JP2006335655A - Polymerizable compound and polymerizable composition - Google Patents

Polymerizable compound and polymerizable composition Download PDF

Info

Publication number
JP2006335655A
JP2006335655A JP2005159223A JP2005159223A JP2006335655A JP 2006335655 A JP2006335655 A JP 2006335655A JP 2005159223 A JP2005159223 A JP 2005159223A JP 2005159223 A JP2005159223 A JP 2005159223A JP 2006335655 A JP2006335655 A JP 2006335655A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
present
liquid crystal
replaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159223A
Other languages
Japanese (ja)
Other versions
JP5019092B2 (en
Inventor
Masanao Hayashi
正直 林
Hitoshi Hayakawa
均 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2005159223A priority Critical patent/JP5019092B2/en
Publication of JP2006335655A publication Critical patent/JP2006335655A/en
Application granted granted Critical
Publication of JP5019092B2 publication Critical patent/JP5019092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polymerizable compound which can suitably be used as a constituting member of a material for forming light-controlling layers capable of being driven at low voltages even in low temperature regions. <P>SOLUTION: This polymerizable compound represented by general formula (1). A light-scattering type liquid crystal device using the compound as a constituting member can be driven at a low voltage even at a low temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は新規重合性化合物に関し、更に詳しくは、幅広い温度範囲において低電圧駆動が可能で電気光学特性に優れる光散乱型液晶デバイスの調光層形成材料に好適に使用できる重合性化合物に関する。   The present invention relates to a novel polymerizable compound, and more particularly to a polymerizable compound that can be suitably used as a light control layer forming material of a light scattering liquid crystal device that can be driven at a low voltage in a wide temperature range and is excellent in electro-optical characteristics.

情報化社会の進展に伴い、情報通信材料の需要がますます高まっている。特に、光散乱型の液晶デバイスは、偏光板が不要なことや視野角依存性が少ないことから、広告板、装飾表示板、時計、コンピューター、プロジェクション、デジタルペーパー、携帯用情報端末、光シャッター、などに用いる液晶表示素子又は光学素子として大きく期待されている。   With the development of the information society, the demand for information and communication materials is increasing. In particular, light-scattering liquid crystal devices do not require polarizing plates and have little viewing angle dependency, so advertising boards, decorative display boards, watches, computers, projections, digital paper, portable information terminals, optical shutters, It is highly expected as a liquid crystal display element or an optical element used for the above.

光散乱型液晶デバイスとして、ラジカル重合性組成物と液晶組成物とからなる調光層形成材料に光照射又は加熱して得られる、ポリマーマトリックスと液晶組成物とからなる調光層を有する液晶デバイスが知られている。
該デバイスには、使用する液晶化合物の種類には左右されず、幅広い温度範囲(例えば−20℃から70℃位の温度範囲)において駆動電圧の変化が小さいこと、且つ、駆動電圧の絶対値は20V以下であることが求められている。特に液晶駆動方式がTFT駆動の場合は10V以下の低電圧化が不可欠である。
これらの特性を満たすような、重合性化合物の開発が進められており、幾つかの側鎖型ラジカル重合性化合物の開示がある(引用文献1から3参照)。側鎖型ラジカル重合性化合物とは一例として次の一般式(E)で模式的に表されるような化合物を意味する。
A liquid crystal device having a light control layer comprising a polymer matrix and a liquid crystal composition, which is obtained by irradiating or heating a light control layer forming material comprising a radical polymerizable composition and a liquid crystal composition as a light scattering liquid crystal device. It has been known.
The device does not depend on the type of liquid crystal compound to be used, and the change in the drive voltage is small in a wide temperature range (for example, the temperature range of about −20 ° C. to 70 ° C.), and the absolute value of the drive voltage is It is required to be 20V or less. Particularly when the liquid crystal driving method is TFT driving, it is indispensable to reduce the voltage to 10 V or less.
Development of a polymerizable compound that satisfies these characteristics is underway, and some side chain type radically polymerizable compounds are disclosed (see cited documents 1 to 3). A side chain type radically polymerizable compound means a compound schematically represented by the following general formula (E) as an example.

Figure 2006335655
(式中、Mcは主鎖を表し、Sc1は側鎖1を表し、Sc2は側鎖2を表すが、Sc1>Sc2であり、Mc及びScは主に炭素原子により構成される。)当該構造は側鎖型ラジカル重合性化合物を模式的に示したものであり、全ての構造を網羅したものでは無い。しかしながら、当該基本骨格の範囲においても種々の化合物を包含することから主鎖、側鎖等の置換基を個別に検討することにより化合物の提案が行われてきた。しかも、その検討は主として、前述の式中の主鎖及び側鎖1について検討され側鎖2については多くの検討はなされていなかった。
例えば、特許文献1においては側鎖型ラジカル重合性化合物の主鎖構造(Mc)を改良することにより、駆動電圧の低減が図られており、主鎖にさらなる置換基を有する化合物も開示されている。しかし、当該化合物を構成部材とする液晶デバイスは、0から50℃の範囲において約7Vの駆動電圧を達成しているが、0℃以下の極低温域では駆動電圧が上昇する傾向にあった。又、当該引用文献記載の化合物においては式(E)における側鎖2については検討が行われておらず、次に記載するような芳香環を主鎖とし側鎖2にメチル基を有する化合物が記載されるのみであり、当該化合物を構成部材とするデバイスもまた0℃以下の極低温域では駆動電圧が上昇する傾向にあった。
Figure 2006335655
(In the formula, Mc represents a main chain, Sc 1 represents a side chain 1, Sc 2 represents a side chain 2, Sc 1 > Sc 2 , and Mc and Sc are mainly composed of carbon atoms. .) The structure schematically shows a side chain type radical polymerizable compound and does not cover all structures. However, since various compounds are included within the scope of the basic skeleton, compounds have been proposed by individually examining substituents such as main chains and side chains. Moreover, the investigation was mainly conducted on the main chain and side chain 1 in the above formula, and many studies on the side chain 2 were not made.
For example, in Patent Document 1, the driving voltage is reduced by improving the main chain structure (Mc) of the side chain type radically polymerizable compound, and a compound having a further substituent in the main chain is also disclosed. Yes. However, a liquid crystal device comprising the compound as a constituent member achieves a driving voltage of about 7 V in the range of 0 to 50 ° C., but the driving voltage tends to increase in an extremely low temperature range of 0 ° C. or lower. In addition, in the compound described in the cited document, side chain 2 in formula (E) has not been studied, and a compound having an aromatic ring as a main chain and having a methyl group in side chain 2 as described below. As described above, the device having the compound as a constituent member also had a tendency that the driving voltage increased in an extremely low temperature range of 0 ° C. or lower.

Figure 2006335655
又、主鎖にカルボニル基を有する置換基をさらに設けた化合物についても開示されている(特許文献2参照)。しかしながら、当該化合物を構成部材とするデバイスにおいては低駆動電圧化には有利であるが、分子中の側鎖密度が高くなり過ぎてしまい、0℃以下の極低温域では印加した状態を保ってしまう現象がみられる問題があった。さらに、当該引用文献においても、その検討の範囲は大部分が主鎖上の置換基を対象としており、二種の側鎖相互間の関係については開示されていない。
Figure 2006335655
Further, a compound further provided with a substituent having a carbonyl group in the main chain is also disclosed (see Patent Document 2). However, in a device having the compound as a constituent member, it is advantageous for lowering the driving voltage, but the side chain density in the molecule becomes too high, and the applied state is maintained in an extremely low temperature range of 0 ° C. or lower. There was a problem with the phenomenon. Furthermore, even in the cited document, the scope of the study is mostly directed to substituents on the main chain, and the relationship between the two types of side chains is not disclosed.

一方、1分子中に、側鎖1として炭素原子数4から25の直鎖アルキル基及び炭素原子数4から26の分岐アルキル基の両方を有する多官能アクリレート系のラジカル重合性化合物の開示がある(特許文献3参照)。当該引用文献記載の化合物は、ポリマーマトリックス中に直鎖アルキル基と分岐アルキル基の両方を、ある一定の範囲の割合で組み込めることができ、駆動電圧5Vを達成することができ、モノマーが残存しにくいので、光、熱等による劣化を防ぐことができる特徴を有する。しかし、1分子に組み込める直鎖アルキル基と分岐アルキル基の比率が限られるので、ポリマーマトリックス中に組み込める直鎖アルキル基と分岐アルキル基の比率が限られ、駆動電圧の温度変化の調整に限界があった。又、側鎖として炭素原子数4から25の直鎖アルキル基と炭素原子数4から26の分岐アルキル基の両方を有する多官能(メタ)アクリレートの合成工程が多いために、製造コストが高いといった欠点があった。   On the other hand, there is a disclosure of a polyfunctional acrylate-based radical polymerizable compound having both a linear alkyl group having 4 to 25 carbon atoms and a branched alkyl group having 4 to 26 carbon atoms as a side chain 1 in one molecule. (See Patent Document 3). The compound described in the cited document can incorporate both a linear alkyl group and a branched alkyl group in the polymer matrix in a certain range of ratios, can achieve a driving voltage of 5 V, and the monomer remains. Since it is difficult, it has a feature that can prevent deterioration due to light, heat and the like. However, since the ratio of linear alkyl groups and branched alkyl groups that can be incorporated into one molecule is limited, the ratio of linear alkyl groups and branched alkyl groups that can be incorporated into the polymer matrix is limited, and there is a limit to the adjustment of temperature change of driving voltage. there were. In addition, the production cost is high because there are many synthesis steps of a polyfunctional (meth) acrylate having both a linear alkyl group having 4 to 25 carbon atoms and a branched alkyl group having 4 to 26 carbon atoms as side chains. There were drawbacks.

特開平11−29527号公報JP-A-11-29527 特開2000−72717号公報(16頁)JP 2000-72717 A (page 16) 特開2002−293827号公報JP 2002-293828 A

本発明が解決しようとする課題は、−20℃から70℃の幅広い温度範囲においても低電圧駆動可能な、ポリマーマトリックス及び液晶組成物からなる調光層を有する光散乱型液晶デバイスの調光層形成材料として好適に使用できる、ポリマーマトリックスを形成する材料にアルキル側鎖を有する新規重合性化合物を提供することにある。   A problem to be solved by the present invention is a light control layer of a light-scattering liquid crystal device having a light control layer comprising a polymer matrix and a liquid crystal composition that can be driven at a low voltage even in a wide temperature range of −20 ° C. to 70 ° C. An object of the present invention is to provide a novel polymerizable compound having an alkyl side chain in a material forming a polymer matrix, which can be suitably used as a forming material.

本願発明者らは種々の重合性化合物の検討を行った結果、特定の構造を有する重合性化合物を使用することで前述の課題を解決できることを見出し本願発明を関せするに至った。
本願発明は、一般式(1)
As a result of studying various polymerizable compounds, the inventors of the present application have found that the above-mentioned problems can be solved by using a polymerizable compound having a specific structure, and have been involved in the present invention.
The present invention provides a general formula (1)

Figure 2006335655
(式中、Xは−O−CH−、−O−CH−CH−CO−O−CH−、−O−CH−CHOCO−、又は−O−CH−CH(CH)OCO−を表し、
は炭素数4から30のアルキル基を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、
は水素又はメチル基を表し、
は炭素原子数1から5のアルキル基を表し、
及びXはそれぞれ独立して、−CHO−、−CHOCO−、−CHCO−O−、−COO−又は単結合を表し、
は、炭素数1から30のアルキレン基を表すが、基中に存在する少なくとも一つのメチレン基は一般式(2)
Figure 2006335655
(Wherein, X 1 is -O-CH 2 -, - O -CH 2 -CH 2 -CO-O-CH 2 -, - O-CH 2 -CH 2 OCO-, or -O-CH 2 -CH (CH 3) OCO- represent,
R 2 represents an alkyl group having 4 to 30 carbon atoms, and one or two or more carbon atoms present in the group may be replaced by oxygen atoms so that the oxygen atoms are not directly bonded to each other. Preferably, a single bond between one or more carbons present in the group may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group may be replaced by a halogen. well,
R 3 represents hydrogen or a methyl group,
R 4 represents an alkyl group having 1 to 5 carbon atoms,
X 2 and X 3 each independently represent —CH 2 O—, —CH 2 OCO—, —CH 2 CO—O—, —COO— or a single bond,
R 1 represents an alkylene group having 1 to 30 carbon atoms, and at least one methylene group present in the group is represented by the general formula (2)

Figure 2006335655
(式中、R11及びR12はそれぞれ独立して、水素又は炭素数1から8のアルキル基を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良いが、R11及びR12の少なくともどちらか一方はアルキル基を表し、mは1から10の整数を表す。)で表されるからからで表される置換基により置き換えられており、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良い。)で表される重合性化合物を提供し、併せて当該化合物を含有する重合性組成物及び当該組成物を構成部材とする光散乱型液晶デバイスを提供する。
Figure 2006335655
(In the formula, R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and one or two or more carbon atoms present in the group are mutually bonded to oxygen atoms. It may be replaced by an oxygen atom as not directly bonded, and a single bond between one or more carbons present in the group may be replaced by a double bond or a triple bond. The hydrogen atom present therein may be substituted by halogen, but at least one of R 11 and R 12 represents an alkyl group, and m represents an integer of 1 to 10. Wherein one or two or more carbon atoms present in the group may be replaced by oxygen atoms so that the oxygen atoms are not directly bonded to each other. Exist in A single bond between one or more carbons present may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group may be replaced by a halogen. ) And a light-scattering liquid crystal device having the composition as a constituent member.

本発明の重合性化合物を使用することで、−20℃から70℃の幅広い温度範囲においても低電圧駆動可能な、ポリマーマトリックス及び液晶組成物からなる調光層を有する光散乱型液晶デバイスを得ることができる。   By using the polymerizable compound of the present invention, a light scattering liquid crystal device having a light control layer composed of a polymer matrix and a liquid crystal composition, which can be driven at a low voltage even in a wide temperature range of −20 ° C. to 70 ° C. is obtained. be able to.

一般式(1)において、Xは−O−CH−又は−O−CH−CH−CO−O−CH−が好ましく、−O−CH−がより好ましい。
一般式(1)において、Rは炭素数6から20のアルキル基が好ましく、更に、アルキル基が直鎖アルキル基の場合は、炭素数7から14の直鎖アルキル基がより好ましい、アルキル鎖が分岐鎖の場合は、炭素数9から18の分岐アルキル基がより好ましい。
が炭素数6から20の直鎖アルキル基の場合、構成された液晶デバイスは低電圧駆動の点で有利である。又、Rが、2−n−ヘプチル−ノニル基等の分岐アルキル基である場合、駆動電圧の温度による変化の少ない点で有利となる。その他、具体的には、n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−ウンデシル基、n−トリデシル基、n−テトラデシル基、n−オクタデシル基、2−n−ヘプチルノニル基、イソミリスチル基、2−エチルヘキシル基、ブトキシエチル基、ヘキシロキシエチル基、n−ブトキシエトキシメチル基、シクロヘキシル基、ポリエチレングリコールモノエーテル基、4−ノニルフェニレン基、4−オクチルシクロヘキシル基等があげられる。
In the general formula (1), X 1 is preferably —O—CH 2 — or —O—CH 2 —CH 2 —CO—O—CH 2 —, more preferably —O—CH 2 —.
In the general formula (1), R 2 is preferably an alkyl group having 6 to 20 carbon atoms, and when the alkyl group is a linear alkyl group, a linear alkyl group having 7 to 14 carbon atoms is more preferable. When is a branched chain, a branched alkyl group having 9 to 18 carbon atoms is more preferable.
When R 2 is a linear alkyl group having 6 to 20 carbon atoms, the constructed liquid crystal device is advantageous in terms of low voltage driving. In addition, when R 2 is a branched alkyl group such as a 2-n-heptyl-nonyl group, it is advantageous in that the change of the driving voltage with temperature is small. In addition, specifically, n-hexyl group, 2-ethylhexyl group, n-octyl group, n-undecyl group, n-tridecyl group, n-tetradecyl group, n-octadecyl group, 2-n-heptylnonyl group, iso A myristyl group, 2-ethylhexyl group, butoxyethyl group, hexyloxyethyl group, n-butoxyethoxymethyl group, cyclohexyl group, polyethylene glycol monoether group, 4-nonylphenylene group, 4-octylcyclohexyl group and the like can be mentioned.

一般式(1)において、Rは水素又はメチル基を表すが、反応性の高さから水素がより好ましい。
一般式(1)において、Rはエチル基、プロピル基又はブチル基が好ましく、エチル基又はプロピル基が特に好ましい。Rの炭素数が5よりも大きくなるとアクリル基の重合性を阻害する恐れがある。Rの部位に炭素数1から5のアルキル基を導入することにより、0℃以下の極低温でも前記一般式(1)における−X−Rで表される基の運動性を保つことができるので大変重要な基である。更に、Rを有することにより、前記Rが分岐アルキル基でも低駆動電圧化が図れる。従って、より低駆動電圧で、且つ、低温域における駆動電圧の上昇の少ない光散乱型液晶デバイスを得ることができる。
一般式(1)において、X及びXはそれぞれ独立して、−CHO−又は−CHOCO−が好ましい。
In the general formula (1), R 3 represents hydrogen or a methyl group, and hydrogen is more preferable because of high reactivity.
In the general formula (1), R 4 is preferably an ethyl group, a propyl group or a butyl group, particularly preferably an ethyl group or a propyl group. If the number of carbon atoms in R 4 is greater than 5, there is a risk of inhibiting the polymerizability of the acrylic group. By introducing an alkyl group having 1 to 5 carbon atoms into the R 4 site, the mobility of the group represented by —X 2 —R 2 in the general formula (1) is maintained even at an extremely low temperature of 0 ° C. or lower. This is a very important group. Furthermore, by having R 4 , a low driving voltage can be achieved even if R 2 is a branched alkyl group. Accordingly, it is possible to obtain a light-scattering liquid crystal device with a lower driving voltage and less increase in driving voltage in a low temperature range.
In the general formula (1), X 2 and X 3 are each independently preferably —CH 2 O— or —CH 2 OCO—.

一般式(1)においてRは、炭素数10から25のアルキレン基が好ましく、12から22のアルキレン基がより好ましい。さらに、R中の少なくとも一つ存在する一般式(2)において、R11及びR12はそれぞれ独立して水素又は炭素数1から5のアルキル基が好ましく、水素又は炭素数1から3のアルキル基がさらに好ましいが、R11及びR12は同時に水素を表さないため、R11及びR12がそれぞれ独立して炭素数1から3のアルキル基であるか、R11が水素でありR12が炭素数1から3のアルキル基であるか、R12が水素でありR11が炭素数1から3のアルキル基であることが好ましい。mは1から5が好ましく、1から3がより好ましい。すなわち、主鎖であるR中に存在する分岐側鎖の数は、1から6好ましく、1から4がより好ましい。
本発明では一般式(E)で示した側鎖1、側鎖2及び分岐アルキル基を有する主鎖構造を共に有することが重要である。又、この様な置換基は一般式(1)においては、側鎖1が、−X−Rに相当し、側鎖2がRに相当し、主鎖が−X3−R1−X3−及びR1を構成する一般式(2)に相当する。このような長鎖および短鎖の側鎖基、且つ分岐アルキル基を有する主鎖構造のモノマーの硬化物は、従来の化合物および分岐鎖がない化合物と比較して分子の運動性が大幅に向上するため低Tgであり、且つ排除体積効果により液晶分子がポリマー表面に接近し難いため光散乱型液晶デバイスの調光層形成材料に好適である。
主鎖は具体的には、7,12−ジメチルオクタデシレン基、7−エチルヘキサデシレン基、2,2’−ジメチル−プロピレン基、繰り返し数が2から6のポリオキシプロピレン基、ポリオキシブチレン基や下記の基等が挙げられる。
In general formula (1), R 1 is preferably an alkylene group having 10 to 25 carbon atoms, and more preferably an alkylene group having 12 to 22 carbon atoms. Furthermore, in the general formula (2) present in at least one of R 1 , R 11 and R 12 are each independently preferably hydrogen or an alkyl group having 1 to 5 carbon atoms, and hydrogen or an alkyl group having 1 to 3 carbon atoms. Group is more preferred, but R 11 and R 12 do not represent hydrogen at the same time, so that R 11 and R 12 are each independently an alkyl group having 1 to 3 carbon atoms, or R 11 is hydrogen and R 12 Is an alkyl group having 1 to 3 carbon atoms, or R 12 is hydrogen and R 11 is an alkyl group having 1 to 3 carbon atoms. m is preferably 1 to 5, and more preferably 1 to 3. That is, the number of branched side chains present in R 1 as the main chain is preferably 1 to 6, and more preferably 1 to 4.
In the present invention, it is important to have both the main chain structure having the side chain 1, the side chain 2, and the branched alkyl group represented by the general formula (E). Further, in such a substituent group is represented by formula (1), side chain 1 is equivalent to -X 2 -R 2, side chain 2 corresponds to R 4, the main chain -X 3 -R 1 It corresponds to the general formula (2) constituting -X 3 -and R 1 . The cured product of the main chain monomer having long and short side groups and branched alkyl groups greatly improves molecular mobility compared to conventional compounds and compounds without branched chains. Therefore, it has a low Tg, and the liquid crystal molecules hardly approach the polymer surface due to the excluded volume effect, so that it is suitable for a light control layer forming material of a light scattering type liquid crystal device.
Specifically, the main chain is a 7,12-dimethyloctadecylene group, a 7-ethylhexadecylene group, a 2,2′-dimethyl-propylene group, a polyoxypropylene group having 2 to 6 repeats, a polyoxy Examples include butylene group and the following groups.

Figure 2006335655
(これらの置換基の左右両末端はメチル基ではなく、他の炭素原子と結合していることを表す。)
Figure 2006335655
(The left and right ends of these substituents are not methyl groups, but are bonded to other carbon atoms.)

本発明で表される重合性化合物のRからRおよびXからXは、1分子中に2つ存在するが、各々、同一な基あるいは結合である必要はなく、目的により適宜選択される。例えばRで表される基は、一方がデシル基であり、もう一方はウンデシル基であっても良い。 R 2 to R 4 and X 1 to X 3 in the polymerizable compound represented by the present invention are present in two in one molecule, but need not be the same group or bond, and are appropriately selected depending on the purpose. Is done. For example, one of the groups represented by R 2 may be a decyl group and the other may be an undecyl group.

前記一般式(1)で表される重合性化合物は、例えばTetrahedoron Letters,Vol.23,No6,pp681−684及び、Journal of Polymer Science:PartA:Polymer Chemistry,Vol.34,pp217−225等に記載の方法で合成することができる。具体的には、オキセタン基を複数有する化合物と、オキセタン基と反応し得る脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法や、オキセタン基を一つ有する化合物と、オキセタン基と反応し得る多価の脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法等により得ることができる。前記活性水素を有する重合性化合物としては、アクリル酸以外に、例えば、メタクリル酸、アクリル酸ダイマー、メタクリル酸ダイマー、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート等を使用することができる。また、オキセタンと脂肪酸との反応の場合は、アクリル酸塩化物、メタクリル酸塩化物、アクリル酸メチル、アクリル酸エチル等を使用することができる。
具体的に例えば、一般式(1)で表される重合性化合物が、下記化合物の場合は、
Examples of the polymerizable compound represented by the general formula (1) include Tetrahedoron Letters, Vol. 23, No. 6, pp 681-684, and Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 34, pp217-225 and the like. Specifically, a method of reacting a compound having a plurality of oxetane groups with a fatty acid chloride or a fatty acid capable of reacting with the oxetane group and further reacting with a polymerizable compound having active hydrogen such as acrylic acid, or oxetane It can be obtained by a method of reacting a compound having one group with a polyvalent fatty acid chloride or fatty acid capable of reacting with an oxetane group and further reacting with a polymerizable compound having active hydrogen such as acrylic acid. it can. As the polymerizable compound having active hydrogen, in addition to acrylic acid, for example, methacrylic acid, acrylic acid dimer, methacrylic acid dimer, hydroxyethyl acrylate, hydroxypropyl acrylate, and the like can be used. In the case of a reaction between oxetane and a fatty acid, acrylated chloride, methacrylated chloride, methyl acrylate, ethyl acrylate, or the like can be used.
Specifically, for example, when the polymerizable compound represented by the general formula (1) is the following compound,

Figure 2006335655
Figure 2006335655

ネオペンチルグリコールのp−トルエンスルホン酸ジエステルと3−エチル−3−ヒドロキシメチルオキセタンを水酸化ナトリウムの存在下で反応させることにより下記に示す3,3’−(2,2ジメチルプロパン−ジイルビス(オキシメチレン))ビス−(3−エチルオキセタン)を得ることができる。 By reacting p-toluenesulfonic acid diester of neopentyl glycol with 3-ethyl-3-hydroxymethyloxetane in the presence of sodium hydroxide, the following 3,3 ′-(2,2dimethylpropane-diylbis (oxy) Methylene)) bis- (3-ethyloxetane) can be obtained.

Figure 2006335655
更にこの2官能のジオキセタン化合物とn−ウンデカノイルクロリドとをヨウ化ナトリウム、アセトニトリルの存在下、0℃で反応させ炭素数10のメチレン鎖を有するヨード化合物を得る。次に、生成したヨード化合物とアクリル酸を1,8−ジアザビシクロ[5.4.0]−ウンデセン−7(以下DBUと略す)の存在下でジメチルスルホキシドを溶媒に用い、90℃で12時間反応させることにより目的物を得ることができる。
また、一般式(1)で表される重合性化合物が、下記化合物の場合は
Figure 2006335655
Further, this bifunctional dioxetane compound and n-undecanoyl chloride are reacted at 0 ° C. in the presence of sodium iodide and acetonitrile to obtain an iodo compound having a methylene chain having 10 carbon atoms. Next, the produced iodo compound and acrylic acid were reacted at 90 ° C. for 12 hours using dimethyl sulfoxide as a solvent in the presence of 1,8-diazabicyclo [5.4.0] -undecene-7 (hereinafter abbreviated as DBU). By doing so, the target product can be obtained.
When the polymerizable compound represented by the general formula (1) is the following compound:

Figure 2006335655
Figure 2006335655

トリプロピレングリコールのp−トルエンスルホン酸ジエステルと3−エチル−3−ヒドロキシメチルオキセタンを水酸化ナトリウムの存在下で反応させることにより下記に示すトリプロピレングリコールジオキセタニルエチルエーテルを得ることができる。 Tripropylene glycol dioxetanyl ethyl ether shown below can be obtained by reacting p-toluenesulfonic acid diester of tripropylene glycol with 3-ethyl-3-hydroxymethyloxetane in the presence of sodium hydroxide.

Figure 2006335655
更にこの2官能のジオキセタン化合物とノルマルデカノイルクロリドとをヨウ化ナトリウム、アセトニトリルの存在下、0℃で反応させ炭素数9のメチレン鎖を有するヨード化合物を得る。次に、生成したヨード化合物とアクリル酸をDBUの存在下でジメチルスルホキシドを溶媒に用い、90℃、12時間反応させることにより目的物を得ることができる。
Figure 2006335655
Further, this bifunctional dioxetane compound and normal decanoyl chloride are reacted at 0 ° C. in the presence of sodium iodide and acetonitrile to obtain an iodo compound having a methylene chain having 9 carbon atoms. Next, the target product can be obtained by reacting the produced iodo compound and acrylic acid in the presence of DBU using dimethyl sulfoxide as a solvent at 90 ° C. for 12 hours.

上記の方法以外に1.アルキルハロゲン化合物とオキセタン基を有するアルコールとの反応物にモノ(ジ)カルボン酸クロリドを反応させた後、重合性基を導入する方法、2.モノ(ジ)カルボン酸とオキセタン基を有するアルコールとの反応物に、モノ(ジ)カルボン酸クロリドを反応させた後、重合性基を導入する方法、3.アルコールとオキセタン基を有するアルコールのp−トルエンスルホン酸エステルとの反応物にモノ(ジ)カルボン酸クロリドを反応させた化合物に重合性基を導入する方法、4.アルコールとオキセタンを有するハロゲン化合物との反応物にモノ(ジ)カルボン酸クロリドを反応させた化合物に重合性基を導入する方法などが挙げられる。   In addition to the above method, 1. 1. a method of introducing a polymerizable group after reacting a reaction product of an alkyl halogen compound and an alcohol having an oxetane group with mono (di) carboxylic acid chloride; 2. a method of introducing a polymerizable group after reacting a mono (di) carboxylic acid chloride with a reaction product of a mono (di) carboxylic acid and an alcohol having an oxetane group; 3. a method for introducing a polymerizable group into a compound obtained by reacting a mono (di) carboxylic acid chloride with a reaction product of an alcohol and a p-toluenesulfonic acid ester of an alcohol having an oxetane group; Examples thereof include a method of introducing a polymerizable group into a compound obtained by reacting a reaction product of an alcohol and a halogen compound having oxetane with mono (di) carboxylic acid chloride.

また、オキセタンアルコールの合成方法としては、例えば特開平11−012261号公報、特開平9−71545号公報等の公知の方法で合成することができる。具体的には、トリメチロールアルカンとジメチルカーボネートとを反応させる方法等により得ることができる。
例えばオキセタンアルコールが下記化合物の場合は、
Further, as a method for synthesizing oxetane alcohol, it can be synthesized by a known method such as JP-A-11-012611 and JP-A-9-71545. Specifically, it can be obtained by a method of reacting trimethylolalkane and dimethyl carbonate.
For example, when oxetane alcohol is the following compound:

Figure 2006335655
Figure 2006335655

t−ブチルメチルエーテル中にヘキサナールとパラホルムアルデヒドとを水酸化ナトリウムの存在下で反応させ、2−ブチル−2−ヒドロキシメチルプロパン−1,3−ジオールを合成する。更に、2−ブチル−2−ヒドロキシメチルプロパン−1,3−ジオールと炭酸ジメチルを炭酸カリウムの存在下で反応させ、副生するメタノールを除去してカーボネート化を行った後に、200℃に加熱して脱炭酸することにより合成することができる。   Hexanal and paraformaldehyde are reacted in t-butyl methyl ether in the presence of sodium hydroxide to synthesize 2-butyl-2-hydroxymethylpropane-1,3-diol. Further, 2-butyl-2-hydroxymethylpropane-1,3-diol and dimethyl carbonate were reacted in the presence of potassium carbonate to remove the by-product methanol and carbonated, and then heated to 200 ° C. Can be synthesized by decarboxylation.

本発明の重合性組成物は、前記一般式(1)で表される重合性化合物を含有する以外は特に限定されず、公知慣用の重合性化合物や重合開始剤を含有することができる。
重合性化合物としては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ウレタンアクリレート、ポリテトラエチレングリコールジマレイミド等が挙げられる。これらの重合性化合物の配合率としては、一般式(1)の重合性化合物の合計量に対して、5から60%が好ましく、10から50%が最も好ましい。
The polymerizable composition of the present invention is not particularly limited except that it contains the polymerizable compound represented by the general formula (1), and can contain a known and commonly used polymerizable compound or a polymerization initiator.
Examples of the polymerizable compound include ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, isomyristyl (meth) acrylate, 1,6 -Hexanediol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, bisphenol A di (meth) acrylate, urethane acrylate, polytetraethylene glycol dimaleimide and the like. The blending ratio of these polymerizable compounds is preferably 5 to 60%, and most preferably 10 to 50%, based on the total amount of the polymerizable compounds of the general formula (1).

重合開始剤としては、ラジカル重合開始剤やイオン重合触媒を使用できる。ラジカル重合開始剤としては、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、2−イソプロピルチオキサントン等のラジカル光重合開始剤や、ベンゾイルパーオキサイド、2,2’−アゾビスイソブチロニトリル等のラジカル熱重合開始剤が挙げられる。またイオン重合触媒としては、三フッ化ホウ素、塩化アルミニウム等のルイス酸、燐酸等のプロトン酸等のカチオン重合触媒、アルキルリチウム、グリニャール試薬等のアニオン重合触媒等が挙げられる。これらの重合開始剤の添加率は重合性組成物に対し0.01から10%が好ましく、1から5%がより好ましい。   As the polymerization initiator, a radical polymerization initiator or an ionic polymerization catalyst can be used. As radical polymerization initiators, radical photopolymerization initiators such as benzoin isopropyl ether, benzyldimethyl ketal and 2-isopropylthioxanthone, and radical thermal polymerization initiators such as benzoyl peroxide and 2,2′-azobisisobutyronitrile Is mentioned. Examples of the ion polymerization catalyst include cationic polymerization catalysts such as Lewis acids such as boron trifluoride and aluminum chloride, protonic acids such as phosphoric acid, and anionic polymerization catalysts such as alkyl lithium and Grignard reagents. The addition rate of these polymerization initiators is preferably 0.01 to 10%, more preferably 1 to 5%, based on the polymerizable composition.

その他、必要に応じて酸化防止剤、紫外線吸収剤、非反応性のオリゴマーや無機充填剤、有機充填剤、重合禁止剤、消泡剤、レベリング剤、可塑剤、シランカップリング剤等を適宜、添加しても良い。   In addition, antioxidants, ultraviolet absorbers, non-reactive oligomers and inorganic fillers, organic fillers, polymerization inhibitors, antifoaming agents, leveling agents, plasticizers, silane coupling agents, etc. It may be added.

また、一般式(1)で表される重合性化合物と液晶組成物との組成物は、光散乱型液晶デバイス用の調光層形成材料として特に有用である。
光散乱型液晶デバイスは、例えば、透明電極層を有し少なくとも片方が透明であり、該透明電極層を対向させた状態でスペーサー等を使用して一定間隔を保った2枚の基板間に、重合性化合物と液晶組成物との組成物を挟持させ、光照射又は加熱することで得ることができる。
The composition of the polymerizable compound represented by the general formula (1) and the liquid crystal composition is particularly useful as a light control layer forming material for a light scattering liquid crystal device.
The light-scattering liquid crystal device has, for example, a transparent electrode layer and at least one of the transparent liquid crystal devices is transparent. Between the two substrates that are spaced apart by using a spacer or the like with the transparent electrode layer facing each other, It can be obtained by sandwiching a composition of a polymerizable compound and a liquid crystal composition and irradiating with light or heating.

前記液晶組成物は、通常この技術分野で液晶相と認識される相を示す組成物であり、中でも、液晶相としてネマチック液晶、スメクチック液晶、コレステリック液晶、カイラルネマチック液晶、カイラルスメクチック液晶を発現するものが好ましい。具体的には、以下に示した化合物群より構成される配合組成物であり、液晶材料の特性、即ち、等方性液体と液晶の相転移温度、融点、粘度、複屈折率、誘電異方性(Δε)の正負を考慮し、又は重合性組成物等との溶解性等を調節することを目的として適宜選択、配合して用いることができる。
液晶材料としては、安息香酸エステル系、シクロヘキサンカルボン酸エステル系、ビフェニル系、テルフェニル系、フェニルシクロヘキサン系、ピリミジン系、ピリジン系、ジオキサン系、シクロヘキシルシクロヘキサンエステル系、トラン系、アルケニル系、フルオロベンゼン系、シアノ系、ナフタレン系等の、一般式(5)
The liquid crystal composition is a composition that exhibits a phase that is generally recognized as a liquid crystal phase in this technical field. Among them, a liquid crystal phase that exhibits a nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, a chiral nematic liquid crystal, or a chiral smectic liquid crystal. Is preferred. Specifically, it is a composition composed of the following compound group, and the characteristics of the liquid crystal material, that is, the phase transition temperature, melting point, viscosity, birefringence, dielectric anisotropy of isotropic liquid and liquid crystal In consideration of the positive / negative of the property (Δε), or for the purpose of adjusting the solubility with the polymerizable composition or the like, it can be appropriately selected, blended and used.
Liquid crystal materials include benzoic acid ester, cyclohexanecarboxylic acid ester, biphenyl, terphenyl, phenylcyclohexane, pyrimidine, pyridine, dioxane, cyclohexylcyclohexane ester, tolan, alkenyl, and fluorobenzene. , Cyano, naphthalene, etc., general formula (5)

Figure 2006335655
(式中、A、B及びCは、それぞれ独立に、下記の環のいずれかを表し、
Figure 2006335655
(In the formula, A, B and C each independently represent any of the following rings:

Figure 2006335655
Figure 2006335655

nは0から2の整数、n’は1から4の整数を表し、Ya及びYbは、それぞれ独立に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−OCF2−、−CF2O−、−CO−O−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−(CH2O−、又は−CH2=CHCH2CH2を表し、Ycは、単結合、−CO−O−、又は−OCO−を表し、Ra及びRbはそれぞれ独立的に水素原子、ハロゲン原子、シアノ基、炭素原子数1から20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、フルオロアルキル基、又はフルオロアルコキシ基を表す。)で表される液晶化合物を単独もしくは複数配合した組成物で用いることができる。 n represents an integer of 0 to 2, n ′ represents an integer of 1 to 4, and Y a and Y b each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —OCF 2 —, —CF 2 O—, —CO—O—, —OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, — (CH 2 ) 3 O— or —CH 2 ═CHCH 2 CH 2 , Y c represents a single bond, —CO—O—, or —OCO—, and R a and R b each independently represent a hydrogen atom or a halogen atom. , A cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an alkenyloxy group, a fluoroalkyl group, or a fluoroalkoxy group. ) Can be used alone or in a composition in which a plurality of liquid crystal compounds are blended.

前記液晶組成物と重合性組成物との配合比は、所望の電気光学特性に応じて調整することができ、50:50から97:3の範囲が好ましく、60:40から85:15の範囲がより好ましい。   The mixing ratio of the liquid crystal composition and the polymerizable composition can be adjusted according to desired electro-optical characteristics, and is preferably in the range of 50:50 to 97: 3, and in the range of 60:40 to 85:15. Is more preferable.

本発明の重合性化合物は、側鎖であるRおよびR構造を適宜変化させることで、液晶デバイスの用途や使用する液晶組成物の種類に応じ適応させることができる。例えば、反射型液晶ディスプレイやデジタルペーパーのような表示素子において、フッ素系液晶等の誘電率異方性が小さい液晶組成物を使用する場合は、Rが直鎖の側鎖基である重合性化合物を選択するのがより好ましい。例えば、Rがエチル基であり、Rが直鎖の炭素数10のノルマルデシル基であり、Rが7,12−ジメチルオクタデシレン基である一般式(1)で表される化合物を、調光層形成材料として使用した光散乱型液晶デバイスは、Rのエチル基、且つRのジメチル基の存在により、−20℃の極低温でもポリマーマトリックスの分子運動が抑制され難い。このため、−20℃の極低温域でも駆動電圧の上昇を抑制することが可能となった。 The polymerizable compound of the present invention can be adapted according to the use of the liquid crystal device and the kind of the liquid crystal composition to be used by appropriately changing the R 1 and R 2 structures which are side chains. For example, in the case of using a liquid crystal composition having a small dielectric anisotropy such as a fluorine-based liquid crystal in a display element such as a reflective liquid crystal display or digital paper, R 2 is a polymer having a linear side chain group. More preferably, the compound is selected. For example, a compound represented by the general formula (1), wherein R 4 is an ethyl group, R 2 is a linear C10 normal decyl group, and R 1 is a 7,12-dimethyloctadecylene group. In the light scattering liquid crystal device used as the light control layer forming material, the molecular motion of the polymer matrix is hardly suppressed even at an extremely low temperature of −20 ° C. due to the presence of the ethyl group of R 4 and the dimethyl group of R 1 . For this reason, it was possible to suppress an increase in drive voltage even in an extremely low temperature range of −20 ° C.

一方、液晶組成物として、シアノ系液晶、チオイソシアナート系液晶など誘電率異方性が大きい液晶組成物を使用する場合や、−20℃以下の低温域で動作させたい場合などは、Rが分岐の側鎖基である重合性化合物を選択するのが好ましい。 On the other hand, when a liquid crystal composition having a large dielectric anisotropy such as a cyano liquid crystal or a thioisocyanate liquid crystal is used as the liquid crystal composition or when it is desired to operate in a low temperature range of −20 ° C. or lower, R 2 It is preferable to select a polymerizable compound in which is a branched side chain group.

以下に、本発明の実施例を示し、本発明を更に具体的に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例において「%」は特に断りのない限り「質量%」を表す。   Examples of the present invention will be shown below, and the present invention will be described more specifically. However, the present invention is not limited to these examples. In the following examples, “%” represents “% by mass” unless otherwise specified.

本実施例において、液晶デバイスの飽和電圧及び飽和電圧の温度依存性は次のように定義する。
T0:電圧無印加時の光透過率(%)。
T100:印加電圧上昇に伴う光透過率変化が飽和に達し、光透過率が変化しなくなった時の光透過率(%)。
T90:T0+0.9×(T100−T0)で定義される光透過率(%)。
飽和電圧:Vr90(V)
高分子分散型液晶表示素子に対する印加電圧を無印加から上昇させていった時、T90の透過率における印加電圧(V)。
飽和電圧の温度依存性:ΔV(V/μm)
−20℃におけるVr90と70℃におけるVr90の差を表すが、飽和電圧はセル厚に依存するため測定したセル厚で除することにより、セル厚の1μmあたりVr90の変化量に換算した値で次式により算出。
ΔV=(Vr90(−20℃)−Vr90(70℃))/セル厚
In this embodiment, the saturation voltage of the liquid crystal device and the temperature dependence of the saturation voltage are defined as follows.
T0: Light transmittance (%) when no voltage is applied.
T100: Light transmittance (%) when the light transmittance change due to the increase in applied voltage reaches saturation and the light transmittance does not change.
T90: Light transmittance (%) defined by T0 + 0.9 × (T100−T0).
Saturation voltage: Vr90 (V)
Applied voltage (V) at the transmittance of T90 when the applied voltage to the polymer dispersion type liquid crystal display element is increased from no application.
Temperature dependence of saturation voltage: ΔV (V / μm)
The difference between Vr90 at −20 ° C. and Vr90 at 70 ° C. represents the saturation voltage, which depends on the cell thickness. By dividing by the measured cell thickness, the value converted into the amount of change in Vr90 per 1 μm of cell thickness is Calculated by formula.
ΔV = (Vr90 (−20 ° C.) − Vr90 (70 ° C.)) / Cell thickness

(中間体の製造1) オキセタン誘導体(7)の製造
撹拌装置、及び温度計を備えた反応容器に、7,12−ジメチルオクタデカンジカルボン酸(商品名:IPS−22、岡村製油社製)44.5g(0.12モル)、ドータイトWSC(同仁化学社製)46g(0.24モル)、N,N−ジメチルアミノピリジン 2.9g(0.024モル)、ジクロロメタン500mlを加える。フラスコ内を窒素雰囲気にして氷水バスで5℃以下に冷却して、3−エチル−3−ヒドロキシメチルオキセタン(東亜合成社製:OXT−101)28g(0.24モル)をゆっくり滴下した。滴下終了後に反応容器を室温に戻し、更に5時間撹拌して反応を終了した。反応液に10%塩酸500mlを加えた後に純水、飽和食塩水の順で洗浄し、有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去して、式(7)で表されるオキセタン誘導体を50g得た。
(Production of Intermediate 1) Production of Oxetane Derivative (7) In a reaction vessel equipped with a stirrer and a thermometer, 7,12-dimethyloctadecanedicarboxylic acid (trade name: IPS-22, manufactured by Okamura Oil Co., Ltd.) 44. 5 g (0.12 mol), Doutite WSC (manufactured by Dojindo) 46 g (0.24 mol), N, N-dimethylaminopyridine 2.9 g (0.024 mol), and dichloromethane 500 ml are added. The flask was cooled to 5 ° C. or less with an ice water bath under a nitrogen atmosphere, and 28 g (0.24 mol) of 3-ethyl-3-hydroxymethyloxetane (manufactured by Toagosei Co., Ltd .: OXT-101) was slowly added dropwise. The reaction container was returned to room temperature after completion | finish of dripping, and also stirred for 5 hours, and reaction was complete | finished. After adding 500 ml of 10% hydrochloric acid to the reaction solution, it is washed with pure water and saturated saline in this order, the organic layer is dried over anhydrous sodium sulfate, and the organic solvent is distilled off under reduced pressure, and is represented by the formula (7). 50 g of oxetane derivative was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:4.45−4.36(dd,8H),3.56(s,4H),2.32(t、4H),1.62(m,4H),1.58(m,2H),1.38−1.26(m,24H),0.92−0.80(m,9H)
13C−NMR(溶媒:重クロロホルム):δ:173.4,165.7,73.4,71.5,64.0,63.7,43.4,40.6,34.1,31.8,29.3,29.2,29.1,26.0,24.9,23.0,22.6,14.1,7.3
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 4.45-4.36 (dd, 8H), 3.56 (s, 4H), 2.32 (t, 4H), 1.62 (m, 4H), 1.58 (m, 2H), 1.38-1.26 (m, 24H), 0.92-0.80 (m, 9H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.4, 165.7, 73.4, 71.5, 64.0, 63.7, 43.4, 40.6, 34.1, 31 .8, 29.3, 29.2, 29.1, 26.0, 24.9, 23.0, 22.6, 14.1, 7.3

(中間体の製造2) 化合物(6)の製造
撹拌装置、窒素導入管、冷却管及び温度計を備えた反応容器に、ネオペンチルグリコール20.8g(0.2モル)、トリエチルアミン44.5g(0.44モル)、テトラメチルエチレンジアミン(0.04モル)4.6gおよびトルエン500mlを入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。p−トルエンスルホニウムクロリド80g(0.42モル)を5回に分けて1時間添加した。添加終了後、室温で反応容器を3時間撹拌した後反応を終了した。生成する塩酸塩を濾過した後、反応液を1/10Nの塩酸溶液、純水、飽和食塩水の順で洗浄し、有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去して、式(6)で表されるネオペンチルグリコールジトシレートを78g得た。
(Production of Intermediate 2) Production of Compound (6) In a reaction vessel equipped with a stirrer, a nitrogen introduction tube, a cooling tube and a thermometer, 20.8 g (0.2 mol) of neopentyl glycol, 44.5 g of triethylamine ( 0.44 mol), 4.6 g of tetramethylethylenediamine (0.04 mol) and 500 ml of toluene were added and stirred while cooling with an ice-water bath so that the temperature became 5 ° C. or lower. 80 g (0.42 mol) of p-toluenesulfonium chloride was added in 5 portions over 1 hour. After completion of the addition, the reaction vessel was stirred at room temperature for 3 hours, and then the reaction was terminated. After filtration of the resulting hydrochloride, the reaction solution was washed with a 1/10 N hydrochloric acid solution, pure water and saturated brine in that order, the organic layer was dried over anhydrous sodium sulfate, and the organic solvent was distilled off under reduced pressure. 78 g of neopentyl glycol ditosylate represented by the formula (6) was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:7.79(d,4H),7.73(d,4H),3.81(s、4H),2.48(s,6H),0.98(s,6H)
13C−NMR(溶媒:重クロロホルム):δ:146.8,132.5,130.2,129.9,129.6,129.0,128.2,73.7,37.9,35.4,21.8,21.6,21.5,21.0
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 7.79 (d, 4H), 7.73 (d, 4H), 3.81 (s, 4H), 2.48 (s, 6H), 0 .98 (s, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 146.8, 132.5, 130.2, 129.9, 129.6, 129.0, 128.2, 73.7, 37.9, 35 .4, 21.8, 21.6, 21.5, 21.0

(中間体の製造3) オキセタン誘導体(8)の製造
撹拌装置、温度計、および滴下ロートを備えた反応容器に、パラホルムアルデヒド 54g(0.17モル)、t−ブチルメチルエーテル 100mlを加え、40℃で溶解させた後、n−ヘキサナール 45g(0.45モル)を1時間かけて、50%水酸化ナトリウム溶液 53.6gを1.5時間かけて同時に滴下した。発熱による温度上昇が見られるが55℃を越えないように反応容器を制御した。50%水酸化ナトリウムを滴下終了したら、反応容器を55℃に加熱して、更に30分かけて50%水酸化ナトリウム 24gを滴下する。滴下終了後、55℃で2時間撹拌し反応を終了させる。反応容器に酢酸エチルを300ml加え、水層を除去する。有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去した後、イソプロピルエーテルによる再結晶により2−ブチル−2−ヒドロキシメチルプロパン−1,3−ジオールを48g得た。
(Production of Intermediate 3) Production of Oxetane Derivative (8) To a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, 54 g (0.17 mol) of paraformaldehyde and 100 ml of t-butyl methyl ether were added. After dissolving at 0 ° C., 45 g (0.45 mol) of n-hexanal was simultaneously added dropwise over 1 hour, and 53.6 g of 50% sodium hydroxide solution was added dropwise over 1.5 hours. The reaction vessel was controlled so that the temperature rose due to exotherm but did not exceed 55 ° C. When the addition of 50% sodium hydroxide is completed, the reaction vessel is heated to 55 ° C., and 24 g of 50% sodium hydroxide is added dropwise over 30 minutes. After completion of the dropwise addition, the reaction is terminated by stirring at 55 ° C. for 2 hours. Add 300 ml of ethyl acetate to the reaction vessel and remove the aqueous layer. The organic layer was dried over anhydrous sodium sulfate, the organic solvent was distilled off under reduced pressure, and then recrystallization from isopropyl ether gave 48 g of 2-butyl-2-hydroxymethylpropane-1,3-diol.

次いで、撹拌装置、温度計、窒素導入管、滴下ロートおよび蒸留塔を備えた反応容器に2−ブチル−2−ヒドロキシメチルプロパン−1,3−ジオール 48g(0.30モル)、炭酸ジメチル 27g(0.3モル)、炭酸カリウム 2.25gを加え、85℃に反応容器を加熱する。カーボネート化に伴うメタノールを除去しながら2時間撹拌した。更に炭酸ジメチル 10.8g(0.12モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を除々に100℃まで加熱して3時間反応させた。その後、減圧器を用いて反応容器内の余分な炭酸ジメチルなどを留去した。
次いで反応容器を200℃まで加熱して4時間加熱して、脱炭酸反応を進行させた。反応終了後、反応物を減圧蒸留して目的物の3−ブチル−3−ヒドロキシメチルオキセタンを34g得た。
更に、中間体の製造2で合成した式(6)で表されるネオペンチルグリコールジトシレート33g(0.08モル)、テトラブチルアンモニウムブロミド2.6g、ジメチルスルホキシド 150ml、および上記反応より合成した3−ブチル−3−ヒドロキシメチルオキセタン 34g(0.24モル)を加え、50℃で溶解させた後に、粒状の水酸化ナトリウム 12.8g(0.32モル)を5回に分けて1時間添加した。添加終了後に反応容器を80℃に加熱して3時間撹拌して反応を終了した。反応液に酢酸エチルを1L加えた後に5%炭酸ナトリウム、純水、飽和食塩水の順で洗浄し、有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去して、式(8)で表されるオキセタン誘導体を16.8g得た。
Subsequently, 48 g (0.30 mol) of 2-butyl-2-hydroxymethylpropane-1,3-diol and 27 g of dimethyl carbonate were added to a reaction vessel equipped with a stirrer, a thermometer, a nitrogen introduction tube, a dropping funnel and a distillation tower. 0.3 mol) and 2.25 g of potassium carbonate are added and the reaction vessel is heated to 85 ° C. The mixture was stirred for 2 hours while removing methanol accompanying carbonation. Further, 10.8 g (0.12 mol) of dimethyl carbonate was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the reaction vessel was gradually heated to 100 ° C. and reacted for 3 hours. Thereafter, excess dimethyl carbonate and the like in the reaction vessel were distilled off using a decompressor.
Next, the reaction vessel was heated to 200 ° C. and heated for 4 hours to proceed the decarboxylation reaction. After completion of the reaction, the reaction product was distilled under reduced pressure to obtain 34 g of the desired product 3-butyl-3-hydroxymethyloxetane.
Furthermore, it was synthesized from 33 g (0.08 mol) of neopentylglycol ditosylate represented by the formula (6) synthesized in the production 2 of the intermediate, 2.6 g of tetrabutylammonium bromide, 150 ml of dimethyl sulfoxide, and the above reaction. After adding 34 g (0.24 mol) of 3-butyl-3-hydroxymethyloxetane and dissolving at 50 ° C., 12.8 g (0.32 mol) of granular sodium hydroxide was added in 5 portions for 1 hour. did. After completion of the addition, the reaction vessel was heated to 80 ° C. and stirred for 3 hours to complete the reaction. 1 L of ethyl acetate was added to the reaction solution, and then washed with 5% sodium carbonate, pure water, and saturated saline in this order. The organic layer was dried over anhydrous sodium sulfate, and the organic solvent was distilled off under reduced pressure to obtain the formula (8) 16.8 g of an oxetane derivative represented by the formula:

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:4.45−4.40(dd,8H),3.56(s,4H),3.40(t、4H),1.40−1.12(m,12H),0.95(s,6H),0.92(t,6H)
13C−NMR(溶媒:重クロロホルム):δ:73.7,71.5,37.9,33.9,29.5,26.8,26.3,25.9,23.1,21.0,20.5,14.0
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 4.45-4.40 (dd, 8H), 3.56 (s, 4H), 3.40 (t, 4H), 1.40-1. 12 (m, 12H), 0.95 (s, 6H), 0.92 (t, 6H)
13 C-NMR (solvent: deuterated chloroform): δ: 73.7, 71.5, 37.9, 33.9, 29.5, 26.8, 26.3, 25.9, 23.1, 21 .0, 20.5, 14.0

(中間体の製造4) オキセタン誘導体(9)の製造
撹拌装置、及び温度計を備えた反応容器に、7,12−ジメチルオクタデカンジカルボン酸(商品名:IPS−22、岡村製油社製)44.5g(0.12モル)、ドータイトWSC(同仁化学社製)46g(0.24モル)、N,N−ジメチルアミノピリジン 2.9g(0.024モル)、ジクロロメタン500mlを加える。フラスコ内を窒素雰囲気にして氷水バスで5℃以下に冷却して、3−メチル−3−ヒドロキシメチルオキセタン 24.6g(0.24モル)をゆっくり滴下した。滴下終了後に反応容器を室温に戻し、更に5時間撹拌して反応を終了した。反応液に10%塩酸500mlを加えた後に純水、飽和食塩水の順で洗浄し、有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去して、下記に示す式(9)で表されるオキセタン誘導体を48g得た。
(Production of intermediate 4) Production of oxetane derivative (9) In a reaction vessel equipped with a stirrer and a thermometer, 7,12-dimethyloctadecanedicarboxylic acid (trade name: IPS-22, manufactured by Okamura Oil Co., Ltd.) 44. 5 g (0.12 mol), Doutite WSC (manufactured by Dojindo) 46 g (0.24 mol), N, N-dimethylaminopyridine 2.9 g (0.024 mol), and dichloromethane 500 ml are added. The flask was cooled to 5 ° C. or lower with an ice-water bath under a nitrogen atmosphere, and 24.6 g (0.24 mol) of 3-methyl-3-hydroxymethyloxetane was slowly added dropwise. The reaction container was returned to room temperature after completion | finish of dripping, and also stirred for 5 hours, and reaction was complete | finished. After adding 500 ml of 10% hydrochloric acid to the reaction solution, it was washed with pure water and saturated brine in that order, the organic layer was dried over anhydrous sodium sulfate, the organic solvent was distilled off under reduced pressure, and the following formula (9) 48 g of the represented oxetane derivative was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:4.45−4.36(dd,8H),3.56(s,4H),2.32(t、4H),1.62(m,4H),1.58(m,2H),1.38−1.26(m,24H),0.92−0.80(m,12H)
13C−NMR(溶媒:重クロロホルム):δ:173.4,165.7,73.4,71.5,64.0,63.7,43.4,40.6,34.1,31.8,29.3,29.2,29.1,26.0,24.9,23.0,22.6,14.1,7.3
(Physical property value)
1H-NMR (solvent: deuterated chloroform): δ: 4.45-4.36 (dd, 8H), 3.56 (s, 4H), 2.32 (t, 4H), 1.62 (m, 4H) ), 1.58 (m, 2H), 1.38-1.26 (m, 24H), 0.92-0.80 (m, 12H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.4, 165.7, 73.4, 71.5, 64.0, 63.7, 43.4, 40.6, 34.1, 31 .8, 29.3, 29.2, 29.1, 26.0, 24.9, 23.0, 22.6, 14.1, 7.3

(実施例1) 重合性化合物「M−1」の製造
撹拌装置、窒素導入管、冷却管及び温度計を備えた反応容器に、式(7)で表されるオキセタン誘導体36.3g(0.064モル)、ヨウ化ナトリウム22.9g(0.152モル)、およびアセトニトリルを300ml入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。デカノイルクロリド25.6(0.134モル)を30分かけてゆっくり滴下した。滴下終了後、5℃で1時間撹拌した後に、更に室温で3時間撹拌して反応を終了した。反応容器に少量の水を加えた後に酢酸エチルを加え、10%亜硫酸水素ナトリウムでヨウ素を分解した。更に純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥した後に、有機溶媒を減圧留去しジヨウ素体を65g合成した。
Example 1 Production of Polymerizable Compound “M-1” In a reaction vessel equipped with a stirrer, a nitrogen introduction tube, a cooling tube, and a thermometer, 36.3 g (0. 064 mol), 22.9 g (0.152 mol) of sodium iodide, and 300 ml of acetonitrile were stirred while cooling with an ice-water bath so that the temperature was 5 ° C. or lower. Decanoyl chloride 25.6 (0.134 mol) was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, and further stirred at room temperature for 3 hours to complete the reaction. A small amount of water was added to the reaction vessel, ethyl acetate was added, and iodine was decomposed with 10% sodium bisulfite. Further, the organic layer was washed in the order of pure water and saturated saline. After drying the organic layer with anhydrous sodium sulfate, the organic solvent was distilled off under reduced pressure to synthesize 65 g of a diiodide.

次いで、撹拌装置、温度計を備えた反応容器に、上記の方法で合成したジヨウ素体 62g(0.055モル)、アクリル酸15.7g(0.218モル)、p−メトキシフェノール 80mg、およびジメチルスルホキシド300gを入れ、室温で撹拌しながら1,8―ジアザビシクロ[5,4,0]7−ウンデセン(以下DBUと略す)を33.2g(0.218モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を90℃に加熱し、12時間撹拌して反応を終了した。反応容器に酢酸エチルを加え、1/10Nの塩酸溶液、5%水酸化ナトリウム溶液、純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、有機層の溶媒を減圧留去した後、濃縮液をシリカゲルクロマトグラフィーにより精製し、ノニル基を2個有する重合性化合物「M−1」(X:―CHOCO−、X:―CHOCO−、R=エチル基)を約35g得た。 Next, in a reaction vessel equipped with a stirrer and a thermometer, 62 g (0.055 mol) of the diiodine synthesized by the above method, 15.7 g (0.218 mol) of acrylic acid, 80 mg of p-methoxyphenol, and 300 g of dimethyl sulfoxide was added, and 33.2 g (0.218 mol) of 1,8-diazabicyclo [5,4,0] 7-undecene (hereinafter abbreviated as DBU) was slowly added dropwise over 30 minutes while stirring at room temperature. . After completion of the dropwise addition, the reaction vessel was heated to 90 ° C. and stirred for 12 hours to complete the reaction. Ethyl acetate was added to the reaction vessel, and the organic layer was washed in the order of 1/10 N hydrochloric acid solution, 5% sodium hydroxide solution, pure water and saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent of the organic layer was distilled off under reduced pressure. Then, the concentrated solution was purified by silica gel chromatography, and polymerizable compound “M-1” having two nonyl groups (X 2 :- About 35 g of CH 2 OCO—, X 3 : —CH 2 OCO—, R 4 = ethyl group) was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H)4.04(s,8H),2.32(t,8H),1.62(m,8H),1.58(m,4H),1.38−1.25(m,48H),0.91−80(m,18H)
13C−NMR(溶媒:重クロロホルム):δ:173.5,165.7,131.1,127.9,64.0,63.7,40.6,34.2,31.8,29.7−29.0,26.8,24.9,23.0,22.6,14.0,10.7,7.3
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H) 04 (s, 8H), 2.32 (t, 8H), 1.62 (m, 8H), 1.58 (m, 4H), 1.38-1.25 (m, 48H), 0.91 -80 (m, 18H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.5, 165.7, 131.1, 127.9, 64.0, 63.7, 40.6, 34.2, 31.8, 29 .7-29.0, 26.8, 24.9, 23.0, 22.6, 14.0, 10.7, 7.3
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9

(実施例2) 重合性化合物「M−2」の製造
撹拌装置、温度計を備えた反応容器に、1−ブロモドデカン89g(0.36モル)、テトラブチルアンモニウムブロミド2.6g、ジメチルスルホキシド 150ml、および3−エチル−3−ヒドロキシメチルオキセタン 28g(0.24モル)を加え、50℃で溶解させた後に、粒状の水酸化ナトリウム 12.8g(0.32モル)を5回に分けて1時間添加した。添加終了後に反応容器を80℃に加熱して3時間撹拌して反応を終了した。反応液に酢酸エチルを1L加えた後に5%炭酸ナトリウム、純水、飽和食塩水の順で洗浄し、有機層を無水硫酸ナトリウムで乾燥し、有機溶媒を減圧留去して、3−エチル−3−(ドデシルオキシメチル)オキセタンを40g得た。
実施例1と同様な反応容器に、上記中間体の3−エチル−3−(ドデシルオキシメチル)オキセタン 18.2g(0.064モル)、ヨウ化ナトリウム22.9g(0.152モル)、およびアセトニトリルを300ml入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。7−エチルヘキサデカンジカルボン酸ジクロリド10.9g(0.032モル)を30分かけてゆっくり滴下した。滴下終了後、5℃で1時間撹拌した後に、更に室温で3時間撹拌して反応を終了した。反応終了後は、実施例1と同様の操作を行いジヨウ素体を33g合成した。
(Example 2) Production of polymerizable compound "M-2" In a reaction vessel equipped with a stirrer and a thermometer, 89 g (0.36 mol) of 1-bromododecane, 2.6 g of tetrabutylammonium bromide, 150 ml of dimethyl sulfoxide , And 28 g (0.24 mol) of 3-ethyl-3-hydroxymethyloxetane were dissolved at 50 ° C., and 12.8 g (0.32 mol) of granular sodium hydroxide was divided into 5 portions. Added for hours. After completion of the addition, the reaction vessel was heated to 80 ° C. and stirred for 3 hours to complete the reaction. After adding 1 L of ethyl acetate to the reaction solution, it was washed with 5% sodium carbonate, pure water and saturated brine in that order, the organic layer was dried over anhydrous sodium sulfate, and the organic solvent was distilled off under reduced pressure to give 3-ethyl- 40 g of 3- (dodecyloxymethyl) oxetane was obtained.
In a reaction vessel similar to that in Example 1, 18.2 g (0.064 mol) of the above intermediate 3-ethyl-3- (dodecyloxymethyl) oxetane, 22.9 g (0.152 mol) of sodium iodide, and 300 ml of acetonitrile was added and stirred while cooling with an ice-water bath so as to be 5 ° C. or lower. 10.9 g (0.032 mol) of 7-ethylhexadecanedicarboxylic acid dichloride was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, and further stirred at room temperature for 3 hours to complete the reaction. After completion of the reaction, the same operation as in Example 1 was performed to synthesize 33 g of diiodine.

次いで、実施例1と同様な反応容器に、上記の方法で合成したジヨウ素体 33g(0.029モル)、アクリル酸8.3g(0.116モル)、p−メトキシフェノール 40mg、およびジメチルスルホキシド300gを入れ、室温で撹拌しながらDBUを17.7g(0.116モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を90℃に加熱し、12時間撹拌して反応を終了した。反応終了後は、実施例1と同様な操作を行い、濃縮液をシリカゲルクロマトグラフィーにより精製し、ドデシル基を2個有する重合性化合物「M−2」(X:―CHO−、X:―CHOCO−、R=エチル基)を約14.5g得た。 Next, in the same reaction vessel as in Example 1, 33 g (0.029 mol) of the diiodine synthesized by the above method, 8.3 g (0.116 mol) of acrylic acid, 40 mg of p-methoxyphenol, and dimethyl sulfoxide 300 g was added, and 17.7 g (0.116 mol) of DBU was slowly added dropwise over 30 minutes while stirring at room temperature. After completion of the dropwise addition, the reaction vessel was heated to 90 ° C. and stirred for 12 hours to complete the reaction. After completion of the reaction, the same operation as in Example 1 was performed, the concentrated solution was purified by silica gel chromatography, and a polymerizable compound “M-2” having two dodecyl groups (X 2 : —CH 2 O—, X 3 : —CH 2 OCO—, R 4 = ethyl group) was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H)4.05(s,4H),3.34(t,4H),3.29(s,4H),2.32(t,4H),1.62(m,4H),1.6−1.47(m,8H),1.25(m,64H),0.92−0.8(m,15H)
13C−NMR(溶媒:重クロロホルム):δ:173.6,165.9,130.6,128.3,71.6,70.4,64.7,64.4,41.5,34.3,32.7,31.9,29.6−29.2,26.9,26.1,25.0,23.0,22.6,14.0,7.4
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H) 05 (s, 4H), 3.34 (t, 4H), 3.29 (s, 4H), 2.32 (t, 4H), 1.62 (m, 4H), 1.6-1.47 (M, 8H), 1.25 (m, 64H), 0.92-0.8 (m, 15H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.6, 165.9, 130.6, 128.3, 71.6, 70.4, 64.7, 64.4, 41.5, 34 3, 32.7, 31.9, 29.6-29.2, 26.9, 26.1, 25.0, 23.0, 22.6, 14.0, 7.4
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9

(実施例3) 重合性化合物「M−3」の製造
実施例1と同様な反応容器に、中間体の製造3で合成した式(8)で表されるオキセタン誘導体16g(0.045モル)、ヨウ化ナトリウム20.2g(0.135モル)、およびアセトニトリルを300ml入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。n−ミリスチン酸クロリド20.2g(0.1モル)を30分かけてゆっくり滴下した。滴下終了後、5℃で1時間撹拌した後に、更に室温で3時間撹拌して反応を終了した。反応終了後は、実施例1と同様の操作を行いジヨウ素体を44g合成した。
(Example 3) Production of polymerizable compound "M-3" 16 g (0.045 mol) of an oxetane derivative represented by formula (8) synthesized in Production 3 of intermediate in a reaction vessel similar to that in Example 1. Then, 20.2 g (0.135 mol) of sodium iodide and 300 ml of acetonitrile were added and stirred while cooling with an ice-water bath so that the temperature became 5 ° C. or lower. 20.2 g (0.1 mol) of n-myristic acid chloride was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, and further stirred at room temperature for 3 hours to complete the reaction. After completion of the reaction, the same operation as in Example 1 was performed to synthesize 44 g of diiodine.

次いで、実施例1と同様な反応容器に、上記の方法で合成したジヨウ素体 44g(0.043モル)、アクリル酸12.4g(0.172モル)、p−メトキシフェノール 60mg、およびジメチルスルホキシド300gを入れ、室温で撹拌しながらDBUを26.2g(0.172モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を90℃に加熱し、12時間撹拌して反応を終了した。反応終了後は、実施例1と同様な操作を行い、濃縮液をシリカゲルクロマトグラフィーにより精製しトリデシル基を有する重合性化合物「M−3」(X:―CHOCO−、X:―CHO−、R=ブチル基)を約18.6g得た。 Next, 44 g (0.043 mol) of the diiodine synthesized by the above method, 12.4 g (0.172 mol) of acrylic acid, 60 mg of p-methoxyphenol, and dimethyl sulfoxide were prepared in the same reaction vessel as in Example 1. 300 g was added, and 26.2 g (0.172 mol) of DBU was slowly added dropwise over 30 minutes while stirring at room temperature. After completion of the dropwise addition, the reaction vessel was heated to 90 ° C. and stirred for 12 hours to complete the reaction. After completion of the reaction, the same operation as in Example 1 was performed, and the concentrated solution was purified by silica gel chromatography, and a polymerizable compound “M-3” having a tridecyl group (X 2 : —CH 2 OCO—, X 3 : — About 18.6 g of CH 2 O—, R 4 = butyl group) was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.10(s,4H)3.99(s,4H),3.34(s,4H),3.29(s,4H),2.29(t,4H),1.74(s,4H),1.6−1.25(m,52H),0.90−0.83(m,18H)
13C−NMR(溶媒:重クロロホルム):δ:173.7,165.9,130.6,128.3,71.5,70.4,65.4,64.7,50.3,41.5,34.3,31.9,29.6−29.1,25.9,24.9,23.0,22.6,14.0,7.4
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.10 (s, 4H) 99 (s, 4H), 3.34 (s, 4H), 3.29 (s, 4H), 2.29 (t, 4H), 1.74 (s, 4H), 1.6-1.25 (M, 52H), 0.90-0.83 (m, 18H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.7, 165.9, 130.6, 128.3, 71.5, 70.4, 65.4, 64.7, 50.3, 41 5, 34.3, 31.9, 29.6-29.1, 25.9, 24.9, 23.0, 22.6, 14.0, 7.4
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9

(実施例4) 重合性化合物「M−4」の製造
撹拌装置、窒素導入管、冷却管及び温度計を備えた反応容器に、上記の中間体1の製造で合成した式(7)で表されるオキセタン誘導体36.3g(0.064モル)、ヨウ化ナトリウム22.9g(0.152モル)、およびアセトニトリルを300ml入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。2−エチルヘキサノイルクロリド23.6(0.134モル)を30分かけてゆっくり滴下した。滴下終了後、5℃で1時間撹拌した後に、更に室温で3時間撹拌して反応を終了した。反応容器に少量の水を加えた後に酢酸エチルを加え、10%亜硫酸水素ナトリウムでヨウ素を分解した。更に純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥した後に、有機溶媒を減圧留去しジヨウ素体を60g合成した。
Example 4 Production of Polymerizable Compound “M-4” In a reaction vessel equipped with a stirrer, a nitrogen introduction tube, a cooling tube, and a thermometer, the compound represented by the formula (7) synthesized in the production of the intermediate 1 described above The oxetane derivative 36.3 g (0.064 mol), sodium iodide 22.9 g (0.152 mol), and 300 ml of acetonitrile were added and stirred while cooling with an ice-water bath to 5 ° C. or less. 2-Ethylhexanoyl chloride 23.6 (0.134 mol) was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, and further stirred at room temperature for 3 hours to complete the reaction. A small amount of water was added to the reaction vessel, ethyl acetate was added, and iodine was decomposed with 10% sodium bisulfite. Further, the organic layer was washed in the order of pure water and saturated saline. After drying the organic layer with anhydrous sodium sulfate, the organic solvent was distilled off under reduced pressure to synthesize 60 g of a diiodide.

次いで、撹拌装置、温度計を備えた反応容器に、上記の方法で合成したジヨウ素体 60.6g(0.055モル)、アクリル酸15.7g(0.218モル)、p−メトキシフェノール 80mg、およびジメチルスルホキシド300gを入れ、室温で撹拌しながら1,8―ジアザビシクロ[5,4,0]7−ウンデセン(以下DBUと略す)を33.2g(0.218モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を90℃に加熱し、12時間撹拌して反応を終了した。反応容器に酢酸エチルを加え、1/10Nの塩酸溶液、5%水酸化ナトリウム溶液、純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、有機層の溶媒を減圧留去した後、濃縮液をシリカゲルクロマトグラフィーにより精製し、2−エチルヘキシル基を2個有する重合性化合物「M−4」(X:―CHOCO−、X:―CHOCO−、R=エチル基)を約31g得た。 Next, 60.6 g (0.055 mol) of the diiodine synthesized by the above method, 15.7 g (0.218 mol) of acrylic acid, and 80 mg of p-methoxyphenol in a reaction vessel equipped with a stirrer and a thermometer. In addition, 300 g of dimethyl sulfoxide was added, and 33.2 g (0.218 mol) of 1,8-diazabicyclo [5,4,0] 7-undecene (hereinafter abbreviated as DBU) was slowly added over 30 minutes while stirring at room temperature. It was dripped. After completion of the dropwise addition, the reaction vessel was heated to 90 ° C. and stirred for 12 hours to complete the reaction. Ethyl acetate was added to the reaction vessel, and the organic layer was washed in the order of 1/10 N hydrochloric acid solution, 5% sodium hydroxide solution, pure water and saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent of the organic layer was distilled off under reduced pressure. The concentrated solution was purified by silica gel chromatography, and polymerizable compound “M-4” (X 2 ) having two 2-ethylhexyl groups. : -CH 2 OCO-, X 3 : -CH 2 OCO-, R 4 = ethyl group).

Figure 2006335655
Figure 2006335655

(物性値)
1H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H)4.04(s,8H),2.32(t,8H),1.62(m,6H),1.58(m,4H),1.38−1.25(m,44H),0.91−80(m,24H)
13C−NMR(溶媒:重クロロホルム):δ:173.5,165.7,131.1,127.9,64.0,63.7,40.6,34.2,31.8,29.7−29.0,26.8,24.9,23.0,22.6,14.0,10.7,7.6,7.3
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H) 04 (s, 8H), 2.32 (t, 8H), 1.62 (m, 6H), 1.58 (m, 4H), 1.38-1.25 (m, 44H), 0.91 -80 (m, 24H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.5, 165.7, 131.1, 127.9, 64.0, 63.7, 40.6, 34.2, 31.8, 29 .7-29.0, 26.8, 24.9, 23.0, 22.6, 14.0, 10.7, 7.6, 7.3
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9

(実施例5) 重合性化合物「M−5」の製造
撹拌装置、窒素導入管、冷却管及び温度計を備えた反応容器に、中間体の製造4で合成した式(9)で表されるオキセタン誘導体 34.5g(0.064モル)、ヨウ化ナトリウム22.9g(0.152モル)、およびアセトニトリルを300ml入れ、5℃以下になるように氷水バスで冷却しながら撹拌した。デカノイルクロリド25.6(0.134モル)を30分かけてゆっくり滴下した。滴下終了後、5℃で1時間撹拌した後に、更に室温で3時間撹拌して反応を終了した。反応容器に少量の水を加えた後に酢酸エチルを加え、10%亜硫酸水素ナトリウムでヨウ素を分解した。更に純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥した後に、有機溶媒を減圧留去しジヨード体を61g合成した。
(Example 5) Manufacture of polymeric compound "M-5" It represents with Formula (9) synthesize | combined by manufacture 4 of the intermediate body in the reaction container provided with the stirring apparatus, the nitrogen introducing tube, the cooling tube, and the thermometer. 34.5 g (0.064 mol) of oxetane derivative, 22.9 g (0.152 mol) of sodium iodide, and 300 ml of acetonitrile were added and stirred while cooling with an ice-water bath so that the temperature was 5 ° C. or lower. Decanoyl chloride 25.6 (0.134 mol) was slowly added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, and further stirred at room temperature for 3 hours to complete the reaction. A small amount of water was added to the reaction vessel, ethyl acetate was added, and iodine was decomposed with 10% sodium bisulfite. Further, the organic layer was washed in the order of pure water and saturated saline. After drying the organic layer with anhydrous sodium sulfate, the organic solvent was distilled off under reduced pressure to synthesize 61 g of a diiodide.

次いで、撹拌装置、温度計を備えた反応容器に、上記の方法で合成したジヨード体 60g(0.055モル)、アクリル酸15.7g(0.218モル)、p−メトキシフェノール 80mg、およびジメチルスルオキシド300gを入れ、室温で撹拌しながらDBUを33.2g(0.218モル)を30分かけてゆっくり滴下した。滴下終了後、反応容器を90℃に加熱し、12時間撹拌して反応を終了した。反応容器に酢酸エチルを加え、1/10Nの塩酸溶液、5%水酸化ナトリウム溶液、純水、飽和食塩水の順で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、有機層の溶媒を減圧留去した後、濃縮液をシリカゲルクロマトグラフィーにより精製し、ノニル基を2個有する重合性化合物「M−5」(X:―CHOCO−、X:―CHOCO−、R=メチル基)を約31g得た。 Next, 60 g (0.055 mol) of the diiodide synthesized by the above method, 15.7 g (0.218 mol) of acrylic acid, 80 mg of p-methoxyphenol, and dimethyl were added to a reaction vessel equipped with a stirrer and a thermometer. 300 g of sulfoxide was added, and 33.2 g (0.218 mol) of DBU was slowly added dropwise over 30 minutes while stirring at room temperature. After completion of the dropwise addition, the reaction vessel was heated to 90 ° C. and stirred for 12 hours to complete the reaction. Ethyl acetate was added to the reaction vessel, and the organic layer was washed in the order of 1/10 N hydrochloric acid solution, 5% sodium hydroxide solution, pure water and saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent of the organic layer was distilled off under reduced pressure. Then, the concentrated solution was purified by silica gel chromatography, and polymerizable compound “M-5” having two nonyl groups (X 2 :- About 31 g of CH 2 OCO—, X 3 : —CH 2 OCO—, R 4 = methyl group) was obtained.

Figure 2006335655
Figure 2006335655

(物性値)
H−NMR(溶媒:重クロロホルム):δ:6.42(d,2H),6.12(q,2H),5.84(d,2H),4.12(s,4H)4.04(s,8H),2.32(t,8H),1.62(m,8H),1.58(m,2H),1.38−1.25(m,48H),0.91−80(m,18H)
13C−NMR(溶媒:重クロロホルム):δ:173.5,165.7,131.1,127.9,64.0,63.7,40.6,34.2,31.8,29.7−29.0,26.8,24.9,23.0,22.6,14.0,10.7,7.3
赤外吸収スペクトル(IR)(KBr):2925,2855,1733,1652−1622,1190,808.9
(実施例6) 重合性組成物(MLC−1)の調製
下記構造のフッ素系液晶化合物からなる液晶組成物A(誘電率異方性:7.7)を70%と、実施例1で合成した化合物「M−1」29.4%、チバスペシャリティーケミカルズ社製の光重合開始剤「イルガキュアー651」0.6%を配合することにより調光層形成材料である重合性組成物(MLC−1)を得た。
(Physical property value)
1 H-NMR (solvent: deuterated chloroform): δ: 6.42 (d, 2H), 6.12 (q, 2H), 5.84 (d, 2H), 4.12 (s, 4H) 04 (s, 8H), 2.32 (t, 8H), 1.62 (m, 8H), 1.58 (m, 2H), 1.38-1.25 (m, 48H), 0.91 -80 (m, 18H)
13 C-NMR (solvent: deuterated chloroform): δ: 173.5, 165.7, 131.1, 127.9, 64.0, 63.7, 40.6, 34.2, 31.8, 29 .7-29.0, 26.8, 24.9, 23.0, 22.6, 14.0, 10.7, 7.3
Infrared absorption spectrum (IR) (KBr): 2925, 2855, 1733, 1652-1622, 1190, 808.9
(Example 6) Preparation of polymerizable composition (MLC-1) 70% of liquid crystal composition A (dielectric anisotropy: 7.7) composed of a fluorine-based liquid crystal compound having the following structure was synthesized in Example 1. The compound “M-1” 29.4% and a photopolymerization initiator “Irgacure 651” 0.6% manufactured by Ciba Specialty Chemicals Co., Ltd. -1) was obtained.

Figure 2006335655
Figure 2006335655

(実施例7) 光散乱型液晶デバイスの製造1
この重合性組成物(MLC−1)を、6.0μmのガラスファイバー製スペーサーが塗布された2枚のITO電極ガラス基板に挟み込み、均一な溶液状態に保つように基板全体を温度コントロールし、40mW/cmの紫外線を60秒照射し厚さ約6μmの光散乱型液晶デバイスを作製した。作製したデバイスの飽和電圧及び飽和電圧の温度依存性を評価し、結果を表1に示す。
(実施例8) 重合性組成物(MLC−2)の調製
実施例6における「M−1」に替えて実施例5で合成した化合物「M−5」29.4%を用いた以外実施例6と同様にして重合性組成物(MLC−2)を調製した。
(実施例9) 光散乱型液晶デバイスの製造2
実施例8にて調製した重合性組成物(MLC−2)を用いて、実施例7と同様にして光散乱型液晶デバイスを作製した。作製したデバイスの飽和電圧及び飽和電圧の温度依存性を評価し、結果を表1に示す。
(比較例1) 光散乱型液晶デバイスの製造3
下記構造を有する重合性化合物 29.4%、液晶組成物A 70%及び光重合開始剤「イルガキュアー651」0.6%からなる重合性組成物(MLC−3)を調製した。この重合性組成物(MLC−3)を調光層形成材料として、実施例7と同様にして光散乱型液晶デバイスを作製した。得られたデバイスの飽和電圧及び飽和電圧の温度依存性を評価し、結果を表1に示す。
Example 7 Production 1 of Light Scattering Type Liquid Crystal Device
This polymerizable composition (MLC-1) was sandwiched between two ITO electrode glass substrates coated with 6.0 μm glass fiber spacers, and the temperature of the entire substrate was controlled so as to maintain a uniform solution state. A light scattering type liquid crystal device having a thickness of about 6 μm was produced by irradiating with / cm 2 ultraviolet rays for 60 seconds. The saturation voltage of the fabricated device and the temperature dependence of the saturation voltage were evaluated, and the results are shown in Table 1.
Example 8 Preparation of Polymerizable Composition (MLC-2) Example except that 29.4% of compound “M-5” synthesized in Example 5 was used instead of “M-1” in Example 6. In the same manner as in Example 6, a polymerizable composition (MLC-2) was prepared.
Example 9 Production 2 of Light Scattering Type Liquid Crystal Device
Using the polymerizable composition (MLC-2) prepared in Example 8, a light scattering liquid crystal device was produced in the same manner as in Example 7. The saturation voltage of the fabricated device and the temperature dependence of the saturation voltage were evaluated, and the results are shown in Table 1.
Comparative Example 1 Production 3 of Light Scattering Type Liquid Crystal Device
A polymerizable composition (MLC-3) comprising 29.4% of a polymerizable compound having the following structure, 70% of liquid crystal composition A and 0.6% of a photopolymerization initiator “Irgacure 651” was prepared. Using this polymerizable composition (MLC-3) as a light control layer forming material, a light scattering liquid crystal device was produced in the same manner as in Example 7. The saturation voltage of the obtained device and the temperature dependence of the saturation voltage were evaluated, and the results are shown in Table 1.

Figure 2006335655
Figure 2006335655

Figure 2006335655
Figure 2006335655

表1に示すように、本願発明の液晶デバイスはΔVが0.2以下の優れた値を示し、−20℃から70℃の広い温度範囲において低電圧駆動が可能であった。これに対して、比較例の液晶デバイスでは飽和電圧が高く、その温度依存性も大きいものであった。   As shown in Table 1, the liquid crystal device of the present invention showed an excellent value of ΔV of 0.2 or less, and could be driven at a low voltage in a wide temperature range from −20 ° C. to 70 ° C. On the other hand, the liquid crystal device of the comparative example had a high saturation voltage and a large temperature dependency.

本発明の重合性化合物及び組成物は、屋外で使用するような建築物の窓やショーウィンドウ等の視野遮断のスクリーン、採光コントロールのカーテン、文字や図形を表示し高速応答性で電気的に表示を切り換える広告板や装飾表示板として有用な光散乱型液晶デバイス用の調光層形成材料として特に有用である。また、時計、コンピューター末端等の表示素子やデジタルペーパー、ICカードの情報表示、電子ブックやPDAなどの携帯情報端末やプロジェクション等の表示装置、光シャッターなどの光学素子用の材料としても有用である。

The polymerizable compound and composition of the present invention display an electric field display screen such as a building window or a show window used outdoors, a curtain for lighting control, letters and figures, and display it electrically with high-speed response. It is particularly useful as a light control layer forming material for a light scattering type liquid crystal device useful as an advertising board or a decorative display board. It is also useful as a material for display elements such as watches and computer terminals, digital paper, information display on IC cards, portable information terminals such as electronic books and PDAs, display devices such as projections, and optical elements such as optical shutters. .

Claims (5)

一般式(1)で表されることを特徴とする重合性化合物。
Figure 2006335655
(式中、Xは−O−CH−、−O−CH−CH−CO−O−CH−、−O−CH−CHOCO−、又は−O−CH−CH(CH)OCO−を表し、
は炭素数4から30のアルキル基を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良く、
は水素又はメチル基を表し、
は炭素原子数1から5のアルキル基を表し、
及びXはそれぞれ独立して、−CHO−、−CHOCO−、−CHCO−O−、−COO−又は単結合を表し、
は、炭素数1から30のアルキレン基を表すが、基中に存在する少なくとも一つのメチレン基は一般式(2)
Figure 2006335655
(式中、R11及びR12はそれぞれ独立して、水素又は炭素数1から8のアルキル基を表すが、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良いが、R11及びR12の少なくともどちらか一方はアルキル基を表し、mは1から10の整数を表す。)で表される置換基により置き換えられており、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良い。)
A polymerizable compound represented by the general formula (1).
Figure 2006335655
(Wherein, X 1 is -O-CH 2 -, - O -CH 2 -CH 2 -CO-O-CH 2 -, - O-CH 2 -CH 2 OCO-, or -O-CH 2 -CH (CH 3) OCO- represent,
R 2 represents an alkyl group having 4 to 30 carbon atoms, and one or two or more carbon atoms present in the group may be replaced by oxygen atoms so that the oxygen atoms are not directly bonded to each other. Preferably, a single bond between one or more carbons present in the group may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group may be replaced by a halogen. well,
R 3 represents hydrogen or a methyl group,
R 4 represents an alkyl group having 1 to 5 carbon atoms,
X 2 and X 3 each independently represent —CH 2 O—, —CH 2 OCO—, —CH 2 CO—O—, —COO— or a single bond,
R 1 represents an alkylene group having 1 to 30 carbon atoms, and at least one methylene group present in the group is represented by the general formula (2)
Figure 2006335655
(In the formula, R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and one or two or more carbon atoms present in the group are mutually bonded to oxygen atoms. It may be replaced by an oxygen atom as not directly bonded, and a single bond between one or more carbons present in the group may be replaced by a double bond or a triple bond. The hydrogen atom present therein may be substituted by halogen, but at least one of R 11 and R 12 represents an alkyl group, and m represents an integer of 1 to 10.) One or more carbon atoms present in the group may be replaced by oxygen atoms as if the oxygen atoms are not directly bonded to each other, and one carbon atom present in the group Or 2 The above single bond between carbons may be replaced by a double bond or a triple bond, and a hydrogen atom present in the group may be replaced by a halogen. )
一般式(2)において、R11が炭素数1から2のアルキル基を表し、Rが炭素数4から30のアルキル基を表し、基中に存在する1個又は2個以上の炭素原子は、酸素原子が相互に直接に結合しないものとして酸素原子により置き換えられていても良く、基中に存在する1個又は2個以上の炭素間の単結合は、二重結合又は三重結合により置き換えられていても良く、基中に存在する水素原子はハロゲンによって置換されていても良い請求項1記載の重合性化合物。 In the general formula (2), R 11 represents an alkyl group having 1 to 2 carbon atoms, R 2 represents an alkyl group having 4 to 30 carbon atoms, and one or more carbon atoms present in the group are The oxygen atom may be replaced by an oxygen atom as not directly bonded to each other, and a single bond between one or more carbons present in the group is replaced by a double bond or a triple bond. The polymerizable compound according to claim 1, wherein a hydrogen atom present in the group may be substituted by a halogen. mが1又は2を表す請求項1記載の重合性化合物。 The polymerizable compound according to claim 1, wherein m represents 1 or 2. 請求項1から3の何れかに記載の重合性化合物を含有することを特徴とする重合性組成物。 A polymerizable composition comprising the polymerizable compound according to claim 1. 請求項4記載の重合性組成物を構成部材とする光散乱型液晶デバイス。

A light scattering type liquid crystal device comprising the polymerizable composition according to claim 4 as a constituent member.

JP2005159223A 2005-05-31 2005-05-31 Polymerizable compound and polymerizable composition Expired - Fee Related JP5019092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159223A JP5019092B2 (en) 2005-05-31 2005-05-31 Polymerizable compound and polymerizable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159223A JP5019092B2 (en) 2005-05-31 2005-05-31 Polymerizable compound and polymerizable composition

Publications (2)

Publication Number Publication Date
JP2006335655A true JP2006335655A (en) 2006-12-14
JP5019092B2 JP5019092B2 (en) 2012-09-05

Family

ID=37556512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159223A Expired - Fee Related JP5019092B2 (en) 2005-05-31 2005-05-31 Polymerizable compound and polymerizable composition

Country Status (1)

Country Link
JP (1) JP5019092B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091650A (en) * 2005-09-29 2007-04-12 Dainippon Ink & Chem Inc Method for producing polymerizable compound
JP2007145835A (en) * 2005-11-04 2007-06-14 Fujifilm Corp Oxetane compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129527A (en) * 1997-07-09 1999-02-02 Dainippon Ink & Chem Inc Side-chain type radically polymerizable compound and liquid crystal device using the same
JP2002105032A (en) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc Side-chain radical-polymerizable compound, and liquid crystal device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129527A (en) * 1997-07-09 1999-02-02 Dainippon Ink & Chem Inc Side-chain type radically polymerizable compound and liquid crystal device using the same
JP2002105032A (en) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc Side-chain radical-polymerizable compound, and liquid crystal device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091650A (en) * 2005-09-29 2007-04-12 Dainippon Ink & Chem Inc Method for producing polymerizable compound
JP2007145835A (en) * 2005-11-04 2007-06-14 Fujifilm Corp Oxetane compound

Also Published As

Publication number Publication date
JP5019092B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5962945B2 (en) Polymerizable chiral compound
JP5103774B2 (en) Polymerizable chiral compound
JP4961795B2 (en) Polymerizable chiral compound
JP6031781B2 (en) Polymerizable compound and liquid crystal composition using the same
KR101470531B1 (en) Polymerizable optically-active compound, and polymerizable composition comprising the polymerizable optically-active compound
JP5549174B2 (en) Polymerizable naphthalene compound
US20100308265A1 (en) Liquid crystal compositions
JP4058480B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical film using them
KR20120112049A (en) Polymerizable phenylnaphthoate compound
JP2010275244A (en) Polymerizable compound, and polymerizable composition by using the same
JP4403362B2 (en) Light scattering type liquid crystal device
JP5556991B2 (en) Polymerizable compound and production intermediate of the compound
JP2009084178A (en) Polymerizable chiral compound
JP2008110948A (en) Polymerizable liquid crystal compound
JP2003513107A (en) Liquid crystal polymer devices and materials
CN102703093A (en) Liquid crystal composition and liquid crystal display device comprising liquid crystal composition
JP5019092B2 (en) Polymerizable compound and polymerizable composition
JP5787466B2 (en) Polyfunctional polymerizable compound
JP4539108B2 (en) Polymerizable compound and polymerizable composition
US7682522B2 (en) Polymerizable menthol derivative
JP4963863B2 (en) Novel compound and liquid crystal composition containing the compound
JP4402413B2 (en) U-shaped compound and liquid crystal composition containing the same
JP4941800B2 (en) Light scattering liquid crystal device and light control layer forming material
JP4524827B2 (en) Acrylic acid derivative compound
JP5098142B2 (en) Method for producing polymerizable compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5019092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees