JP4884929B2 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
JP4884929B2
JP4884929B2 JP2006305896A JP2006305896A JP4884929B2 JP 4884929 B2 JP4884929 B2 JP 4884929B2 JP 2006305896 A JP2006305896 A JP 2006305896A JP 2006305896 A JP2006305896 A JP 2006305896A JP 4884929 B2 JP4884929 B2 JP 4884929B2
Authority
JP
Japan
Prior art keywords
vehicle
deceleration
preceding vehicle
travel control
required deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006305896A
Other languages
Japanese (ja)
Other versions
JP2008123230A (en
Inventor
匡 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2006305896A priority Critical patent/JP4884929B2/en
Publication of JP2008123230A publication Critical patent/JP2008123230A/en
Application granted granted Critical
Publication of JP4884929B2 publication Critical patent/JP4884929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、先行車に対して追従走行する際、適切に警報等を行う車両の走行制御装置に関する。   The present invention relates to a travel control device for a vehicle that appropriately gives an alarm or the like when traveling following a preceding vehicle.

近年、車両においては、車載したカメラやレーザレーダ装置等により前方の走行環境を検出し、この走行環境データから障害物や先行車を認識して、自車両の目標減速度を設定し、障害物や先行車に対して車間距離を一定に保ちながら走行する走行制御装置が開発され、実用化されている。こうした走行制御装置では、先行車と自車両との関係において警報を行うものが多く、例えば、特開平7−159525号公報では、減速開始時の車間距離検出値を相対速度で除して接触予測時間を算出し、各減速ごとに減速行動開始時の接触予測時間を記憶し、この記憶された各減速行動時の接触予測時間から、当該ドライバの接触予測時間を推定する。そして、相対速度検出値に接触予測時間推定値を乗じた値を車間距離検出値から減じて車間距離予測値を演算し、車間距離予測値が警報距離よりも短い場合に警報する技術が開示されている。
特開平7−159525号公報
In recent years, in vehicles, the front traveling environment is detected by an on-board camera, laser radar device, etc., obstacles and preceding vehicles are recognized from the traveling environment data, the target deceleration of the own vehicle is set, the obstacle A traveling control device that travels while maintaining a constant inter-vehicle distance with respect to a preceding vehicle has been developed and put into practical use. Many of these traveling control devices issue a warning regarding the relationship between the preceding vehicle and the host vehicle. For example, in Japanese Patent Application Laid-Open No. 7-159525, contact prediction is obtained by dividing the detected distance between vehicles at the start of deceleration by the relative speed. The time is calculated, the predicted contact time at the start of the deceleration action is stored for each deceleration, and the predicted contact time of the driver is estimated from the stored predicted contact time at each deceleration action. Then, a technique is disclosed in which a value obtained by multiplying the detected relative speed value by the estimated contact time estimation value is subtracted from the detected inter-vehicle distance value to calculate an estimated inter-vehicle distance, and an alarm is issued when the predicted inter-vehicle distance is shorter than the warning distance. ing.
JP-A-7-159525

しかしながら、上述の特許文献1で開示される接触予測時間を基に警報を行うような技術では、車間距離が小さく、相対速度も小さい場合において、頻繁な警報を回避するために警報が行われないような設定とした後に、車間距離が大きく、相対速度も大きい状態になった場合には警報が行われず、ドライバに不自然な感覚を与えてしまう虞がある。また、車間距離が通常の距離であり、相対速度が小さい場合においても警報が行われなくなるので、ドライバの感覚と乖離して、使い勝手の悪い装置となってしまうという問題もある。   However, in the technique that issues an alarm based on the predicted contact time disclosed in Patent Document 1 described above, an alarm is not performed in order to avoid frequent alarms when the inter-vehicle distance is small and the relative speed is also small. After such a setting, if the inter-vehicle distance is large and the relative speed is also large, an alarm is not issued, which may give the driver an unnatural feeling. Further, since the alarm is not issued even when the inter-vehicle distance is a normal distance and the relative speed is small, there is a problem that the device becomes inconvenient and deviates from the driver's feeling.

本発明は上記事情に鑑みてなされたもので、ドライバに不自然な感覚を与えることなく、自車両と先行車との関係に応じて適切なタイミングで警報を行うことができ、使い勝手の良い車両の走行制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can provide an alarm at an appropriate timing according to the relationship between the host vehicle and the preceding vehicle without giving the driver an unnatural feeling, and is a user-friendly vehicle. An object of the present invention is to provide a traveling control apparatus.

本発明は、自車両前方の先行車を認識し、先行車情報を取得する先行車認識手段と、自車両の走行状態と上記先行車情報を基に上記先行車への追従に必要な必要減速度を演算する必要減速度演算手段と、自車両の挙動変化を抑制するように上記必要減速度にフィルタ処理を施すことで減速手段が発生する要求減速度を演算する要求減速度演算手段と、上記必要減速度と上記要求減速度との偏差に応じて警報を行う警報手段とを備えたことを特徴としている。
The present invention recognizes a preceding vehicle ahead of the host vehicle and acquires preceding vehicle information, and a necessary reduction necessary for following the preceding vehicle based on the traveling state of the host vehicle and the preceding vehicle information. A required deceleration calculating means for calculating a speed, a required deceleration calculating means for calculating a required deceleration generated by the deceleration means by filtering the required deceleration so as to suppress a change in behavior of the host vehicle , An alarm means for performing an alarm according to a deviation between the required deceleration and the required deceleration is provided.

本発明による車両の走行制御装置は、ドライバに不自然な感覚を与えることなく、自車両と先行車との関係に応じて適切なタイミングで警報を行うことができ、使い勝手が良いという効果を奏する。   The travel control device for a vehicle according to the present invention can give an alarm at an appropriate timing according to the relationship between the host vehicle and the preceding vehicle without giving an unnatural feeling to the driver, and has the effect of being easy to use. .

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図5は本発明の実施の一形態を示し、図1は車両に搭載した走行制御装置の概略構成図、図2は自動追従制御プログラムのフローチャート、図3は必要減速度を演算する数式に用いるパラメータの説明図、図4は接触予測時間に応じて設定される基本判定閾値のマップの一例を示す説明図、図5は先行車との車間距離(以後、単に「車間距離」とする)に応じて設定される第1の閾値ゲインのマップの一例を示す説明図、図6は先行車との相対速度(以後、単に「相対速度」とする)に応じて設定される第2の閾値ゲインのマップの一例を示す説明図、図7は路面勾配に応じて設定される第3の閾値ゲインのマップの一例を示す説明図、図8は減速制御開始時間に応じて設定される第4の閾値ゲインのマップの一例を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a travel control device mounted on a vehicle, FIG. 2 is a flowchart of an automatic tracking control program, and FIG. 3 calculates a required deceleration. FIG. 4 is an explanatory diagram showing an example of a map of basic determination threshold values set in accordance with the predicted contact time, and FIG. 5 is an inter-vehicle distance from the preceding vehicle (hereinafter simply referred to as “inter-vehicle distance”). FIG. 6 is an explanatory diagram showing an example of a map of the first threshold gain set in response to the second speed set in accordance with the relative speed with the preceding vehicle (hereinafter simply referred to as “relative speed”). FIG. 7 is an explanatory diagram showing an example of a third threshold gain map set according to the road gradient, and FIG. 8 is set according to the deceleration control start time. It is explanatory drawing which shows an example of the map of a 4th threshold gain. .

図1において、符号1は自動車等の車両(自車両)で、この自車両1には、走行制御装置の一例としてのクルーズコントロールシステム(ACC(Adaptive Cruise Control)システム)2が搭載されている。   In FIG. 1, reference numeral 1 denotes a vehicle (host vehicle) such as an automobile, and the host vehicle 1 is equipped with a cruise control system (ACC (Adaptive Cruise Control) system) 2 as an example of a travel control device.

このACCシステム2は、ステレオカメラ3、ステレオ画像認識装置4、走行制御ユニット5等を主要部として構成され、このACCシステム2では、基本的に、先行車が存在しない定速走行制御状態のときにはドライバが設定した車速を保持した状態で走行し、先行車が存在する場合には、後述の図2の自動追従制御プログラム等により制御される。   The ACC system 2 includes a stereo camera 3, a stereo image recognition device 4, a travel control unit 5, and the like as main parts. The ACC system 2 is basically in a constant speed travel control state in which no preceding vehicle exists. When the vehicle travels while maintaining the vehicle speed set by the driver and there is a preceding vehicle, the vehicle is controlled by an automatic follow-up control program shown in FIG.

ステレオカメラ3は、ステレオ光学系として例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組の(左右の)CCDカメラで構成され、これら左右のCCDカメラは、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像し、ステレオ画像認識装置4に出力される。   The stereo camera 3 is composed of a pair of (left and right) CCD cameras using a solid-state image sensor such as a charge coupled device (CCD) as a stereo optical system. Are attached at regular intervals, and an object outside the vehicle is imaged in stereo from different viewpoints and output to the stereo image recognition device 4.

また、自車両1には、自車速V0を検出する車速センサ6が設けられており、検出された自車速V0は、ステレオ画像認識装置4と走行制御ユニット5とに出力される。   Further, the host vehicle 1 is provided with a vehicle speed sensor 6 that detects the host vehicle speed V0, and the detected host vehicle speed V0 is output to the stereo image recognition device 4 and the travel control unit 5.

ステレオ画像認識装置4は、ステレオカメラ3からの画像、車速センサ6からの自車速V0が入力され、ステレオカメラ3からの画像に基づき自車両1前方の立体物データと白線データの前方情報を検出し、自車両1の進行路(自車進行路)を推定する。そして、自車両1前方の先行車を抽出して、車間距離L、先行車速((車間距離Lの変化の割合)+(自車速V0))Vf、先行車減速度(先行車速Vfの微分値)af、先行車以外の静止物位置、白線座標、白線認識距離、自車進行路座標等の各データを走行制御ユニット5に出力する。   The stereo image recognition device 4 receives the image from the stereo camera 3 and the vehicle speed V0 from the vehicle speed sensor 6 and detects the front information of the three-dimensional object data and the white line data ahead of the vehicle 1 based on the image from the stereo camera 3. Then, the traveling path of the host vehicle 1 (the host vehicle traveling path) is estimated. Then, the preceding vehicle ahead of the host vehicle 1 is extracted and the inter-vehicle distance L, the preceding vehicle speed ((ratio of change in the inter-vehicle distance L) + (own vehicle speed V0)) Vf, the preceding vehicle deceleration (the differential value of the preceding vehicle speed Vf). ) Output data to the travel control unit 5 such as af, stationary object position other than the preceding vehicle, white line coordinates, white line recognition distance, own vehicle travel path coordinates, and the like.

ここで、ステレオ画像認識装置4における、ステレオカメラ3からの画像の処理は、例えば以下のように行われる。まず、ステレオカメラ3で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から三角測量の原理によって距離情報を生成する。そして、この距離情報を基に、周知のグルーピング処理や、予め記憶しておいた三次元的な道路形状データ、立体物データ等と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、車両等の立体物データを抽出する。立体物データでは、立体物までの距離と、この距離の時間的変化(自車両1に対する相対速度)が求められ、特に自車進行路上にあるもっとも近い車両で、自車両1と略同じ方向に所定の速度(例えば、0km/h以上)で走行するものが先行車として抽出される。尚、先行車の中で、特に、速度Vfが略4km/h以下で、且つ、加速していない車両は、略停止状態の先行車として認識される。また、自車両の前方に存在する障害物も上述の先行車と同様に扱われる。このように、ステレオカメラ3、及び、ステレオ画像認識装置4は、先行車認識手段として設けられている。   Here, the processing of the image from the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example. First, distance information is generated based on the principle of triangulation from a corresponding positional shift amount for a pair of stereo images in the traveling direction of the host vehicle 1 captured by the stereo camera 3. And based on this distance information, compared with well-known grouping processing and pre-stored three-dimensional road shape data, solid object data, etc., white line data, guardrails, curbs, etc. existing along the road Side wall data and three-dimensional object data such as vehicles are extracted. In the three-dimensional object data, a distance to the three-dimensional object and a temporal change (relative speed with respect to the own vehicle 1) of this distance are obtained. In particular, in the closest vehicle on the own vehicle traveling path, in the substantially same direction as the own vehicle 1. A vehicle traveling at a predetermined speed (for example, 0 km / h or more) is extracted as a preceding vehicle. Of the preceding vehicles, in particular, a vehicle having a speed Vf of about 4 km / h or less and not accelerating is recognized as a preceding vehicle in a substantially stopped state. Moreover, the obstacle which exists ahead of the own vehicle is also handled like the above-mentioned preceding vehicle. Thus, the stereo camera 3 and the stereo image recognition device 4 are provided as preceding vehicle recognition means.

走行制御ユニット5は、ドライバの操作入力によって設定される走行速度を維持するよう定速走行制御を行う定速走行制御の機能、及び、後述の図2に示す自動追従制御の機能を実現するもので、ステアリングコラムの側部等に設けられた定速走行操作レバーに連結される複数のスイッチ類で構成された定速走行スイッチ7、ステレオ画像認識装置4、車速センサ6等が接続されている。   The traveling control unit 5 realizes a constant speed traveling control function for performing constant speed traveling control so as to maintain a traveling speed set by a driver's operation input, and an automatic tracking control function shown in FIG. Are connected to a constant speed travel switch 7, a stereo image recognition device 4, a vehicle speed sensor 6, and the like that are configured by a plurality of switches coupled to a constant speed travel operation lever provided on a side portion of the steering column. .

定速走行スイッチ7は、定速走行時の目標車速を設定する車速セットスイッチ、主に目標車速を下降側へ変更設定するコーストスイッチ、主に目標車速を上昇側へ変更設定するリジュームスイッチ等で構成されている。更に、この定速走行操作レバーの近傍には、定速走行制御及び自動追従制御のON/OFFを行うメインスイッチ(図示せず)が配設されている。   The constant speed travel switch 7 is a vehicle speed set switch for setting a target vehicle speed during constant speed travel, a coast switch for mainly changing the target vehicle speed to the lower side, a resume switch for mainly changing the target vehicle speed to the upper side, etc. It is configured. Further, a main switch (not shown) for turning ON / OFF constant speed traveling control and automatic tracking control is disposed in the vicinity of the constant speed traveling operation lever.

ドライバが図示しないメインスイッチをONし、定速走行操作レバーにより、希望する車速をセットすると、定速走行スイッチ7からの信号が走行制御ユニット5に入力される。そして、車速センサ6で検出した車速が、ドライバのセットした設定車速に収束するように、スロットル弁制御装置8に信号出力してスロットル弁9の開度をフィードバック制御し、自車両1を定速状態で自動的に走行させ、或いは、減速手段としての自動ブレーキ制御装置10に減速信号を出力して自動ブレーキを作動させる。   When the driver turns on a main switch (not shown) and sets a desired vehicle speed by means of a constant speed traveling operation lever, a signal from the constant speed traveling switch 7 is input to the traveling control unit 5. Then, the vehicle speed detected by the vehicle speed sensor 6 is output as a signal to the throttle valve control device 8 so as to converge to the set vehicle speed set by the driver, and the opening degree of the throttle valve 9 is feedback-controlled so that the vehicle 1 is kept at a constant speed. The vehicle is automatically driven in the state, or the automatic brake is operated by outputting a deceleration signal to the automatic brake control device 10 as a deceleration means.

また、走行制御ユニット5は、定速走行制御を行っている際に、ステレオ画像認識装置4にて先行車を認識した場合には、所定の条件で後述する自動追従制御へ自動的に切り換えられる。尚、定速走行制御の機能、及び、自動追従制御の機能は、自車速V0が予め設定しておいた上限値を超える場合、或いは、メインスイッチがOFFされた場合には、解除される。   Further, when the traveling control unit 5 performs constant speed traveling control and recognizes a preceding vehicle by the stereo image recognition device 4, the traveling control unit 5 is automatically switched to automatic tracking control described later under a predetermined condition. . The constant speed traveling control function and the automatic follow-up control function are canceled when the vehicle speed V0 exceeds a preset upper limit value or when the main switch is turned off.

走行制御ユニット5における自動追従制御では、自車両1の走行状態と先行車情報を基に先行車に追従するのに必要な必要減速度Ga1を演算し、この必要減速度Ga1を基に自動ブレーキ制御装置10が発生する要求減速度Ga2を演算する。そして、必要減速度Ga1と要求減速度Ga2との偏差(減速度偏差)ΔGを演算し、この減速度偏差ΔGが、予め、先行車との接触予測時間(以後、単に「接触予測時間」とする)TTC、車間距離L、相対速度(V0−Vf)、路面勾配SL、自動ブレーキ制御装置10の制御を開始してからの時間(減速制御開始時間)Tbrに応じて設定した判定閾値CGを超えた場合に、警報手段としての液晶モニタ11に警報アラームを表示させ、ドライバのブレーキ操作を促すように構成されている。すなわち、走行制御ユニット5は、必要減速度演算手段、要求減速度演算手段、警報手段としての機能を有して構成されている。   In the automatic follow-up control in the travel control unit 5, the necessary deceleration Ga1 necessary for following the preceding vehicle is calculated based on the traveling state of the host vehicle 1 and the preceding vehicle information, and automatic braking is performed based on the necessary deceleration Ga1. The requested deceleration Ga2 generated by the control device 10 is calculated. Then, a deviation (deceleration deviation) ΔG between the required deceleration Ga1 and the required deceleration Ga2 is calculated, and this deceleration deviation ΔG is calculated in advance as a predicted contact time with the preceding vehicle (hereinafter simply referred to as “contact predicted time”). The determination threshold value CG set according to the TTC, the inter-vehicle distance L, the relative speed (V0−Vf), the road gradient SL, and the time after starting the control of the automatic brake control device 10 (deceleration control start time) Tbr is set. When it exceeds, a warning alarm is displayed on the liquid crystal monitor 11 as a warning means, and a driver's brake operation is urged. That is, the traveling control unit 5 is configured to have functions as necessary deceleration calculation means, required deceleration calculation means, and alarm means.

走行制御ユニット5における自動追従制御プログラムは、図2に示すように、まず、ステップ(以下、「S」と略称)101で必要パラメータ、具体的には、先行車速Vf、先行車減速度af、車間距離L等の先行車情報、及び、自車速V0等の読み込みを行い、S102に進む。   As shown in FIG. 2, the automatic follow-up control program in the travel control unit 5 first includes necessary parameters at step (hereinafter abbreviated as “S”) 101, specifically, the preceding vehicle speed Vf, the preceding vehicle deceleration af, The preceding vehicle information such as the inter-vehicle distance L and the vehicle speed V0 are read, and the process proceeds to S102.

S102では、先行車に追従するのに必要な必要減速度Ga1を、例えば、以下の(1)式により演算する。自車両1と先行車とが、図3に示すような関係、すなわち、現在、自車速V0、自車減速度a0、先行車速Vf、先行車減速度af、車間距離Lである状態が、t秒後に、自車両1が距離Ls前進し、先行車が先行車予測位置まで距離Lf前進し、自車両1との車間距離が目標車間距離Dtgt(マップ或いは演算により設定される距離)となるとすると、
Ga1=(V0−Vf)/(2・(L−Dtgt))+af・α1・α2・α3
…(1)
ここで、α1、α2、α3は、それぞれ、予め設定しておいた、相対速度テーブル、車間距離テーブル、先行車速テーブルから設定する定数である。
In S102, the necessary deceleration Ga1 necessary for following the preceding vehicle is calculated by the following equation (1), for example. The relationship between the host vehicle 1 and the preceding vehicle as shown in FIG. 3, that is, the current vehicle speed V0, the host vehicle deceleration a0, the preceding vehicle speed Vf, the preceding vehicle deceleration af, and the inter-vehicle distance L is t After a second, the host vehicle 1 moves forward by a distance Ls, the preceding vehicle moves forward by a distance Lf to the predicted preceding vehicle position, and the inter-vehicle distance from the host vehicle 1 becomes a target inter-vehicle distance Dtgt (a distance set by a map or calculation). ,
Ga1 = (V0−Vf) 2 / (2 · (L−Dtgt)) + af · α1 · α2 · α3
... (1)
Here, α1, α2, and α3 are constants set in advance from a relative speed table, an inter-vehicle distance table, and a preceding vehicle speed table, respectively.

次いで、S103に進み、自動ブレーキ制御装置10が発生する要求減速度Ga2を演算する。この要求減速度Ga2は、必要減速度Ga1を基に設定するものであり、例えば、必要減速度Ga1の値をフィルタ処理(自車両における挙動の急激な変化を抑制するように処理)して演算する。そして、一定の上限値(例えば、0.25G 1G=9.8m/s)で制限し、設定するようになっている。 Next, in S103, the required deceleration Ga2 generated by the automatic brake control device 10 is calculated. This required deceleration Ga2 is set based on the required deceleration Ga1, and for example, is calculated by filtering the value of the required deceleration Ga1 (processing so as to suppress a sudden change in behavior in the host vehicle). To do. Then, restricted with fixed upper limit value (e.g., 0.25G 1G = 9.8m / s 2 ), is adapted to set.

次に、S104に進み、減速度偏差ΔGを、以下の(2)式により演算する。
ΔG=|Ga1−Ga2| …(2)
次に、S105に進み、判定閾値CGを、例えば、以下の(3)式により演算する。
CG=K1・K2・K3・K4・K0 …(3)
ここで、K0は接触予測時間TTC(=L/(V0−Vf))に応じて設定される基本判定閾値であり、例えば、図4に示すようなマップで、接触予測時間TTCが大きくなるほど大きな値に予め設定されている。また、K1は車間距離Lに応じて設定される第1の閾値ゲインであり、例えば、図5に示すようなマップで、車間距離Lが大きくなるほど大きな値に予め設定されている。また、K2は相対速度(V0−Vf)に応じて設定される第2の閾値ゲインであり、例えば、図6に示すようなマップで、相対速度(V0−Vf)が大きくなるほど小さな値に予め設定されている。また、K3は路面勾配SLに応じて設定される第3の閾値ゲインであり、例えば、図7に示すようなマップで、路面勾配SLが大きくなるほど大きな値に予め設定されている。尚、路面勾配SLは、自車速V0と加速度a0から演算、或いは、ナビゲーション装置からのデータ等の公知の技術により取得される。また、K4は減速制御開始時間Tbrに応じて設定される第4の閾値ゲインであり、例えば、図8に示すようなマップで、減速制御開始時間Tbrが大きくなるほど小さな値に予め設定されている。
Next, in S104, the deceleration deviation ΔG is calculated by the following equation (2).
ΔG = | Ga1−Ga2 | (2)
Next, the process proceeds to S105, and the determination threshold value CG is calculated by, for example, the following expression (3).
CG = K1, K2, K3, K4, K0 (3)
Here, K0 is a basic determination threshold value set according to the predicted contact time TTC (= L / (V0−Vf)). For example, in the map as shown in FIG. The value is preset. K1 is a first threshold gain set according to the inter-vehicle distance L. For example, in a map as shown in FIG. 5, the value is set in advance as the inter-vehicle distance L increases. K2 is a second threshold gain set in accordance with the relative speed (V0-Vf). For example, in the map as shown in FIG. 6, the value increases in advance as the relative speed (V0-Vf) increases. Is set. K3 is a third threshold gain set according to the road surface gradient SL. For example, in the map as shown in FIG. 7, the value is set in advance as the road surface gradient SL increases. The road surface gradient SL is obtained from a known technique such as calculation from the own vehicle speed V0 and acceleration a0 or data from a navigation device. K4 is a fourth threshold gain set according to the deceleration control start time Tbr. For example, in the map as shown in FIG. 8, the value is preset in advance as the deceleration control start time Tbr increases. .

そして、S106に進み、減速度偏差ΔGと判定閾値CGとを比較して、減速度偏差ΔGが判定閾値CGを超える場合(ΔG>CGの場合)には、S107に進み、液晶モニタ11に警報アラームを表示させ、ドライバのブレーキ操作を促す一方、減速度偏差ΔGが判定閾値CG以下の場合(ΔG≦CGの場合)には、警報を行うことなくそのままプログラムを抜ける。   Then, the process proceeds to S106, where the deceleration deviation ΔG is compared with the determination threshold value CG. When the deceleration deviation ΔG exceeds the determination threshold value CG (when ΔG> CG), the process proceeds to S107, and an alarm is given to the liquid crystal monitor 11. While displaying an alarm and prompting the driver to operate the brake, if the deceleration deviation ΔG is equal to or less than the determination threshold value CG (when ΔG ≦ CG), the program exits without performing an alarm.

このように、本発明の実施の形態によれば、必要減速度Ga1と要求減速度Ga2との減速度偏差ΔGが、予め、接触予測時間TTC、車間距離L、相対速度(V0−Vf)、路面勾配SL、減速制御開始時間Tbrに応じて設定した判定閾値CGを超えた場合に、液晶モニタ11に警報アラームを表示させ、ドライバのブレーキ操作を促すように制御される。このため、単に、車間距離L、相対速度(V0−Vf)に応じた警報ではなく、よりドライバの感覚に近い制御となり、ドライバに不自然な感覚を与えることなく、自車両と先行車との関係において適切なタイミングで警報を行うことができ、使い勝手が良いという効果を奏する。例えば、先行車が急減速を行ったときや、或いは、システム上、必要減速度Ga1に対して要求減速度Ga2が不足する場合等において的確にドライバにブレーキ操作を促すことができる。   As described above, according to the embodiment of the present invention, the deceleration deviation ΔG between the required deceleration Ga1 and the required deceleration Ga2 is calculated in advance from the predicted contact time TTC, the inter-vehicle distance L, the relative speed (V0−Vf), When the judgment threshold value CG set according to the road surface gradient SL and the deceleration control start time Tbr is exceeded, an alarm alarm is displayed on the liquid crystal monitor 11 to control the driver's brake operation. For this reason, it is not merely an alarm according to the inter-vehicle distance L and the relative speed (V0-Vf), but the control becomes closer to the driver's sense, and without giving the driver an unnatural feeling, An alarm can be given at an appropriate timing in the relationship, and there is an effect that it is easy to use. For example, when the preceding vehicle suddenly decelerates, or when the required deceleration Ga2 is insufficient with respect to the required deceleration Ga1 in the system, the driver can be urged to perform the brake operation accurately.

尚、本実施の形態では、判定閾値CGを、接触予測時間TTC、車間距離L、相対速度(V0−Vf)、路面勾配SL、減速制御開始時間Tbrに応じて設定するようになっているが、何れか一つ、或いは、何れかの組合せで設定するようにしても良い。   In the present embodiment, the determination threshold CG is set according to the predicted contact time TTC, the inter-vehicle distance L, the relative speed (V0−Vf), the road surface gradient SL, and the deceleration control start time Tbr. , Any one or any combination may be set.

また、本実施の形態では、先行車の認識をステレオカメラからの画像を基に行うようになっているが、他の技術、例えば、ミリ波レーダと単眼カメラからの情報を基に認識するものや、レーザレーダからの情報で認識するものであっても良い。   In the present embodiment, the preceding vehicle is recognized based on the image from the stereo camera. However, other technologies, for example, those that recognize based on information from the millimeter wave radar and the monocular camera are used. Alternatively, it may be recognized by information from a laser radar.

更には、本実施の形態では、警報アラームを用いて警報を行っているが、これをドライバによる操作を促す各種手段に置換しても、本発明と同様の効果を得る事が出来る。   Furthermore, in the present embodiment, warning is performed using a warning alarm, but the same effect as in the present invention can be obtained even if this is replaced with various means for prompting an operation by a driver.

車両に搭載した走行制御装置の概略構成図Schematic configuration diagram of a travel control device mounted on a vehicle 自動追従制御プログラムのフローチャートFlow chart of automatic tracking control program 必要減速度を演算する数式に用いるパラメータの説明図Explanatory diagram of parameters used in mathematical formula to calculate necessary deceleration 接触予測時間に応じて設定される基本判定閾値のマップの一例を示す説明図Explanatory drawing which shows an example of the map of the basic determination threshold value set according to contact estimated time 車間距離に応じて設定される第1の閾値ゲインのマップの一例を示す説明図Explanatory drawing which shows an example of the map of the 1st threshold gain set according to the distance between vehicles 相対速度に応じて設定される第2の閾値ゲインのマップの一例を示す説明図Explanatory drawing which shows an example of the map of the 2nd threshold value gain set according to relative speed 路面勾配に応じて設定される第3の閾値ゲインのマップの一例を示す説明図Explanatory drawing which shows an example of the map of the 3rd threshold value gain set according to a road surface gradient 減速制御開始時間に応じて設定される第4の閾値ゲインのマップの一例を示す説明図Explanatory drawing which shows an example of the map of the 4th threshold gain set according to deceleration control start time

符号の説明Explanation of symbols

1 自車両
2 ACCシステム(走行制御装置)
3 ステレオカメラ(先行車認識手段)
4 ステレオ画像認識装置(先行車認識手段)
5 走行制御ユニット(必要減速度演算手段、要求減速度演算手段、警報手段)
8 スロットル弁制御装置
9 スロットル弁
10 自動ブレーキ制御装置(減速手段)
11 液晶モニタ(警報手段)
1 Vehicle 2 ACC system (travel control device)
3 Stereo camera (preceding vehicle recognition means)
4 Stereo image recognition device (preceding vehicle recognition means)
5 Travel control unit (necessary deceleration calculation means, required deceleration calculation means, alarm means)
8 Throttle valve control device 9 Throttle valve 10 Automatic brake control device (deceleration means)
11 LCD monitor (alarm means)

Claims (3)

自車両前方の先行車を認識し、先行車情報を取得する先行車認識手段と、
自車両の走行状態と上記先行車情報を基に上記先行車への追従に必要な必要減速度を演算する必要減速度演算手段と、
自車両の挙動変化を抑制するように上記必要減速度にフィルタ処理を施すことで減速手段が発生する要求減速度を演算する要求減速度演算手段と、
上記必要減速度と上記要求減速度との偏差に応じて警報を行う警報手段と、
を備えたことを特徴とする車両の走行制御装置。
A preceding vehicle recognition means for recognizing a preceding vehicle ahead of the host vehicle and acquiring preceding vehicle information;
Necessary deceleration calculating means for calculating the necessary deceleration required for following the preceding vehicle based on the traveling state of the host vehicle and the preceding vehicle information;
A required deceleration calculating means for calculating a required deceleration generated by the deceleration means by applying a filter process to the required deceleration so as to suppress a change in behavior of the host vehicle ;
Alarm means for giving an alarm according to a deviation between the required deceleration and the required deceleration;
A travel control device for a vehicle, comprising:
上記警報手段は、上記必要減速度と上記要求減速度との偏差が予め設定する閾値を超える場合に警報を行うことを特徴とする請求項1記載の車両の走行制御装置。   2. The vehicle travel control apparatus according to claim 1, wherein the warning means issues a warning when a deviation between the required deceleration and the required deceleration exceeds a preset threshold value. 上記閾値は、先行車との車間距離と、先行車との相対速度と、上記先行車との車間距離を上記先行車との相対速度で除して得る接触予測時間と、路面勾配と、上記減速手段の制御を開始してからの時間との少なくとも一つに応じて可変設定することを特徴とする請求項2記載の車両の走行制御装置。   The threshold values include the following distance between the preceding vehicle, the relative speed with the preceding vehicle, the predicted contact time obtained by dividing the inter-vehicle distance with the preceding vehicle by the relative speed with the preceding vehicle, the road surface gradient, 3. The vehicle travel control apparatus according to claim 2, wherein the vehicle travel control device is variably set in accordance with at least one of the time from the start of the control of the deceleration means.
JP2006305896A 2006-11-10 2006-11-10 Vehicle travel control device Active JP4884929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305896A JP4884929B2 (en) 2006-11-10 2006-11-10 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305896A JP4884929B2 (en) 2006-11-10 2006-11-10 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2008123230A JP2008123230A (en) 2008-05-29
JP4884929B2 true JP4884929B2 (en) 2012-02-29

Family

ID=39507922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305896A Active JP4884929B2 (en) 2006-11-10 2006-11-10 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP4884929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990016B2 (en) 2016-05-26 2022-01-12 スズキ株式会社 Driving support device
CN115320592B (en) * 2022-10-13 2023-02-10 青岛慧拓智能机器有限公司 Vehicle speed planning method, device, chip, terminal, computer equipment and medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619343A (en) * 1984-06-25 1986-01-16 Nissan Motor Co Ltd Control device for cars distance
JP3204519B2 (en) * 1991-09-05 2001-09-04 マツダ株式会社 Vehicle slip control device
JP4158177B2 (en) * 2005-05-25 2008-10-01 三菱電機株式会社 Inter-vehicle distance control device

Also Published As

Publication number Publication date
JP2008123230A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
CN108622083B (en) Parking assist apparatus
JP6895111B2 (en) Vehicle travel control device
JP4021344B2 (en) Vehicle driving support device
CN108140312B (en) Parking assistance method and parking assistance device
JP3358709B2 (en) Driving support device for vehicles
JP4995029B2 (en) Vehicle driving support device
JP4970156B2 (en) Vehicle driving support device
US7663475B2 (en) Vehicle surrounding monitoring system
EP1564703A1 (en) Vehicle driving assist system
JP4480995B2 (en) Vehicle driving support device
JP2006298008A (en) Operation supporting device of vehicle
JP2009286279A (en) Drive support device for vehicle
JP2007034988A (en) Obstacle avoidance warning device for vehicle
JP6494020B2 (en) Vehicle driving support control device
JP2017100681A (en) Travel control apparatus
JP4980030B2 (en) Vehicle travel control device
JP2017077829A (en) Drive assist control device of vehicle
JP2017013678A (en) Operation support apparatus
JP7107329B2 (en) driving support system
JP4926859B2 (en) Vehicle driving support device
JP2019018733A (en) Driving support device
JP7151064B2 (en) Vehicle travel control device
JP2017073059A (en) Lane change support device
JP4884929B2 (en) Vehicle travel control device
JP5118468B2 (en) Vehicle travel control device.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250