JP2007091025A - Forward monitoring device for vehicle - Google Patents

Forward monitoring device for vehicle Download PDF

Info

Publication number
JP2007091025A
JP2007091025A JP2005282664A JP2005282664A JP2007091025A JP 2007091025 A JP2007091025 A JP 2007091025A JP 2005282664 A JP2005282664 A JP 2005282664A JP 2005282664 A JP2005282664 A JP 2005282664A JP 2007091025 A JP2007091025 A JP 2007091025A
Authority
JP
Japan
Prior art keywords
vehicle
alarm
warning
preceding vehicle
dimensional object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282664A
Other languages
Japanese (ja)
Inventor
Shinya Kudo
新也 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2005282664A priority Critical patent/JP2007091025A/en
Priority to US11/527,534 priority patent/US7663475B2/en
Publication of JP2007091025A publication Critical patent/JP2007091025A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and timely set a control area set in front of an own vehicle, and to precisely carry out warning control. <P>SOLUTION: The warning control executed by a control unit 5 computes a target path of the own vehicle 1 by approximating with a straight or an arc path according to a present position of a preceding vehicle and a present position of the own vehicle 1 when the preceding vehicle exists. A warning area is variably set on the basis of the target path, and width and extending length is variably set on the basis of own vehicle speed, an inter-vehicle diameter between the own vehicle and the preceding vehicle, speed approaching to the warning area of a solid article which is a determination target, relative speed between the preceding vehicle and the own vehicle. According to a deviation state of the solid article existing in the warning area, warning urging steering operation to the right or left is carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、前方立体物の中から障害物を精度良く抽出し、ドライバに対して操舵方向の情報を与える車両の前方監視装置に関する。   The present invention relates to a vehicle front monitoring apparatus that accurately extracts an obstacle from a front three-dimensional object and gives information on a steering direction to a driver.

近年、車載したカメラ等により前方の走行環境を検出し、この走行環境データを基に、先行車に対する追従走行制御や先行車との車間距離等を一定以上に保つ走行制御、前方に存在する障害物に対する警報制御等の様々な制御を行う車両が開発され、実用化されている。   In recent years, an on-board camera or the like detects the driving environment ahead, and based on this driving environment data, the following driving control for the preceding vehicle, the driving control for keeping the inter-vehicle distance to the preceding vehicle, etc., obstacles existing ahead Vehicles that perform various controls such as alarm control for objects have been developed and put into practical use.

例えば、特開2004−34917号公報では、自車両の前方を走行する先行車に自車両を追従させる制御を行う先行車追従制御システムを搭載した車両において、前方を走行する先行車を検出し、自車両が現在制御対象として追従中である追従先行車を特定し、現在制御対象である追従先行車以外の車両であって、将来追従制御対象となり得る追従候補車を、自車両前方に設定した所定領域を基に特定する技術が開示されている。
特開2004−34917号公報
For example, in Japanese Patent Application Laid-Open No. 2004-34917, in a vehicle equipped with a preceding vehicle follow-up control system that controls the preceding vehicle to travel ahead of the host vehicle, the preceding vehicle that travels in front is detected. The following vehicle that the vehicle is following as the current control target is identified, and a tracking candidate vehicle that is a vehicle other than the preceding vehicle that is the current control target and can be subject to future control is set in front of the vehicle A technique for specifying based on a predetermined region is disclosed.
JP 2004-34917 A

ところで、上述の特許文献1における先行車特定のための所定領域は、自車両が発生したヨーレートにより、特定幅を自車両の横方向へオフセットして設定するようになっている。しかしながら、このような所定領域の設定では、自車両が旋回を開始した後に所定領域の変更が行われるため、この所定領域を用いて先行車の特定や、警報を行おうとした場合、制御のタイミングが遅れ、制御の精度が悪化してしまうという問題がある。   By the way, the predetermined area for specifying the preceding vehicle in the above-mentioned Patent Document 1 is set by offsetting the specific width in the lateral direction of the own vehicle by the yaw rate generated by the own vehicle. However, in such a predetermined area setting, since the predetermined area is changed after the host vehicle starts turning, if the preceding vehicle is specified or alarmed using this predetermined area, the control timing However, there is a problem that control accuracy deteriorates.

本発明は上記事情に鑑みてなされたもので、自車両前方に設定する制御領域を正確に、タイミング良く設定し、警報制御を精度良く行うことができる車両の前方監視装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vehicle front monitoring device that can accurately set a control region set in front of the host vehicle with good timing and perform alarm control with high accuracy. It is said.

本発明は、自車両の走行情報を検出する自車走行情報検出手段と、前方に存在する立体物を検出し、該立体物の中から少なくとも先行車を認識する立体物認識手段と、先行車の現在位置と自車両の現在位置に応じて自車両の目標とする経路を演算する目標経路演算手段と、上記目標とする経路に基づいて警報領域を設定する警報領域設定手段と、上記警報領域内に存在する立体物の存在状態に応じて警報を行う警報制御手段とを備えたことを特徴としている。   The present invention includes a host vehicle travel information detection unit that detects travel information of the host vehicle, a three-dimensional object recognition unit that detects a three-dimensional object existing ahead and recognizes at least a preceding vehicle from the three-dimensional object, and a preceding vehicle. Target route calculating means for calculating a target route of the host vehicle according to the current position of the host vehicle and the current position of the host vehicle, alarm region setting means for setting an alarm region based on the target route, and the alarm region It is characterized by comprising alarm control means for giving an alarm according to the presence state of the three-dimensional object existing inside.

本発明による車両の前方監視装置によれば、自車両前方に設定する制御領域を正確に、タイミング良く設定し、警報制御を精度良く行うことが可能となる。   According to the vehicle front monitoring apparatus of the present invention, it is possible to accurately set the control region set in front of the host vehicle with good timing, and to perform alarm control with high accuracy.

以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図7は本発明の実施の形態を示し、図1は車両に搭載した前方監視装置の概略構成図、図2は警報制御プログラムのフローチャート、図3は図2から続くフローチャート、図4は図2から続くフローチャート、図5は自車両と先行車の座標位置と関係を示す説明図、図6は自車速に基づく警報領域幅補正係数の特性説明図、図7は警報領域と障害物位置の関係を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a forward monitoring device mounted on a vehicle, FIG. 2 is a flowchart of an alarm control program, FIG. 3 is a flowchart continuing from FIG. 2 is a flowchart continuing from FIG. 2, FIG. 5 is an explanatory diagram showing the relationship between the coordinate position of the host vehicle and the preceding vehicle, FIG. 6 is a characteristic explanatory diagram of an alarm region width correction coefficient based on the host vehicle speed, and FIG. It is explanatory drawing which shows the relationship of a position.

図1において、符号1は自動車等の車両(自車両)で、この車両1には、前方に存在する障害物に対する警報機能を備えたクルーズコントロールシステム(ACC(Adaptive Cruise Control)システム)2が搭載されている。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle), and this vehicle 1 is equipped with a cruise control system (ACC (Adaptive Cruise Control) system) 2 having an alarm function for obstacles existing ahead. Has been.

このACCシステム2は、ステレオカメラ3、ステレオ画像認識装置4、制御ユニット5等を有して主要に構成されている。そして、このACCシステム2では、基本的に、先行車が存在しない定速走行制御状態のときにはドライバが設定した車速を保持した状態で走行し、先行車が存在する場合には、追従加減速制御と追従操舵制御の自動追従制御を実行し、また、後述する如く前方に障害物が存在する場合には警報を実行するものである。   The ACC system 2 mainly includes a stereo camera 3, a stereo image recognition device 4, a control unit 5, and the like. In the ACC system 2, basically, the vehicle travels while maintaining the vehicle speed set by the driver in the constant speed traveling control state in which no preceding vehicle exists, and the following acceleration / deceleration control in the case where the preceding vehicle exists. The automatic follow-up control of the follow-up steering control is executed, and when there is an obstacle ahead as described later, an alarm is executed.

また、自車両1には、自車走行情報検出手段としての、自車速V0を検出する車速センサ6、ハンドル角θHを検出するハンドル角センサ7、及び、ヨーレートγrを検出するヨーレートセンサ8が設けられており、自車速V0はステレオ画像認識装置4と制御ユニット5に入力され、ハンドル角θHとヨーレートγrは制御ユニット5に入力される。更に、制御ユニット5には図示しないブレーキスイッチからのブレーキペダルのON−OFF信号が入力される。   In addition, the host vehicle 1 is provided with a vehicle speed sensor 6 that detects the host vehicle speed V0, a handle angle sensor 7 that detects the handle angle θH, and a yaw rate sensor 8 that detects the yaw rate γr, as vehicle driving information detection means. The vehicle speed V0 is input to the stereo image recognition device 4 and the control unit 5, and the steering wheel angle θH and the yaw rate γr are input to the control unit 5. Further, a brake pedal ON-OFF signal from a brake switch (not shown) is input to the control unit 5.

また、ステアリングコラムの側部等に設けられた定速走行操作レバーに連結される複数のスイッチ類で構成された定速走行スイッチ9からの各種スイッチによる信号が制御ユニット5に入力される。この定速走行スイッチ9は、定速走行時の目標車速を設定する車速セットスイッチ、主に目標車速を下降側へ変更設定するコーストスイッチ、主に目標車速を上昇側へ変更設定するリジュームスイッチ等で構成されている。更に、この定速走行操作レバーの近傍には、定速走行制御及び自動追従制御のON/OFFを行うメインスイッチ(図示せず)が配設されている。   In addition, signals from various switches from a constant speed travel switch 9 constituted by a plurality of switches connected to a constant speed travel operation lever provided on the side of the steering column or the like are input to the control unit 5. The constant speed travel switch 9 is a vehicle speed set switch that sets a target vehicle speed during constant speed travel, a coast switch that mainly changes and sets the target vehicle speed to the lower side, a resume switch that mainly changes and sets the target vehicle speed to the higher side, etc. It consists of Further, a main switch (not shown) for turning ON / OFF constant speed traveling control and automatic tracking control is disposed in the vicinity of the constant speed traveling operation lever.

ステレオカメラ3は、ステレオ光学系として例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組の(左右の)CCDカメラで構成される。これら左右のCCDカメラは、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像し、画像データをステレオ画像認識装置4に出力する。   The stereo camera 3 is composed of a set of (left and right) CCD cameras using a solid-state imaging device such as a charge coupled device (CCD) as a stereo optical system. These left and right CCD cameras are each mounted at a certain interval in front of the ceiling in the vehicle interior, take a stereo image of an object outside the vehicle from different viewpoints, and output image data to the stereo image recognition device 4.

ステレオ画像認識装置4は、ステレオカメラ3からの画像データ、車速センサ6からの自車速V0が入力され、ステレオカメラ3からの画像データに基づき自車両1前方の立体物データと白線データの前方情報を検出し、自車両1の進行路(自車進行路)を推定する。そして、自車両1前方の先行車を抽出して、先行車位置(例えば、図5に示すように、自車両1を原点とするX−Z座標系上の座標位置)、先行車距離(車間距離)、先行車速((車間距離の変化量)+(自車速))、先行車加速度(先行車速の微分値)、先行車以外の立体物情報(後面の左端点と右端点の位置情報、X軸方向速度(X軸方向位置の変化量)、Z軸方向速度(自車両1からの距離の変化量)等)、白線座標、白線認識距離、自車進行路座標等の各データを制御ユニット5に出力する。   The stereo image recognition device 4 receives the image data from the stereo camera 3 and the own vehicle speed V0 from the vehicle speed sensor 6, and based on the image data from the stereo camera 3, the front information of the three-dimensional object data and the white line data in front of the own vehicle 1. Is detected, and the traveling path of the own vehicle 1 (own vehicle traveling path) is estimated. Then, the preceding vehicle ahead of the host vehicle 1 is extracted, and the preceding vehicle position (for example, the coordinate position on the XZ coordinate system with the host vehicle 1 as the origin as shown in FIG. 5), the preceding vehicle distance (inter-vehicle distance) Distance), preceding vehicle speed ((change in inter-vehicle distance) + (own vehicle speed)), preceding vehicle acceleration (differential value of preceding vehicle speed), solid object information other than the preceding vehicle (position information of the left and right end points on the rear surface, Controls data such as X-axis speed (change in position in X-axis), Z-axis speed (change in distance from own vehicle 1), white line coordinates, white line recognition distance, own vehicle travel path coordinates, etc. Output to unit 5.

ここで、ステレオ画像認識装置4における、ステレオカメラ3からの画像データの処理は、例えば以下のように行われる。まず、ステレオカメラ3のCCDカメラで撮像した自車両1の進行方向の環境の1組のステレオ画像対に対し、対応する位置のずれ量から三角測量の原理によって距離情報を求める。そして、このデータを基に、周知のグルーピング処理や、予め記憶しておいた三次元的な道路形状データ、立体物データ等と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、車両や他の障害物等の立体物データを抽出する。   Here, the processing of the image data from the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example. First, distance information is obtained on the basis of a triangulation principle from a corresponding positional shift amount for a pair of stereo images in the environment in the traveling direction of the host vehicle 1 captured by the CCD camera of the stereo camera 3. And based on this data, compared with well-known grouping processing and pre-stored three-dimensional road shape data, solid object data, etc., white line data, guardrails, curbs, etc. existing along the road Side wall data, solid object data such as vehicles and other obstacles are extracted.

立体物データでは、立体物までの距離と、この距離の時間的変化(自車両1に対する相対速度)が求められ、特に自車進行路上にある最も近い車両で、自車両1と略同じ方向に所定の速度(例えば、0km/h以上)で走行するものが先行車として抽出される。尚、先行車の中で速度が略0km/hである車両は、停止した先行車として認識される。また、立体物情報、及び、先行車情報は、後面の左端点と右端点の位置情報が記憶され、更に、この後面の左端点と右端点との略中央が立体物又は先行車の重心位置として記憶される。このように、ステレオカメラ3及びステレオ画像認識装置4は、立体物認識手段としての機能を有して設けられている。   In the three-dimensional object data, the distance to the three-dimensional object and the temporal change (relative speed with respect to the own vehicle 1) of this distance are obtained. A vehicle traveling at a predetermined speed (for example, 0 km / h or more) is extracted as a preceding vehicle. A vehicle having a speed of approximately 0 km / h among the preceding vehicles is recognized as a stopped preceding vehicle. Further, as the three-dimensional object information and the preceding vehicle information, the position information of the left end point and the right end point of the rear surface is stored, and the approximate center between the left end point and the right end point of the rear surface is the center of gravity position of the three-dimensional object or the preceding vehicle. Is remembered as Thus, the stereo camera 3 and the stereo image recognition device 4 have a function as a three-dimensional object recognition means.

制御ユニット5は、ドライバの操作入力によって設定される走行速度を維持するよう定速走行制御を行う定速走行制御の機能、及び、自動追従制御(追従加減速制御、及び、追従操舵制御)の機能を有しており、ドライバが図示しないメインスイッチをONし、定速走行操作レバーにより、希望する車速をセットすると、定速走行スイッチ9からの信号が制御ユニット5に入力される。そして、車速センサ6で検出した車速が、ドライバのセットした設定車速に収束するように、スロットル弁制御装置10に信号出力してスロットル弁11の開度をフィードバック制御し、自車両1を自動的に定速状態で走行させ、或いは、自動ブレーキ制御装置12に減速信号を出力して自動ブレーキを作動させる。   The control unit 5 includes a function of constant speed traveling control for performing constant speed traveling control so as to maintain a traveling speed set by a driver's operation input, and automatic tracking control (tracking acceleration / deceleration control and tracking steering control). When the driver turns on a main switch (not shown) and sets a desired vehicle speed with a constant speed operation lever, a signal from the constant speed travel switch 9 is input to the control unit 5. Then, a signal is output to the throttle valve control device 10 so that the vehicle speed detected by the vehicle speed sensor 6 converges to the set vehicle speed set by the driver, and the opening degree of the throttle valve 11 is feedback-controlled, so that the host vehicle 1 is automatically operated. The vehicle is run at a constant speed, or a deceleration signal is output to the automatic brake control device 12 to activate the automatic brake.

また、制御ユニット5は、定速走行制御を行っている際に、ステレオ画像認識装置4にて先行車を認識した場合には、後述する自動追従制御へ自動的に切り換えられる。尚、定速走行制御の機能、及び、自動追従制御の機能は、ドライバがブレーキを踏んだ場合や、自車速が予め設定しておいた上限値を超える場合、或いは、メインスイッチがOFFされた場合には、解除されるようになっている。   When the stereo image recognition device 4 recognizes the preceding vehicle during the constant speed traveling control, the control unit 5 is automatically switched to automatic follow-up control described later. The constant speed running control function and automatic tracking control function are available when the driver steps on the brake, when the vehicle speed exceeds a preset upper limit value, or when the main switch is turned off. In case it is to be released.

車両の走行制御が追従走行制御へ移行すると、例えば、目標車間時間を自車速に基づいて演算設定し、先行車との車間距離と先行車速と自車速と目標車間時間とに基づき目標加速度を演算して、スロットル弁制御装置10に信号出力して、スロットル弁11の開度をフィードバック制御し、或いは、自動ブレーキ制御装置12に減速信号を出力して自動ブレーキを作動させ、追従走行(追従停止、追従発進も含む)させる(追従加減速制御)。   When the vehicle travel control shifts to follow-up travel control, for example, the target inter-vehicle time is calculated and set based on the own vehicle speed, and the target acceleration is calculated based on the inter-vehicle distance from the preceding vehicle, the preceding vehicle speed, the own vehicle speed, and the target inter-vehicle time. Then, a signal is output to the throttle valve control device 10 to feedback control the opening degree of the throttle valve 11, or a deceleration signal is output to the automatic brake control device 12 to activate the automatic brake and follow running (following stop). , Including follow-up start) (follow-up acceleration / deceleration control).

また、車両の走行制御が追従走行制御へ移行し、先行車が旋回や進行方向の変更を行った場合、追従操舵制御へ移行して、例えば、自車速V0が35km/h未満の高速側の車速領域の場合には、先行車と自車両の現在位置に応じて自車両の目標ヨーレートを演算し、この目標ヨーレートに基づき先行車に追従するパワーステアリング指示電流値を演算して電動パワーステアリング制御装置13に出力する。一方、この車速領域内においての低速側の車速領域の場合には、先行車と自車両の現在位置に応じて自車両の目標ステアリング角を演算し、この目標ステアリング角に基づき先行車に追従するパワーステアリング指示電流値を演算して電動パワーステアリング制御装置13に出力する。   Further, when the vehicle travel control shifts to follow-up travel control and the preceding vehicle turns or changes its traveling direction, the vehicle shifts to follow-up steering control, for example, on the high speed side where the host vehicle speed V0 is less than 35 km / h. In the case of the vehicle speed range, the target yaw rate of the host vehicle is calculated according to the current position of the preceding vehicle and the host vehicle, and the power steering command current value that follows the preceding vehicle is calculated based on the target yaw rate, and electric power steering control is performed. Output to the device 13. On the other hand, in the case of the low speed side vehicle speed region in this vehicle speed region, the target steering angle of the host vehicle is calculated according to the current position of the preceding vehicle and the host vehicle, and the preceding vehicle is followed based on the target steering angle. The power steering command current value is calculated and output to the electric power steering control device 13.

また、制御ユニット5は、後述の図2〜図4に示すフローチャートに従って、警報制御を実行し、必要に応じてACCシステム2の各作動状態を表示する液晶モニタ14上で警報を行う。尚、警報を行うのは、液晶モニタ14上に限ることはなく、コンビネーションメータパネル上で行っても、音声出力にて行っても良い。   Moreover, the control unit 5 performs alarm control according to the flowcharts shown in FIGS. 2 to 4 described later, and issues an alarm on the liquid crystal monitor 14 that displays each operating state of the ACC system 2 as necessary. The alarm is not limited to the liquid crystal monitor 14, and may be performed on the combination meter panel or by voice output.

この警報制御は、先行車が存在する際に、先行車の現在位置と自車両1の現在位置に応じて自車両1の目標経路を演算し、この目標経路に基づいて警報領域を設定して、警報領域内に存在する立体物の存在状態に応じて警報を行うことを基本とする。すなわち、制御ユニット5は、この警報制御を備えることにより、目標経路演算手段、警報領域設定手段、及び、警報制御手段としての機能を有して構成されている。   This warning control calculates the target route of the own vehicle 1 according to the current position of the preceding vehicle and the current position of the own vehicle 1 when a preceding vehicle exists, and sets an alarm region based on the target route. Basically, an alarm is issued according to the presence state of a three-dimensional object existing in the alarm area. That is, the control unit 5 is configured to have functions as a target route calculation means, an alarm area setting means, and an alarm control means by providing this alarm control.

次に、警報制御について、図2〜図4のフローチャートで説明する。この追従操舵制御プログラムは、ACCシステム2のメインスイッチがONされると所定時間毎に実行されるものであり、まず、ステップ(以下、「S」と略称)101で必要なパラメータの読み込みが行われる。   Next, alarm control will be described with reference to the flowcharts of FIGS. This follow-up steering control program is executed every predetermined time when the main switch of the ACC system 2 is turned on. First, in step (hereinafter abbreviated as “S”) 101, necessary parameters are read. Is called.

次いで、S102に進み、先行車が検出されているか否か判定し、先行車が検出されていないのであれば、そのままプログラムを抜け、先行車が検出されているのであれば、S103以降へと進む。   Next, the process proceeds to S102, where it is determined whether or not a preceding vehicle has been detected. If no preceding vehicle has been detected, the program is exited, and if a preceding vehicle has been detected, the process proceeds to S103 and thereafter. .

S103では、先行車の重心座標(xt,zt)に応じて先行車までの目標経路を演算設定する。すなわち、xt=0の場合には、目標経路は、自車両の原点O(自車両の重心位置又はセンサ取り付け位置に設定される)から先行車の重心座標(xt,zt)までの直線路に設定し(図7(a)参照)、xt≠0の場合には、以下の(1)式により、先行車の重心座標(xt,zt)までの目標経路を、半径Rtの円弧で近似して演算設定する(図7(b)参照)。
Rt=(xt+zt)/(2・xt) …(1)
In S103, a target route to the preceding vehicle is calculated and set according to the center of gravity coordinates (xt, zt) of the preceding vehicle. That is, when xt = 0, the target route is a straight path from the origin O of the host vehicle (set to the center of gravity of the host vehicle or the sensor mounting position) to the center of gravity coordinates (xt, zt) of the preceding vehicle. When xt ≠ 0 is set (see FIG. 7A), the target route to the center of gravity coordinates (xt, zt) of the preceding vehicle is approximated by an arc of radius Rt by the following equation (1). To calculate (see FIG. 7B).
Rt = (xt 2 + zt 2 ) / (2 · xt) (1)

尚、本実施の形態では、上述の(1)式による演算の結果、半径Rtが大きなもの(例えば、Rt≧300m)も、xt=0の場合の場合と同様に、目標経路は、自車両の原点Oから先行車の重心座標(xt,zt)までの直線路に設定する。   In the present embodiment, as a result of the calculation according to the above-described equation (1), even when the radius Rt is large (for example, Rt ≧ 300 m), the target route is the same as in the case of xt = 0. Is set to a straight road from the origin O to the center of gravity coordinates (xt, zt) of the preceding vehicle.

次に、S104に進むと、以下の(2)式により警報領域の幅Whが設定される。
Wh=Wh0+Kwv0+Kwl+Kwvfx+Kwvf0 …(2)
ここで、Wh0は警報領域幅Whの予め設定しておいた基本値、Kwv0は自車速V0に応じて設定される補正値、Kwlは自車両と先行車との車間距離Lに応じて設定される補正値、Kwvfxは判定対象とする立体物の警報領域に接近する速度に応じて設定される補正値、Kwvf0は先行車と自車両の相対速度に応じて設定される補正値である。
Next, in S104, the warning area width Wh is set according to the following equation (2).
Wh = Wh0 + Kwv0 + Kwl + Kwvfx + Kwvf0 (2)
Here, Wh0 is a preset basic value of the warning area width Wh, Kwv0 is a correction value set according to the host vehicle speed V0, and Kwl is set according to the inter-vehicle distance L between the host vehicle and the preceding vehicle. Kwvfx is a correction value set according to the speed at which the three-dimensional object to be determined approaches the warning area, and Kwvf0 is a correction value set according to the relative speed between the preceding vehicle and the host vehicle.

自車速V0に応じて設定される補正値Kwv0は、例えば、図6に示すように、自車速V0が高いほど広い幅に補正するように設定されており、自車速V0が高いほど早期に障害物を検出して適切な警報が行われるようになっている。   For example, as shown in FIG. 6, the correction value Kwv0 set according to the host vehicle speed V0 is set so as to be corrected to a wider range as the host vehicle speed V0 is higher. Appropriate alarms are provided when objects are detected.

自車両と先行車との車間距離Lに応じて設定される補正値Kwlも、上述の補正値Kwv0と同様に、自車両と先行車との車間距離Lが長いほど広い幅に補正するように設定されており、車間距離Lが長い場合ほど警報領域に障害物が侵入し易くなる状況を考慮したものとなっている。   The correction value Kwl set in accordance with the inter-vehicle distance L between the host vehicle and the preceding vehicle is also corrected to a wider width as the inter-vehicle distance L between the host vehicle and the preceding vehicle is longer, similar to the above-described correction value Kwv0. It is set in consideration of a situation where an obstacle easily enters an alarm region as the inter-vehicle distance L is longer.

判定対象とする立体物の警報領域に接近する速度に応じて設定される補正値Kwvfxも、上述の補正値Kwv0と同様に、判定対象とする立体物の警報領域に接近する速度が高いほど広い幅に補正するように設定されており、通常は警報領域外となってしまう立体物であっても適切に警報領域内と判定して有効な警報が行えるようになっている。   The correction value Kwvfx set in accordance with the speed of approaching the warning area of the three-dimensional object to be determined is wider as the speed of approaching the warning area of the three-dimensional object to be determined is higher, similar to the correction value Kwv0 described above. The width is set to be corrected so that even a three-dimensional object that normally falls outside the alarm area can be appropriately determined as being within the alarm area and can be effectively alarmed.

先行車と自車両の相対速度に応じて設定される補正値Kwvf0も、上述の補正値Kwv0と同様に、先行車と自車両の相対速度が大きいほど(車間距離Lが長くなっていくほど)、広い幅に補正するように設定されており、先行車と自車両の相対速度が大きい場合に障害物が入ってくることが考慮されるようになっている。   Similarly to the correction value Kwv0, the correction value Kwvf0 set according to the relative speed between the preceding vehicle and the host vehicle is larger as the relative speed between the preceding vehicle and the host vehicle is larger (the inter-vehicle distance L is longer). It is set so as to correct to a wide width, and it is considered that an obstacle enters when the relative speed between the preceding vehicle and the host vehicle is large.

尚、本実施の形態では、Kwv0、Kwl、Kwvfx、Kwvf0の4つの補正全てを実行する例を説明しているが、これに限ることなく、補正なし、或いは、何れか一つの補正、或いは、何れか2つの補正、或いは、何れか3つの補正を行うようにしても良い。   In this embodiment, an example is described in which all four corrections Kwv0, Kwl, Kwvfx, and Kwvf0 are executed. However, the present invention is not limited to this, and there is no correction or any one correction, Any two corrections or any three corrections may be performed.

次いで、S105に進むと、警報領域の延長補正が実行される。この延長は、例えば、図7(a)、或いは、図7(b)中のWhdzであり、Whdzは自車速V0が高いほど延長領域を長くして、より前方の警報(例えば、先行車横或いは先行車前の歩行者等までを警報対象とする)まで行えるようになっている。尚、こうした自車両に応じて可変されるWhdzではなく、予め設定した一定値(例えば先行車の先2〜3m程度までの領域)であっても良く、また、Whdzによる延長をしないようなものであっても良い。   Next, in S105, the alarm area extension correction is executed. This extension is, for example, Whdz in FIG. 7 (a) or FIG. 7 (b), and Whdz increases the extension region as the host vehicle speed V0 increases, so that a warning ahead (for example, the side of the preceding vehicle) Alternatively, even a pedestrian or the like in front of the preceding vehicle is targeted for warning). It should be noted that, instead of Whdz which is variable according to the own vehicle, it may be a preset constant value (for example, an area up to about 2 to 3 m ahead of the preceding vehicle), and is not extended by Whdz. It may be.

次に、S106に進むと、白線による警報領域の制限が実行される。すなわち、警報領域内に走行路の白線が存在する場合、この白線で警報領域を制限する。   Next, when proceeding to S106, the warning area is limited by a white line. That is, when a white line of the traveling road exists in the warning area, the warning area is limited by the white line.

次いで、S107に進み、設定した警報領域内に存在する立体物を障害物として抽出する。尚、複数の立体物が警報領域内に存在する場合は、自車両1からの距離が最も近い立体物、すなわち、Z座標zwl(或いはzwr、或いは、重心位置)が最も小さい値の立体物を障害物として抽出する。また、警報領域内に立体物が検出されず、対象とする障害物が無い場合は、それが確実に判別できる予め設定しておいたデータを設定する(例えば、左端点と右端点のX座標、Z座標を共に9999とする等)。   Next, the process proceeds to S107, and a three-dimensional object existing in the set alarm area is extracted as an obstacle. When a plurality of three-dimensional objects are present in the warning area, a three-dimensional object having the shortest distance from the own vehicle 1, that is, a three-dimensional object having the smallest Z coordinate zwl (or zwr or centroid position) is selected. Extract as an obstacle. In addition, when a solid object is not detected in the alarm area and there is no target obstacle, preset data that can be reliably determined is set (for example, the X coordinate of the left end point and the right end point). , Both Z coordinates are set to 9999).

そして、S108に進み、S107で抽出した障害物が前回と同じ障害物か否か判定する。この判定の結果、前回と同じ障害物の場合は、既に、前回、この障害物については以降の警報制御を行っており、確認されたものであるので、そのままプログラムを抜ける。   In step S108, it is determined whether the obstacle extracted in step S107 is the same as the previous obstacle. As a result of this determination, if the obstacle is the same as the previous one, the alarm control has already been performed for the obstacle since the previous time and has been confirmed.

逆に、前回と同じ障害物ではない、新たな障害物である場合は、S109に進み、S103で設定した先行車までの目標経路が直線路か円弧で近似した経路か判定を行う。   Conversely, if it is a new obstacle that is not the same obstacle as the previous one, the process proceeds to S109, and it is determined whether the target route to the preceding vehicle set in S103 is a straight route or a route approximated by an arc.

このS109の判定の結果、図7(a)に示すように、目標経路が直線路の場合は、S110に進み、障害物の左端点のX座標xwlが警報領域内に存在するか否か、すなわち、
−(1/2)・Wh<xwl<(1/2)・Wh
か否か判定する。
As a result of the determination in S109, as shown in FIG. 7A, when the target route is a straight road, the process proceeds to S110, and whether or not the X coordinate xwl of the left end point of the obstacle exists in the warning area, That is,
− (1/2) · Wh <xwl <(1/2) · Wh
It is determined whether or not.

この判定の結果、障害物の左端点のX座標xwlが警報領域内に存在しない場合は、S111に進み、障害物の右端点のX座標xwrが警報領域内に存在するか否か、すなわち、
−(1/2)・Wh<xwr<(1/2)・Wh
か否か判定する。
As a result of the determination, if the X coordinate xwl of the left end point of the obstacle does not exist in the alarm area, the process proceeds to S111, whether or not the X coordinate xwr of the right end point of the obstacle exists in the alarm area, that is,
− (1/2) · Wh <xwr <(1/2) · Wh
It is determined whether or not.

このS111の判定の結果、障害物の右端点のX座標xwrが警報領域内に存在しないのであれば、そのままプログラムを抜ける。   As a result of the determination in S111, if the X coordinate xwr of the right end point of the obstacle does not exist in the alarm area, the program is directly exited.

また、S111の判定の結果、障害物の右端点のX座標xwrが警報領域内に存在するのであればS112へと進み、この障害物が割り込み車であるか否か判定する。ここで、割り込み車との判定は、障害物のZ方向速度が先行車と略同じ速度(例えば、±10%の速度)であり、且つ、左端点と右端点の幅が略車両とみなせる幅(例えば、2m)を有する障害物を割り込み車と判定する。   As a result of the determination in S111, if the X coordinate xwr of the right end point of the obstacle is within the warning area, the process proceeds to S112, and it is determined whether or not this obstacle is an interrupting vehicle. Here, the determination as an interrupted vehicle is that the speed of the obstacle in the Z direction is substantially the same as the preceding vehicle (for example, a speed of ± 10%), and the width of the left end point and the right end point can be regarded as a substantially vehicle. An obstacle having (for example, 2 m) is determined as an interrupting vehicle.

S112の判定の結果、障害物が割り込み車と判断した場合は、S113に進み、液晶モニタ14上で左からの割り込み車があることを報知し(例えば、左から車両が進入してくる表示を点滅させる)、或いは、音声により「左からの割り込み車に注意してください」等を発生させてプログラムを抜ける。   As a result of the determination in S112, if it is determined that the obstacle is an interrupting vehicle, the process proceeds to S113 to notify that there is an interrupting vehicle from the left on the liquid crystal monitor 14 (for example, a display in which the vehicle enters from the left is displayed). Blink)), or generate a message such as "Please watch out for an interrupted car from the left" and exit the program.

また、S112の判定の結果、障害物が割り込み車ではないと判断した場合は、S114に進み、液晶モニタ14上でステアリングを右に回避するように表示させ警報する。   On the other hand, if it is determined that the obstacle is not an interrupting vehicle as a result of the determination in S112, the process proceeds to S114 and a warning is displayed on the liquid crystal monitor 14 so as to avoid the steering to the right.

その後、S115に進み、電動パワーステアリング制御装置13に信号を出力して、ステアリングを予め設定しておいた周期、トルクで振動させ、右にステアリングを転舵することを促してプログラムを抜ける。   Thereafter, the process proceeds to S115, where a signal is output to the electric power steering control device 13, the steering is vibrated at a preset period and torque, and the program is exited by prompting the steering to the right.

また、上述のS110で、障害物の左端点のX座標xwlが警報領域内に存在すると判定した場合は、S116に進み、障害物の右端点のX座標xwrが警報領域内に存在するか否か、すなわち、
−(1/2)・Wh<xwr<(1/2)・Wh
か否か判定する。
If it is determined in S110 described above that the X coordinate xwl of the left end point of the obstacle exists in the alarm area, the process proceeds to S116, and whether or not the X coordinate xwr of the right end point of the obstacle exists in the alarm area. Or
− (1/2) · Wh <xwr <(1/2) · Wh
It is determined whether or not.

このS116の判定の結果、障害物の右端点のX座標xwrが警報領域内に存在しないのであれば、S117へと進み、この障害物が割り込み車であるか否か判定する。ここで、割り込み車との判定は、上述のS112で説明した通りである。   As a result of the determination in S116, if the X coordinate xwr of the right end point of the obstacle does not exist in the alarm area, the process proceeds to S117, and it is determined whether or not the obstacle is an interrupting vehicle. Here, the determination as an interrupting vehicle is as described in S112 above.

S117の判定の結果、障害物が割り込み車と判断した場合は、S118に進み、液晶モニタ14上で右からの割り込み車があることを報知し(例えば、右から車両が進入してくる表示を点滅させる)、或いは、音声により「右からの割り込み車に注意してください」等を発生させてプログラムを抜ける。   As a result of the determination in S117, if it is determined that the obstacle is an interrupting vehicle, the process proceeds to S118 to notify that there is an interrupting vehicle from the right on the liquid crystal monitor 14 (for example, a display in which the vehicle enters from the right is displayed). Blink)) or generate a voice message such as “Please watch out for an interrupting car from the right” and exit the program.

また、S117の判定の結果、障害物が割り込み車ではないと判断した場合は、S119に進み、液晶モニタ14上でステアリングを左に回避するように表示させ警報する。   On the other hand, if it is determined in S117 that the obstacle is not an interrupting vehicle, the process proceeds to S119 and a warning is displayed on the liquid crystal monitor 14 so as to avoid steering to the left.

その後、S120に進み、電動パワーステアリング制御装置13に信号を出力して、ステアリングを予め設定しておいた周期、トルクで振動させ、左にステアリングを転舵することを促してプログラムを抜ける。   Thereafter, the process proceeds to S120, a signal is output to the electric power steering control device 13, the steering is vibrated at a preset period and torque, and the program is exited by prompting the steering to the left.

また、上述のS116の判定の結果、障害物の右端点のX座標xwrが警報領域内に存在するのであれば、S121に進み、障害物が警報領域内のどちらに偏って存在しているか、すなわち、|xwl|≧|xwr|の判定を行う。   If the result of the determination in S116 is that the X coordinate xwr of the right end point of the obstacle is present in the alarm area, the process proceeds to S121, to which of the obstacles the obstacle exists in the alarm area. That is, it is determined that | xwl | ≧ | xwr |.

このS121の判定の結果、|xwl|≧|xwr|であれば、障害物は左に偏って存在していると判定して前述のS112〜S115の処理を実行し、|xwl|<|xwr|であれば、障害物は右に偏って存在していると判定して前述のS117〜S120の処理を実行してプログラムを抜ける。   If | xwl | ≧ | xwr | is determined as a result of the determination in S121, it is determined that the obstacle is biased to the left and the processes of S112 to S115 are executed, and | xwl | <| xwr If it is |, it is determined that the obstacle is present to the right, and the processing of S117 to S120 described above is executed to exit the program.

一方、前述のS109の判定の結果、図7(b)に示すように、目標経路が円弧で近似した経路の場合は、S122に進み、障害物の左端点の円弧半径Rwlを以下の(3)式により演算する。
|Rwl|=((Rt−xwl)+zwl1/2 …(3)
On the other hand, as shown in FIG. 7B, if the target route is a route approximated by an arc as shown in FIG. 7B, the process proceeds to S122, and the arc radius Rwl of the left end point of the obstacle is set as (3 ) Calculate by the formula.
| Rwl | = ((Rt−xwl) 2 + zwl 2 ) 1/2 (3)

次いで、S123に進み、障害物の右端点の円弧半径Rwrを以下の(4)式により演算する。
|Rwr|=((Rt−xwr)+zwr1/2 …(4)
Next, in S123, the arc radius Rwr of the right end point of the obstacle is calculated by the following equation (4).
| Rwr | = ((Rt−xwr) 2 + zwr 2 ) 1/2 (4)

そして、S124に進み、障害物の左端点が警報領域内に存在するか否か、すなわち、
|Rt|−(1/2)・Wh<|Rwl|<|Rt|+(1/2)・Wh
か否か判定する。
Then, the process proceeds to S124, whether or not the left end point of the obstacle exists in the alarm area, that is,
| Rt | − (1/2) · Wh <| Rwl | <| Rt | + (1/2) · Wh
It is determined whether or not.

この判定の結果、障害物の左端点が警報領域内に存在しない場合は、S125に進み、障害物の右端点が警報領域内に存在するか否か、すなわち、
|Rt|−(1/2)・Wh<|Rwr|<|Rt|+(1/2)・Wh
か否か判定する。
As a result of the determination, if the left end point of the obstacle does not exist in the alarm area, the process proceeds to S125, whether or not the right end point of the obstacle exists in the alarm area, that is,
| Rt | − (1/2) · Wh <| Rwr | <| Rt | + (1/2) · Wh
It is determined whether or not.

このS125の判定の結果、障害物の右端点が警報領域内に存在しないのであれば、そのままプログラムを抜ける。   As a result of the determination in S125, if the right end point of the obstacle does not exist in the alarm area, the program is exited as it is.

また、S125の判定の結果、障害物の右端点が警報領域内に存在するのであればS126へと進み、この障害物が割り込み車であるか否か判定する。ここで、割り込み車との判定は、上述のS112で説明した通りである。   As a result of the determination in S125, if the right end point of the obstacle is within the warning area, the process proceeds to S126, and it is determined whether or not the obstacle is an interrupting vehicle. Here, the determination as an interrupting vehicle is as described in S112 above.

S126の判定の結果、障害物が割り込み車と判断した場合は、S127に進み、液晶モニタ14上で左からの割り込み車があることを報知し(例えば、左から車両が進入してくる表示を点滅させる)、或いは、音声により「左からの割り込み車に注意してください」等を発生させてプログラムを抜ける。   As a result of the determination in S126, if it is determined that the obstacle is an interrupting vehicle, the process proceeds to S127 to notify that there is an interrupting vehicle from the left on the liquid crystal monitor 14 (for example, a display in which the vehicle enters from the left is displayed). Blink)), or generate a message such as "Please watch out for an interrupted car from the left" and exit the program.

また、S126の判定の結果、障害物が割り込み車ではないと判断した場合は、S128に進み、液晶モニタ14上でステアリングを右に回避するように表示させ警報する。   If it is determined in S126 that the obstacle is not an interrupting vehicle, the process proceeds to S128, and a warning is displayed on the liquid crystal monitor 14 to avoid steering to the right.

その後、S129に進み、電動パワーステアリング制御装置13に信号を出力して、ステアリングを予め設定しておいた周期、トルクで振動させ、右にステアリングを転舵することを促してプログラムを抜ける。   Thereafter, the process proceeds to S129, a signal is output to the electric power steering control device 13, the steering is vibrated with a preset period and torque, and the program is exited by prompting the steering to the right.

また、上述のS124で、障害物の左端点が警報領域内に存在すると判定した場合は、S130に進み、障害物の右端点が警報領域内に存在するか否か、すなわち、
|Rt|−(1/2)・Wh<|Rwr|<|Rt|+(1/2)・Wh
か否か判定する。
If it is determined in S124 that the left end point of the obstacle is in the alarm area, the process proceeds to S130, whether or not the right end point of the obstacle is in the alarm area.
| Rt | − (1/2) · Wh <| Rwr | <| Rt | + (1/2) · Wh
It is determined whether or not.

このS130の判定の結果、障害物の右端点が警報領域内に存在しないのであれば、S131へと進み、この障害物が割り込み車であるか否か判定する。ここで、割り込み車との判定は、上述のS112で説明した通りである。   As a result of the determination in S130, if the right end point of the obstacle does not exist within the warning area, the process proceeds to S131, and it is determined whether or not the obstacle is an interrupting vehicle. Here, the determination as an interrupting vehicle is as described in S112 above.

S131の判定の結果、障害物が割り込み車と判断した場合は、S132に進み、液晶モニタ14上で右からの割り込み車があることを報知し(例えば、右から車両が進入してくる表示を点滅させる)、或いは、音声により「右からの割り込み車に注意してください」等を発生させてプログラムを抜ける。   As a result of the determination in S131, if it is determined that the obstacle is an interrupting vehicle, the process proceeds to S132 to notify that there is an interrupting vehicle from the right on the liquid crystal monitor 14 (for example, a display indicating that the vehicle enters from the right). Blink)) or generate a voice message such as “Please watch out for an interrupting car from the right” and exit the program.

また、S131の判定の結果、障害物が割り込み車ではないと判断した場合は、S133に進み、液晶モニタ14上でステアリングを左に回避するように表示させ警報する。   If it is determined in S131 that the obstacle is not an interrupting vehicle, the process proceeds to S133, and a warning is displayed on the liquid crystal monitor 14 to avoid steering to the left.

その後、S134に進み、電動パワーステアリング制御装置13に信号を出力して、ステアリングを予め設定しておいた周期、トルクで振動させ、左にステアリングを転舵することを促してプログラムを抜ける。   Thereafter, the process proceeds to S134, where a signal is output to the electric power steering control device 13, the steering is vibrated with a preset period and torque, and the program is exited by prompting the steering to the left.

また、上述のS130の判定の結果、障害物の右端点が警報領域内に存在するのであれば、S135に進み、障害物が警報領域内のどちらに偏って存在しているか、すなわち、|Rt−Rwl|≧|Rt−Rwr|の判定を行う。   If the right end point of the obstacle is present in the alarm area as a result of the determination in S130, the process proceeds to S135, in which direction the obstacle is biased in the alarm area, that is, | Rt -Rwl | ≧ | Rt−Rwr | is determined.

このS135の判定の結果、|Rt−Rwl|≧|Rt−Rwr|であれば、障害物は左に偏って存在していると判定して前述のS126〜S129の処理を実行し、|Rt−Rwl|<|Rt−Rwr|であれば、障害物は右に偏って存在していると判定して前述のS131〜S134の処理を実行してプログラムを抜ける。   If | Rt−Rwl | ≧ | Rt−Rwr | as a result of the determination in S135, it is determined that the obstacle is biased to the left, and the processing of S126 to S129 is executed. If −Rwl | <| Rt−Rwr |, it is determined that the obstacle is present to the right, and the processing of S131 to S134 described above is executed to exit the program.

このように、本発明の実施の形態によれば、先行車の現在位置と自車両の現在位置に応じて自車両の目標経路を演算し、この目標経路に基づいて警報領域を設定するようになっているので、自車両の挙動によらず、先行車の挙動によっても正確な警報領域がタイミング良く設定され、警報制御を精度良く行うことが可能となっている。   Thus, according to the embodiment of the present invention, the target route of the host vehicle is calculated according to the current position of the preceding vehicle and the current position of the host vehicle, and the warning region is set based on the target route. Therefore, an accurate alarm region is set with good timing depending on the behavior of the preceding vehicle, regardless of the behavior of the host vehicle, and the alarm control can be performed with high accuracy.

また、先行車の現在位置と自車両の現在位置に応じて演算する目標経路は、直線路、或いは、円弧で近似した経路であり、容易に素早く設定される。   The target route calculated according to the current position of the preceding vehicle and the current position of the host vehicle is a straight road or a route approximated by an arc, and is easily set quickly.

更に、設定される警報領域は、自車速と、自車両と先行車との車間距離と、判定対象とする立体物の警報領域に接近する速度と、先行車と自車両の相対速度に応じて可変設定されるので、きめ細かで、様々な状況に応じた警報制御が可能となる。   Furthermore, the alarm area to be set depends on the own vehicle speed, the inter-vehicle distance between the own vehicle and the preceding vehicle, the speed approaching the alarm area of the three-dimensional object to be determined, and the relative speed between the preceding vehicle and the own vehicle. Since it is variably set, alarm control according to various situations is possible.

また、設定される警報領域は、先行車の後端から前方へ延出して設定され、この前方へ延出する長さは、自車速に応じて可変されるので、自車両の走行状況に応じた、より適切な警報が可能となっている。   In addition, the set warning area is set to extend forward from the rear end of the preceding vehicle, and the length extending forward is variable according to the vehicle speed, so that it corresponds to the traveling state of the vehicle. More appropriate warnings are possible.

更に、設定される警報領域は、白線により制限されるので、他の走行車線等に設定されることが無く、精度の良い警報制御を達成することができる。   Furthermore, since the alarm area to be set is limited by the white line, it is not set to other travel lanes and the like, and accurate alarm control can be achieved.

尚、本実施の形態では、先行車の認識をステレオカメラからの画像を基に行うようになっているが、他の技術、例えば、ミリ波レーダと単眼カメラからの情報を基に認識するものであっても良い。   In this embodiment, the preceding vehicle is recognized on the basis of the image from the stereo camera. However, other technologies, for example, recognition based on information from the millimeter wave radar and the monocular camera are performed. It may be.

車両に搭載した前方監視装置の概略構成図Schematic configuration diagram of a forward monitoring device mounted on a vehicle 警報制御プログラムのフローチャートFlow chart of alarm control program 図2から続くフローチャートFlowchart continuing from FIG. 図2から続くフローチャートFlowchart continuing from FIG. 自車両と先行車の座標位置と関係を示す説明図Explanatory diagram showing the relationship between the coordinate position of the host vehicle and the preceding vehicle 自車速に基づく警報領域幅補正係数の特性説明図Characteristic explanatory diagram of warning area width correction coefficient based on own vehicle speed 警報領域と障害物位置の関係を示す説明図Explanatory diagram showing the relationship between alarm area and obstacle position

符号の説明Explanation of symbols

1 自車両
2 ACCシステム
3 ステレオカメラ(立体物認識手段)
4 ステレオ画像認識装置(立体物認識手段)
5 制御ユニット(目標経路演算手段、警報領域設定手段、警報制御手段)
6 車速センサ(自車走行情報検出手段)
9 定速走行スイッチ
13 電動パワーステアリング制御装置
14 液晶モニタ
1 Vehicle 2 ACC system 3 Stereo camera (3D object recognition means)
4 Stereo image recognition device (3D object recognition means)
5 Control unit (target path calculation means, alarm area setting means, alarm control means)
6 Vehicle speed sensor (own vehicle travel information detection means)
9 Constant speed running switch 13 Electric power steering control device 14 LCD monitor

Claims (9)

自車両の走行情報を検出する自車走行情報検出手段と、
前方に存在する立体物を検出し、該立体物の中から少なくとも先行車を認識する立体物認識手段と、
先行車の現在位置と自車両の現在位置に応じて自車両の目標とする経路を演算する目標経路演算手段と、
上記目標とする経路に基づいて警報領域を設定する警報領域設定手段と、
上記警報領域内に存在する立体物の存在状態に応じて警報を行う警報制御手段と、
を備えたことを特徴とする車両の前方監視装置。
Own vehicle running information detecting means for detecting running information of the own vehicle;
Three-dimensional object recognition means for detecting a three-dimensional object existing ahead and recognizing at least a preceding vehicle from the three-dimensional object;
Target route calculating means for calculating a target route of the own vehicle according to the current position of the preceding vehicle and the current position of the own vehicle;
Alarm area setting means for setting an alarm area based on the target route;
Alarm control means for giving an alarm according to the presence state of the three-dimensional object existing in the alarm area;
A vehicle front monitoring apparatus comprising:
上記目標経路演算手段で、先行車の現在位置と自車両の現在位置に応じて演算する上記自車両の目標とする経路は、直線路と円弧で近似した経路のどちらかであることを特徴とする請求項1記載の車両の前方監視装置。   The target route calculation means calculates the target vehicle according to the current position of the preceding vehicle and the current position of the host vehicle, and the target route of the host vehicle is either a straight path or a route approximated by an arc. The vehicle front monitoring apparatus according to claim 1. 上記目標経路演算手段では、自車両位置を原点とする座標系にて先行車両の重心位置が原点に対して横方向にずれてない場合、及び、算出された円弧で近似した経路の半径が設定値よりも大きい場合に直線路にて経路を設定することを特徴とする請求項2記載の車両の前方監視装置。   In the above target route calculation means, the radius of the route approximated by the calculated arc is set when the center of gravity position of the preceding vehicle is not shifted laterally with respect to the origin in the coordinate system having the own vehicle position as the origin. 3. The vehicle front monitoring apparatus according to claim 2, wherein a route is set on a straight road when the value is larger than the value. 上記警報領域設定手段で設定する警報領域の幅は、自車速と、自車両と先行車との車間距離と、判定対象とする立体物の上記警報領域に接近する速度と、先行車と自車両の相対速度の少なくとも一つに応じて可変設定することを特徴とする請求項1又は請求項2記載の車両の前方監視装置。   The width of the warning area set by the warning area setting means includes the own vehicle speed, the inter-vehicle distance between the own vehicle and the preceding vehicle, the speed at which the three-dimensional object to be determined approaches the above-described alarm area, the preceding vehicle and the own vehicle. The vehicle front monitoring apparatus according to claim 1, wherein the vehicle forward monitoring apparatus is variably set according to at least one of the relative speeds. 上記警報領域設定手段で設定する警報領域は、先行車の後端から前方へ延出して設定することを特徴とする請求項1乃至請求項4の何れか一つに記載の車両の前方監視装置。   The vehicle front monitoring device according to any one of claims 1 to 4, wherein the warning region set by the warning region setting means is set to extend forward from the rear end of the preceding vehicle. . 上記警報領域の先行車の後端から前方へ延出する長さは、自車速に応じて可変することを特徴とする請求項5記載の車両の前方監視装置。   6. The vehicle front monitoring apparatus according to claim 5, wherein a length of the warning area extending forward from the rear end of the preceding vehicle is variable in accordance with the own vehicle speed. 上記警報領域設定手段で設定する警報領域は、該警報領域内に走行路の白線が存在する場合、この白線で警報領域を制限することを特徴とする請求項1乃至請求項6の何れか一つに記載の車両の前方監視装置。   7. The alarm area set by the alarm area setting means, when a white line of a traveling road exists in the alarm area, the alarm area is limited by the white line. The vehicle forward monitoring apparatus according to claim 1. 上記警報制御手段は、立体物が警報領域内の右側に存在する場合、左への転舵を促す警報を実行する一方、立体物が警報領域内の左側に存在する場合、右への転舵を促す警報を実行することを特徴とする請求項1乃至請求項7の何れか一つに記載の車両の前方監視装置。   When the three-dimensional object is present on the right side in the alarm area, the alarm control means executes an alarm for prompting leftward steering. On the other hand, when the three-dimensional object is present on the left side in the alarm area, the right-hand steering is performed. The vehicle forward monitoring device according to any one of claims 1 to 7, wherein an alarm for prompting the vehicle is executed. 上記警報制御手段は、警報対象とする立体物の速度が先行車と略等しく、且つ、警報対象とする立体物の幅が予め設定した車両とみなせる幅を有する場合は、警報を禁止することと、警報を割り込み車であることの報知に切り替えることのどちらかを実行することを特徴とする請求項1乃至請求項8の何れか一つに記載の車両の前方監視装置。   The warning control means prohibits warning when the speed of the three-dimensional object to be alarmed is substantially equal to that of the preceding vehicle and the width of the three-dimensional object to be alarmed has a width that can be regarded as a preset vehicle. The vehicle front monitoring device according to claim 1, wherein either one of the warning and the notification that the vehicle is an interrupting vehicle is switched.
JP2005282664A 2005-09-28 2005-09-28 Forward monitoring device for vehicle Pending JP2007091025A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005282664A JP2007091025A (en) 2005-09-28 2005-09-28 Forward monitoring device for vehicle
US11/527,534 US7663475B2 (en) 2005-09-28 2006-09-27 Vehicle surrounding monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282664A JP2007091025A (en) 2005-09-28 2005-09-28 Forward monitoring device for vehicle

Publications (1)

Publication Number Publication Date
JP2007091025A true JP2007091025A (en) 2007-04-12

Family

ID=37893152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282664A Pending JP2007091025A (en) 2005-09-28 2005-09-28 Forward monitoring device for vehicle

Country Status (2)

Country Link
US (1) US7663475B2 (en)
JP (1) JP2007091025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310585A (en) * 2007-06-14 2008-12-25 Toyota Motor Corp Vehicle surrounding monitoring device
JP2017196973A (en) * 2016-04-26 2017-11-02 トヨタ自動車株式会社 Vehicle travel control apparatus
JP2018041194A (en) * 2016-09-06 2018-03-15 株式会社Subaru Vehicle driving assist device
JP2023107500A (en) * 2022-01-24 2023-08-03 本田技研工業株式会社 Route generation device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2684516C (en) * 2007-04-22 2018-02-06 Ilookabout Inc. Method of obtaining geographically related images using a vehicle
JP2009086787A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Vehicle detection device
JP2009220630A (en) * 2008-03-13 2009-10-01 Fuji Heavy Ind Ltd Traveling control device for vehicle
JP5462609B2 (en) * 2009-12-09 2014-04-02 富士重工業株式会社 Stop line recognition device
JP5656732B2 (en) * 2011-05-02 2015-01-21 株式会社デンソー Collision probability computation device and collision probability computation program
US9168953B2 (en) * 2011-11-08 2015-10-27 Toyota Jidosha Kabushiki Kaisha Vehicle travel track control device
US9430946B2 (en) * 2011-12-28 2016-08-30 Toyota Jidosha Kabushiki Kaisha Obstacle determination device
WO2014061123A1 (en) * 2012-10-17 2014-04-24 富士通株式会社 Image processing device, image processing program and image processing method
JP6140458B2 (en) * 2013-01-24 2017-05-31 セコム株式会社 Autonomous mobile robot
US9576492B2 (en) 2013-05-21 2017-02-21 Autoliv Development Ab Collision mitigation systems with adjustable trigger width
KR102060542B1 (en) * 2013-05-21 2019-12-31 삼성디스플레이 주식회사 Device and method of modifying image signal
JP6188471B2 (en) * 2013-07-26 2017-08-30 アルパイン株式会社 Vehicle rear side warning device, vehicle rear side warning method, and three-dimensional object detection device
JP6622148B2 (en) * 2016-06-17 2019-12-18 日立オートモティブシステムズ株式会社 Ambient environment recognition device
JP6653300B2 (en) * 2017-09-15 2020-02-26 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
KR101962701B1 (en) * 2017-09-25 2019-03-27 주식회사 만도 Method and Apparatus of vehicle alarm that alarm area is changed by visible distance
JP7111517B2 (en) * 2018-06-14 2022-08-02 シャープ株式会社 Traveling device, travel control method for travel device, travel control program for travel device, and recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161699A (en) * 1994-12-01 1996-06-21 Nissan Motor Co Ltd Vehicle interval alarm device
JPH1096775A (en) * 1996-09-24 1998-04-14 Honda Access Corp Collision warning system for vehicle
JP2003215241A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd On-vehicle radar apparatus
JP2004038245A (en) * 2002-06-28 2004-02-05 Nissan Motor Co Ltd Obstacle detector for vehicle
JP2005035488A (en) * 2003-07-18 2005-02-10 Denso Corp Obstacle detector for vehicle
JP2005228127A (en) * 2004-02-13 2005-08-25 Fuji Heavy Ind Ltd Pedestrian detector, and vehicle drive support device with the pedestrian detector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646843A (en) * 1990-02-05 1997-07-08 Caterpillar Inc. Apparatus and method for surface based vehicle control system
JPH05265547A (en) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd On-vehicle outside monitoring device
US5774392A (en) * 1996-03-28 1998-06-30 Ramtron International Corporation Bootstrapping circuit utilizing a ferroelectric capacitor
JP3516856B2 (en) * 1998-01-30 2004-04-05 富士重工業株式会社 Outside monitoring device
JP4624594B2 (en) * 2000-06-28 2011-02-02 パナソニック株式会社 Object recognition method and object recognition apparatus
JP2002308030A (en) * 2001-04-16 2002-10-23 Yazaki Corp Periphery monitoring system for vehicle
US6492673B1 (en) * 2001-05-22 2002-12-10 Ramtron International Corporation Charge pump or other charge storage capacitor including PZT layer for combined use as encapsulation layer and dielectric layer of ferroelectric capacitor and a method for manufacturing the same
DE10301468B4 (en) * 2002-01-18 2010-08-05 Honda Giken Kogyo K.K. Device for monitoring the environment of a vehicle
JP3794353B2 (en) 2002-07-08 2006-07-05 日産自動車株式会社 Display device for tracking control
JP3806084B2 (en) * 2002-12-25 2006-08-09 株式会社東芝 Ferroelectric memory and data read method thereof
JP4021344B2 (en) * 2003-03-03 2007-12-12 富士重工業株式会社 Vehicle driving support device
JP4246084B2 (en) * 2004-02-17 2009-04-02 日産自動車株式会社 Vehicle travel control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161699A (en) * 1994-12-01 1996-06-21 Nissan Motor Co Ltd Vehicle interval alarm device
JPH1096775A (en) * 1996-09-24 1998-04-14 Honda Access Corp Collision warning system for vehicle
JP2003215241A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd On-vehicle radar apparatus
JP2004038245A (en) * 2002-06-28 2004-02-05 Nissan Motor Co Ltd Obstacle detector for vehicle
JP2005035488A (en) * 2003-07-18 2005-02-10 Denso Corp Obstacle detector for vehicle
JP2005228127A (en) * 2004-02-13 2005-08-25 Fuji Heavy Ind Ltd Pedestrian detector, and vehicle drive support device with the pedestrian detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310585A (en) * 2007-06-14 2008-12-25 Toyota Motor Corp Vehicle surrounding monitoring device
JP2017196973A (en) * 2016-04-26 2017-11-02 トヨタ自動車株式会社 Vehicle travel control apparatus
US10065643B2 (en) 2016-04-26 2018-09-04 Toyota Jidosha Kabushiki Kaisha Vehicle travel control apparatus
JP2018041194A (en) * 2016-09-06 2018-03-15 株式会社Subaru Vehicle driving assist device
JP2023107500A (en) * 2022-01-24 2023-08-03 本田技研工業株式会社 Route generation device
JP7510446B2 (en) 2022-01-24 2024-07-03 本田技研工業株式会社 Route Generation Device

Also Published As

Publication number Publication date
US20070069873A1 (en) 2007-03-29
US7663475B2 (en) 2010-02-16

Similar Documents

Publication Publication Date Title
JP2007091025A (en) Forward monitoring device for vehicle
KR101788183B1 (en) Vehicle and controlling method for the vehicle
JP4647201B2 (en) Vehicle travel control device
US10093316B2 (en) Vehicle traveling control device
JP7103753B2 (en) Collision avoidance device
US9902399B2 (en) Vehicle travelling control device for controlling a vehicle in traffic
EP3330942B1 (en) Method for controlling travel control device, and travel control device
JP4995029B2 (en) Vehicle driving support device
EP3330941B1 (en) Travel control method and travel control device
JP4021344B2 (en) Vehicle driving support device
JP6460008B2 (en) Automatic driving device
JP5066478B2 (en) Vehicle driving support device
EP3330943B1 (en) Method for controlling travel control device, and travel control device
JP6815856B2 (en) Travel locus prediction device for preceding vehicles and vehicles equipped with them
JP6763327B2 (en) Collision avoidance device
JP2008307951A (en) Driving support apparatus of vehicle
JPH1166494A (en) Vehicle driving supporting system
JP2008195289A (en) Vehicle driving support device
JP2009286279A (en) Drive support device for vehicle
KR20180071575A (en) Vehicle and controlling method for the vehicle
JP2016175567A (en) Steering assist device
WO2021199508A1 (en) Vehicle control device, vehicle merging assistance device, and vehicle
JP2012131460A (en) Target path calculation device
JP4294450B2 (en) Vehicle driving support device
JP2010079424A (en) Driving support device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510