JP2007090340A - Batch biogas fermentation apparatus - Google Patents

Batch biogas fermentation apparatus Download PDF

Info

Publication number
JP2007090340A
JP2007090340A JP2006236201A JP2006236201A JP2007090340A JP 2007090340 A JP2007090340 A JP 2007090340A JP 2006236201 A JP2006236201 A JP 2006236201A JP 2006236201 A JP2006236201 A JP 2006236201A JP 2007090340 A JP2007090340 A JP 2007090340A
Authority
JP
Japan
Prior art keywords
methane
fermentation
groove
fermentation chamber
biogas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006236201A
Other languages
Japanese (ja)
Inventor
Toru Amano
徹 天野
Kazuma Ozaki
主磨 尾崎
Yasushi Tomiki
靖 冨来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2006236201A priority Critical patent/JP2007090340A/en
Publication of JP2007090340A publication Critical patent/JP2007090340A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/16Solid state fermenters, e.g. for koji production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a batch biogas fermentation apparatus which allows a carry-in vehicle to be driven easily when organic waste is carried in and is designed with a high degree of freedom and the installation location of which is hardly affected by the surrounding environment. <P>SOLUTION: The biogas fermentation apparatus is constituted so that a spray nozzle 22 is arranged in the space above an airtight fermentation chamber 1 and a methanogen-containing liquid is sprayed on organic waste 10, which is thrown on a bed surface 8a of the fermentation chamber 1, from the spray nozzle 22 to decompose organic waste 10 by methanogen and to generate biogas. The bed surface 8a of the fermentation chamber 1 is formed flatly. A groove 11 for recovering the methanogen-containing liquid is formed on the bed surface 8a. A groove 13 for discharging the methanogen-containing liquid, which communicates with the groove 11 for recovering the methanogen-containing liquid, is formed at one side edge of the bed surface 8a. A methanogen-containing liquid storage tank is arranged for recovering/storing the methanogen-containing liquid which is recovered in the groove 11 for recovering the methanogen-containing liquid and discharged to the outside of the fermentation chamber 1 through the groove 13 for discharging the methanogen-containing liquid. The methanogen-containing liquid in the methanogen-containing liquid storage tank is supplied to the spray nozzle 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性廃棄物をメタン発酵により分解処理することを利用したバッチ式バイオガス発酵装置に関するものである。   The present invention relates to a batch-type biogas fermentation apparatus utilizing decomposition of organic waste by methane fermentation.

従来から、し尿,浄化槽汚泥,下水処理汚泥,家畜糞尿,水産廃棄物,剪定枝,除草物や生ゴミ等の有機性廃棄物を有効活用するために、堆肥化(すなわち、有機肥料の製造)が検討されている。上記堆肥化は、有機性廃棄物のうち適する有機性廃棄物を好気性発酵させて処理するものであり、好気性発酵は、有機性廃棄物に空気を供給し好気性菌により有機物分解を行わせるものである。ところが、好気性発酵では、水分調整のためにおが屑を大量に必要とし、また、好気性発酵を促進させるために攪拌用の動力を要し、場合によっては温度保持のために処理物や空気を暖めるエネルギーも必要であり、エネルギー多消費型の処理方法といえる。さらに、有機性廃棄物中にはアンモニア等の悪臭を放つものが多く、アンモニア蒸散等大気汚染の問題がある。   Conventionally, composting (ie, production of organic fertilizer) to effectively use organic waste such as human waste, septic tank sludge, sewage treatment sludge, livestock manure, marine waste, pruned branches, weeded products and garbage Is being considered. The above composting is to treat a suitable organic waste among the organic waste by aerobic fermentation, and the aerobic fermentation supplies air to the organic waste and decomposes the organic matter by aerobic bacteria. It is something to make. However, in aerobic fermentation, a large amount of sawdust is required for moisture adjustment, and stirring power is required to promote aerobic fermentation. Heating energy is also required, which can be said to be an energy-intensive processing method. Furthermore, many organic wastes emit a foul odor such as ammonia, and there is a problem of air pollution such as ammonia evaporation.

そこで、処理物と大気とを遮断して行う嫌気性発酵処理が注目されている。この嫌気性発酵によると、メタン発酵細菌(以下、「メタン菌」という)により有機性廃棄物を分解してバイオガス(主にメタンガス)を発生させ、この発生させたバイオガスを有効活用してエネルギー回収をすることができるうえ、発酵後の消化液も良好な液体肥料として有用である。また、処理物を大気と遮断することで悪臭の発生・有害気体成分の蒸散を解消することができる。これまで開発されている嫌気性発酵の多くは、一般に湿式処理と呼ばれる、有機性廃棄物中の水分量が85%以上のスラリー状での処理が一般的である。したがって、湿式処理はその90%近くが、処理対象としない水分であり、その水分の移送や貯留のための動力や大容量の設備が必要となる。また、湿式処理では、スラリー状にするための水分量の調整が必要であるうえ、発酵処理後の処理液の処分のために、処理液を河川等へ放流する排水処理設備や液肥保存用の大きなスラリータンク等の貯留設備が必要となる。また、発酵槽では、発酵効率を促進させるために攪拌用の動力が必要であり、浮遊物や沈殿物等のトラブルが起きやすいものとなっている。さらに、消火液は有効な液体肥料ではあるが、処理量とほぼ同量であるため、散布のための農地等の確保が問題となる。   Therefore, an anaerobic fermentation process that is performed by blocking the processed material from the atmosphere has attracted attention. According to this anaerobic fermentation, organic waste is decomposed by methane-fermenting bacteria (hereinafter referred to as “methane bacteria”) to generate biogas (mainly methane gas), and the generated biogas is effectively utilized. In addition to recovering energy, the digestive juice after fermentation is also useful as a good liquid fertilizer. Moreover, generation | occurrence | production of a bad odor and transpiration of a noxious gas component can be eliminated by interrupting | blocking a processed material from air | atmosphere. Many of the anaerobic fermentations that have been developed so far are generally treated in a slurry state in which the amount of water in the organic waste is 85% or more, which is generally called wet treatment. Therefore, nearly 90% of the wet processing is moisture not to be treated, and power and large capacity equipment for transferring and storing the moisture are required. In addition, in wet processing, it is necessary to adjust the amount of water to make a slurry, and in order to dispose of the processing liquid after fermentation processing, wastewater treatment equipment that discharges the processing liquid to rivers, etc. A storage facility such as a large slurry tank is required. Moreover, in a fermenter, the power for stirring is required in order to promote fermentation efficiency, and troubles, such as a suspended | floating matter and a sediment, are easy to occur. Furthermore, although the fire extinguishing liquid is an effective liquid fertilizer, since it is almost the same amount as the processing amount, securing farmland for spraying becomes a problem.

一方、乾式メタン発酵処理と呼ばれる処理方法が提案されている。この方法では、処理対象となる有機性廃棄物中の水分量が60〜85%と少ないため、処理後の固形物はそのままもしくは好気性処理後肥料として活用でき、湿式処理のような排水処理設備や貯蔵設備を必要とせず、規模を小さくすることができる。また、湿式処理では、発酵効率を高く保つために、発酵槽のメンテナンスが重要な要素となっているが、乾式メタン発酵処理では、メンテナンスフリーに近いものとすることができる。このような乾式メタン発酵処理には、連続式とバッチ式とがある。連続式の場合には、生ゴミ処理を中心としたもので、処理物がほぼ固形物であるために、そのハンドリングが難しく、詰まりの問題やハンドリングのための動力が必要となる。   On the other hand, a treatment method called dry methane fermentation treatment has been proposed. In this method, since the amount of water in the organic waste to be treated is as small as 60 to 85%, the solid matter after treatment can be used as it is or as a fertilizer after aerobic treatment. And storage facilities are not required, and the scale can be reduced. Moreover, in wet processing, in order to keep fermentation efficiency high, the maintenance of a fermenter is an important factor, but in dry methane fermentation processing, it can be made almost maintenance-free. Such dry methane fermentation treatment includes a continuous type and a batch type. In the case of the continuous type, processing is mainly for garbage disposal, and the processed product is almost solid, so that it is difficult to handle, and clogging problems and power for handling are required.

一方、バッチ式では、図6に示すようなガレージ式バイオガス発酵槽が提案がなされている(例えば、特許文献1参照)。このガレージ式バイオガス発酵槽は、左右の横壁51(図では、一枚の横壁51しか図示せず)と前壁52(この前壁52に形成された搬入出口52aに扉52bが取り付けられている)と奥壁53と天井壁54(これら各壁51〜54は全てコンクリート製である)と床55とを備えており、上記各壁51〜54および床55に囲まれた空間に発酵バイオマス56がバッチ式に投入されている。上記床55の床面55aは、前壁52から奥壁53に向かって下り傾斜状に傾斜しているとともに、上記両横壁51から両横壁51間の中央部(すなわち、左右方向中央部)に向かって下り傾斜状に傾斜している。また、上記床55の床面55aには、上記奥壁53に沿って排水ピット57が形成されているとともに、上記中央部に、別の排水ピット58が上記床面55aの傾斜に沿って形成されており、これら両排水ピット57,58に取り出された浸液は管59,ポンプ60を介して浸液貯蔵タンク61に回収されている。そして、この浸液貯蔵タンク61から必要に応じて浸液が、天井壁54の下に取り付けたノズル62付きスプレイ管63に供給されている。このものでは、上記床55の床面55aが、前壁52から奥壁53に向かって下り傾斜状に傾斜する滑り面に形成されているため、上記投入された発酵バイオマス56が扉52b側に移動するのを防止することができ、扉52bを開ける際の事故の危険が生じない。
特表2004ー511331号公報
On the other hand, in the batch type, a garage type biogas fermenter as shown in FIG. 6 has been proposed (for example, see Patent Document 1). This garage-type biogas fermenter has left and right lateral walls 51 (only one lateral wall 51 is shown in the figure) and a front wall 52 (a door 52b is attached to a loading / unloading port 52a formed on the front wall 52). ), A back wall 53, a ceiling wall 54 (all of these walls 51 to 54 are made of concrete) and a floor 55, and fermentation biomass is placed in a space surrounded by the walls 51 to 54 and the floor 55. 56 is charged in a batch. The floor surface 55a of the floor 55 is inclined downwardly from the front wall 52 toward the back wall 53, and at the central portion (that is, the central portion in the left-right direction) between the lateral walls 51. Inclined downward in a downward direction. A drain pit 57 is formed on the floor surface 55a of the floor 55 along the back wall 53, and another drain pit 58 is formed along the slope of the floor surface 55a in the center. The immersion liquid taken out into the drain pits 57 and 58 is collected in the immersion liquid storage tank 61 through the pipe 59 and the pump 60. The immersion liquid is supplied from the immersion liquid storage tank 61 to the spray pipe 63 with the nozzle 62 attached below the ceiling wall 54 as necessary. In this structure, since the floor surface 55a of the floor 55 is formed as a sliding surface inclined downwardly from the front wall 52 toward the back wall 53, the charged fermentation biomass 56 is placed on the door 52b side. It can be prevented from moving, and there is no danger of an accident when opening the door 52b.
Special table 2004-511331 gazette

しかしながら、上記のガレージ式バイオガス発酵槽では、床55の床面55aが、前壁52から奥壁53に向かって下り傾斜状に傾斜しているため、ローダー等の搬入出車両を用いて発酵バイオマス56の搬入や処理残滓の搬出を行う際に、搬入出車両の操作が難しい。しかも、床55の床面55aが、前壁52から奥壁53に向かって下り傾斜状に傾斜しているため、浸液を奥壁53からしか外部に排出することができず、設計の自由度が少ないうえ、上記のガレージ式バイオガス発酵槽を設置する場合に、その設置場所等が周囲環境に大きく影響される。   However, in the garage-type biogas fermentation tank, the floor surface 55a of the floor 55 is inclined downwardly from the front wall 52 toward the back wall 53, so that fermentation is performed using a loading / unloading vehicle such as a loader. When carrying in the biomass 56 or carrying out the processing residue, it is difficult to operate the carry-in / out vehicle. Moreover, since the floor surface 55a of the floor 55 is inclined downwardly from the front wall 52 toward the back wall 53, the immersion liquid can be discharged only from the back wall 53, and the design freedom is achieved. In addition, when the garage biogas fermenter is installed, the installation location is greatly influenced by the surrounding environment.

本発明は、このような事情に鑑みなされたもので、有機性廃棄物の搬入時等の搬入出車両の操作が容易で、設計の自由度が大きく、設置場所等が周囲環境にあまり影響を受けないバッチ式バイオガス発酵装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and it is easy to operate a loading / unloading vehicle at the time of loading of organic waste, etc., has a large degree of design freedom, and the installation location has little influence on the surrounding environment. The purpose of the present invention is to provide a batch-type biogas fermentation apparatus that does not receive it.

上記の目的を達成するため、本発明のバッチ式バイオガス発酵装置は、気密状態に保持された発酵室の上部空間にノズルを配設し、上記発酵室の床面上に投入された有機性廃棄物上に、上記ノズルから、メタン菌を含有するメタン液を散布して上記有機性廃棄物をメタン菌により分解しバイオガスを発生させるバイオガス発酵装置であって、上記発酵室の床面を水平面に形成し、この床面にメタン液回収溝を形成し、上記発酵室の床面の一側縁部に、上記メタン液回収溝に連通するメタン液排出溝を上記一側縁部に沿わせて形成し、上記メタン液回収溝で回収されメタン液排出溝を経て発酵室外に排出されたメタン液を回収して貯留するメタン液回収タンクを設け、このメタン液回収タンクに貯留したメタン液を上記ノズルに供給するように構成した。また、メタン液の循環経路については嫌気状態を維持する構成とした。   In order to achieve the above-mentioned object, the batch type biogas fermentation apparatus of the present invention has a nozzle disposed in the upper space of the fermentation chamber that is kept in an airtight state, and is organically charged on the floor surface of the fermentation chamber. A biogas fermentation apparatus for spraying a methane solution containing methane bacteria on the waste from the nozzle and decomposing the organic waste with the methane bacteria to generate biogas, the floor surface of the fermentation chamber Is formed in a horizontal plane, a methane liquid recovery groove is formed in the floor surface, a methane liquid discharge groove communicating with the methane liquid recovery groove is formed in one side edge portion of the fermentation chamber floor surface, and the one side edge portion is formed. A methane solution recovery tank that collects and stores the methane solution that is formed along the methane solution recovery groove and is collected outside the fermentation chamber through the methane solution discharge groove is provided. To supply liquid to the nozzle Form was. Moreover, about the circulation path | route of the methane liquid, it was set as the structure which maintains an anaerobic state.

すなわち、本発明のバッチ式バイオガス発酵装置は、気密状態に保持された発酵室の上部空間にノズルを配設し、上記発酵室の床面上に投入された有機性廃棄物上に、上記ノズルから、メタン菌を含有するメタン液を散布して上記有機性廃棄物をメタン菌により分解しバイオガスを発生させるバイオガス発酵装置であり、上記発酵室の床面を水平面に形成し、この床面にメタン液回収溝を形成し、上記発酵室の床面の一側縁部に、上記メタン液回収溝に連通するメタン液排出溝を上記一側縁部に沿わせて形成している。そして、上記メタン液回収溝で回収されメタン液排出溝を経て発酵室外に排出されたメタン液を回収して貯留するメタン液回収タンクを設け、このメタン液回収タンクに貯留したメタン液を上記ノズルに供給することでメタン液の循環利用を図っている。このように、本発明のバッチ式バイオガス発酵装置では、上記発酵室の床面を水平面に形成しているため、ローダー等の搬入出車両を用いて有機性廃棄物を搬入する場合や固形残滓を有機肥料として搬出する場合に、上記搬入出車両の操作が容易になる。しかも、上記発酵室の床面の一側縁部にメタン液排出溝を上記一側縁部に沿わせて設け、このメタン液排出溝に連通するメタン液回収溝を上記発酵室の床面に形成しているため、本発明のバッチ式バイオガス発酵装置を設置する場合に、その周囲環境に応じてメタン液を発酵室から取り出す場所を決定し、この決定に応じて、上記メタン液排出溝を発酵室の床面のうちの、所望の一側縁部に形成することができ、これにより設計の自由度が大きくなるうえ、上記設置場所等が周囲環境に影響されなくなる。   That is, in the batch type biogas fermentation apparatus of the present invention, the nozzle is disposed in the upper space of the fermentation chamber held in an airtight state, and the organic waste put on the floor surface of the fermentation chamber is It is a biogas fermentation apparatus that sprays a methane solution containing methane bacteria from a nozzle and decomposes the organic waste with methane bacteria to generate biogas. The floor of the fermentation chamber is formed in a horizontal plane. A methane solution recovery groove is formed on the floor surface, and a methane solution discharge groove communicating with the methane solution recovery groove is formed along the one side edge portion on one side edge portion of the floor surface of the fermentation chamber. . A methane solution recovery tank is provided for recovering and storing the methane solution recovered in the methane solution recovery groove and discharged to the outside of the fermentation chamber through the methane solution discharge groove. The methane solution stored in the methane solution recovery tank is provided in the nozzle. Is used to circulate and reuse the methane solution. Thus, in the batch type biogas fermentation apparatus of the present invention, since the floor surface of the fermentation chamber is formed in a horizontal plane, when organic waste is carried in using a loading / unloading vehicle such as a loader or solid residue When carrying out as an organic fertilizer, operation of the said carrying in / out vehicle becomes easy. Moreover, a methane liquid discharge groove is provided along one side edge of the floor of the fermentation chamber along the one side edge, and a methane liquid recovery groove communicating with the methane liquid discharge groove is formed on the floor of the fermentation chamber. When the batch-type biogas fermentation apparatus of the present invention is installed, the place for taking out the methane solution from the fermentation chamber is determined according to the surrounding environment, and according to this determination, the methane solution discharge groove Can be formed at a desired one side edge of the floor surface of the fermentation chamber, thereby increasing the degree of freedom of design and making the installation location and the like unaffected by the surrounding environment.

また、上記メタン液回収溝の底面を、上記メタン液排出溝に向かって下り傾斜状に傾斜する傾斜面に形成すると、上記メタン液回収溝に回収したメタン液をメタン液排出溝に回収しやすくなり、液循環効率が向上する。また、上記底面の傾斜角度については、特に制限がなく、傾斜角度を大きくすることでメタン液の回収がさらに容易になり、液循環効率が一層向上する。   In addition, if the bottom surface of the methane liquid recovery groove is formed as an inclined surface inclined downward toward the methane liquid discharge groove, the methane liquid recovered in the methane liquid recovery groove can be easily recovered in the methane liquid discharge groove. Thus, the liquid circulation efficiency is improved. Moreover, there is no restriction | limiting in particular about the inclination angle of the said bottom face, Recovery of a methane liquid becomes still easier by enlarging an inclination angle, and liquid circulation efficiency improves further.

また、上記メタン液排出溝に、ここを流れるメタン液を発酵室外に排出する排出口を設け、上記メタン液排出溝の底面を、上記排出口に向かって下り傾斜状に傾斜する傾斜面に形成すると、上記メタン液排出溝を流れるメタン液を排出口に排出しやすくなり、液循環効率が向上する。また、上記底面の傾斜角度については、特に制限がなく、傾斜角度を大きくすることでメタン液の排出がさらに容易になり、液循環効率が一層向上する。なお、上記メタン液排出溝は、回収・循環装置とは水封構造にて連結されており、発酵室内部の気密が保持されるようにしている。   The methane liquid discharge groove is provided with a discharge port for discharging the methane liquid flowing through the fermentation chamber to the outside of the fermentation chamber, and the bottom surface of the methane liquid discharge groove is formed in an inclined surface inclined downward toward the discharge port. Then, it becomes easy to discharge | emit the methane liquid which flows through the said methane liquid discharge groove | channel to a discharge port, and liquid circulation efficiency improves. Moreover, there is no restriction | limiting in particular about the inclination angle of the said bottom face, discharge | emission of a methane liquid becomes still easier by enlarging an inclination angle, and liquid circulation efficiency improves further. In addition, the said methane liquid discharge groove | channel is connected with the collection | recovery and circulation apparatus with the water seal structure, and is trying to maintain the airtightness of the inside of a fermentation chamber.

また、上記メタン液回収溝に、メタン菌の保持担体となることができる物質を充填すると、メタン液の回収が容易になり、液循環効率の向上により、バイオガス発生量が増加する。なお、上記保持担体としては、もみ殻等の天然ポーラス材料や不織布等が好適に用いられる。   Further, when the methane solution collecting groove is filled with a substance that can be a carrier for holding methane bacteria, the methane solution can be easily collected, and the amount of biogas generated is increased by improving the liquid circulation efficiency. As the holding carrier, a natural porous material such as rice husk or a nonwoven fabric is preferably used.

また、上記発酵室内で発生させたバイオガスを上記発酵室外に取り出してボイラもしくは発電機の燃料として利用すると、バイオガスをボイラもしくは発電機の燃料として有効に活用することができる。また、上記発酵室では、固形残滓を有機肥料として製造し、取り出すことができる。   Further, when the biogas generated in the fermentation chamber is taken out of the fermentation chamber and used as fuel for a boiler or a generator, the biogas can be effectively used as fuel for the boiler or generator. Moreover, in the said fermentation chamber, a solid residue can be manufactured and taken out as an organic fertilizer.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。ただし、これに限定されるものではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, it is not limited to this.

図1および図2は本発明のバッチ式バイオガス発酵装置の一実施の形態を示している。この実施の形態では、上記バッチ式バイオガス発酵装置に4つの発酵室1が形成されている。これらの図において、2は鋼製の前側壁であり、この前側壁2には、その上側部分2aを残した状態で、有機性廃棄物10を搬入して固形残滓(図示せず)を搬出する搬入出口2bが形成されている。3は上記搬入出口2bを気密状に開閉する左右一対のスチール製扉であり、後述する左右両側壁4,5や仕切り壁9a〜9cに回動自在に取付けられている。4,5は左右両側壁で、6は奥側壁で、7は断熱壁からなる天井壁で、8は床で、9a〜9cは上記各壁2,4〜7および床8で囲まれた空間を4つの発酵室1に仕切る仕切り壁(左仕切り壁9a,中央仕切り壁9b,右仕切り壁9c)であり、それぞれコンクリート製であり、内側には防腐のための塗料が塗布されている。   1 and 2 show one embodiment of a batch type biogas fermentation apparatus of the present invention. In this embodiment, four fermentation chambers 1 are formed in the batch type biogas fermentation apparatus. In these drawings, reference numeral 2 denotes a steel front side wall, and the organic waste 10 is carried into the front side wall 2 with the upper portion 2a left, and a solid residue (not shown) is carried out. A loading / unloading port 2b is formed. Reference numeral 3 denotes a pair of left and right steel doors that open and close the loading / unloading port 2b in an airtight manner, and is rotatably attached to left and right side walls 4 and 5 and partition walls 9a to 9c, which will be described later. 4 and 5 are left and right side walls, 6 is a back side wall, 7 is a ceiling wall made of a heat insulating wall, 8 is a floor, and 9a to 9c are spaces surrounded by the walls 2, 4 to 7 and the floor 8 described above. Are the partition walls (the left partition wall 9a, the central partition wall 9b, and the right partition wall 9c), each made of concrete, and coated with antiseptic coating on the inside.

上記各壁2,4〜7および床8は気密状に接合されており、かつ上記各搬入出口2bは各扉3で気密状に閉じることができるため、上記各発酵室1はそれぞれ、各扉3を閉じた状態では気密状態に保持されている。図1において、20は上記各発酵室1に設けた空気導入パイプであり、有機性廃棄物10,固形残滓の搬入,搬出作業を安全に確保するため発酵終了後に各発酵室1内部の気体を空気に置換するためのものである。また、26は上記各発酵室1に設けた換気用パイプであり、その先端部(一端部)は、上記奥側壁6の上端部に穿設された貫通孔を挿通して上記各発酵室1の上部空間に突出している。そして、各発酵室1内部の気体は換気用パイプ26の他端部から換気ブロアー32で脱臭装置33に送られ、大気に放出される。   Since each said wall 2, 4-7 and the floor | bed 8 are joined airtightly, and each said entrance / exit 2b can be closed airtightly by each door 3, each said fermentation chamber 1 is each door, respectively. When 3 is closed, the airtight state is maintained. In FIG. 1, reference numeral 20 denotes an air introduction pipe provided in each fermentation chamber 1, and the gas inside each fermentation chamber 1 is supplied after the fermentation is completed in order to ensure the safe operation of carrying in and carrying out the organic waste 10 and solid residue. It is for replacing with air. Reference numeral 26 denotes a ventilation pipe provided in each fermentation chamber 1, and a tip portion (one end portion) of the fermentation chamber 1 is inserted through a through hole formed in the upper end portion of the back side wall 6. Protrudes into the upper space. Then, the gas inside each fermentation chamber 1 is sent from the other end of the ventilation pipe 26 to the deodorizing device 33 by the ventilation blower 32 and released to the atmosphere.

上記各発酵室1の床8は、その床面8aが水平面(水平な平坦面)に形成されているとともに(図1参照)、上記床面8aには、その前端面より所定距離奥側に寄った位置から奥端面まで一直線状に延びる3本のメタン液回収溝11がそれぞれ(上記左右両側壁4,5および各仕切り壁9a〜9cと)平行に切欠き形成されている(図2参照)。これら各メタン液回収溝11は、その底面11aが奥端面(すなわち、後述するメタン液排出溝13)に向かって下り傾斜状に傾斜する傾斜面に形成されている(図3参照)とともに、上記各メタン液回収溝11の内部には、もみ殻等(図示せず)が充填されており、メタン液の回収が容易になる。   The floor 8 of each fermentation chamber 1 has a floor surface 8a formed on a horizontal surface (horizontal flat surface) (see FIG. 1), and the floor surface 8a has a predetermined distance behind the front end surface. Three methane liquid recovery grooves 11 extending in a straight line from the approached position to the back end face are respectively cut out in parallel (with the left and right side walls 4 and 5 and the partition walls 9a to 9c) (see FIG. 2). ). Each of these methane liquid recovery grooves 11 is formed in an inclined surface whose bottom surface 11a is inclined downwardly toward the back end surface (that is, a methane liquid discharge groove 13 described later) (see FIG. 3). The inside of each methane liquid recovery groove 11 is filled with rice husks (not shown) so that the methane liquid can be easily recovered.

また、上記各発酵室1の床8の床面8aには、その奥端面に、奥側壁6に沿って延びる1本のメタン液排出溝13が形成されている。これら4本のメタン液排出溝13は、左右の仕切り壁9a,9cに向かって下り傾斜状に傾斜する傾斜面に形成されており、各メタン液排出溝13の(仕切り壁9a,9c側の)端部に排出口(図示せず)が形成されている。より詳しく説明すると、左端の発酵室1に形成された左端メタン液排出溝13は、左端メタン液回収溝11の端部から左仕切り壁9aまで延びているとともに、中央左側の発酵室1に形成された中央左側メタン液排出溝13は、右端メタン液回収溝11の端部から左仕切り壁9aまで延びており、両メタン液排出溝13の底面が、左仕切り壁9a(両メタン液排出溝13の排出口)に向かって下り傾斜状に傾斜する傾斜面に形成されている。また、中央右側の発酵室1に形成された中央右側メタン液排出溝13は、左端メタン液回収溝11の端部から右仕切り壁9cまで延びているとともに、右端の発酵室1に形成された右端メタン液排出溝13は、右端メタン液回収溝11の端部から右仕切り壁9cまで延びており、両メタン液排出溝13の底面が、右仕切り壁9c(両メタン液排出溝13の排出口)に向かって下り傾斜状に傾斜する傾斜面に形成されている。   In addition, on the floor surface 8 a of the floor 8 of each fermentation chamber 1, a single methane liquid discharge groove 13 extending along the back side wall 6 is formed on the back end surface. These four methane liquid discharge grooves 13 are formed on inclined surfaces that are inclined downward toward the left and right partition walls 9a, 9c, and the methane liquid discharge grooves 13 (on the partition walls 9a, 9c side) are formed. ) A discharge port (not shown) is formed at the end. More specifically, the left end methane solution discharge groove 13 formed in the left end fermentation chamber 1 extends from the end of the left end methane solution recovery groove 11 to the left partition wall 9a and is formed in the fermentation chamber 1 on the left side of the center. The center left methane solution discharge groove 13 extends from the end of the right end methane solution recovery groove 11 to the left partition wall 9a, and the bottom surfaces of both methane solution discharge grooves 13 are the left partition wall 9a (both methane solution discharge grooves). (13 outlets) are formed on an inclined surface inclined downwardly. A central right methane solution discharge groove 13 formed in the right fermentation chamber 1 extends from the end of the left end methane solution recovery groove 11 to the right partition wall 9c and is formed in the right fermentation chamber 1. The right end methane liquid discharge groove 13 extends from the end of the right end methane liquid recovery groove 11 to the right partition wall 9c, and the bottom surfaces of both the methane liquid discharge grooves 13 are connected to the right partition wall 9c (the discharge of both methane liquid discharge grooves 13). It is formed on an inclined surface that inclines downward toward the exit.

15,16は上記奥側壁6の(左右両仕切り壁9a,9cに対応する部分の)後側に配設されたマンホールであり、左側のマンホール15は第1連通パイプ17aを介して左端メタン液排出溝13の排出口に連通し、第2連通パイプ17bを介して中央左側メタン液排出溝13の排出口に連通している。また、右側のマンホール16は第3連通パイプ17cを介して中央右側メタン液排出溝13の排出口に連通し、第4連通パイプ17dを介して右端メタン液排出溝13の排出口に連通している。上記各メタン液排出溝13は、水封構造で各連通パイプ17a〜17dと連結されており、発酵室1内部の気密が保たれている。また、上記右側のマンホール16が左側のマンホール15より低く形成されており、右側に向かって下り傾斜状に傾斜する第1連結パイプ18を介して両マンホール15,16が連結されているとともに、右側のマンホール16の右側に、これより低く形成されたメタン液貯蔵槽21が配設されており、これらが、右側に向かって下り傾斜状に傾斜する第2連結パイプ19を介して連結されている。   Reference numerals 15 and 16 denote manholes disposed on the rear side of the back side wall 6 (parts corresponding to the left and right partition walls 9a and 9c). The left manhole 15 is connected to the left end methane liquid via the first communication pipe 17a. It communicates with the discharge port of the discharge groove 13 and communicates with the discharge port of the central left methane liquid discharge groove 13 via the second communication pipe 17b. The right manhole 16 communicates with the discharge port of the central right methane solution discharge groove 13 through the third communication pipe 17c, and communicates with the discharge port of the right end methane solution discharge groove 13 through the fourth communication pipe 17d. Yes. Each said methane liquid discharge groove | channel 13 is connected with each communication pipe 17a-17d by the water seal structure, and the airtight inside the fermentation chamber 1 is maintained. Further, the right manhole 16 is formed lower than the left manhole 15, and both the manholes 15 and 16 are connected via a first connecting pipe 18 inclined downward toward the right side. A methane solution storage tank 21 formed lower than this is disposed on the right side of the manhole 16 and is connected via a second connection pipe 19 inclined downward toward the right side. .

22はメタン液を散布する複数のスプレーノズルであり、上記各発酵室1の上部空間に配設された第1メタン液供給パイプ23に取付けられている。これら各第1メタン液供給パイプ23は、ポンプ25を備えた第2メタン液供給パイプ24を介して上記メタン液貯蔵槽21に連結しており、このメタン液貯蔵槽21内に貯留されたメタン液をポンプ25により上記両供給パイプ23,24を介して上記各ノズル22に供給するようにしている。   A plurality of spray nozzles 22 for spraying the methane liquid are attached to the first methane liquid supply pipe 23 disposed in the upper space of each fermentation chamber 1. Each of the first methane liquid supply pipes 23 is connected to the methane liquid storage tank 21 via a second methane liquid supply pipe 24 having a pump 25, and the methane stored in the methane liquid storage tank 21. The liquid is supplied to the nozzles 22 through the supply pipes 23 and 24 by the pump 25.

27はガス配管であり、その先端部は上記各発酵室1の天井壁7を貫通して上記各発酵室1内部に開口している。そして、上記各発酵室1内で発生したバイオガスは、脱硫装置28を介してガス回収ホルダ29に連通している。   Reference numeral 27 denotes a gas pipe, and the tip of the gas pipe passes through the ceiling wall 7 of each fermentation chamber 1 and opens into the fermentation chamber 1. The biogas generated in each fermentation chamber 1 communicates with the gas recovery holder 29 via the desulfurization device 28.

34はガス回収ホルダ29内のバイオガスをボイラ35もしくは発電装置36に供給するガス供給ブロアであり、上記ボイラ35では、供給されるバイオガスの一部もしくは全部を燃焼させて温水をつくり、この温水を送りパイプ37を介して、上記床8およびメタン液貯蔵槽21に埋設した温調パイプ38に供給したのち戻しパイプ39を介してボイラ35に戻し、これにより、上記床8上の有機性廃棄物10およびメタン液の温度を均一に保持するようにしている。また、上記発電装置36では、供給されるバイオガスの一部もしくは全部を燃焼させて発電および熱を取り出し、この熱を利用して温水をつくり、上記と同様にして、有機性廃棄物10の温度を均一に保持し、上記発電装置36から取り出した電気を、本発明のバッチ式バイオガス発酵装置の電気設備に供給している。   A gas supply blower 34 supplies the biogas in the gas recovery holder 29 to the boiler 35 or the power generator 36. The boiler 35 burns part or all of the supplied biogas to produce hot water. Hot water is supplied to the floor 8 and the temperature control pipe 38 embedded in the methane solution storage tank 21 via the feed pipe 37 and then returned to the boiler 35 via the return pipe 39. The temperature of the waste 10 and the methane liquid is kept uniform. Further, in the power generation device 36, a part or all of the supplied biogas is combusted to extract power and heat, and hot water is produced using this heat. The temperature is kept uniform, and the electricity taken out from the power generator 36 is supplied to the electrical equipment of the batch type biogas fermentation apparatus of the present invention.

上記のバッチ式バイオガス発酵装置を用い、つぎのようにして有機性廃棄物10をメタン発酵により分解処理してバイオガスを発生させるとともに、固定残滓を有機肥料として製造することができる。すなわち、まず、有機性廃棄物10を前処理し(水分調整し)、ローダー等を用いて各発酵室1内に投入し、ついで、各発酵室1の扉3を閉め、各発酵室1内を気密状態にする。つぎに、メタン液貯蔵槽21の(メタン菌が含有された)メタン液をポンプ25により各スプレーノズル22に供給し、各スプレーノズル22から、各発酵室1の床面8a上に投入された有機性廃棄物10上表面に均等に散布する。これにより、有機性廃棄物10がメタン菌により分解されてバイオガスを発生する。また、メタン液は床面8aの各メタン液回収溝11,メタン液排出溝13を通り、メタン液貯蔵槽21に回収されたのち、上記したように、ポンプ25により各スプレーノズル22に供給され、各スプレーノズル22から散布される。このメタン液の循環により、メタン菌の活性が維持される。一方、発生したバイオガスはガス配管27に集められ、そのバイオガスの構成要素に応じて、自動的に制御されてガス回収ホルダ29に回収される。また、固定残滓は有機肥料として利用される。   Using the above-described batch type biogas fermentation apparatus, the organic waste 10 can be decomposed by methane fermentation to generate biogas as described below, and the fixed residue can be produced as an organic fertilizer. That is, first, the organic waste 10 is pre-processed (moisture-adjusted), put into each fermentation chamber 1 using a loader or the like, then the door 3 of each fermentation chamber 1 is closed, and each fermentation chamber 1 is closed. To be airtight. Next, the methane solution (containing methane bacteria) in the methane solution storage tank 21 is supplied to each spray nozzle 22 by a pump 25, and is put on the floor surface 8 a of each fermentation chamber 1 from each spray nozzle 22. Spread evenly on the upper surface of the organic waste 10. Thereby, the organic waste 10 is decomposed | disassembled by methane bacteria, and biogas is generated. The methane solution passes through each methane solution recovery groove 11 and the methane solution discharge groove 13 on the floor surface 8a and is recovered in the methane solution storage tank 21, and then supplied to each spray nozzle 22 by the pump 25 as described above. , Sprayed from each spray nozzle 22. The circulation of the methane solution maintains the activity of methane bacteria. On the other hand, the generated biogas is collected in the gas pipe 27 and is automatically controlled and recovered in the gas recovery holder 29 according to the components of the biogas. Fixed residue is used as organic fertilizer.

上記のように、この実施の形態では、上記各発酵室1の床8の床面8aを水平面に形成しているため、ローダー等の搬入出車両を用いて有機性廃棄物10を搬入する場合や固形残滓を有機肥料として搬出する場合に、上記搬入出車両の操作が容易になる。しかも、上記床面8aの一側縁部にメタン液排出溝13を上記一側縁部に沿わせて設け、このメタン液排出溝13に連通する各メタン液回収溝11を上記発酵室1の床面8aに形成しているため、本発明のバッチ式バイオガス発酵装置を設置する場合に、その周囲環境に応じてメタン液を各発酵室1から取り出す場所を決定し、この決定に応じて、上記メタン液排出溝13を各発酵室1の床面8aのうちの、所望の一側縁部に形成することができ、これにより設計の自由度が大きくなるうえ、上記設置場所等が周囲環境に影響されなくなる。   As described above, in this embodiment, since the floor surface 8a of the floor 8 of each fermentation chamber 1 is formed in a horizontal plane, the organic waste 10 is carried in using a loading / unloading vehicle such as a loader. And when carrying out solid residue as organic fertilizer, operation of the said carrying in / out vehicle becomes easy. Moreover, a methane liquid discharge groove 13 is provided along one side edge of the floor surface 8a, and each methane liquid recovery groove 11 communicating with the methane liquid discharge groove 13 is provided in the fermentation chamber 1. Since it forms in the floor surface 8a, when installing the batch type biogas fermentation apparatus of this invention, the place which takes out a methane liquid from each fermentation chamber 1 according to the surrounding environment is determined, and according to this determination The methane solution discharge groove 13 can be formed at a desired one side edge of the floor surface 8a of each fermentation chamber 1, thereby increasing design flexibility and surrounding the installation location etc. Unaffected by the environment.

図4は上記各発酵室1の床8の床面8aに形成されるメタン液回収溝11およびメタン液排出溝13の変形例を示している。この例では、上記メタン液回収溝11は、上記床面8aの左右方向中央部に、その前端面より所定距離奥側に寄った位置から奥端面まで一直線状に延びる1本の中央溝41と、この中央溝41から所定の傾斜角度で左右方向に前向きに延びる10本の枝溝42(左側の5本の枝溝42と右側の5本の枝溝42)とで構成されている。   FIG. 4 shows a modification of the methane solution recovery groove 11 and the methane solution discharge groove 13 formed on the floor surface 8 a of the floor 8 of each fermentation chamber 1. In this example, the methane liquid recovery groove 11 has a central groove 41 that extends in a straight line from a position closer to the back side by a predetermined distance from the front end surface to the back end surface at the center in the left-right direction of the floor surface 8a. The ten branch grooves 42 (the five branch grooves 42 on the left side and the five branch grooves 42 on the right side) extending forward from the central groove 41 in the left-right direction at a predetermined inclination angle.

上記メタン液排出溝13は、上記各発酵室1の床8の床面8aの奥端面にその左右方向全幅にわたって形成されており、その左右方向中央部に排出口(図示せず)が形成されている。このメタン液排出溝13の底面13aは、メタン液排出溝13の左右両端部から上記排出口に向かって下り傾斜状に傾斜する傾斜面に形成されている。また、上記メタン液回収溝11の中央溝41は、その底面41aが奥端面(すなわち、上記メタン液排出溝13の排出口)に向かって下り傾斜状に傾斜する傾斜面に形成されており、各枝溝42は、その底面42aが上記中央溝41に向かって下り傾斜状に傾斜する傾斜面に形成されている。また、この例では、マンホール43は上記各発酵室1に対応して設けられており、連通パイプ43aを介して上記各発酵室1のメタン液排出溝13の排出口に連通している。それ以外の部分は上記実施の形態と同様であり、同様の部分には同じ符号を付している。この例のメタン液回収溝11およびメタン液排出溝13を用いた場合にも、上記実施の形態と同様の作用・効果を奏する。   The methane liquid discharge groove 13 is formed across the entire width in the left-right direction on the rear end surface of the floor surface 8a of the floor 8 of each fermentation chamber 1, and a discharge port (not shown) is formed in the center in the left-right direction. ing. The bottom surface 13a of the methane liquid discharge groove 13 is formed as an inclined surface that is inclined downwardly from the left and right ends of the methane liquid discharge groove 13 toward the discharge port. The central groove 41 of the methane liquid recovery groove 11 is formed in an inclined surface whose bottom surface 41a is inclined downwardly toward the back end surface (that is, the discharge port of the methane liquid discharge groove 13), Each branch groove 42 is formed in an inclined surface whose bottom surface 42 a is inclined downward toward the central groove 41. Moreover, in this example, the manhole 43 is provided corresponding to each said fermentation chamber 1, and is connected to the discharge port of the methane liquid discharge groove | channel 13 of each said fermentation chamber 1 via the communication pipe 43a. Other parts are the same as those in the above embodiment, and the same reference numerals are given to the same parts. Even when the methane liquid recovery groove 11 and the methane liquid discharge groove 13 of this example are used, the same operations and effects as those of the above embodiment are obtained.

なお、上記実施の形態では、各メタン液回収溝11および各メタン液排出溝13の底面11a,13a,41a,42aを傾斜面に形成しているが、これに限定するものではなく、各メタン液回収溝11および各メタン液排出溝13の少なくとも1つを水平面に形成してもよい。   In the above embodiment, the bottom surfaces 11a, 13a, 41a, and 42a of each methane solution recovery groove 11 and each methane solution discharge groove 13 are formed as inclined surfaces. However, the present invention is not limited to this. At least one of the liquid recovery groove 11 and each methane liquid discharge groove 13 may be formed on a horizontal plane.

また、上記実施の形態において、発電装置36は、ガス回収ホルダ29から供給されるバイオガスの一部もしくは全部を改質・精製して反応させるための発電装置であってもよいし、上記供給されるバイオガスの一部もしくは全部を利用して可燃成分を濃縮させる精製装置であってもよいし、上記供給されるバイオガスの一部もしくは全部を利用して可燃成分を濃縮・充填・熱量調整させる精製・充填・熱量調整装置であってもよいし、上記供給されるバイオガスの一部もしくは全部を利用するためそのままもしくは精製してパイプラインにて輸送する輸送機構を備えていてもよいし、上記供給されるバイオガスの一部もしくは全部を利用するためそのままもしくは精製しまたは熱量調整のうえパイプラインにて輸送する輸送機構を備えていてもよい。   In the above embodiment, the power generation device 36 may be a power generation device for reforming and purifying a part or all of the biogas supplied from the gas recovery holder 29 and reacting it. It may be a refining device that uses some or all of the biogas produced to concentrate the combustible components, or it uses some or all of the biogas that is supplied to concentrate, fill, and heat the combustible components. It may be a refining / filling / caloric adjustment device to be adjusted, or may be provided with a transport mechanism for transporting it in a pipeline as it is or after being refined in order to use part or all of the supplied biogas. In order to use part or all of the supplied biogas, it is equipped with a transport mechanism that transports it as it is or purified or transported by pipeline after adjusting the amount of heat. It may be.

つぎに、本発明の実施例を詳しく説明する。   Next, embodiments of the present invention will be described in detail.

図5は本発明の実施例に用いるバッチ式バイオガス発酵装置を示している。この発酵装置は、効率的な有機性廃棄物(豚糞,鶏糞,剪定枝,生ゴミ)13トンを28日間嫌気性発酵で処理を行い、短時間(一般的な好気性発酵処理においては60日以上の発酵日数が必要)での処理を目標としている。また、発生したバイオガス(メタン濃度45体積%以上)はバイオガスボイラー69bおよび発電機70で燃焼させ、発生した熱は第1〜第4発酵槽60a〜60dおよびメタン液貯蔵槽62の温度維持に利用する。   FIG. 5 shows a batch type biogas fermentation apparatus used in the embodiment of the present invention. This fermenter treats 13 tons of efficient organic waste (pig manure, chicken manure, pruned branch, raw garbage) by anaerobic fermentation for 28 days, and for a short time (60 in general aerobic fermentation treatment). The goal is to process at least fermentation days. The generated biogas (methane concentration 45% by volume or more) is burned by the biogas boiler 69b and the generator 70, and the generated heat maintains the temperature of the first to fourth fermentation tanks 60a to 60d and the methane liquid storage tank 62. To use.

まず、メタン発酵を開始する事前準備として、メタン菌を養生するための発酵を行った。投入原料としては、豚糞,剪定枝等を2トンほど第4発酵槽60dに投入し、原料が38℃になるように加温した。加温方法としては、LPGボイラー69aを稼働させ、床暖房への温水供給を行った。原料投入が終わったのち、第4発酵槽気密扉61dを閉鎖し、嫌気状態を維持した。当初、投入原料は第4発酵槽60d内の上部気層部に残った酸素を利用し、好気性発酵を行っていたが、約60時間で第4発酵槽60d内の酸素濃度は0%となった。この状態を2カ月間保持し、メタン菌の養生を行った。   First, as a preliminary preparation for starting methane fermentation, fermentation for curing methane bacteria was performed. As input materials, about 2 tons of pig feces, pruned branches, and the like were added to the fourth fermenter 60d, and the raw materials were heated to 38 ° C. As a heating method, the LPG boiler 69a was operated, and hot water was supplied to floor heating. After the raw material was charged, the fourth fermenter hermetic door 61d was closed to maintain the anaerobic state. Initially, the raw material used was aerobic fermentation using oxygen remaining in the upper air layer in the fourth fermenter 60d, but the oxygen concentration in the fourth fermenter 60d was 0% in about 60 hours. became. This state was maintained for 2 months, and methane bacteria were cured.

また、上記の養生に伴い、メタン液貯蔵槽62内のメタン菌養生を行った。投入原料としては、鶏糞,水,活性汚泥,パン粉等を3トンほどメタン液貯蔵槽62に投入し、メタン液貯蔵槽62内底部に付設してある床暖房により、メタン液を38℃に加温維持した。この状態を2カ月間保持し、嫌気性発酵を促した。メタン液貯蔵槽62内のメタン濃度は1カ月で40体積%を超えた。   In addition, along with the above curing, methane bacteria curing in the methane solution storage tank 62 was performed. As input materials, about 3 tons of chicken manure, water, activated sludge, bread crumbs, etc. are put into the methane solution storage tank 62, and the methane solution is heated to 38 ° C by floor heating attached to the bottom of the methane solution storage tank 62. The temperature was maintained. This state was maintained for 2 months to promote anaerobic fermentation. The methane concentration in the methane liquid storage tank 62 exceeded 40% by volume in one month.

養生が終了した種菌(上記第4発酵槽60dに投入された原料)に、さらに豚糞・鶏糞混合物を11トンほど混ぜ、第3発酵槽60cに投入し、バッチ式バイオガス発酵装置の本格稼働を行った。第3発酵槽60c内の上部気層部の酸素濃度の低下とメタン濃度の上昇が確認された。   About 11 tons of pig manure / chicken manure mixture is further mixed with the inoculum (the raw material introduced into the fourth fermenter 60d) after curing, and the mixture is introduced into the third fermenter 60c. Went. A decrease in oxygen concentration and an increase in methane concentration in the upper air layer in the third fermenter 60c were confirmed.

つづいて、第3発酵槽60cに投入された原料に、メタン液貯蔵槽62で養生されたメタン液をメタン液供給ポンプ63により散布を行った。メタン液の外部への流出(特に第3発酵槽気密扉61c)が無く、第3発酵槽60c内床(図示せず。上記実施の形態における、床8と同様構造のもの)の床面を水平にすることによる影響はなかった。   Subsequently, the methane solution cured in the methane solution storage tank 62 was sprayed by the methane solution supply pump 63 onto the raw material charged into the third fermenter 60 c. There is no outflow of methane liquid to the outside (particularly, the third fermenter airtight door 61c), and the floor of the inner floor of the third fermenter 60c (not shown in the above embodiment, which has the same structure as the floor 8) is used. There was no effect from leveling.

メタン液は、第3発酵槽60cに付設してあるメタン液回収回路(図示せず。上記実施の形態における、メタン液回収溝11、メタン液排出溝13、マンホール15,16、連結パイプ18,19と同様構造のもの)によりメタン液貯蔵槽62に回収された。原料水分が62体積%と低いため、ある程度原料に吸収されたが、85体積%程度のメタン液回収が確認された。このメタン液の回収割合は、発酵日数が進むほど高いものになっていった。減少した分のメタン液は、水道水を補給することでメタン液貯蔵槽62の容量を維持した。   The methane solution is a methane solution recovery circuit (not shown) attached to the third fermenter 60c. In the above embodiment, the methane solution recovery groove 11, the methane solution discharge groove 13, the manholes 15 and 16, the connection pipe 18, It was recovered in the methane liquid storage tank 62 by the same structure as in FIG. Since the raw material moisture was as low as 62% by volume, it was absorbed to some extent by the raw material, but about 85% by volume of methane liquid was confirmed to be recovered. The recovery rate of this methane liquid became higher as the days of fermentation progressed. The reduced amount of the methane solution maintained the capacity of the methane solution storage tank 62 by supplying tap water.

上記の状態を2カ月ほど維持し、嫌気性発酵を促進させた。発酵状況は、原料投入後より順調にメタン濃度が上昇し、25日で想定したメタン濃度60体積%を越えた。バイオガス発生量は、日当たり1300リットルであった。これにより、第3発酵槽60c内で順調な嫌気性発酵が進んでいることが確認された。さらに、第1発酵槽60aおよび第2発酵槽60bへの原料投入を行い、同様の結果を得た。この結果から、第1〜第4発酵槽60a〜60d内でのメタン菌の増加が進めば、短時間でのメタン濃度上昇が見込まれることが判る。   The above state was maintained for about 2 months to promote anaerobic fermentation. As for the state of fermentation, the methane concentration increased steadily after the raw material was charged, and exceeded the methane concentration of 60 vol% assumed on the 25th. The amount of biogas generated was 1300 liters per day. Thereby, it was confirmed that the favorable anaerobic fermentation is progressing in the 3rd fermenter 60c. Furthermore, the raw material was thrown into the 1st fermenter 60a and the 2nd fermenter 60b, and the same result was obtained. From this result, it can be seen that if the number of methane bacteria in the first to fourth fermenters 60a to 60d increases, an increase in methane concentration in a short time is expected.

第1〜第4発酵槽60a〜60dから発生したバイオガスには、600〜2000ppm程度の硫化水素が混入していた。このバイオガスを、脱硫槽66により硫化水素を0%まで除去し、ガスパック(ガス回収ホルダ)67に貯蔵した。貯蔵したバイオガスは、第1〜第4発酵槽60a〜60dおよびメタン液貯蔵槽62の温度低下に伴い、ガス供給ブロアー68を介して、バイオガスボイラー69bおよび発電機70で燃焼させ、温水供給により発酵温度の維持を行った。発電機70より発生した熱は、床暖房用の温水回路(図示せず)と熱交換器71とで熱交換を行い、貯湯タンク72に余剰した熱を温水として貯蔵した。また、発生した電力は、電灯電源として利用した。   The biogas generated from the first to fourth fermenters 60a to 60d contained about 600 to 2000 ppm of hydrogen sulfide. The biogas was stored in a gas pack (gas recovery holder) 67 after removing hydrogen sulfide to 0% by a desulfurization tank 66. The stored biogas is burned by the biogas boiler 69b and the generator 70 via the gas supply blower 68 as the temperature of the first to fourth fermenters 60a to 60d and the methane solution storage tank 62 decreases, and hot water is supplied. Thus, the fermentation temperature was maintained. The heat generated from the generator 70 was exchanged by a hot water circuit (not shown) for floor heating and a heat exchanger 71, and excess heat in the hot water storage tank 72 was stored as hot water. The generated power was used as a lamp power source.

嫌気性発酵が終わった発酵槽60a〜60dについては、その内部の気体を換気用パイプ(図示せず)から換気ブロアー64で吸引し、換気を行った。排気されたガスは、脱臭槽65を介して大気に放出した。酸素欠乏,硫化水素中毒防止のため、第1〜第4発酵槽気密扉61a〜61d開放前には、第1〜第4発酵槽60a〜60d内の酸素濃度を20体積%以上になるまで、立ち入りできないシステムとした。   About fermenter 60a-60d which anaerobic fermentation was complete | finished, the gas in the inside was attracted | sucked with the ventilation blower 64 from the pipe for ventilation (not shown), and it ventilated. The exhausted gas was released into the atmosphere through the deodorization tank 65. In order to prevent oxygen deficiency and hydrogen sulfide poisoning, before opening the first to fourth fermenter airtight doors 61a to 61d, until the oxygen concentration in the first to fourth fermenters 60a to 60d is 20% by volume or more, The system was inaccessible.

発酵後の残渣は、フロントローダー(図示せず)にて第1〜第4発酵槽60a〜60d外に搬出された。第1〜第4発酵槽60a〜60d内床の床面は地上面と水平になっているため、残渣の搬出および原料投入を効率的に行うことができた。   The residue after fermentation was carried out of the first to fourth fermenters 60a to 60d by a front loader (not shown). Since the floor surfaces of the inner floors of the first to fourth fermenters 60a to 60d are horizontal with the ground surface, the residues can be carried out and the raw materials can be charged efficiently.

残渣搬出の作業時には、一般的な豚糞,鶏糞処理施設から発生するような悪臭は、確認されなかった。このことから、臭いの元である有機酸類が充分に分解し、発酵日数28日間において充分な有機性廃棄物の処理が行われたと思われる。上記結果より、第1〜第4発酵槽60a〜60d内床を水平にすることで原料投入および残渣搬出の作業性の向上が確認でき、さらにメタン液のスムーズな循環による嫌気性発酵の効率化が確認された。   At the time of carrying out the residue, no foul odors were generated from general pig dung and chicken dung treatment facilities. From this, it is considered that the organic acids that are the source of the odor were sufficiently decomposed, and sufficient organic waste was treated in the fermentation days of 28 days. From the above results, it is possible to confirm the improvement in workability of raw material input and residue carry-out by leveling the inner floors of the first to fourth fermenters 60a to 60d, and further improving the efficiency of anaerobic fermentation by smooth circulation of methane liquid Was confirmed.

本発明のバッチ式バイオガス発酵装置の一実施の形態を示す構成図である。It is a block diagram which shows one Embodiment of the batch type biogas fermentation apparatus of this invention. 上記バッチ式バイオガス発酵装置の要部の断面図である。It is sectional drawing of the principal part of the said batch type biogas fermentation apparatus. メタン液回収溝およびメタン液排出溝の要部の斜視図である。It is a perspective view of the principal part of a methane liquid recovery groove and a methane liquid discharge groove. 上記メタン液回収溝およびメタン液排出溝の変形例を示す説明図である。It is explanatory drawing which shows the modification of the said methane liquid collection | recovery groove | channel and a methane liquid discharge groove | channel. 実施例を示す説明図である。It is explanatory drawing which shows an Example. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example.

符号の説明Explanation of symbols

1 発酵室
8a 発酵室床面
10 有機性廃棄物
11 メタン液回収溝
13 メタン液排出溝
22 スプレーノズル
DESCRIPTION OF SYMBOLS 1 Fermentation room 8a Fermentation room floor surface 10 Organic waste 11 Methane liquid recovery groove 13 Methane liquid discharge groove 22 Spray nozzle

Claims (5)

気密状態に保持された発酵室の上部空間にノズルを配設し、上記発酵室の床面上に投入された有機性廃棄物上に、上記ノズルから、メタン発酵細菌を含有するメタン液を散布して上記有機性廃棄物をメタン発酵細菌により分解しバイオガスを発生させるバイオガス発酵装置であって、上記発酵室の床面を水平面に形成し、この床面にメタン液回収溝を形成し、上記発酵室の床面の一側縁部に、上記メタン液回収溝に連通するメタン液排出溝を上記一側縁部に沿わせて形成し、上記メタン液回収溝で回収されメタン液排出溝を経て発酵室外に排出されたメタン液を回収して貯留するメタン液回収タンクを設け、このメタン液回収タンクに貯留したメタン液を上記ノズルに供給するように構成したことを特徴とするバッチ式バイオガス発酵装置。   A nozzle is arranged in the upper space of the fermentation chamber kept in an airtight state, and methane liquid containing methane fermentation bacteria is sprayed from the nozzle onto the organic waste put on the floor surface of the fermentation chamber. A biogas fermentation apparatus that decomposes the organic waste with methane fermentation bacteria to generate biogas, wherein the floor of the fermentation chamber is formed in a horizontal plane, and a methane liquid recovery groove is formed in the floor. A methane liquid discharge groove communicating with the methane liquid recovery groove is formed along one side edge of the fermentation chamber floor along the one side edge, and the methane liquid discharge is recovered in the methane liquid recovery groove. A batch comprising a methane solution recovery tank for recovering and storing the methane solution discharged outside the fermentation chamber through the groove, and supplying the methane solution stored in the methane solution recovery tank to the nozzle. Type biogas fermentation equipment. 上記メタン液回収溝の底面を、上記メタン液排出溝に向かって下り傾斜状に傾斜する傾斜面に形成した請求項1記載のバッチ式バイオガス発酵装置。   The batch-type biogas fermentation apparatus according to claim 1, wherein the bottom surface of the methane solution recovery groove is formed on an inclined surface that is inclined downward toward the methane solution discharge groove. 上記メタン液排出溝に、ここを流れるメタン液を発酵室外に排出する排出口を設け、上記メタン液排出溝の底面を、上記排出口に向かって下り傾斜状に傾斜する傾斜面に形成した請求項2記載のバッチ式バイオガス発酵装置。   The methane solution discharge groove is provided with a discharge port for discharging the methane solution flowing therethrough to the outside of the fermentation chamber, and the bottom surface of the methane solution discharge groove is formed as an inclined surface that is inclined downward toward the discharge port. Item 3. A batch-type biogas fermentation apparatus according to item 2. 上記メタン液回収溝に、メタン発酵細菌の保持担体となることができる物質を充填した請求項1〜3のいずれか一項に記載のバッチ式バイオガス発酵装置。   The batch-type biogas fermentation apparatus as described in any one of Claims 1-3 which filled the substance which can become a holding | maintenance support | carrier of methane fermentation bacteria in the said methane liquid collection | recovery groove | channel. 上記発酵室内で発生させたバイオガスを上記発酵室外に取り出してボイラもしくは発電機の燃料として利用するようにした請求項1〜4のいずれか一項に記載のバッチ式バイオガス発酵装置。
The batch type biogas fermentation apparatus according to any one of claims 1 to 4, wherein the biogas generated in the fermentation chamber is taken out of the fermentation chamber and used as fuel for a boiler or a generator.
JP2006236201A 2005-08-31 2006-08-31 Batch biogas fermentation apparatus Withdrawn JP2007090340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236201A JP2007090340A (en) 2005-08-31 2006-08-31 Batch biogas fermentation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005251283 2005-08-31
JP2006236201A JP2007090340A (en) 2005-08-31 2006-08-31 Batch biogas fermentation apparatus

Publications (1)

Publication Number Publication Date
JP2007090340A true JP2007090340A (en) 2007-04-12

Family

ID=37976625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236201A Withdrawn JP2007090340A (en) 2005-08-31 2006-08-31 Batch biogas fermentation apparatus

Country Status (1)

Country Link
JP (1) JP2007090340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255056A (en) * 2008-03-18 2009-11-05 Tomio Nagai Manufacturing method of methane gas and compost using biomass resources
JP2010142742A (en) * 2008-12-19 2010-07-01 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and waste disposal system equipped with the same
CN104726322A (en) * 2015-03-03 2015-06-24 福建农林大学 Energy grass liquid-solid combined biogas fermenting system
JP5997403B1 (en) * 2016-03-29 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
WO2020075527A1 (en) * 2018-10-09 2020-04-16 富雄 長井 Method for producing methane gas and compost by using biomass resources
CN114160556A (en) * 2021-12-02 2022-03-11 深圳市复绿生物环保科技有限公司 Kitchen waste liquid wastewater treatment equipment, organic fertilizer and preparation method
JP7403781B1 (en) 2023-05-16 2023-12-25 オリエンタル白石株式会社 Methane fermentation equipment and methane fermentation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255056A (en) * 2008-03-18 2009-11-05 Tomio Nagai Manufacturing method of methane gas and compost using biomass resources
JP4615052B2 (en) * 2008-03-18 2011-01-19 富雄 長井 Manufacturing method of methane gas and compost using biomass resources
JP2010142742A (en) * 2008-12-19 2010-07-01 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and waste disposal system equipped with the same
CN104726322A (en) * 2015-03-03 2015-06-24 福建农林大学 Energy grass liquid-solid combined biogas fermenting system
CN104726322B (en) * 2015-03-03 2017-01-11 福建农林大学 Energy grass liquid-solid combined biogas fermenting system
JP5997403B1 (en) * 2016-03-29 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
WO2020075527A1 (en) * 2018-10-09 2020-04-16 富雄 長井 Method for producing methane gas and compost by using biomass resources
JP2020125236A (en) * 2018-10-09 2020-08-20 富雄 長井 Method of producing methane gas and compost using biomass resource
JP6752990B1 (en) * 2018-10-09 2020-09-09 富雄 長井 Manufacturing method of methane gas and compost using biomass resources
CN114160556A (en) * 2021-12-02 2022-03-11 深圳市复绿生物环保科技有限公司 Kitchen waste liquid wastewater treatment equipment, organic fertilizer and preparation method
JP7403781B1 (en) 2023-05-16 2023-12-25 オリエンタル白石株式会社 Methane fermentation equipment and methane fermentation method

Similar Documents

Publication Publication Date Title
JP2007090340A (en) Batch biogas fermentation apparatus
JPH07124538A (en) Solid organic waste-treating apparatus
CN101874104B (en) Process for the treatment of wastes combining a phase of treatment by methanization and a phase of thermophilic aerobic treatment
KR100793115B1 (en) Waste treatment device
JP4527610B2 (en) Method and apparatus for fertilizers such as garbage
CN103623680A (en) Low temperature organic malodorous gas treating system
KR101130311B1 (en) A Non-Waste Water, Non-Bad Smell Equipment System for Organic Compost
JPH06345575A (en) High-speed composting facility of organic waste and method for recycling organic waste
JP2005125185A (en) Biogas generator and biogas power generation system
KR100707231B1 (en) Organic-waste disposal equipment of circulation type
KR20080097893A (en) Treatment system of organic waste
KR101512990B1 (en) An integral system for removing a bad smell
KR20030085130A (en) Method and system for treating organic matter utilizing substance circulation system
KR200417043Y1 (en) Organic waste sludge volume reduction apparatus using by combined thermophilic aerobic and mesophilic anaerobic digestion and electro-destruction system
KR970010844B1 (en) Solid organic waste processing apparatus
JP4328880B2 (en) Garbage disposal method and equipment
KR100851947B1 (en) A sewage and clean water sludge manage equipment and method the same
JP3114117B2 (en) Long-term residence type multi-stage continuous anaerobic digestion apparatus and method for anaerobic digestion of high-concentration organic waste using the same
KR19990000316A (en) Livestock Manure Properties Fermentation Treatment Apparatus and Method
JP2008081570A (en) Dry, agitating and continuous type method for fermenting methane gas and device for the same
JP4838210B2 (en) Recycling method of garbage
JPWO2007096966A1 (en) Steam generating fuel manufacturing facility, steam generating facility, and method of converting waste to steam generating fuel
KR20020095487A (en) Recycling system and operation methods of using anaerobic digester and aerobic composting system all at once on organic concentrated swine slurry
RU2818053C1 (en) Organic waste composting device
KR101005368B1 (en) An apparatus for recovering methane gas for treating organic waste and a system for recovering methane gas using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110