本発明を更に具体的に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例において「%」は特に断りのない限り「質量%」を表す。
(実施例1) 式(M−1)で表される化合物の製造
(実施例1−1)
撹拌装置、及び温度計を備えた反応容器にトリメチロールプロパン100g (750ミリモル)とP−トルエンスルホン酸ピリジニウム塩1.9g(7.45ミリモル) 、アセトニトリル500mlを仕込み室温で攪拌した。次いで、2,2−ジメトキシプロパン 116.4g(1.12モル)をゆっくり滴下した。滴下終了後、室温で2時間撹拌して、原料が消失したのを確認して反応を終了する。反応液を濃縮し、トリメチロールプロパンが保護された式(10)で表される化合物を135g合成した。
Examples of the present invention will be shown below, and the present invention will be described more specifically. However, the present invention is not limited to these examples. In the following examples, “%” represents “% by mass” unless otherwise specified.
Example 1 Production of Compound Represented by Formula (M-1) (Example 1-1)
A reaction vessel equipped with a stirrer and a thermometer was charged with 100 g (750 mmol) of trimethylolpropane, 1.9 g (7.45 mmol) of P-toluenesulfonic acid pyridinium salt, and 500 ml of acetonitrile and stirred at room temperature. Next, 116.4 g (1.12 mol) of 2,2-dimethoxypropane was slowly added dropwise. After completion of the dropwise addition, the mixture is stirred at room temperature for 2 hours, and the reaction is terminated after confirming that the raw materials have disappeared. The reaction solution was concentrated to synthesize 135 g of the compound represented by the formula (10) in which trimethylolpropane was protected.

Figure 2007091650
(実施例1−2)
次いで、撹拌装置、及び温度計を備えた反応容器に、上記で合成した式(10)で表される化合物 130g(0.75モル)、1-ブロモヘキサン 184.8g(1.12モル)とセチルヂメチルアンモニウムブロミド14.1g、DMSO 1Lを仕込む。反応容器を室温で攪拌しながら50%水酸化カリウム水溶液 130gをゆっくり滴下した。滴下終了後、室温で1時間撹拌後、更に60℃で2時間攪拌して反応を完結させた。原料が消失したのを確認して反応を終了させ、反応液に酢酸エチル 1L、n−ヘキサン 500mlを加えて、純水、食塩水で洗浄し、有機層を濃縮して式(11)で表される化合物の粗生物を180g得た。
Figure 2007091650
(Example 1-2)
Next, in a reaction vessel equipped with a stirrer and a thermometer, 130 g (0.75 mol) of the compound represented by the formula (10) synthesized above, 184.8 g (1.12 mol) of 1-bromohexane, Charge 14.1 g of cetyldimethylammonium bromide and 1 L of DMSO. While stirring the reaction vessel at room temperature, 130 g of 50% aqueous potassium hydroxide solution was slowly added dropwise. After completion of dropping, the mixture was stirred at room temperature for 1 hour and further stirred at 60 ° C. for 2 hours to complete the reaction. After confirming the disappearance of the raw materials, the reaction was terminated, and 1 L of ethyl acetate and 500 ml of n-hexane were added to the reaction solution, washed with pure water and brine, and the organic layer was concentrated and represented by formula (11). 180 g of a crude product of the resulting compound was obtained.

Figure 2007091650
(実施例1−3)
更に、撹拌装置、及び温度計を備えた反応容器に、上記で合成した式(11)で表される化合物 180g 、テトラヒドロフラン(以下THFと略す)400ml、10%塩酸水溶液 400ml、を加え、65℃で2時間攪拌する。反応終了後、THFを留去して、酢酸エチル1Lを加え、純水 飽和食塩水で洗浄した。有機層の溶媒を留去した後にn−ヘキサン600mlに溶解させ、メタノール/水の4/1(体積比)混合溶液700mlで2回抽出した。メタノール/水層からメタノールを留去した後、酢酸エチル 1Lを加え、純水、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥、溶媒を留去、更に蒸留により精製を行い式(12)で表される化合物を80g得た。
Figure 2007091650
(Example 1-3)
Furthermore, 180 g of the compound represented by the formula (11) synthesized above, 400 ml of tetrahydrofuran (hereinafter abbreviated as THF), 400 ml of 10% hydrochloric acid aqueous solution were added to a reaction vessel equipped with a stirrer and a thermometer at 65 ° C. For 2 hours. After completion of the reaction, THF was distilled off, 1 L of ethyl acetate was added, and the mixture was washed with pure water and saturated brine. After the solvent of the organic layer was distilled off, it was dissolved in 600 ml of n-hexane and extracted twice with 700 ml of a methanol / water 4/1 (volume ratio) mixed solution. After distilling off methanol from the methanol / water layer, 1 L of ethyl acetate was added, washed with pure water and saturated brine, the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was further purified by distillation. 80 g of the compound represented by 12) was obtained.

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:3.70(m,2H),3.59(m,2H),3.42(m,4H),2.93(s,2H),1.59(m,2H),1.38−1.26(m,8H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:75.0,71.9,65.8,42.7,31.5,29.4,29.1,25.7,23.0,22.5,22.5,13.9,7.4
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例1−4)
次いで、撹拌装置、及び温度計を備えた反応容器に、上記で合成した式(12)で表される化合物を50g(0.23モル)、アクリル酸 24.7g、ジメチルアミノピリジン 4.15g、塩化メチレン 500mlを仕込んだ。窒素ガスの雰囲気下でジイソプロピルカルボジイミド43.2g(0.34モル)を室温でゆっくり滴下した。滴下終了後、更に2時間撹拌した後、40℃で2時間反応させた。反応液をろ過した後、ろ液に塩化メチレン200ml、10%塩酸水溶液 700mlを加え洗浄し、更に飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥溶媒を留去した後、5倍量(重量比)のシリカゲルカラムにより精製を行い式(13)で表される化合物35gを得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 3.70 (m, 2H), 3.59 (m, 2H), 3.42 (m, 4H), 2.93 (s, 2H), 1 .59 (m, 2H), 1.38-1.26 (m, 8H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 75.0, 71.9, 65.8, 42.7, 31.5, 29.4, 29.1, 25.7, 23.0, 22 .5, 22.5, 13.9, 7.4
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 1-4)
Next, in a reaction vessel equipped with a stirrer and a thermometer, 50 g (0.23 mol) of the compound represented by the formula (12) synthesized above, 24.7 g of acrylic acid, 4.15 g of dimethylaminopyridine, 500 ml of methylene chloride was charged. Under an atmosphere of nitrogen gas, 43.2 g (0.34 mol) of diisopropylcarbodiimide was slowly added dropwise at room temperature. After completion of dropping, the mixture was further stirred for 2 hours, and then reacted at 40 ° C. for 2 hours. After filtering the reaction solution, the filtrate was washed with 200 ml of methylene chloride and 700 ml of 10% hydrochloric acid aqueous solution and further washed with saturated brine, and the organic layer was distilled off with anhydrous sodium sulfate. Purification was performed with a silica gel column (weight ratio) to obtain 35 g of a compound represented by the formula (13).

Figure 2007091650
(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.43(d,1H),6.12(q,1H),5.85(d,1H),4.20(s,2H),3.57(d,2H),3.44(m,4H),2.89(m,1H),1.55(m,2H),1.38−1.26(m,8H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:166.3,130.8,128.2,127.9,74.2,71.9,66.1,64.5,42.2,31.7,29.7,25.7,22.9,22.5,13.9,7.4
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例1−5)
更に、撹拌装置、及び温度計を備えた反応容器に、上記で合成した式(13)で表される化合物 35g(0.12モル)セバシン酸 12.9g(0.06モル)、ピロリジノピリジン 2.27g、塩化メチレン 300mlを仕込んだ。窒素ガスの雰囲気下で反応容器を0〜5℃に冷却してジイソプロピルカルボジイミド19.3g(0.15モル)をゆっくり滴下した。滴下終了後、室温で4時間反応させた。反応液に塩化メチレン200ml、10%塩酸水溶液 700mlを加え洗浄し、更に飽和食塩水で洗浄し有機層の溶媒を留去した後に、n−ヘキサン500mlを加え、メタノール/水の4/1(体積比)混合溶液500mlで洗浄した。更に有機層を純水、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥、溶媒を留去、更に5倍量(重量比)のシリカゲルカラムにより精製を行い目的の化合物(M−1)を38.7gを得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.43 (d, 1H), 6.12 (q, 1H), 5.85 (d, 1H), 4.20 (s, 2H), 3 .57 (d, 2H), 3.44 (m, 4H), 2.89 (m, 1H), 1.55 (m, 2H), 1.38-1.26 (m, 8H),. 92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 166.3, 130.8, 128.2, 127.9, 74.2, 71.9, 66.1, 64.5, 42.2, 31 .7, 29.7, 25.7, 22.9, 22.5, 13.9, 7.4
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 1-5)
Furthermore, in a reaction vessel equipped with a stirrer and a thermometer, 35 g (0.12 mol) of the compound represented by the formula (13) synthesized above, 12.9 g (0.06 mol) of sebacic acid, pyrrolidinopyridine 2.27 g and 300 ml of methylene chloride were charged. Under a nitrogen gas atmosphere, the reaction vessel was cooled to 0 to 5 ° C., and 19.3 g (0.15 mol) of diisopropylcarbodiimide was slowly added dropwise. After completion of dropping, the reaction was allowed to proceed at room temperature for 4 hours. The reaction solution was washed by adding 200 ml of methylene chloride and 700 ml of 10% aqueous hydrochloric acid, and further washed with saturated saline, and the solvent of the organic layer was distilled off. Then, 500 ml of n-hexane was added, and 4/1 (volume by volume of methanol / water). Ratio) Washed with 500 ml of the mixed solution. Further, the organic layer was washed with pure water and saturated brine, the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and further purified with a 5-fold amount (weight ratio) silica gel column to obtain the target compound (M-1 ) Was obtained 38.7 g.

Figure 2007091650

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.41(d,2H),6.12(q,2H),5.84(d,2H),4.11(s,4H),4.05(s,4H),3.35(t,4H),3.29(s,4H),2.31(t,4H),1.62(m,4H),1.6−1.47(m,8H),1.25(m,20H),0.92−0.8(m,12H)
13C−NMR(溶媒:重クロロホルム):δ:173.6,165.9,130.6,128.3,71.6,70.3,64.7,64.4,41.5,34.3,31.9,29.6−29.0,25.7,25.0,23.0,22.6,14.0,7.4
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(実施例2) 式(M−2)で表される化合物の製造
(実施例2−1)
トリメチロールプロパン(1モル)と2,2−ジメトキシプロパン(1.5モル)、p−トルエンスルホン酸(0.01モル)を用い、実施例1−1と同様にして式(14)で表される化合物を得た。
Figure 2007091650

(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.41 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.11 (s, 4H), 4 .05 (s, 4H), 3.35 (t, 4H), 3.29 (s, 4H), 2.31 (t, 4H), 1.62 (m, 4H), 1.6-1. 47 (m, 8H), 1.25 (m, 20H), 0.92-0.8 (m, 12H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.6, 165.9, 130.6, 128.3, 71.6, 70.3, 64.7, 64.4, 41.5, 34 3, 31.9, 29.6-29.0, 25.7, 25.0, 23.0, 22.6, 14.0, 7.4
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9
(Example 2) Production of a compound represented by the formula (M-2) (Example 2-1)
Using trimethylolpropane (1 mol), 2,2-dimethoxypropane (1.5 mol), and p-toluenesulfonic acid (0.01 mol), it is represented by the formula (14) in the same manner as in Example 1-1. The compound obtained was obtained.

Figure 2007091650
(実施例2−2)
式(14)で表される化合物(1モル)と1−ブロモデカン(1.5モル)、テトラブチルアンモニウムブロミド(0.03モル)を用い、実施例1−2及び1−3と同様にして式(15)で表される化合物を得た。
Figure 2007091650
(Example 2-2)
Using the compound represented by the formula (14) (1 mol), 1-bromodecane (1.5 mol), and tetrabutylammonium bromide (0.03 mol), in the same manner as in Examples 1-2 and 1-3. A compound represented by the formula (15) was obtained.

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:3.70(m,2H),3.59(m,2H),3.42(m,4H),2.93(s,2H),1.59(m,2H),1.38−1.26(m,16H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:75.0,71.9,65.8,42.7,31.5,29.4,29.1,25.7,23.0,22.5,22.5,13.9,7.4
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例2−3)
得られた式(15)で表される化合物(1モル)とアクリル酸(1.2モル)を用い、実施例1−4と同様にして式(16)で表される化合物を得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 3.70 (m, 2H), 3.59 (m, 2H), 3.42 (m, 4H), 2.93 (s, 2H), 1 .59 (m, 2H), 1.38-1.26 (m, 16H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 75.0, 71.9, 65.8, 42.7, 31.5, 29.4, 29.1, 25.7, 23.0, 22 .5, 22.5, 13.9, 7.4
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 2-3)
The compound represented by the formula (16) was obtained in the same manner as in Example 1-4, using the compound represented by the formula (15) (1 mol) and acrylic acid (1.2 mol).

Figure 2007091650
(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.43(d,1H),6.12(q,1H),5.85(d,1H),4.20(s,2H),3.57(d,2H),3.44(m,4H),2.89(m,1H),1.55(m,2H),1.38−1.26(m,16H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:166.3,130.8,128.2,127.9,74.2,71.9,66.1,64.5,42.2,31.7,29.7,25.7,22.9,22.5,13.9,7.4
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例2−4)
得られた式(16)で表される化合物とアジピン酸を用い、実施例1−5と同様にして式(M−2)で表される重合性化合物を得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.43 (d, 1H), 6.12 (q, 1H), 5.85 (d, 1H), 4.20 (s, 2H), 3 .57 (d, 2H), 3.44 (m, 4H), 2.89 (m, 1H), 1.55 (m, 2H), 1.38-1.26 (m, 16H),. 92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 166.3, 130.8, 128.2, 127.9, 74.2, 71.9, 66.1, 64.5, 42.2, 31 .7, 29.7, 25.7, 22.9, 22.5, 13.9, 7.4
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 2-4)
Using the obtained compound represented by the formula (16) and adipic acid, a polymerizable compound represented by the formula (M-2) was obtained in the same manner as in Example 1-5.

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.41(d,2H),6.12(q,2H),5.84(d,2H),4.11(s,4H),4.05(s,4H),3.35(t,4H),3.29(s,4H),2.31(t,4H),1.62(m,4H),1.6−1.47(m,8H),1.25(m,28H),0.92−0.8(m,12H)
13C−NMR(溶媒:重クロロホルム):δ:173.6,165.9,130.6,128.3,71.6,70.3,64.7,64.4,41.5,34.3,31.9,29.6−29.0,25.7,25.0,23.0,22.6,14.0,7.4
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(実施例3) 式(M−3)で表される化合物の製造
(実施例3−1)
撹拌装置、及び温度計を備えた反応容器にトリメチロールプロパン220g (1.64モル)とトリエチルアミン72.7g(0.72モル)、THF 1.2Lを仕込んだ。反応容器を5℃以下に保ち、n−デカノイルクロリド125g(0.66モル)を滴下ロートでゆっくり滴下した。滴下終了後、室温で3時間攪拌後、40℃で1時間撹拌して反応を完結させた。反応液に酢酸エチル800ml、n−ヘキサン200ml、加えて10%塩酸水溶液1Lで洗浄後、水洗、飽和食塩水で洗浄した。有機層を濃縮した後、n−ヘプタン1.2Lに溶解させ、メタノール/水の4/1(体積比)混合溶液1.2Lで抽出した。メタノール/水層からメタノールを留去して、酢酸エチル1L、n-ヘキサン 200ml、純水1L加えて水洗する。有機層を無水硫酸ナトリウムで乾燥、溶媒を留去して粗生成物を145g得た。n−ヘプタン 300mlで再結晶を2回行い、式(17)で表される化合物を135g得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.41 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.11 (s, 4H), 4 .05 (s, 4H), 3.35 (t, 4H), 3.29 (s, 4H), 2.31 (t, 4H), 1.62 (m, 4H), 1.6-1. 47 (m, 8H), 1.25 (m, 28H), 0.92-0.8 (m, 12H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.6, 165.9, 130.6, 128.3, 71.6, 70.3, 64.7, 64.4, 41.5, 34 3, 31.9, 29.6-29.0, 25.7, 25.0, 23.0, 22.6, 14.0, 7.4
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9
Example 3 Production of Compound Represented by Formula (M-3) (Example 3-1)
A reaction vessel equipped with a stirrer and a thermometer was charged with 220 g (1.64 mol) of trimethylolpropane, 72.7 g (0.72 mol) of triethylamine, and 1.2 L of THF. The reaction vessel was kept at 5 ° C. or lower, and 125 g (0.66 mol) of n-decanoyl chloride was slowly dropped with a dropping funnel. After completion of dropping, the mixture was stirred at room temperature for 3 hours and then stirred at 40 ° C. for 1 hour to complete the reaction. The reaction solution was washed with 800 ml of ethyl acetate, 200 ml of n-hexane, and 1 L of a 10% aqueous hydrochloric acid solution, followed by washing with water and saturated brine. The organic layer was concentrated, dissolved in 1.2 L of n-heptane, and extracted with 1.2 L of a methanol / water 4/1 (volume ratio) mixed solution. Methanol is distilled off from the methanol / water layer, and 1 L of ethyl acetate, 200 ml of n-hexane and 1 L of pure water are added and washed. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off to obtain 145 g of a crude product. Recrystallization was performed twice with 300 ml of n-heptane to obtain 135 g of a compound represented by the formula (17).

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:4.22(s,2H),3.58(m,4H),2.74(m,2H),2.37(t,2H),1.62(m,2H),1.38−1.26(m,14H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:65.9,64.1,42.9,34.3,31.8,29.4,29.1,25.0,22.6,22.5,14.0,7.3
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例3−2)
次いで、撹拌装置、及び温度計を備えた反応容器に上記で合成した式(17)で表される化合物110g(0.38モル)、アクリル酸 41.2g(0.57モル)、ジメチルアミノピリジン 7g、塩化メチレン800mlを仕込んだ。窒素ガスの雰囲気下でジイソプロピルカルボジイミド72g(0.57モル)を室温でゆっくり滴下した。滴下終了後、更に2時間撹拌した後、40℃で2時間反応させた。反応液をろ過した後、ろ液に塩化メチレン500ml、10%塩酸水溶液 1Lを加えて洗浄、更に飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥溶媒を留去した後、5倍量(重量比)のシリカゲルカラムにより精製を行い式(18)で表される化合物78gを得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 4.22 (s, 2H), 3.58 (m, 4H), 2.74 (m, 2H), 2.37 (t, 2H), 1 .62 (m, 2H), 1.38-1.26 (m, 14H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 65.9, 64.1, 42.9, 34.3, 31.8, 29.4, 29.1, 25.0, 22.6, 22 .5, 14.0, 7.3
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 3-2)
Next, 110 g (0.38 mol) of the compound represented by the formula (17) synthesized above in a reaction vessel equipped with a stirrer and a thermometer, 41.2 g (0.57 mol) of acrylic acid, dimethylaminopyridine 7 g and 800 ml of methylene chloride were charged. Under an atmosphere of nitrogen gas, 72 g (0.57 mol) of diisopropylcarbodiimide was slowly added dropwise at room temperature. After completion of dropping, the mixture was further stirred for 2 hours, and then reacted at 40 ° C. for 2 hours. After the reaction solution was filtered, 500 ml of methylene chloride and 1 L of a 10% hydrochloric acid aqueous solution were added to the filtrate for washing, and further washed with a saturated saline solution. The organic layer was purified by a 5-fold amount (weight ratio) silica gel column after distilling off the dry solvent with anhydrous sodium sulfate to obtain 78 g of a compound represented by the formula (18).

Figure 2007091650
(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.44(d,1H),6.12(q,1H),5.84(d,1H),4.16(s,2H),4.05(s,2H),3.44(d,2H),2.49(s,1H),2.32(t,2H),1.62(m,2H),1.43(q,2H),1.38−1.26(m,12H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:174.1,166.3,131.1,128.2,127.9,63.9,63.7,62.2,42.6,34.2,31.7,31.5,29.7−29.0,24.9,22.6,14.0,7.3
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例3−3)
更に撹拌装置、及び温度計を備えた反応容器に上記で合成した式(18)で表される化合物78g(0.277モル)、長鎖二塩基酸IPS−22(岡村製油社製)51.3g(0.138モル)、ピロリジノピリジン2g、塩化メチレン1Lを仕込んだ。窒素ガスの雰囲気下で反応容器を0〜5℃に冷却してジイソプロピルカルボジイミド42g(0.33モル)をゆっくり滴下した。滴下終了後、室温で4時間反応させた。反応液に塩化メチレン200ml、10%塩酸水溶液 700mlを加え洗浄し、更に飽和食塩水で洗浄し有機層の溶媒を留去した後に、n−ヘキサン1Lを加え、メタノール/水の4/1(体積比)混合溶液600mlで2回洗浄した。更に有機層を純水、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥、溶媒を留去、更に5倍量(重量比)のシリカゲルカラムにより精製を行い目的の化合物(M−3)を98.5gを得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.44 (d, 1H), 6.12 (q, 1H), 5.84 (d, 1H), 4.16 (s, 2H), 4 .05 (s, 2H), 3.44 (d, 2H), 2.49 (s, 1H), 2.32 (t, 2H), 1.62 (m, 2H), 1.43 (q, 2H), 1.38-1.26 (m, 12H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 174.1, 166.3, 131.1, 128.2, 127.9, 63.9, 63.7, 62.2, 42.6, 34 2, 31.7, 31.5, 29.7-29.0, 24.9, 22.6, 14.0, 7.3
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 3-3)
Furthermore, 78 g (0.277 mol) of the compound represented by the formula (18) synthesized above in a reaction vessel equipped with a stirrer and a thermometer, long-chain dibasic acid IPS-22 (manufactured by Okamura Oil Co., Ltd.) 3 g (0.138 mol), 2 g of pyrrolidinopyridine, and 1 L of methylene chloride were charged. Under a nitrogen gas atmosphere, the reaction vessel was cooled to 0 to 5 ° C., and 42 g (0.33 mol) of diisopropylcarbodiimide was slowly added dropwise. After completion of dropping, the reaction was allowed to proceed at room temperature for 4 hours. The reaction solution was washed with 200 ml of methylene chloride and 700 ml of a 10% aqueous hydrochloric acid solution, further washed with saturated saline, and the solvent of the organic layer was distilled off. Then, 1 L of n-hexane was added, and 4/1 (volume by volume of methanol / water). Ratio) Washed twice with 600 ml of the mixed solution. Further, the organic layer was washed with pure water and saturated brine, the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and further purified with a 5 times amount (weight ratio) silica gel column to obtain the target compound (M-3 ) Was obtained.

Figure 2007091650
(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H),4.04(s,8H),2.32(t,8H),1.62(m,8H),1.58(m,4H),1.38−1.25(m,48H),0.91−80(m,18H)
13C−NMR(溶媒:重クロロホルム):δ:173.5,165.7,131.1,127.9,64.0,63.7,40.6,34.2,31.8,29.7−29.0,26.8,24.9,23.0,22.6,14.0,10.7,7.3
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(実施例4) 式(M−4)で表される化合物の製造
(実施例4−1)
トリメチロールプロパン(2.5モル)及びウンデシルクロリド(1モル)を用い実施例3−1と同様にして式(19)で表される化合物を得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H), 4 .04 (s, 8H), 2.32 (t, 8H), 1.62 (m, 8H), 1.58 (m, 4H), 1.38-1.25 (m, 48H),. 91-80 (m, 18H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.5, 165.7, 131.1, 127.9, 64.0, 63.7, 40.6, 34.2, 31.8, 29 .7-29.0, 26.8, 24.9, 23.0, 22.6, 14.0, 10.7, 7.3
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9
(Example 4) Production of compound represented by formula (M-4) (Example 4-1)
A compound represented by the formula (19) was obtained in the same manner as in Example 3-1, using trimethylolpropane (2.5 mol) and undecyl chloride (1 mol).

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:4.22(s,2H),3.58(m,4H),2.74(m,2H),2.37(t,2H),1.62(m,2H),1.38−1.26(m,16H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:65.9,64.1,42.9,34.3,31.8,29.4,29.1,25.0,22.6,22.5,14.0,7.3
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例4−2)
化合物(19)(1モル)及びアクリル酸(1.2モル)を用い実施例3−2と同様にして式(20)で表される化合物を得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 4.22 (s, 2H), 3.58 (m, 4H), 2.74 (m, 2H), 2.37 (t, 2H), 1 .62 (m, 2H), 1.38-1.26 (m, 16H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 65.9, 64.1, 42.9, 34.3, 31.8, 29.4, 29.1, 25.0, 22.6, 22 .5, 14.0, 7.3
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 4-2)
A compound represented by the formula (20) was obtained in the same manner as in Example 3-2 using the compound (19) (1 mol) and acrylic acid (1.2 mol).

Figure 2007091650
(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.44(d,1H),6.12(q,1H),5.84(d,1H),4.16(s,2H),4.05(s,2H),3.44(d,2H),2.49(s,1H),2.32(t,2H),1.62(m,2H),1.43(q,2H),1.38−1.26(m,14H),0.92−0.80(m,6H)
13C−NMR(溶媒:重クロロホルム):δ:174.1,166.3,131.1,128.2,127.9,63.9,63.7,62.2,42.6,34.2,31.7,31.5,29.7−29.0,24.9,22.6,14.0,7.3
赤外吸収スペクトル(IR)(KBr):3100−3600cm−1
(実施例4−2)
化合物(20)及びスベリン酸を用い実施例3−3と同様にして式(M−4)で表される化合物を得た。
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.44 (d, 1H), 6.12 (q, 1H), 5.84 (d, 1H), 4.16 (s, 2H), 4 .05 (s, 2H), 3.44 (d, 2H), 2.49 (s, 1H), 2.32 (t, 2H), 1.62 (m, 2H), 1.43 (q, 2H), 1.38-1.26 (m, 14H), 0.92-0.80 (m, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 174.1, 166.3, 131.1, 128.2, 127.9, 63.9, 63.7, 62.2, 42.6, 34 2, 31.7, 31.5, 29.7-29.0, 24.9, 22.6, 14.0, 7.3
Infrared absorption spectrum (IR) (KBr): 3100-3600 cm −1
(Example 4-2)
A compound represented by the formula (M-4) was obtained in the same manner as in Example 3-3 using the compound (20) and suberic acid.

Figure 2007091650
(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.41(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H),4.04(s,8H),2.32(t,8H),1.62(m,8H),1.58(m,4H),1.25(m,32H),0.92−0.8(m,12H)
13C−NMR(溶媒:重クロロホルム):δ:173.6,165.9,130.6,128.3,71.6,70.3,64.7,64.4,41.5,34.3,31.9,29.6−29.0,25.7,25.0,23.0,22.6,14.0,7.4
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(比較例)
本願発明に係る化合物に類似する化合物に関して、従来の方法で製造を行った。
撹拌装置、冷却管及び温度計を備えた四つ口フラスコに、ラウリン酸グリシジルエステル257g(1.0モル)、アクリル酸108g(1.5モル)、p−メトキシフェノール150mg及び触媒としてN,N−ジメチルベンジルアミン1.31gを入れ、80℃で撹拌した。次に、反応液を110℃にゆっくり昇温し、同温度に保ちながら、10時間撹拌して反応を完結させた。次に、5%水酸化ナトリウム溶液300mlで洗浄し、更に、純水及び飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥させた後、有機溶媒を留去して、酸価0.8の淡褐色透明液状生成物を得た。
次に、撹拌装置、窒素導入管、冷却管及び温度計を備えた四つ口フラスコに、上記液状生成物33.0g、p−メトキシフェノール20mg、4−ジメチルアミノピリジン3.1g、セバシン酸10.1g(0.05モル)及びテトラヒドロフラン500mlを加え、窒素気流下で、水氷バスを用いて5℃に保った。次に、ジシクロヘキシルカルボジイミド20.6g(0.1モル)のテトラヒドロフラン100ml溶液を1時間かけてゆっくり滴下した。滴下終了後、水氷バスを外し、室温で24時間撹拌して反応を完結させた。反応終了後、析出したジシクロヘキシル尿素を濾別し、濃縮した。濃縮液をトルエン200mlに溶解させ、純水及び飽和食塩水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥させた。有機層の溶媒を減圧留去し、濃縮液をシリカゲルクロマトグラフィー(濃縮液に対して40倍量のシリカゲルを使用)を用いて精製して、次式
Figure 2007091650
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.41 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H), 4 .04 (s, 8H), 2.32 (t, 8H), 1.62 (m, 8H), 1.58 (m, 4H), 1.25 (m, 32H), 0.92-0. 8 (m, 12H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.6, 165.9, 130.6, 128.3, 71.6, 70.3, 64.7, 64.4, 41.5, 34 3, 31.9, 29.6-29.0, 25.7, 25.0, 23.0, 22.6, 14.0, 7.4
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9
(Comparative example)
A compound similar to the compound according to the present invention was produced by a conventional method.
In a four-necked flask equipped with a stirrer, a condenser and a thermometer, 257 g (1.0 mol) of glycidyl laurate, 108 g (1.5 mol) of acrylic acid, 150 mg of p-methoxyphenol and N, N as a catalyst -1.31 g of dimethylbenzylamine was added and stirred at 80 ° C. Next, the reaction solution was slowly heated to 110 ° C. and stirred for 10 hours to complete the reaction while maintaining the same temperature. Next, it was washed with 300 ml of 5% sodium hydroxide solution, and further washed with pure water and saturated saline, and the organic layer was dried over anhydrous sodium sulfate. 8 light brown transparent liquid product was obtained.
Next, in a four-necked flask equipped with a stirrer, a nitrogen inlet tube, a condenser tube and a thermometer, 33.0 g of the above liquid product, 20 mg of p-methoxyphenol, 3.1 g of 4-dimethylaminopyridine, 10 sebacic acid 10 0.1 g (0.05 mol) and 500 ml of tetrahydrofuran were added, and the mixture was kept at 5 ° C. using a water ice bath under a nitrogen stream. Next, a solution of 20.6 g (0.1 mol) of dicyclohexylcarbodiimide in 100 ml of tetrahydrofuran was slowly added dropwise over 1 hour. After completion of the dropwise addition, the water ice bath was removed and the reaction was completed by stirring at room temperature for 24 hours. After completion of the reaction, the precipitated dicyclohexylurea was filtered off and concentrated. The concentrated solution was dissolved in 200 ml of toluene, washed with pure water and saturated brine, and then the organic layer was dried over anhydrous sodium sulfate. The solvent of the organic layer was distilled off under reduced pressure, and the concentrated solution was purified using silica gel chromatography (using 40 times the amount of silica gel with respect to the concentrated solution).

Figure 2007091650
で表わされる透明液状の側鎖型ラジカル重合性化合物28gを得た。
比較例の方法では、最終工程におけるカラム精製において、40倍量ものシリカゲルを使用しなければならないのに対して、本願発明の方法では5倍量と大幅に少ない量で精製が可能であった。更に、生成物の純度も本願発明の方法で製造された物が優れていた。

Figure 2007091650
As a result, 28 g of a transparent liquid side chain type radical polymerizable compound represented by the formula:
In the method of the comparative example, 40 times the amount of silica gel must be used in the column purification in the final step, whereas in the method of the present invention, purification was possible in a significantly small amount of 5 times. Further, the product produced by the method of the present invention was excellent in the purity of the product.

Claims (6)

一般式(1)
Figure 2007091650
(式中、Rは、炭素原子数1〜15のアルキル基を表す。)で表される化合物に、一般式(2)
Figure 2007091650
(式中、Rは炭素原子数1〜20の直鎖又は分岐アルキル基を表し、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、Yはカルボニル基又は単結合を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表すが、Yがカルボニル基を表し、Xが水酸基を表す場合、当該化合物の酸無水物であっても良い。)で表される化合物、一般式(3)
Figure 2007091650
(式中、Rは水素原子又はメチル基を表し、Rは炭素原子数1〜6の直鎖又は分岐アルキレン基又は単結合を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、Yは単結合又は酸素原子を表し、Yはカルボニル基又は単結合を表し、を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表すが、Yがカルボニル基を表し、Xが水酸基を表す場合、当該化合物の酸無水物であっても良い。)で表される化合物及び一般式(4)
Figure 2007091650
(式中、Rは直鎖であっても分岐していていても良い炭素原子数5〜25のアルキレン基又はアルカントリイル基を表し、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、nは2又は3を表し、Yはカルボニル基又は単結合を表し、Xは水酸基、置換スルホニルオキシ基又はハロゲンを表す。)で表される化合物を反応させることによる一般式(5)
Figure 2007091650
(式中、R、Y及びnは一般式(4)と同じ意味を表し、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表し、R、R、Y及びYは一般式(3)と同じ意味を表す。)で表される重合性化合物の製造方法。
General formula (1)
Figure 2007091650
(Wherein R 1 represents an alkyl group having 1 to 15 carbon atoms), and the compound represented by the general formula (2)
Figure 2007091650
(In the formula, R 2 represents a linear or branched alkyl group having 1 to 20 carbon atoms, and one or two or more carbon atoms present in the group are such that oxygen atoms are not directly bonded to each other. A single bond between one or more carbons which may be replaced by an oxygen atom and which is present in the group may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group May be substituted by halogen, Y 1 represents a carbonyl group or a single bond, X 1 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen, Y 1 represents a carbonyl group, and X 1 represents a hydroxyl group. In this case, it may be an acid anhydride of the compound.), A compound represented by the general formula (3)
Figure 2007091650
(In the formula, R 3 represents a hydrogen atom or a methyl group, and R 4 represents a linear or branched alkylene group having 1 to 6 carbon atoms or a single bond, but one or two or more present in the group. Carbon atoms may be replaced by oxygen atoms as if the oxygen atoms are not directly bonded to each other, and single bonds between one or more carbons present in the group may be double bonds or triple bonds The hydrogen atom present in the group may be substituted by a halogen, Y 2 represents a single bond or an oxygen atom, Y 3 represents a carbonyl group or a single bond, and X 2 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen, and when Y 3 represents a carbonyl group and X 2 represents a hydroxyl group, the compound may be an acid anhydride of the compound. General formula (4)
Figure 2007091650
(In the formula, R 5 represents a linear or branched alkylene group having 5 to 25 carbon atoms or alkanetriyl group, and one or more carbon atoms present in the group. An atom may be replaced by an oxygen atom as if the oxygen atoms are not directly bonded to each other, and a single bond between one or more carbons present in the group may be a double bond or a triple bond. And n represents 2 or 3, Y 4 represents a carbonyl group or a single bond, and X 3 represents a hydroxyl group, a substituted sulfonyloxy group or a halogen). General formula (5)
Figure 2007091650
(Wherein R 5 , Y 4 and n represent the same meaning as in general formula (4), R 1 represents the same meaning as in general formula (1), and R 2 and Y 1 represent the same as in general formula (2). The meaning is shown, R < 3 >, R < 4 >, Y < 2 > and Y < 3 > represent the same meaning as General formula (3).) The manufacturing method of the polymeric compound represented by this.
一般式(1)で表される化合物に、一般式(2)で表される化合物を反応させることにより一般式(6)
Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表す。)で表される化合物とした後、一般式(3)で表される化合物を反応させることにより、一般式(7)
Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びYは一般式(2)と同じ意味を表し、R、R、Y及びYは一般式(3)と同じ意味を表す。)で表される化合物とした後、一般式(4)で表される化合物を反応させることによる、請求項1記載の一般式(5)で表される重合性化合物の製造方法。
By reacting the compound represented by the general formula (1) with the compound represented by the general formula (2), the general formula (6)
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), and R 2 and Y 1 represent the same meaning as in general formula (2)), and then the general formula (3) By reacting the compound represented by general formula (7)
Figure 2007091650
(In the formula, R 1 represents the same meaning as in general formula (1), R 2 and Y 1 represent the same meaning as in general formula (2), and R 3 , R 4 , Y 2 and Y 3 represent the general formula ( The same meaning as 3). After the compound represented by) is reacted with the compound represented by the general formula (4), the polymerizability represented by the general formula (5) according to claim 1 Compound production method.
一般式(1)で表される化合物の二つの水酸基を環状アセタール誘導体として保護した後、一般式(2)で表される化合物を反応させその後環状アセタールを外すことにより一般式(6)で表される化合物を得る、請求項2記載の製造方法。 After protecting the two hydroxyl groups of the compound represented by the general formula (1) as a cyclic acetal derivative, the compound represented by the general formula (2) is reacted, and then the cyclic acetal is removed. The manufacturing method of Claim 2 which obtains the compound to be obtained. 環状アセタール誘導体が、一般式(8)
Figure 2007091650
(式中、Rは一般式(1)と同じ意味を表し、R及びRはそれぞれ独立して水素原子又はアルキル基を表す。)で表される化合物である請求項3記載の製造方法。
The cyclic acetal derivative has the general formula (8)
Figure 2007091650
(Wherein R 1 represents the same meaning as in general formula (1), and R 5 and R 6 each independently represents a hydrogen atom or an alkyl group). Method.
一般式(2)において、Yが単結合を表す請求項3記載の製造方法。 In the general formula (2) The method according to claim 3, wherein Y 1 represents a single bond. 一般式(2)において、Rが炭素原子数5〜20の直鎖又は分岐アルキル基を表す請求項1から5の何れかに記載の製造方法。

The production method according to any one of claims 1 to 5, wherein in the general formula (2), R 2 represents a linear or branched alkyl group having 5 to 20 carbon atoms.

JP2005284097A 2005-09-29 2005-09-29 Method for producing polymerizable compound Active JP4929663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284097A JP4929663B2 (en) 2005-09-29 2005-09-29 Method for producing polymerizable compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284097A JP4929663B2 (en) 2005-09-29 2005-09-29 Method for producing polymerizable compound

Publications (2)

Publication Number Publication Date
JP2007091650A true JP2007091650A (en) 2007-04-12
JP4929663B2 JP4929663B2 (en) 2012-05-09

Family

ID=37977767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284097A Active JP4929663B2 (en) 2005-09-29 2005-09-29 Method for producing polymerizable compound

Country Status (1)

Country Link
JP (1) JP4929663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149446A1 (en) * 2007-03-30 2010-06-17 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display device, method for producing liquid crystal display device
JP2014009188A (en) * 2012-06-29 2014-01-20 Pola Chem Ind Inc New ester of trihydric alcohol

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129527A (en) * 1997-07-09 1999-02-02 Dainippon Ink & Chem Inc Side-chain type radically polymerizable compound and liquid crystal device using the same
WO2001055084A1 (en) * 2000-01-27 2001-08-02 Kanagawa University Unsaturated monocarboxylic ester compound, process for producing the same, and composition curable with actinic energy ray
JP2001335537A (en) * 2000-05-23 2001-12-04 Ube Ind Ltd Method for producing triol monoester
JP2002105032A (en) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc Side-chain radical-polymerizable compound, and liquid crystal device using the same
JP2005225831A (en) * 2004-02-16 2005-08-25 Dainippon Ink & Chem Inc Polymerizable compound and polymerizable composition
JP2005290074A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Light-scattering type liquid crystal device and material for forming light-modulating layer
JP2006335655A (en) * 2005-05-31 2006-12-14 Dainippon Ink & Chem Inc Polymerizable compound and polymerizable composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129527A (en) * 1997-07-09 1999-02-02 Dainippon Ink & Chem Inc Side-chain type radically polymerizable compound and liquid crystal device using the same
WO2001055084A1 (en) * 2000-01-27 2001-08-02 Kanagawa University Unsaturated monocarboxylic ester compound, process for producing the same, and composition curable with actinic energy ray
JP2001335537A (en) * 2000-05-23 2001-12-04 Ube Ind Ltd Method for producing triol monoester
JP2002105032A (en) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc Side-chain radical-polymerizable compound, and liquid crystal device using the same
JP2005225831A (en) * 2004-02-16 2005-08-25 Dainippon Ink & Chem Inc Polymerizable compound and polymerizable composition
JP2005290074A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Light-scattering type liquid crystal device and material for forming light-modulating layer
JP2006335655A (en) * 2005-05-31 2006-12-14 Dainippon Ink & Chem Inc Polymerizable compound and polymerizable composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149446A1 (en) * 2007-03-30 2010-06-17 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display device, method for producing liquid crystal display device
US8405799B2 (en) * 2007-03-30 2013-03-26 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display device, method for producing liquid crystal display device
JP2014009188A (en) * 2012-06-29 2014-01-20 Pola Chem Ind Inc New ester of trihydric alcohol

Also Published As

Publication number Publication date
JP4929663B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5696452B2 (en) Method for producing cycloalkanedicarboxylic acid monoester
JP6020772B1 (en) Mixture and method for producing polymerizable compound
JP2009256327A (en) Method for producing cycloalkanedicarboxylic acid monoester
WO2019111853A1 (en) Method for producing dicarboxylic acid monoester, dicarboxylic acid monoester salt, and method for producing polymerizable liquid crystal compound
JP4929663B2 (en) Method for producing polymerizable compound
JP2007238472A (en) Monoglycidylisocyanuric acid compound
JP2009235043A (en) Hydroxybenzoic acid derivative and method for producing polymerizable compound
TWI720410B (en) Method for manufacturing potash and potash
JP2008150349A (en) 4&#39;-(alkoxycarbonyl)bicyclohexyl-4-ylcarboxylic acid and method for producing the same
JP4243094B2 (en) Polymerizable compound and retardation plate
JP2008247815A (en) Method for producing polyhydric alcohol ester
JP5403485B2 (en) 1,4-Dihydroanthracene-9,10-diether compound and process for producing the same
JP2001253863A (en) Crystalline ferulic acid derivative and its use
JPWO2005056512A1 (en) Method for producing polymerizable unsaturated carboxylic acid adamantyl esters
JP5098142B2 (en) Method for producing polymerizable compound
JP4868104B2 (en) (Meth) acrylate compound of cyclobutanetetracarboxylic acid and process for producing the same
JPH10237016A (en) Production of optically active compound
JP2009256307A (en) Adamantyl ester of unsaturated carboxylic acid and method for producing the same
JP6635999B2 (en) Method for producing potassium salt, and potassium salt
JPWO2015108171A1 (en) Method for producing high purity 1,3-dialkylcyclobutane-1,2,3,4-tetracarboxylic acid-1,2: 3,4-dianhydride
JP2010126499A (en) Naphthalocyanine compound and method for producing the same
JP3973398B2 (en) Thermally stable ferulic acid derivative, process for producing the same, and ultraviolet absorber containing the same as an active ingredient
JP4440167B2 (en) Highly fluorinated carboxylic acid derivative and method for producing the same
JP2009256306A (en) Adamantane derivative having polymerizable unsaturated group, and method for producing the same
JP2000072716A (en) Production of (meth)acrylate ester compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4929663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250