JP2020125236A - Method of producing methane gas and compost using biomass resource - Google Patents

Method of producing methane gas and compost using biomass resource Download PDF

Info

Publication number
JP2020125236A
JP2020125236A JP2020062199A JP2020062199A JP2020125236A JP 2020125236 A JP2020125236 A JP 2020125236A JP 2020062199 A JP2020062199 A JP 2020062199A JP 2020062199 A JP2020062199 A JP 2020062199A JP 2020125236 A JP2020125236 A JP 2020125236A
Authority
JP
Japan
Prior art keywords
methane
reaction
methane fermentation
gas
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020062199A
Other languages
Japanese (ja)
Other versions
JP6740498B1 (en
Inventor
富雄 長井
Tomio Nagai
富雄 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of JP6740498B1 publication Critical patent/JP6740498B1/en
Publication of JP2020125236A publication Critical patent/JP2020125236A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/04Biological compost
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a method of performing methane fermentation in a method efficient and inflicting little burden to an external environment in an external circulation type methane fermentation reaction facility filled with biomass.SOLUTION: This invention relates to a batch type methane fermentation facility that produces methane gas and fermented compost using airtight methane fermentation tanks 11 and 12 by: filling the tanks with coarsely crushed biomass being a raw material; externally circulating reaction water including methanogen and flowing the reaction water, spraying from above the filling material; and repeating the above steps to perform methane fermentation. The method of producing the methane gas and compost includes: using a pair of methane fermentation tanks of the same shape and the same volume; at the time when starting spraying of the reaction water to start the methane fermentation in one of the methane tanks (11), starting injecting inert gas for reaction termination to finish the methane reaction in the other of the methane tanks (12); and making adjustment so that an injection amount of the inert gas in the fermentation tank 12 becomes substantially equal to an amount of generation of biogas including the methane gas in the fermentation tank 11.SELECTED DRAWING: Figure 2

Description

本発明は、稲わらや麦わらなどの未利用のバイオマス資源を利用したメタンガスと堆肥の製造方法に関する。さらに詳しくは、外部循環型のバイオマス資源を充填したメタン発酵設備を用いて、発酵設備の操作方法・運転方法を工夫することによって、より環境負荷の少なく、かつより効率的にメタンガスとともに、同時に発酵堆肥を生産することのできる、バイオマス資源を利用したメタンガスと堆肥の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing methane gas and compost using unused biomass resources such as rice straw and straw. More specifically, by using a methane fermentation facility filled with an external circulation type biomass resource, by devising the operating method and operating method of the fermentation facility, it is possible to ferment simultaneously with methane gas with less environmental impact and more efficiently. The present invention relates to a method for producing methane gas and compost using biomass resources capable of producing compost.

農業においては、稲わらや麦わら、とうもろこし茎、野菜類の茎や葉などさまざまな未利用の農産有機物質が大量に発生している。また、林業においても落葉や下草刈り作業等により未利用の林産有機物質が大量に発生している。これらのさまざまな未利用資源は、従来はそのまま放置したり、焼却や埋設するなどの方法によって処理されてきた。さらに食品工業や畜産業などにおいては、その加工廃水や畜産廃水、或いは家畜類の糞便などの粘性排泄物などさまざまな有機性の廃棄物が発生するので、これらの廃棄物を化学処理や活性汚泥処理などによって処理して、有機性廃棄物を除去する必要があった。 In agriculture, a large amount of various unused agricultural organic substances such as rice straw, straw, corn stalks, vegetable stalks and leaves are generated. Also, in the forest industry, a large amount of unused forest-derived organic substances is generated due to defoliation and undergrowth work. Conventionally, these various unused resources have been treated by leaving them as they are, incinerating them, or burying them. Furthermore, in the food industry, livestock industry, etc., various organic wastes such as processing wastewater, livestock wastewater, viscous excrement such as livestock faeces are generated, and these wastes are chemically treated or activated sludge is generated. It was necessary to remove the organic waste by treating it with a treatment or the like.

一方、近年さまざまな環境問題がクローズアップされるに伴い、できるだけ環境に対して負荷の少ない産業活動が強く要請されるようになり、特に、地球の温暖化防止のために、炭酸ガス等の温室効果ガスの削減が強く求められるようになっている。このような状況においては、上述したような農林業等において発生する種々の廃棄物を単に焼却処理や自然分解により炭酸ガスにすることは好ましくない。これらの廃棄物をバイオマス資源として有効に再利用し、活用することができれば、資源の有効利用とともに地球の温暖化防止の目的にも合致し、一挙両得である。また、畜産粘性排泄物などの有機性廃棄物も、従来以上の有効活用と合理的・経済的な利用が望まれている。 On the other hand, as various environmental problems have been highlighted in recent years, there has been a strong demand for industrial activities that have the least impact on the environment. In particular, in order to prevent global warming, greenhouse gases such as carbon dioxide are used. There is a strong demand for reduction of effect gas. In such a situation, it is not preferable to simply incinerate various kinds of wastes generated in agriculture and forestry as described above into carbon dioxide gas by natural decomposition. If these wastes can be effectively reused and utilized as biomass resources, it will be a win and profit, as well as the effective use of resources and the purpose of preventing global warming. In addition, organic waste such as livestock viscous excrement is desired to be used more effectively and rationally and economically than ever before.

このような主として自然界のさまざまなバイオマス資源に由来する炭酸ガスの発生量は、種々の産業活動によって発生する温室効果ガスの約2.8倍に達するとの推定値がある。従って、このようなバイオマス資源である種々の未利用有機物質を自然分解や焼却処理することなく有効利用することができれば、温室効果ガスの削減にもきわめて有意義である。 It is estimated that the amount of carbon dioxide gas mainly derived from various biomass resources in the natural world reaches about 2.8 times that of the greenhouse effect gas generated by various industrial activities. Therefore, if various unused organic substances, which are such biomass resources, can be effectively used without spontaneous decomposition or incineration treatment, it is extremely significant in reducing greenhouse gases.

従来から、このような問題に対処するために、まだ利用されていないさまざまなバイオマス資源を有効に活用することも検討されてきており、特に、メタン発酵の現象を利用してメタンガスや堆肥に変換することが注目されている。例えば、家畜等の動物の排泄物や食品工場等から排出される高濃度有機排水を対象としたものがあるが、いずれも液体やスラリー状態としたものをメタン発酵処理するものが主体であり、固形の有機物質を処理する方法は大規模な鋼鉄製やコンクリート製の発酵槽を用いる方式が提案されている程度であった(特許文献1参照)。 In order to deal with such problems, it has been considered to effectively utilize various biomass resources that have not yet been used, and in particular, the phenomenon of methane fermentation is used to convert to methane gas or compost. It has been noticed to do. For example, there are those for high-concentration organic wastewater discharged from animal excrements such as livestock and food factories, etc., but mainly those that undergo methane fermentation treatment of liquid or slurry state, As a method for treating a solid organic substance, a method using a large-scale fermenter made of steel or concrete has been proposed (see Patent Document 1).

このような現状において、本発明者は、このメタン発酵の技術を利用して、より簡単でかつ低いコストでこのような固形のバイオマス資源のメタン発酵反応を行わせる方法を提案した。即ち、メタン発酵槽として、鉄材や木材などで骨組を構成し、この骨組を柔軟なガス不透過性シート材料で覆って内部に気密性の空間を形成したものを用い、この中にバイオマス資源を充填して反応水を外部循環させて発酵反応を行わせるメタン発酵反応設備を提案し、すでに特許を取得している(特許文献2、特許文献3参照)。 Under such circumstances, the present inventor has proposed a method of utilizing this methane fermentation technique to carry out a methane fermentation reaction of such a solid biomass resource at a simpler and lower cost. That is, as a methane fermentation tank, a framework made of iron or wood is used, and the framework is covered with a flexible gas impermeable sheet material to form an airtight space inside, and biomass resources are used in this. A methane fermentation reaction facility for filling and circulating the reaction water externally to perform a fermentation reaction has been proposed, and a patent has already been obtained (see Patent Documents 2 and 3).

特開2007−90340号公報JP, 2007-90340, A 特許4615052号公報Japanese Patent No. 4615052 特許5555395号公報Japanese Patent No. 5555395

李玉友 :JEFMA No.53[2005.8]、特別寄稿、メタン発酵技術の概要とその応用展望Yi Yutomo: JEFMA No. 53 [2005.8], Special contribution, Outline of methane fermentation technology and its application prospects 独立行政法人土木研究所、国立大学法人東北大学、株式会社タクマ:下水汚泥の高効率発酵システム開発に関する共同研究報告書(平成22年10月)Civil Engineering Research Institute, National University Corporation Tohoku University, Takuma Co., Ltd.: Joint Research Report on Development of Highly Efficient Fermentation System for Sewage Sludge (October 2010) 季玉友、水野修、舩石圭介、山下耕司:生ごみの高速メタン発酵システム、ECO INDUSTRY、8(6) PP.5〜19(2003)Kitama Yu, Osamu Mizuno, Keisuke Funaishi, Koji Yamashita: Fast Methane Fermentation System for Garbage, ECO INDUSTRY, 8(6) PP. 5-19 (2003) 長井富雄;日本エネルギー学会 第5回 バイオマス科学会議発表論文及び発表ポスター、(2010.01.20.〜21.)Tomio Nagai; Papers and posters presented at the 5th Biomass Science Conference of the Japan Institute of Energy (2011.01.20-21). 長井富雄;第26回エネルギー・資源学会 研究発表会講演論文集、コンファレンス発表論文及び口頭発表資料、(2010.01.26.〜27.)Tomio Nagai; Proceedings of the 26th Japan Society for Energy and Resources Research Conference, Conference Presentations and Oral Presentations, (2010.01.26.-27.)

本発明は、バイオマス資源を充填した外部循環式のメタン発酵反応設備において、かかる設備を利用して、より効率的に、かつより外部環境に対してより負荷の少ない方法によって、メタン発酵を行ってメタンガスと発酵堆肥を生産する方法を提供することをその目的とするものである。 The present invention, in an external circulation type methane fermentation reaction equipment filled with biomass resources, by utilizing such equipment, by performing a methane fermentation more efficiently and by a method with less load on the external environment It is an object of the present invention to provide a method for producing methane gas and fermented compost.

本発明者は、大量に未利用のまま放置され又は焼却処分されているさまざまな固形のバイオマス資源を利用する方法について検討し、かかる固形のバイオマス資源を充填した外部循環式のメタン発酵反応設備において、その設備の運転操作方法を工夫することによって、より効率的にかつ外部に排水を出すことなく環境に対してより負荷の少ない方法でメタン発酵を行わせる方法を見出し、本発明を完成した。 The present inventor has examined a method of utilizing various solid biomass resources that have been left unused or incinerated in large amounts, and in an external circulation type methane fermentation reaction facility filled with such solid biomass resources. The inventors have found a method of performing methane fermentation more efficiently and with a method having a smaller load on the environment without discharging wastewater to the outside by devising a method of operating the equipment, and completed the present invention.

即ち、本発明は、以下の内容をその要旨とする発明である。
(1) 内部に原料となるバイオマス資源の粗砕物を充填し、メタン菌を含有する反応水を外部循環して充填物の上部からスプレーして流し、これを繰り返し実施してメタン発酵反応を行わせる気密性のメタン発酵槽を用いたメタンガスと発酵堆肥とを製造する回分式のメタン発酵設備において、得られる発酵堆肥に含まれる水分量を、バイオマス資源粗砕物が含有する水分量と発酵反応で消費される水分量との差引量以上とし、かつ発酵堆肥の含水率を最大で75重量%までとすることを特徴とする、バイオマス資源を利用したメタンガスと堆肥の製造方法。
That is, the present invention is an invention having the following contents.
(1) The inside is filled with the coarsely crushed material of the biomass resource as the raw material, and the reaction water containing the methane bacteria is externally circulated and sprayed from the upper part of the filling, and this is repeated to perform the methane fermentation reaction. In a batch-type methane fermentation facility that produces methane gas and fermented compost using an airtight methane fermenter, the amount of water contained in the obtained fermented compost is determined by the amount of water contained in the biomass resource crushed product and the fermentation reaction. A method for producing methane gas and compost using biomass resources, characterized in that the water content of the fermented compost is set to a maximum of 75% by weight or more, which is not less than the amount of water consumed.

(2)原料のバイオマス資源粗砕物として、十分に乾燥した含水率が35重量%以下のものを用いることを特徴とする、前記(1)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (2) A method for producing methane gas and compost using the biomass resource according to (1) above, characterized in that a fully dried biomass resource having a fully dried water content of 35% by weight or less is used. ..

(3)得られる発酵堆肥の含水率を50〜75重量%とすることを特徴とする、前記(1)または(2)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (3) The method for producing methane gas and compost using the biomass resource according to (1) or (2) above, wherein the water content of the obtained fermented compost is 50 to 75% by weight.

(4)メタン発酵槽に充填する原料として、バイオマス資源の粗砕物とともに家畜類の粘性排泄物を棒状に押出成形し乾燥したものを混合することを特徴とする、前記(1)ないし(3)のいずれかに記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (4) As a raw material to be filled in a methane fermentation tank, a mixture of coarsely crushed biomass resources, sticky extruded livestock extruded into a rod, and dried is mixed. A method for producing methane gas and compost using the biomass resource according to any one of 1.

(5)家畜類の粘性排泄物がスクリューフィーダーとスネークポンプにより直径10〜20mmの棒状に押出成形されたものである、前記(4)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (5) The method for producing methane gas and compost using biomass resources according to (4) above, wherein the viscous excrement of livestock is extruded into a rod shape having a diameter of 10 to 20 mm by a screw feeder and a snake pump.

(6)家畜類の粘性排泄物が、平坦に広げたバイオマス資源の粗砕物の上に、家畜類の粘性排泄物の押出成形品をならべて、その含水率が35重量%以下となるように天日通風乾燥したものである、前記(4)又は(5)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (6) Place the viscous excrement of livestock on a flatly spread coarsely crushed biomass resource, and place an extruded product of the viscous excrement of livestock so that the water content is 35% by weight or less. A method for producing methane gas and compost using the biomass resource according to (4) or (5) above, which is dried by sunlight ventilation.

(7)内部に原料となるバイオマス資源の粗砕物を充填し、メタン菌を含有する反応水を外部循環して充填物の上部からスプレーして流し、これを繰り返し実施してメタン発酵反応を行わせる気密性のメタン発酵槽を用いてメタンガスと発酵堆肥を製造する回分式のメタン発酵設備において、同じ形状で同一容積の一対のメタン発酵槽を用いるとともに、一方のメタン発酵槽(発酵槽A)が反応水のスプレーを開始してメタン発酵反応を開始した時点で、他方のメタン発酵槽(発酵槽B)では同じ時点でメタン発酵反応が終了して反応停止のための不活性ガスの注入を開始し、かつ、発酵槽Bの不活性ガスの注入量(流量速度)を発酵槽Aのメタンガスを含むバイオガスの発生量(流量速度)とほぼ同一となるように調節する操作をすることを特徴とする、バイオマス資源を利用したメタンガスと堆肥の製造方法。 (7) The inside is filled with the coarsely crushed material of the biomass resource as the raw material, and the reaction water containing the methane bacteria is externally circulated and sprayed from the upper part of the filling, and this is repeated to carry out the methane fermentation reaction. In a batch type methane fermentation facility that produces methane gas and fermented compost using an airtight methane fermentation tank, a pair of methane fermentation tanks of the same shape and the same volume are used, and one methane fermentation tank (fermenter A) Starts spraying the reaction water and starts the methane fermentation reaction, the other methane fermentation tank (fermentation tank B) finishes the methane fermentation reaction at the same time and injects an inert gas to stop the reaction. The operation of starting and adjusting the injection amount (flow rate) of the inert gas in the fermenter B to be approximately the same as the generation amount (flow rate) of the biogas containing methane gas in the fermenter A is performed. A characteristic method for producing methane gas and compost using biomass resources.

(8)一方のメタン発酵槽(発酵槽A)の反応開始から定常発酵反応の段階に入る前までの間に発生したバイオガスと他方のメタン発酵槽(発酵槽B)の不活性ガスの注入開始から終了操作完了までの間に発生したバイオガスとを、同一のメタンガス貯槽に捕集することを特徴とする、前記(7)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (8) Injection of biogas generated from the start of the reaction of one methane fermenter (fermentor A) to the stage before the stage of the steady fermentation reaction and the inert gas of the other methane fermenter (fermentor B) The method for producing methane gas and compost using biomass resources according to (7) above, characterized in that biogas generated from the start to the end operation is collected in the same methane gas storage tank.

(9)不活性ガスとして、バイオガスを空気過剰係数1.08〜1.10で完全燃焼させて得られる燃焼排ガスを用いることを特徴とする、前記(7)又は(8)に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (9) The biomass according to (7) or (8), characterized in that a combustion exhaust gas obtained by completely burning biogas with an air excess coefficient of 1.08 to 1.10 is used as the inert gas. A method for producing methane gas and compost using resources.

(10)不活性ガスの注入を、発酵槽底部に設けた穴あきパイプを通して発酵槽の底面全体にほぼ均一になるように行うことを特徴とする、前記(7)ないし(9)のいずれかに記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 (10) One of the above (7) to (9), characterized in that the inert gas is injected through the perforated pipe provided at the bottom of the fermenter so that it is substantially even over the entire bottom surface of the fermenter. A method for producing methane gas and compost using the biomass resource described in.

本発明に従って使用するバイオマス資源としては十分に乾燥したものを使用し、得られる発酵堆肥に含まれる水分量をバイオマス資源の含水量から発酵反応で消費される水分量を差し引いた量以上とすることによって、発酵設備内に貯留している反応水のみを使用して長時間のメタン発酵反応を行うことができ、余分の水分を外部に排出することがなく、プロセス排水がゼロの状態でメタン発酵を進行させることができる。従って、長期間にわたるメタン発酵によるバイオマス資源を利用したメタンガスと堆肥の製造において、製造設備の系外にまったくプロセス排水を出すことがなく、周囲の環境に対して負荷の非常に少ない、環境にやさしい製造方法である。 As the biomass resource used according to the present invention, a sufficiently dried product is used, and the water content contained in the obtained fermented compost is set to be equal to or more than the water content of the biomass resource minus the water content consumed in the fermentation reaction. This allows for long-term methane fermentation reaction using only the reaction water stored in the fermentation equipment, without discharging excess water to the outside, and methane fermentation with zero process wastewater. Can proceed. Therefore, in the production of methane gas and compost using biomass resources by methane fermentation over a long period of time, no process wastewater is emitted outside the system of the production facility, and the environmental load is very low and environmentally friendly. It is a manufacturing method.

また、本発明の方法においては、原料として従来液状にしないと使用が困難であった家畜類の粘性排泄物を棒状に押出成形し乾燥したものを、バイオマス資源の粗砕物とともに混合して使用することができ、さらにその含水率を上記のように調節することによって、製造設備の系外にまったくプロセス排水をだすことがなくメタンガスと堆肥の製造することができる。従って、家畜類の粘性排泄物のような、メタン発酵が行いにくく、かつ排出すると環境に対して負荷の大きいものも本発明の方法によってメタン発酵に利用することができる。 Further, in the method of the present invention, a sticky extrudate of livestock which has been difficult to use as a raw material, which has been difficult to use until now, is extruded into a rod shape and dried, and is used together with a coarsely crushed material of a biomass resource. Further, by adjusting the water content as described above, methane gas and compost can be produced without producing process wastewater outside the production equipment. Therefore, viscous excretions of livestock, which are difficult to perform methane fermentation and have a large load on the environment when discharged, can be used for methane fermentation by the method of the present invention.

さらに、2個以上の一対の回分式のメタン発酵槽を用いて互いのメタン発酵の反応開始期とメタン発酵の反応終了期のタイミングをそろえるとともに、メタン発酵反応終了期の不活性ガスの注入速度をコントロールする本発明の方法によって、定常発酵反応期に約56容積%という高濃度のメタンガスが得られるだけでなく、メタン発酵反応開始期やメタン発酵反応終了期という非定常な運転状態のときでも、約28容積%という低濃度のかつ一定の濃度のメタンガスが得られるという利点がある。この場合、反応終了時でも対をなす二つの発酵槽から出る異なる濃度のメタンガスを混合することにより、約28容積%という一定濃度のメタンガスが得られる。これはメタンガスの爆発限界よりもはるかに高い濃度であって、ガス爆発の心配なしに装置の運転操作を行うことができる。 Furthermore, by using two or more pairs of batch-type methane fermentation tanks, the timing of the methane fermentation reaction start time and the timing of the methane fermentation reaction end time are aligned, and the inert gas injection rate at the methane fermentation reaction end time is adjusted. By the method of the present invention for controlling the above, not only a high concentration of methane gas of about 56% by volume can be obtained in the stationary fermentation reaction period, but also in a non-steady operating state such as a methane fermentation reaction start period or a methane fermentation reaction end period. The advantage is that methane gas having a low concentration of about 28% by volume and a constant concentration can be obtained. In this case, even at the end of the reaction, a constant concentration of methane gas of about 28% by volume can be obtained by mixing different concentrations of methane gas from the two fermentors forming a pair. This is a concentration much higher than the explosion limit of methane gas, and the operation of the device can be performed without fear of gas explosion.

発酵槽が1基の場合の本発明のメタン発酵設備全体の一例を示す説明図である。It is an explanatory view showing an example of the whole methane fermentation equipment of the present invention when there is one fermenter. 発酵槽を2基使用した場合の本発明のメタン発酵設備全体の一例を示す説明図である。It is explanatory drawing which shows an example of the whole methane fermentation equipment of this invention at the time of using two fermenters. 発酵槽を2基使用した場合の、本発明の方法によるそれぞれのメタン発酵槽の運転サイクルと発生するバイオガス中のメタンガス濃度を示すグラフである。It is a graph which shows the operation cycle of each methane fermentation tank by the method of this invention, when using two fermenters, and the methane gas concentration in the biogas which generate|occur|produces.

稲わら、麦わら等のバイオマス資源を対象にメタン発酵反応を行う反応設備でメタン発酵を行った場合に、約2ケ月間の期間にわたって20〜60℃程度の中温から高温の範囲でメタン発酵を進めた場合、使用されたバイオマス資源の70%程度の分解率が達成される。
これは、李玉友らの「生ごみの高速メタン発酵に関する報告」によれば、一般的に生ごみの分解率は約80%とあること(非特許文献1、非特許文献3参照)や、下水汚泥の多段消化槽による連続実験で反応率73%が得られている例(非特許文献2参照)、発酵の条件は異なるが夏場の水田の土中に鋤きこまれた稲わらや麦わらが一夏の間にほぼ100%分解されている現象からも推定される。
When methane fermentation is carried out in a reaction facility that carries out methane fermentation reaction on biomass resources such as rice straw and straw, the methane fermentation proceeds in the medium to high temperature range of about 20 to 60°C over a period of about two months. In this case, a decomposition rate of about 70% of the biomass resources used can be achieved.
This is because the decomposition rate of raw garbage is generally about 80% according to "report on high-speed methane fermentation of raw garbage" by Li Yu-Tama et al. (see Non-Patent Documents 1 and 3) and sewage. An example in which a reaction rate of 73% was obtained in a continuous experiment with a multistage digestion tank for sludge (see Non-Patent Document 2), the fermentation conditions differ, but rice straw and straw that were plowed into the soil of paddy fields in the summer were one It is also estimated from the phenomenon of almost 100% decomposition during the summer.

又、非食用農産バイオマス原料の場合では、原料中にたんぱく質などのアンモニア原因物質も少なく、反応水を外部循環スプレー方式で接触流下しているので、アンモニアなどの揮発性反応阻害物質が存在しても発散除去され易いので反応阻害物質の影響も少なくなると考えられる。尚、メタン発酵の結果、バイオマス原料に含まれる生分解性高分子有機物CODの約80〜90%がバイオガスに転換され、残りの10〜20%程度が増殖菌体となって非分解性固形物とともに消化残渣(堆肥)となると言われる。 In addition, in the case of non-edible agricultural biomass raw materials, there are few ammonia-causing substances such as proteins in the raw materials, and reaction water is contact-flowed by the external circulation spray method, so volatile reaction-inhibiting substances such as ammonia are present. It is considered that the influence of the reaction-inhibiting substance is also reduced since it is easily removed by diffusion. As a result of methane fermentation, about 80 to 90% of the biodegradable polymer organic matter COD contained in the biomass raw material is converted to biogas, and the remaining 10 to 20% becomes proliferating bacterial cells, which are non-degradable solids. It is said that it becomes a digestion residue (compost) along with food.

本発明は、内部に原料となるバイオマス資源の粗砕物を充填し、メタン菌を含有する反応水を外部の循環ポンプによって循環させて、充填されたバイオマス資源の粗砕物の上部からスプレーして流すことにより、原料のバイオマス資源粗砕物の表面が十分に濡れた状態でメタン発酵反応を行わせる、いわゆる固定層型固液接触反応槽を使用する回分式のメタン発酵設備を用いて、特定の運転操作条件のもとにこのメタン発酵設備を運転してメタン発酵反応を行わせる、バイオマス原料を利用したメタンガスと堆肥の製造方法である。 In the present invention, a coarsely crushed material of a biomass resource as a raw material is filled inside, and reaction water containing methane bacteria is circulated by an external circulation pump, and sprayed from above the coarsely crushed material of a biomass resource. This allows a specific operation using a batch-type methane fermentation facility that uses a so-called fixed-bed type solid-liquid contact reaction tank, which causes the methane fermentation reaction to be performed with the surface of the raw material biomass resource crushed material being sufficiently wet. This is a method for producing methane gas and compost using biomass raw materials, in which this methane fermentation equipment is operated under operating conditions to carry out a methane fermentation reaction.

まず、このような本発明のうちの第1の特徴的技術である発明について説明する。
本発明は、上記のようなバイオマス原料を充填した固定層型固液接触反応槽である外部循環式のメタン発酵槽を用いてメタン発酵反応を行いメタンガスと堆肥を製造するに際して、得られる発酵堆肥に含まれる水分量を、バイオマス資源粗砕物に含まれる水分量と発酵反応で消費される水分量との差引量以上とし、かつ発酵堆肥の含水率を最大で75重量%まで、好ましくは最大で60重量%までとするという条件でメタン発酵反応を行わせるものである。
First, the invention that is the first characteristic technique of the present invention will be described.
The present invention is a fermented compost obtained when producing methane gas and compost by performing a methane fermentation reaction using an external circulation type methane fermenter that is a fixed-bed type solid-liquid contact reaction tank filled with biomass raw materials as described above. The amount of water contained in is not less than the difference between the amount of water contained in the biomass resource crushed product and the amount of water consumed in the fermentation reaction, and the water content of the fermented compost is up to 75% by weight, preferably up to The methane fermentation reaction is carried out under the condition of up to 60% by weight.

ここで得られる発酵堆肥の含水率は最大で75重量%まで、好ましくは最大で60重量%までとする。メタン発酵の反応後に得られる残滓である堆肥はそのままでは含水率が70〜85%程度となるが、これを圧搾脱水してその含水率を最大で75重量%まで、好ましくは最大で60重量%までとする。発酵堆肥は、その含水率が高くなると、堆肥袋を段積みする場合などに下部の段では上部の圧力で液が滲み出る恐れがある。また、種々の水系有機物濾過ケークや水系活性炭濾過ケークの例などでも含水率は最高で60〜75%程度とされていることも参考にすれば、圧搾脱水堆肥の実用的な含水率は75%以下、好ましくは60%以下にする必要がある。 The water content of the fermented compost obtained here is up to 75% by weight, preferably up to 60% by weight. The compost, which is the residue obtained after the reaction of methane fermentation, has a water content of about 70 to 85% as it is, but it is squeezed and dehydrated to a water content of up to 75% by weight, preferably up to 60% by weight. Up to When the water content of the fermented compost becomes high, the liquid may be exuded by the pressure of the upper part in the lower part when stacking the compost bags. Also, referring to the fact that the maximum water content is about 60 to 75% in various examples of water-based organic matter filter cakes and water-based activated carbon filter cakes, the practical water content of pressed dehydrated compost is 75%. Hereafter, it is necessary to set it to preferably 60% or less.

また、ここで使用する原料となるバイオマス資源の粗砕物は、稲わら、麦わら等の農産バイオマス資源や、樹木の落葉や剪定枝、下草刈り作業等により発生する林産バイオマス資源を大まかに粉砕して乾燥したものであり、これを発酵反応槽に充填して使用する。 The coarsely crushed biomass resources used as raw materials here are roughly crushed from agricultural biomass resources such as rice straw and wheat straw, and forest biomass resources generated by defoliation and pruning of trees and undergrowth work. It is dried and used by filling it into a fermentation reaction tank.

本発明では、このような原料となるバイオマス資源の粗砕物として含水率が35重量%以下のものを使用することが好ましいが、この程度の含水率のものは、圃場などの天日通風乾燥で充分実現可能な値である。稲わらのような農産バイオマスの乾燥品で含水率が35重量%以下のものは天日通風乾燥で普通に広げて放置すれば容易に得ることができるし、放置による品質劣化は問題とならない。又、含水率50重量%のものは少し湿気を持つ柔らかい感触の物で慣れれば手で触ることにより大略判断できるようになる。含水率50重量%程度のバイオマス原料は、これを網袋等に入れて防水シートを被せて放置することにより、含水率35重量%以下にすることも容易に実現できる。 In the present invention, it is preferable to use a coarsely crushed material of such a biomass resource having a water content of 35% by weight or less. It is a value that is sufficiently realizable. A dry product of agricultural biomass, such as rice straw, having a water content of 35% by weight or less can be easily obtained by sun-drying and if left unfolded, and the quality deterioration due to leaving is not a problem. If the water content is 50% by weight, a soft material having a little moisture can be used, and if used, it can be roughly judged by touching with a hand. The biomass raw material having a water content of about 50% by weight can be easily realized by putting it in a net bag or the like and covering it with a waterproof sheet and leaving it at 35% by weight or less.

このような原料のバイオマス資源の粗砕物では、バイオマス原料の表面はほぼ乾燥状態であるので、そのままの状態では発酵を進めることは困難である。メタン発酵菌類が活動するには充分な流動混合や原料のバイオマス資源と菌体との間で十分に水との接触が行われることが望ましい。そこで、反応を容易にするために原料の表面に反応水を流下混合させて菌体と原料との物質移動による反応を促進させている。その循環反応水は原料を濡らして循環させるに足りる必要充分な最小量を確保して発酵反応を開始することが望ましい。 In such a coarsely crushed material of the biomass material, the surface of the biomass material is almost dry, and thus it is difficult to proceed with fermentation as it is. In order for the methane-fermenting fungi to act, it is desirable that fluid mixing be sufficient and that the biomass resources of the raw materials and the cells be sufficiently contacted with water. Therefore, in order to facilitate the reaction, reaction water is mixed down the surface of the raw material to promote the reaction due to mass transfer between the bacterial cells and the raw material. It is desirable to start the fermentation reaction by ensuring a necessary and sufficient minimum amount of the circulating reaction water to wet and circulate the raw material.

発酵堆肥に含まれる水分量が、原料のバイオマス資源粗砕物に含まれる水分量と発酵反応で消費される水分量との差引量よりも多くなるように反応後の堆肥を圧搾脱水することによって、発酵系内の水分量は減少していく。このような方法でメタン発酵を進めると発酵バッチ毎に系内に残る水量は減少し続けるので、その減少量を補充する必要がある。発酵開始前と終了後の系内水量を計測・確認して毎回ほぼ一定になるように補充すればよい。その時、外部から調達する発酵菌体を含有する余剰消化汚泥水などで補充すれば好都合であり、経済的に有利となる。そのような運転を続けることにより、プロセス排水を発酵プラントの系外に出すことなく生産を続けることができる。 The amount of water contained in the fermented compost is compressed and dehydrated by compressing and dehydrating the compost after the reaction so that the amount of water contained in the raw material biomass resource crushed product and the amount of water consumed in the fermentation reaction become larger than the subtracted amount. The water content in the fermentation system decreases. When the methane fermentation is promoted by such a method, the amount of water remaining in the system continues to decrease for each fermentation batch, and it is necessary to supplement the decreased amount. The amount of water in the system before and after the start of fermentation can be measured and checked, and the amount of water can be replenished so that it is almost constant every time. At that time, it is convenient to supplement with excess digested sludge water containing fermented bacterial cells procured from the outside, which is economically advantageous. By continuing such operation, production can be continued without taking the process wastewater out of the system of the fermentation plant.

このことは、以下に示すように単純化した反応式で近似して解析することができる。即ち、他の物質の出入りのない系を前提として、メタン発酵全体を次の式(I)に示すように近似して物質収支計算を行い、その近似的解析から確認することができる。
農産又は林産バイオマスは、(C10)の重合によるセルロースを主成分とする高分子であり、自然界では数多くの微生物類とメタン発酵菌により、次のように近似される分解反応が行われていると考えられる。
This can be analyzed by approximating with a simplified reaction formula as shown below. That is, assuming that the system does not contain other substances in and out, the whole methane fermentation is approximated as shown in the following formula (I), the substance balance is calculated, and it can be confirmed by the approximate analysis.
Agricultural or forest biomass is a polymer whose main component is cellulose produced by the polymerization of (C 6 H 10 O 5 ). In nature, many microorganisms and methane-fermenting bacteria cause a decomposition reaction similar to the following. It is thought to be done.

Figure 2020125236
Figure 2020125236

1つのセルロース単位(C10)から3分子のメタンガスと3分子の炭酸ガスが分解によって発生する。理論的には、固形セルロースが100%分解された場合には、セルロース162kgと水18kgからメタンガス48kgと炭酸ガス132kgが発生することになる。この場合は化学量論的には、原料のバイオマス資源の含水率は、{18/(162+18)}×100、即ち10重量%である。 Three molecules of methane gas and three molecules of carbon dioxide gas are generated by decomposition from one cellulose unit (C 6 H 10 O 5 ). Theoretically, when 100% of solid cellulose is decomposed, 162 kg of cellulose and 18 kg of water generate 48 kg of methane gas and 132 kg of carbon dioxide gas. In this case, stoichiometrically, the water content of the raw material biomass resource is {18/(162+18)}×100, that is, 10% by weight.

現実的なメタン発酵反応においては、農産バイオマス原料の平均の分解率は2/3(66.7%)程度であると考えられるので、農産バイオマス原料の分解率を2/3とし、圧搾脱水した後の発酵堆肥の含水率を60重量%とした場合には、メタン発酵反応の前後のバイオマス原料と発酵堆肥以外の他の物質の出入りのない系を前提とした場合には、以下に示す物質収支計算からバイオマス原料の含水率を求めると、その含水率は36.5重量%となる。 In a realistic methane fermentation reaction, the average decomposition rate of the agricultural biomass raw material is considered to be about 2/3 (66.7%), so the decomposition rate of the agricultural biomass raw material was set to 2/3 and compressed and dehydrated. When the water content of the subsequent fermented compost is set to 60% by weight, the substances shown below are used, assuming that the biomass raw material before and after the methane fermentation reaction and a system other than the fermented compost do not enter and exit. When the water content of the biomass raw material is calculated from the balance calculation, the water content is 36.5% by weight.

これは「反応で消費される水分量と発酵堆肥の含水量の合計量(水のOUTPUT量)」を「バイオマス原料の含水率(水のINPUT量)」だけで賄うとすると、バイオマス原料の含水率は36.5重量%のものが必要であることを意味する。バイオマス原料の含水率が36.5重量%に満たない水分量の少ないものを使用する場合は、その差引量だけ反応系の水量が減少していくので、減少量を補充して系内の循環に必要な水量をほぼ一定になるように保つことが必要で、メタン発酵をスムーズに進めるにはバイオマス粗砕原料の表面を濡らし、反応に関与する菌体類と良好に接触混合させることが重要である。そのために系内に貯留する反応水を外部循環スプレイ方式により原料の表面に乱流状に流下させて固液混合を進める。そのようにして必要な水量を系内に確保して反応を進める。 This means that if "the total amount of water consumed in the reaction and the water content of the fermented compost (the amount of water output)" is covered only by the "moisture content of the biomass material (the input amount of water)," the water content of the biomass material It means that the rate needs to be 36.5% by weight. When using a biomass raw material with a low water content of less than 36.5% by weight, the amount of water in the reaction system will decrease by the subtracted amount, so supplement the decreased amount to circulate in the system. It is necessary to keep the amount of water necessary for the methane fermentation to be almost constant, and it is important to wet the surface of the coarsely crushed biomass raw material and to make good contact and mixing with the bacterial cells involved in the reaction in order to promote methane fermentation smoothly. Is. Therefore, the reaction water stored in the system is turbulently flowed down to the surface of the raw material by the external circulation spray method to promote solid-liquid mixing. In this way, the required amount of water is secured in the system to proceed the reaction.

具体的には、上記の式(I)に準拠して、バイオマス原料の絶対乾燥品162kgを基準にする収支計算すると、圧搾堆肥中の残存バイオマス(セルロース不完全分解物と増殖菌体の合計量である乾燥品)は当初の量(162kg)の1/3の54kgであるから、堆肥中の水分量をMkgとすれば、{M/(54+M)}×100=60の関係が成り立つから、この関係式から堆肥中の水分量(M)は81kgとなる。圧搾堆肥は、バイオマス不完全分解物と菌体の合計の乾燥品54kgと水分81kgであるので、合計で135kgとなる。 Specifically, based on the above formula (I) and calculating the balance based on 162 kg of absolutely dried biomass raw material, the residual biomass in the compressed compost (the total amount of the incompletely decomposed product of cellulose and proliferating cells) Since the dry product) is 54 kg, which is 1/3 of the initial amount (162 kg), the relationship of {M/(54+M)}×100=60 is established if the water content in the compost is Mkg. From this relational expression, the water content (M) in the compost is 81 kg. Since the compressed compost is 54 kg of the total dry matter of biomass incomplete decomposition products and bacterial cells and 81 kg of water, the total amount is 135 kg.

一方、メタン発酵の反応前後でその他の物質の出入りが無い系で、分解率2/3で堆肥中の含水率がちょうど60重量%になるバイオマス原料の含水量をNkgとすれば、「メタン発酵の反応前のバイオマス原料の重量+含有水分量=反応後のバイオマスの分解量+堆肥乾燥品残存バイオマスの重量+堆肥中の水分量」の関係が成り立つ。これを式(I)に準拠して数式で表すと次のようになる。 On the other hand, if the moisture content of the biomass feedstock is Nkg, the decomposition rate is 2/3 and the moisture content in the compost is just 60% by weight in a system where other substances do not come and go before and after the methane fermentation reaction. The relationship of “weight of biomass raw material before reaction+content of water content=decomposition amount of biomass after reaction+weight of residual biomass of compost dried product+water content of compost” is established. When this is expressed by a mathematical formula based on the formula (I), it is as follows.

Figure 2020125236
Figure 2020125236

この関係式から、バイオマス原料の含水量(N)は93kgとなる。従って、圧搾脱水堆肥中の含水率を60重量%にするためのバイオマス原料の含水率は、93/(162+93)×100=36.5となり、バイオマス原料の含水率は36.5重量%となる。 From this relational expression, the water content (N) of the biomass raw material is 93 kg. Therefore, the water content of the biomass raw material for making the water content in the compressed dehydrated compost 60% by weight is 93/(162+93)×100=36.5, and the water content of the biomass raw material is 36.5% by weight. ..

同様にして、メタン発酵におけるバイオマス原料の分解率を平均2/3(66.7%)として、発酵堆肥を圧搾脱水した後の堆肥の含水率を55重量%とした場合には、バイオマス原料の含水率が32重量%のものが必要となり、圧搾脱水した後の堆肥の含水率を50重量%とした場合には、同様の条件下での物質収支計算からバイオマス原料の含水率が29重量%のものが必要となる。 Similarly, when the decomposition rate of the biomass raw material in methane fermentation is set to 2/3 (66.7%) on average, and the moisture content of the compost after pressing and dehydrating the fermented compost is 55% by weight, A water content of 32% by weight is required, and if the water content of the compost after pressing and dehydration is 50% by weight, the water content of the biomass raw material is 29% by weight from the mass balance calculation under the same conditions. You will need one.

具体例として、含水率30重量%のバイオマス原料1,000kgを使用してメタン発酵した場合について、その物質収支を計算すると以下のようになる。
バイオマス原料の分解率2/3(66.7%)、堆肥の含水率を60重量%にした場合には、原料中の絶対乾燥バイオマス量は700kg、原料中の含水量は300kgであり、原料中のバイオマス分解量は700kgの2/3で467kgとなり、発酵堆肥の乾燥品重量は700kgの1/3で233kgとなる。
上記の式(I)に準拠すると、
メタンガス発生量=(467/162)×48=138kg、
メタンガスと炭酸ガスが等量とした場合、
総バイオガス発生量=22.4×(138/16)×2=387m
発酵堆肥中の水分量=233×(60/40)=350kg
メタン発酵反応で消費される水分量=467×(18/162)=52kg
バイオマス原料中の水分量―反応で消費される水分量=300−52=248kg
発酵系から持ち出される水分量
=発酵堆肥中の水分量―(原料中の水―反応消費水)
=350−(300−52)=102kg
従って、この場合にはメタン発酵を1回行う毎にバイオマス原料1,000kgあたり102kgの水が反応系から持出されるので、反応循環系の反応水が減少してくることとなる。これは次の発酵反応の開始の前などにこの水分を補充すればよい。
As a specific example, in the case of methane fermentation using 1,000 kg of a biomass raw material having a water content of 30% by weight, the substance balance is calculated as follows.
When the decomposition rate of the biomass material is 2/3 (66.7%) and the water content of the compost is 60% by weight, the absolute dry biomass content in the material is 700 kg and the water content in the material is 300 kg. The amount of biomass decomposed in 2/3 of 700 kg is 467 kg, and the weight of dried fermented compost is 1/3 of 700 kg, which is 233 kg.
According to the above formula (I),
Amount of methane gas generated = (467/162) x 48 = 138 kg,
If methane gas and carbon dioxide gas are equal,
The total biogas generation amount = 22.4 × (138/16) × 2 = 387m 3
Moisture content in fermented compost = 233 x (60/40) = 350 kg
Water consumption in methane fermentation reaction = 467 x (18/162) = 52 kg
Water content in biomass feedstock-Water content consumed in reaction = 300-52 = 248 kg
Moisture content taken out from the fermentation system = Moisture content in the fermented compost-(Water in raw material-Water consumed by reaction)
=350-(300-52)=102kg
Therefore, in this case, 102 kg of water is taken out from the reaction system per 1,000 kg of the biomass material each time methane fermentation is performed, so that the reaction water in the reaction circulation system decreases. This may be supplemented with this water before starting the next fermentation reaction.

以上の検討結果は次のことを意味する。即ち、これはメタン発酵反応の前後の他の物質の出入りのない系を前提とした反応系で導かれたものであって、例えば、得られる圧搾脱水堆肥中の含水率が60重量%のものの場合には、バイオマス原料の含水率を36.5重量%とすれば、バイオマス原料に含まれる水分量と得られる堆肥によって持ち出される水分量とがバランスし、不足する水分を追加したり、余った水分を排出することなくメタン発酵を継続して実行させることができることを示している。同様に、圧搾脱水堆肥中の含水率が55重量%の場合にはバイオマス原料の含水率を32重量%とし、堆肥中の含水率が50重量%の場合にはバイオマス原料の含水率を29重量%とすればこの関係が成り立つ。 The above examination results mean the following. That is, this was derived by a reaction system premised on a system in which other substances do not come and go before and after the methane fermentation reaction, and for example, the water content of the obtained compressed dehydrated compost is 60% by weight. In this case, if the water content of the biomass raw material is set to 36.5% by weight, the amount of water contained in the biomass raw material and the amount of water taken out by the obtained compost are balanced, and insufficient water is added or surplus is left over. It shows that the methane fermentation can be continued without draining water. Similarly, when the water content in the compressed dehydrated compost is 55% by weight, the water content of the biomass raw material is 32% by weight, and when the water content in the compost is 50% by weight, the water content of the biomass raw material is 29% by weight. This relationship is established if it is expressed as %.

メタン発酵反応においては、その反応に消費される水分量は、上記式(I)に示すように、乾燥したバイオマス原料の約10重量%である。このような場合に、含水率が60重量%の圧搾脱水堆肥とするためには、バイオマス原料としてその含水率が36.5重量%よりも少ないものを使用すれば、外部に余分の水分を排出することなくメタン発酵を進行させることができる。バイオマス原料として含水率が35重量%以下のより水分の少ない乾燥したものを使用する場合には、反応系内の水分量が徐々に減少してゆくので、不足する水分を適宜補給すればよい。その場合の補給水として、他の工場で発生した菌体を含む発酵消化汚泥水や家畜の低濃度排水などを利用すれば、経済的にも有利となる。 In the methane fermentation reaction, the amount of water consumed in the reaction is about 10% by weight of the dried biomass raw material as shown in the above formula (I). In such a case, in order to obtain a compressed dehydrated compost having a water content of 60% by weight, use a biomass material having a water content of less than 36.5% by weight to discharge excess water to the outside. It is possible to proceed with methane fermentation without doing so. When a dried material having a water content of 35% by weight or less and a low water content is used as the biomass raw material, the water content in the reaction system gradually decreases, and thus the insufficient water content may be appropriately supplemented. In that case, it is economically advantageous to use fermented digestion sludge water containing bacterial cells generated in other factories or low-concentration wastewater of livestock as supplementary water.

なお、農産バイオマスの乾燥原料は、成長段階における細胞組織の含水率が大きく、乾燥状態では細胞膜で仕切られた多数の微細な空間を持つものが多い。例えれば、スポンジに似たような組織の状態と考えられる。そのため、乾燥品の比重は小さく、水と接すると徐々に含水率を上げて、75〜80重量%程の含水率を持つものも多い。これは乾燥原料の3〜4倍程の重量の水分を含むこととなり、乾燥品と充分に濡れたものとでは含水量に非常に大きな差が生じる。パイロット実験によれば発酵初期の原料含水率増大に伴う循環水の補充量は大きくなり、発酵中期は補充することなく安定し、発酵終期ではその放出により、中継槽の水量が増加する傾向が見られた。コマーシャルプラントでのバイオマス原料や堆肥の含水率の変化は、設備や運転方法によっても数値が変わるので、大型実用化実験プラントで確認することが望ましい。 It should be noted that many dry raw materials for agricultural biomass have a large water content of cell tissues in the growth stage, and have many fine spaces partitioned by cell membranes in a dry state. For example, it is considered to be a tissue state similar to a sponge. Therefore, the specific gravity of the dried product is small, and when it comes into contact with water, the water content gradually increases, and many have a water content of about 75 to 80% by weight. This contains about 3 to 4 times the weight of water as the dry raw material, and there is a very large difference in water content between the dry product and the fully wet product. According to the pilot experiment, the replenishment amount of circulating water increases with the increase of the raw material water content in the early stage of fermentation, and it stabilizes without replenishment in the middle stage of fermentation, and it is observed that the amount of water in the relay tank increases due to its release at the end of fermentation. Was given. Since changes in the water content of biomass raw materials and compost in commercial plants also change depending on the equipment and operating method, it is desirable to confirm it in a large-scale practical experiment plant.

次に、以上のような本発明の方法によるメタンガスと発酵堆肥の製造方法について、図1によって説明する。
メタン発酵槽1に原料のバイオマス資源の粗砕物2を充填する。メタン発酵菌を含む反応水は中継槽6に貯留されており、この反応水が配管9と外部循環配管4を通って供給され、メタン発酵槽1内に充填されたバイオマス資源の粗砕物2の上部に設けられたスプレーノズル3から充填物の上に散布される。一定量の反応水が導入されたら、その後は外部循環配管4からスプレーノズル3を通してこの反応水を繰り返して循環して散布し、これを長時間継続することによってメタン発酵反応を行わせる。このとき散布する反応水の量は、メタン発酵槽1内に充填されたバイオマス資源の粗砕物3の表面に反応水が流れて、その表面が十分に濡れる状態となるような量で循環させる。
Next, a method for producing methane gas and fermented compost by the method of the present invention as described above will be described with reference to FIG.
A methane fermentation tank 1 is filled with a coarsely crushed material 2 of a biomass resource as a raw material. The reaction water containing the methane-fermenting bacteria is stored in the relay tank 6, and the reaction water is supplied through the pipe 9 and the external circulation pipe 4, and the methane fermentation tank 1 is filled with the biomass crushed product 2 It is sprayed on the filling from the spray nozzle 3 provided at the upper part. After a certain amount of reaction water is introduced, thereafter, this reaction water is repeatedly circulated and sprayed from the external circulation pipe 4 through the spray nozzle 3, and the methane fermentation reaction is carried out by continuing this for a long time. The amount of the reaction water sprayed at this time is circulated so that the reaction water flows on the surface of the coarsely crushed material 3 of the biomass resource filled in the methane fermentation tank 1 and the surface is sufficiently wet.

メタン発酵槽1を密閉状態にして、内部に充填されたバイオマス資源の粗砕物2に反応水の散布が開始されると、メタン発酵槽1の内部の空気中に存在する酸素が発熱を伴う好気発酵菌の発酵反応により徐々に消費されてゆき、最終的に内部の空間は窒素ガスと炭酸ガスの混合ガス(不活性ガス)だけで満たされた状態となる。この好気発酵反応による酸素を消費する過程を本明細書では「好気発酵期」という。好気発酵中は発熱反応であるため原料の温度上昇がみられるが、ガス発生による容積変化は殆ど認められない。 When the methane fermentation tank 1 is hermetically closed and the spraying of the reaction water to the coarsely crushed biomass resource 2 filled therein is started, the oxygen present in the air inside the methane fermentation tank 1 is accompanied by heat generation. It is gradually consumed by the fermentation reaction of the air-fermenting bacteria, and finally the internal space is filled with only a mixed gas of nitrogen gas and carbon dioxide (inert gas). The process of consuming oxygen by the aerobic fermentation reaction is referred to as "aerobic fermentation period" in the present specification. During aerobic fermentation, the temperature of the raw material rises because of the exothermic reaction, but almost no volume change due to gas generation is observed.

メタン発酵槽1の内部の酸素が完全に消費された状態になり、更に反応水の散布を継続すると嫌気性のメタン発酵菌によるメタン発酵反応へと進んでゆき、メタンガスを含むバイオガスが発生し始める。この嫌気性のメタン発酵菌による反応が開始してバイオガスが発生し始めてその発生量が増加してゆく過程を本明細書では「メタン発酵反応開始期」という。メタン発酵へ移行したことは系内圧力上昇とガス容積の増大で確認できるが、発酵にともなう熱の発生は殆ど認められない。発生したバイオガスとメタン発酵槽1の内部に存在していた窒素ガス等の混合ガスはガスホルダー7に送られる。 When the oxygen in the methane fermentation tank 1 is completely consumed, and when the reaction water is further sprayed, the methane fermentation reaction by the anaerobic methane-fermenting bacteria proceeds and biogas containing methane gas is generated. start. In the present specification, a process in which the reaction by the anaerobic methane-fermenting bacterium starts, biogas starts to be generated, and the amount of biogas generated increases is referred to as a "methane fermentation reaction start period". The transition to methane fermentation can be confirmed by an increase in system pressure and an increase in gas volume, but almost no heat generation due to fermentation is observed. The generated biogas and the mixed gas such as nitrogen gas existing in the methane fermentation tank 1 are sent to the gas holder 7.

更に反応水の散布を継続すると、バイオガスの発生量が安定的となり、一定期間の間は安定した状態でメタン発酵反応が進行し、一定の発生量(流量速度)でバイオガスが発生する。この状態を本明細書では「定常発酵反応期」という。発生したメタンガスを含むバイオガスはガスホルダー7に貯留される。 When the reaction water is further sprayed, the amount of biogas generated becomes stable, the methane fermentation reaction proceeds in a stable state for a certain period, and biogas is generated at a certain amount (flow rate). This state is referred to as "steady state fermentation reaction period" in the present specification. The biogas containing the generated methane gas is stored in the gas holder 7.

バイオマス資源の粗砕物2のおよそ2/3程度が分解したところで反応を終了する。メタン発酵の停止は、メタン発酵槽1の底部の不活性ガス注入管10から少量の酸素ガスを含む窒素ガス等の不活性ガスを注入することによって行う。不活性ガスの注入を開始するとメタン発酵反応が低下してゆき、メタンガスの発生量が低下し、最終的にゼロとなってメタン発酵が停止する。この不活性ガスの注入開始から不活性ガスの注入停止までを、本明細書では「メタン発酵反応終了期」という。不活性ガスの注入によってメタン発酵槽1から追い出されるメタンガスと不活性ガスを含むバイオガスはガスホルダー7に送られる。 The reaction ends when about 2/3 of the roughly crushed biomass resource 2 is decomposed. The methane fermentation is stopped by injecting an inert gas such as nitrogen gas containing a small amount of oxygen gas from the inert gas injection pipe 10 at the bottom of the methane fermentation tank 1. When the injection of the inert gas is started, the methane fermentation reaction decreases, the amount of methane gas generated decreases, and finally it becomes zero, and the methane fermentation stops. In this specification, the process from the start of the injection of the inert gas to the stop of the injection of the inert gas is referred to as the "end stage of the methane fermentation reaction". Biogas containing the methane gas and the inert gas, which is expelled from the methane fermentation tank 1 by the injection of the inert gas, is sent to the gas holder 7.

なお、このような不活性ガスの注入は、その中に含まれる微量の酸素が毒素の存在のようにメタン発酵菌に作用し、発酵速度が急激に低下してメタンガスの発生が停止する。酸素ガスの拡散混合に伴い急激かつ短時間のうちにメタンガスの発生量がゼロとなってメタン発酵が停止する。発酵槽内部は充填層底部からの不活性ガスの注入による上昇気流と上部からの反応水の液滴流下による充填層内部の乱流混合と発酵槽上部空間での反応水のスプレー液滴による強制混合により良好なガスの混合状態となっている。 In addition, in the injection of such an inert gas, a very small amount of oxygen contained therein acts on the methane-fermenting bacteria like the presence of a toxin, and the fermentation rate is rapidly reduced to stop the generation of methane gas. Along with the diffusive mixing of oxygen gas, the amount of methane gas generated becomes zero rapidly and in a short time, methane fermentation is stopped. Inside the fermenter, turbulent mixing inside the packed bed due to upward airflow due to injection of inert gas from the bottom of the packed bed and drop of reaction water from above and forced by spray droplets of reaction water in the space above the fermenter Due to the mixing, the gas is in a good mixed state.

また、このメタン発酵設備においては、メタンガスとともにほぼ同量の炭酸ガスも発生し、少量の窒素ガスも含んだものが発生する。本明細書においては、上述のように、これらのメタンガスや炭酸ガスなどを含む混合ガスを「バイオガス」と称し、このバイオガスの中のメタンガス成分のみを指す場合にそれを「メタンガス」と称することとする。 Further, in this methane fermentation facility, almost the same amount of carbon dioxide gas is generated together with methane gas, and a small amount of nitrogen gas is also generated. In the present specification, as described above, a mixed gas containing these methane gas and carbon dioxide gas is referred to as “biogas”, and when only a methane gas component in this biogas is referred to, it is referred to as “methane gas”. I will.

反応終了後は、最初に導入した反応水を中継槽6に戻し、さらに得られたメタン発酵槽1の中から発酵堆肥を取り出して、これを圧搾機にて水分を75重量%以下、好ましくは60重量%まで圧搾脱水する。更に、高性能の圧搾脱水機を使用すれば50重量%程度まで脱水することが可能である。脱水により出てきた反応水も中継槽6にもどす。得られた発酵堆肥の処理が終了した後、次のバッチとして、再び原料のバイオマス資源の粗砕物2をメタン発酵槽1に充填して、同様の運転操作でバイオガスと含水率75重量%以下の発酵堆肥を得ることができる。 After completion of the reaction, the reaction water initially introduced is returned to the relay tank 6, and the fermented compost is taken out from the obtained methane fermentation tank 1, and the water content is 75% by weight or less, preferably with a press. Depressurize to 60% by weight. Furthermore, if a high-performance compression dehydrator is used, it is possible to dehydrate up to about 50% by weight. The reaction water that came out by dehydration is also returned to the relay tank 6. After the treatment of the obtained fermented compost is completed, as a next batch, the crushed material 2 of the raw material biomass resource is charged into the methane fermentation tank 1 again, and the biogas and the water content of 75% by weight or less are obtained by the same operation. The fermented compost of can be obtained.

この一連の発酵工程において、例えば、含水率が60重量%の圧搾脱水堆肥を得る場合に、バイオマス資源の粗砕物2の含水率が36.5%であれば特に反応水としての水分を補給することなく、長時間連続した発酵反応を行うことができる。又、バイオマス資源の粗砕物2として、例えば、その含水率が35%以下のより乾燥したものを用いた場合には、系内に貯留されていた循環反応水が減少するので、その水量が基準値以下にならないように中継槽6から補充する。 In this series of fermentation steps, for example, in the case of obtaining compressed dehydrated compost with a water content of 60% by weight, if the water content of the coarsely pulverized material 2 of the biomass resource is 36.5%, water as reaction water is especially replenished. It is possible to carry out a continuous fermentation reaction for a long period of time. Further, as the coarsely crushed biomass resource 2, for example, when a dried one having a water content of 35% or less is used, the circulating reaction water stored in the system decreases, so It is replenished from the relay tank 6 so that it does not fall below the value.

次に、メタン発酵反応設備の運転操作に関して、本発明のもう一つの特徴的技術である発生するバイオガス切り換えの発明について説明する。
図2に示すように、本発明は、メタン発酵槽Aとメタン発酵槽Bのような一対をなす同一容量のメタン発酵槽から発生するバイオガスの取り扱いに関する。一般的に、このようなメタン発酵槽では、それぞれのメタン発酵槽において次のような運転サイクルで回分式の発酵反応を行う。まず、原料のバイオマス資源の粗砕物を充填した後、密閉状態で充填層の上から反応水を循環してスプレーしてこれを継続することによってメタン発酵に向けての操作を開始する。
Next, regarding the operation of the methane fermentation reaction equipment, the invention of switching the generated biogas which is another characteristic technique of the present invention will be described.
As shown in FIG. 2, the present invention relates to handling of biogas generated from a pair of methane fermenters having the same capacity, such as a methane fermenter A and a methane fermenter B. Generally, in such a methane fermentation tank, a batch-type fermentation reaction is performed in each methane fermentation tank in the following operation cycle. First, after filling the roughly crushed material of the biomass resource as a raw material, the reaction water is circulated and sprayed from the top of the packed bed in a sealed state, and this is continued to start the operation for methane fermentation.

まず、反応水の散布を開始した段階ではメタン発酵槽の内部に酸素が残留するため、好気性発酵菌による発熱を伴う発酵反応が起こる。この段階では、好気発酵による発熱が見られるが、メタンガス等のガスの発生は見られない(好気発酵期)。反応水の散布を継続すると、系内の酸素が消費されつくして嫌気性のメタン発酵反応が開始し、メタンガスの発生が始まり、その発生量が徐々に増加してゆく(メタン発酵反応開始期)。この発生するバイオガスの発生量(流量速度)が徐々に増加してゆく段階を過ぎると、バイオガスの発生量が安定的となり、一定期間の間は安定した状態でメタン発酵反応が進行し、一定の発生量(流量速度)でバイオガスが発生する(定常発酵反応期)。メタン発酵が進行して内部のバイオマス原料が減少して発酵に関与する原料が減ることによりバイオガスの発生量(流量速度)が次第に減少してゆき、発生量は減少し続ける(メタン発酵反応終了期)。この時期に合わせて、メタン発酵槽の底部から微量の酸素ガスを含む不活性ガスを注入し、残存するバイオガスの追い出しとメタン発酵の完全停止を行う。 First, since oxygen remains inside the methane fermentation tank at the stage when the spraying of the reaction water is started, a fermentation reaction accompanied by heat generation by the aerobic fermenting bacterium occurs. At this stage, heat is generated due to aerobic fermentation, but no gas such as methane gas is generated (aerobic fermentation period). When the reaction water is continuously sprayed, oxygen in the system is exhausted and the anaerobic methane fermentation reaction starts, the generation of methane gas begins and the amount of the generated gas gradually increases (methane fermentation reaction start period). .. When the amount of biogas generated (flow rate) gradually increases, the amount of biogas generated becomes stable, and the methane fermentation reaction proceeds in a stable state for a certain period. Biogas is generated at a constant amount (flow rate) (steady fermentation reaction period). The amount of biogas generated (flow rate) gradually decreases as methane fermentation progresses and the amount of biomass raw materials inside decreases and the amount of raw materials involved in fermentation decreases. Period). At this time, an inert gas containing a trace amount of oxygen gas is injected from the bottom of the methane fermentation tank to expel the remaining biogas and completely stop the methane fermentation.

定常発酵反応期では、温度などの物理的条件とPH、菌体濃度、原料組成などの化学的条件の変化によりガス発生量は変化するが、それらの条件が安定してほぼ一定であれば、ほぼ一定の発生量(流量速度)でバイオガスが発生する。 In the stationary fermentation reaction period, the gas generation amount changes due to changes in physical conditions such as temperature and chemical conditions such as PH, cell concentration, and raw material composition, but if those conditions are stable and almost constant, Biogas is generated at a substantially constant amount (flow rate).

本発明においては、一対をなす同一形状で同一容量のメタン発酵槽を有するメタン発酵設備において、一方のメタン発酵槽11(メタン発酵槽A)がメタン発酵の反応を開始してバイオガスの発生が開始したメタン発酵反応開始期のタイミングに合わせて、他方の発酵槽12(メタン発酵槽B)ではすでに進行してきたメタン発酵の反応終了期となるように運転開始の時期を調整しておく。そして、このタイミングに合わせて、他方の発酵槽12(メタン発酵槽B)では不活性ガスの注入を開始し、その中に残留しているバイオガスを追出し置換する。さらに、この不活性ガスによる追い出しに際しては、注入する不活性ガスの注入量(流量速度)が、メタン発酵槽11(メタン発酵槽A)で発生するバイオガスの発生量(流量速度)と等しくなるように調節しながら供給することが必要である。 In the present invention, in a methane fermentation facility having a pair of methane fermentation tanks having the same shape and the same capacity, one of the methane fermentation tanks 11 (methane fermentation tank A) starts the reaction of methane fermentation to generate biogas. In accordance with the timing of the started methane fermentation reaction start period, the operation start time is adjusted in advance so that the other fermentation tank 12 (methane fermentation tank B) is at the reaction end time of the methane fermentation that has already proceeded. Then, in synchronization with this timing, the other fermenter 12 (methane fermenter B) starts to inject the inert gas, and the biogas remaining therein is expelled and replaced. Further, in the purging by the inert gas, the injection amount (flow rate) of the inert gas to be injected becomes equal to the generation amount (flow rate) of the biogas generated in the methane fermentation tank 11 (methane fermentation tank A). It is necessary to supply it while adjusting.

メタン発酵槽Aとメタン発酵槽Bでそれぞれ発生するバイオガスは、両者を一つにまとめてバイオガスホルダーに導入する。図2に示すように、定常発酵反応期に発生する高濃度バイオガスはバイオガスホルダー26に、メタン発酵反応開始期およびメタン発酵反応終了期に発生する低濃度バイオガスはバイオガスホルダー27にそれぞれ捕集する。 The biogas generated in the methane fermentation tank A and the biogas generated in the methane fermentation tank B are introduced together into a biogas holder. As shown in FIG. 2, the high-concentration biogas generated in the stationary fermentation reaction period is stored in the biogas holder 26, and the low-concentration biogas generated in the methane fermentation reaction start period and the methane fermentation reaction end period is stored in the biogas holder 27, respectively. To collect.

メタン発酵反応終了期に注入する不活性ガスは、メタン発酵を完全に停止させて発酵槽内に充満しているバイオガスを置換するためのものであり、一般的には窒素ガスや炭酸ガスであり、微量の酸素を含んでいるのが望ましい。酸素はメタン発酵を停止させる作用があるので、不活性ガス中に微量の酸素を含んでいると好都合である。実用的には、農産バイオマスのメタン発酵工場で使用している加温用ユーティリティーボイラーや付帯する植物工場加温ボイラーなどのバイオガス燃焼排出ガスを用いると都合がよい。この燃焼排ガスをジェットスクラバーによって吸引・冷却・洗浄したものを使用すれば良い。そのためのボイラーの燃焼条件としては空気過剰係数が1.10、好ましくは1.08〜1.10での完全燃焼であることが望ましい。 The inert gas injected at the end of the methane fermentation reaction is to completely stop the methane fermentation and replace the biogas filled in the fermentor, and is generally nitrogen gas or carbon dioxide gas. Yes, it is desirable to contain a trace amount of oxygen. Since oxygen has the effect of stopping methane fermentation, it is convenient to include a trace amount of oxygen in the inert gas. Practically, it is convenient to use biogas combustion exhaust gas such as a heating utility boiler used in a methane fermentation plant for agricultural biomass or an accompanying plant factory heating boiler. This combustion exhaust gas may be sucked, cooled and washed by a jet scrubber. As a combustion condition of the boiler for that purpose, it is desirable that complete combustion with an excess air coefficient of 1.10, preferably 1.08 to 1.10.

メタンガス56容積%の高濃度バイオガスを上記の燃焼条件で完全燃焼させて得られる燃焼排ガスを不活性ガスとしてメタン発酵反応終了期の発酵槽内のバイオガス追い出しに使用する。この時、発酵初期の低濃度バイオガスと同じ容積流量で発酵槽底部から供給し発酵槽上部から流出する二つの低濃度バイオガスを合流して得られる低濃度のメタンガス28容積%(濃度一定)のガスはO2ガスの残存容積%が1.0容積%未満に維持されるので、O2ガス濃度とCH4ガス濃度と共にCH4ガスの爆発限界値から大きく離れているので、燃料ガスとしては安全に扱えると判断している。尚、発酵反応終了期のバイオマス残渣(堆肥)の中にも好気発酵菌類が存在しているので、それらの菌類の働きにより微量に存在するO2ガスは更に消費されて、残存O2ガスは更に減少すると考えられる。 The combustion exhaust gas obtained by completely burning the high-concentration biogas of 56% by volume of methane gas under the above combustion conditions is used as an inert gas for expelling biogas in the fermenter at the end of the methane fermentation reaction. At this time, 28% by volume of low-concentration methane gas (concentration constant) obtained by joining two low-concentration biogas supplied from the bottom of the fermentation tank and flowing out from the top of the fermentation tank at the same volumetric flow rate as the low-concentration biogas at the beginning of fermentation Since the remaining volume% of O2 gas is maintained at less than 1.0% by volume, the gas of is far away from the explosion limit value of CH4 gas together with the O2 gas concentration and the CH4 gas concentration, and can be safely handled as a fuel gas. I have decided. Since aerobic fermentative fungi also exist in the biomass residue (compost) at the end of the fermentation reaction, a small amount of O2 gas present is further consumed by the action of these fungi, and residual O2 gas is further consumed. It is expected to decrease.

又、設備・操作に関する安全対策として、ガス漏洩検知器の設置、静電気除去、日々のガス濃度分析による確認、及びバイオガスが通過する配管のフランジに40メッシュ金網をパッキングに挟んで取り付けることによる火災防止対策の実施を行うことが好ましい。 In addition, as a safety measure regarding equipment and operation, a gas leak detector is installed, static electricity is removed, daily gas concentration analysis is used for confirmation, and a fire is caused by attaching a 40-mesh wire mesh between packings on the flange of the pipe through which biogas passes. It is preferable to implement preventive measures.

上述したような本発明の方法によってメタン発酵設備の運転操作を行うことにより、上記した式(I)基づく理論計算上では、定常発酵反応期にはバイオガスホルダー26にメタンガス濃度が約56容積%の高濃度のバイオガスが得られる。また、メタン発酵反応開始期とメタン発酵反応終了期には、一対のメタン発酵槽の切り換えのタイミングを一緒にそろえることと、メタン発酵槽Aのメタン発酵反応開始期にそろえて開始したメタン発酵槽Bでの不活性ガスの注入の流量速度をコントロールすることによって、バイオガスホルダー27にはメタンガス濃度が約28容積%でほぼ一定の濃度の低濃度のバイオガスが得られる。 By operating the methane fermentation equipment according to the method of the present invention as described above, in the theoretical calculation based on the above formula (I), the methane gas concentration in the biogas holder 26 is about 56% by volume during the steady fermentation reaction period. A high concentration of biogas can be obtained. Also, in the methane fermentation reaction start period and the methane fermentation reaction end period, the timing of switching between a pair of methane fermentation tanks should be aligned together, and the methane fermentation tank started at the same time as the methane fermentation tank A start period. By controlling the flow rate of the inert gas injection in B, the biogas holder 27 can obtain a low-concentration biogas having a methane gas concentration of about 28% by volume and a substantially constant concentration.

この一対の同一容量のメタン発酵槽による上述のメタン発酵反応プロセスの時間経過による発生するメタンガスの濃度の変化を図3に示す。実線のグラフがメタン発酵槽Aでのメタンガスの濃度変化であり、一点鎖線のグラフがメタン発酵槽Bでのメタンガスの濃度変化である。また、メタン発酵槽Aの場合で言えば、IとVがメタン発酵反応開始期であり、IIが定常発酵反応期であり、IIIがメタン発酵反応終了期である。メタン発酵槽Bの場合には、IとVがメタン発酵反応終了期である。IVが定常発酵反応期であり、IIIがメタン発酵反応開始期である。 二つの発酵槽は、それぞれの運転サイクルをこの図3に示すように一方の発酵槽がメタン発酵反応開始期のときに他方の発酵槽がメタン発酵反応終了期となるように運転のタイミングを調整する。 FIG. 3 shows changes in the concentration of methane gas generated over time in the above-described methane fermentation reaction process by the pair of methane fermentation tanks having the same capacity. The solid line graph shows the methane gas concentration change in the methane fermentation tank A, and the dashed-dotted line graph shows the methane gas concentration change in the methane fermentation tank B. Further, in the case of the methane fermentation tank A, I and V are the methane fermentation reaction start period, II is the steady fermentation reaction period, and III is the methane fermentation reaction end period. In the case of the methane fermentation tank B, I and V are the methane fermentation reaction end period. IV is a stationary fermentation reaction period, and III is a methane fermentation reaction start period. As for the two fermenters, as shown in FIG. 3, the operation timing of each fermenter is adjusted so that when one fermentor is in the methane fermentation reaction start period, the other fermenter is in the methane fermentation reaction end period. To do.

例えば、図3の第Iサイクルのスタート時点では、メタン発酵槽Aのメタン発酵の反応が開始しバイオガスの発生が始まる。この同じタイミングでメタン発酵槽Bでは、メタン発酵の定常反応が終了し、反応終了のための不活性ガスの注入を開始する。第Iサイクルの最後になると、メタン発酵槽Aではメタン発酵の反応がほぼ100%の状態となり、メタン発酵槽Bでは内部のバイオガスの追い出し・置換が完了して、槽内がほぼ不活性ガス100%の状態となる。第IIサイクルでは、メタン発酵槽Aではメタン発酵反応が進行し約56%の高濃度のバイオガスが得られる。一方、メタン発酵槽Bでは、内部にできた発酵生産品であるバイオマス資源の発酵残滓の取り出し、後処理と次の運転のためのバイオマス原料の粗砕物の仕込みを行い、その後メタン発酵槽Aの進行状況を見ながら反応水の散布を開始し、好気性発酵の反応を進める(好気発酵反応期)。第IIIサイクルでは、メタン発酵槽Aとメタン発酵槽Bが入れ替わって、同様の操作が行われる。 For example, at the start of the I-th cycle in FIG. 3, the methane fermentation reaction in the methane fermentation tank A starts and biogas generation starts. At this same timing, in the methane fermentation tank B, the steady-state reaction of methane fermentation ends, and the injection of an inert gas for ending the reaction starts. At the end of the 1st cycle, in the methane fermentation tank A, the reaction of methane fermentation becomes almost 100%, and in the methane fermentation tank B, the purging and replacement of the biogas inside is completed, and the inside of the tank is almost inert gas. It becomes 100%. In the second cycle II, the methane fermentation reaction proceeds in the methane fermentation tank A, and high concentration biogas of about 56% is obtained. On the other hand, in the methane fermentation tank B, the fermentation residue of the biomass resource, which is the fermentation product formed inside, is taken out, the post-treatment and the coarse crushed material of the biomass raw material for the next operation are charged, and then the methane fermentation tank A Start spraying the reaction water while observing the progress of the reaction, and proceed with the aerobic fermentation reaction (aerobic fermentation reaction period). In the third cycle, the methane fermentation tank A and the methane fermentation tank B are exchanged and the same operation is performed.

上述した一つのメタン発酵槽(メタン発酵槽A)では、図3の第Iサイクルの前段階として、所定の期間前倒しして反応水の散布を開始し、好気性発酵菌による反応を進めておきメタン発酵槽の内部に存在した酸素を完全に消費させる(好気発酵反応期)。この状態で更に反応水の散布を継続することによって嫌気性のメタン発酵菌によるメタン発酵反応が開始し、メタンガスを含むバイオガスガスが発生しはじめる(メタン発酵反応開始期)。 In the above-mentioned one methane fermentation tank (methane fermentation tank A), as a pre-stage of the I-th cycle in FIG. 3, the reaction water is sprinkled forward to start the sprinkling of the reaction water for a predetermined period to advance the reaction by the aerobic fermenting bacteria. The oxygen existing inside the methane fermentation tank is completely consumed (aerobic fermentation reaction period). By continuing to spray the reaction water in this state, the methane fermentation reaction by the anaerobic methane fermentation bacterium starts, and biogas gas containing methane gas starts to be generated (methane fermentation reaction start period).

一方、他のメタン発酵槽(メタン発酵槽B)はこの時がちょうどメタン発酵反応終了期になるようにしており、そのスタートの段階では、メタン発酵槽の内部の空間はバイオガスで100%満たされている。定常発酵反応の終了するこのタイミングで不活性ガス(窒素ガスと炭酸ガスが主成分で微量の酸素を含む)を発酵槽底部の不活性ガス注入管18から供給を開始してメタン発酵反応を完全に停止させる。このときに重要なのは、メタン発酵槽Bでの不活性ガスの注入速度(流量速度)が、メタン発酵槽Aでのメタンガスの発生量(流量速度)と同じになるようにその注入速度を調整することである。 On the other hand, the other methane fermenters (methane fermenter B) are set to end the methane fermentation reaction at this time, and at the start stage, the space inside the methane fermenter is 100% filled with biogas. Has been done. At this timing when the steady fermentation reaction ends, the inert gas (nitrogen gas and carbon dioxide gas are the main components and contains a small amount of oxygen) is started from the inert gas injection pipe 18 at the bottom of the fermentation tank to complete the methane fermentation reaction. To stop. At this time, it is important to adjust the injection rate of the inert gas in the methane fermentation tank B so that the injection rate (flow rate) is the same as the amount of methane gas generated in the methane fermentation tank A (flow rate). That is.

本発明の方法による一対の同一容量のメタン発酵槽からなるメタン発酵設備による上述のメタン発酵反応開始期とメタン発酵反応終了期の運転操作によって、さらに二つのメタン発酵槽AとBから発生するバイオガスを一緒にして混合することによって、メタン発酵反応開始期とメタン発酵反応終了期の期間中のすべてにおいて、メタンガス濃度が約28容積%となるほぼ一定の濃度の低濃度のバイオガスが得られる。 Bio generated from two methane fermentation tanks A and B by the operation operation of the above-mentioned methane fermentation reaction start period and methane fermentation reaction end period by the methane fermentation equipment comprising a pair of methane fermentation tanks of the same capacity according to the method of the present invention. By mixing the gases together, it is possible to obtain a low-concentration biogas having a substantially constant concentration with a methane gas concentration of about 28% by volume during all of the methane fermentation reaction initiation period and the methane fermentation reaction termination period. ..

本発明のこの運転方法によれば、二つの発酵槽から出るバイオガスを混合して得られる低濃度バイオガスは常に一定のメタンガス濃度を保っており、その濃度は高濃度メタンガスの半分の約28容積%となる。このガスには1.0容積%未満のO2ガスを含むが、メタンガスの爆発限界(5.3〜14容積%)の範囲外の濃度であって、安定・安全な取扱ができる。又、メタン発酵反応終了期のメタン発酵槽内バイオガスの追出し置換を理論的に精度良く予測できると共に置換度を上げることにより発酵槽内のメタンガス濃度を下げて、大気への放出ロスをゼロに近づけることも可能となる。その場合も2槽からの混合低濃度バイオガスはメタンガス28容積%で一定値である。この方法によれば、メタンガスの回収率を上げると共に、フレアースタックなどの燃焼設備を設置する必要をなくせる。 According to this operating method of the present invention, the low-concentration biogas obtained by mixing the biogas discharged from the two fermenters always maintains a constant methane gas concentration, and the concentration is about 28 times that of the high-concentration methane gas. It becomes volume%. This gas contains less than 1.0% by volume of O2 gas, but the concentration is outside the range of explosion limit of methane gas (5.3 to 14% by volume), and stable and safe handling is possible. In addition, it is possible to theoretically accurately predict the displacement of biogas in the methane fermentation tank at the end of the methane fermentation reaction, and reduce the concentration of methane gas in the fermentation tank by increasing the degree of substitution to reduce the loss to the atmosphere. It is possible to bring them closer together. Also in that case, the mixed low-concentration biogas from the two tanks has a constant value of 28% by volume of methane gas. According to this method, it is possible to increase the recovery rate of methane gas and eliminate the need to install combustion equipment such as a flare stack.

以上のような本発明の方法によるメタン発酵反応開始期とメタン発酵反応終了期に発生するバイオガスの濃度変化については、以下のような解析によっても確認することができる。 The change in the concentration of biogas generated during the methane fermentation reaction initiation period and the methane fermentation reaction termination period by the method of the present invention as described above can also be confirmed by the following analysis.

まず、メタン発酵槽のメタン発酵反応開始期のメタン発酵槽内のバイオガス濃度の変化について検討する。
ここで、発酵槽内容積をV(m)、発酵槽内のバイオガス濃度をC(容積%)、発生バイオガス流量速度をv1(m/hr)、系外へ流出するバイオガス流量速度をv1(m/hr)、発生するバイオガス濃度をC(容積%)とする。発生するバイオガス濃度Cは、常に100(容積%)で一定である。
メタン発酵槽内外の物質収支から、以下の関係式が導かれる。
First, the change in biogas concentration in the methane fermentation tank at the start of the methane fermentation reaction will be examined.
Here, the inside volume of the fermenter is V 0 (m 3 ), the biogas concentration inside the fermenter is C 1 (volume %), the generated biogas flow rate is v 1 (m 3 /hr), and flows out of the system. The biogas flow rate is v 1 (m 3 /hr), and the generated biogas concentration is C 0 (volume %). The generated biogas concentration C 0 is always constant at 100 (volume %).
From the material balance inside and outside the methane fermentation tank, the following relational expression is derived.

Figure 2020125236
Figure 2020125236

この式(9)は、メタン発酵槽内の不活性ガス濃度(100−C)の減少変化とバイオガス発生量の槽容積倍率の関係を示している。 This formula (9) shows the relationship between the decreasing change in the inert gas concentration (100-C 1 ) in the methane fermentation tank and the tank volume ratio of the biogas generation amount.

次に、メタン発酵槽のメタン発酵反応終了期の不活性ガスの注入による槽内のバイオガス濃度の変化について検討する。
メタン発酵が開始するメタン発酵反応開始期では、発酵槽内の空間が不活性ガス(主成分は窒素ガス)に充満され、メタン発酵開始と共に系内は完全混合の状態で発生するバイオガスに置換されていく現象であったが、メタン発酵反応終了期では不活性ガスの代わりにバイオガスとなり、メタンガスの代わりに不活性ガスとなっているだけである。両ケースともガスの名称が入れ代わっているが、それぞれのガス流量速度vとvを全く同じ条件にして運転するので、どの時間においても式(9)と次の式(16)の数値は同一となる。
Next, the change in biogas concentration in the methane fermentation tank due to the injection of the inert gas at the end of the methane fermentation reaction will be examined.
At the start of the methane fermentation reaction where methane fermentation starts, the space inside the fermenter is filled with an inert gas (mainly nitrogen gas), and when the methane fermentation starts, the system is replaced with biogas generated in a completely mixed state. Although it was a phenomenon that is being carried out, at the end of the methane fermentation reaction, it becomes biogas instead of inert gas, and becomes only inert gas instead of methane gas. In both cases, the names of the gases are interchanged, but since the gas flow rates v 1 and v 2 are operated under exactly the same conditions, the values of equation (9) and the following equation (16) are used at all times. Are the same.

ここでも、発酵槽内容積をV(m)、発酵槽内のバイオガス濃度をC(容積%)、系外へ流出する低濃度バイオガス流量速度をv2(m/hr)、流出する低濃度バイオガスの濃度をC(容積%)、注入する不活性ガスの流量速度をv2(m/hr)、不活性ガス注入開始時のバイオガス濃度をC(容積%)とする。Cは、100(容積%)である。
この場合も、メタン発酵槽内外の物質収支から、以下の関係式が導かれる。
Again, the fermenter internal volume is V 0 (m 3 ), the biogas concentration in the fermenter is C 2 (volume %), and the low-concentration biogas flow rate flowing out of the system is v 2 (m 3 /hr). , The concentration of the low-concentration biogas flowing out is C 2 (volume %), the flow rate of the inert gas to be injected is v 2 (m 3 /hr), the biogas concentration at the start of the inert gas injection is C 0 (volume %). C 0 is 100 (volume %).
In this case as well, the following relational expression is derived from the material balance inside and outside the methane fermentation tank.

Figure 2020125236
Figure 2020125236

式(16)は発酵槽内のバイオガス濃度Cの減少変化と不活性ガス供給量の発酵槽容積倍率の関係を示すものであり、式(9)と式(16)においてv=vの条件で運転していることと、同一時間(t)と同一系内容積Vで運転する場合には、全く同じ値を示すことになる。
即ち、この式(9)と式(16)の左辺は全く同一値であるから、(100−C)=Cが成立するので、C+C=100となる。この式の意味は、メタン発酵においてメタン発酵反応開始期のバイオガス発生流量速度に合わせてメタン発酵反応終了期の注入する不活性ガスの流量速度を同じにして吹込み、系内にあるバイオガスの置換追出しを行うことにより、それぞれの発酵槽から系外へ流出する希釈混合ガス濃度Cの値とCの値を合計したものは、発生する100容積%のバイオガスの濃度の値に等しい値となることを示している。
Formula (16) shows the relationship between the decrease change in the biogas concentration C 2 in the fermentor and the fermenter volume ratio of the inert gas supply amount, and v 1 =v in the formulas (9) and (16). When operating under the conditions of No. 2 and when operating at the same time (t) and the same system internal volume V 0 , the values are exactly the same.
That is, since the left sides of the equations (9) and (16) have exactly the same value, (100−C 1 )=C 2 holds, and therefore C 1 +C 2 =100. The meaning of this formula is that the flow rate of the inert gas injected at the end of the methane fermentation reaction is adjusted to match the flow rate of biogas generated at the start of the methane fermentation reaction in methane fermentation, and the biogas in the system is blown. The total of the values of the diluted mixed gas concentrations C 1 and C 2 flowing out from the respective fermenters to the outside of the system by carrying out the displacement purging is the value of the concentration of the generated biogas of 100% by volume. It shows that the values are equal.

つまり、メタン発酵槽Aとメタン発酵槽Bのどちらの発酵槽の内部もマクロ的に完全混合状態とみなせるので、上述した本発明の方法による条件でメタン発酵槽の運転を行う場合には、バイオガス濃度C値とC値の合計値は常に100容積%のバイオガス濃度(ほぼ56容積%のメタンガスと残りは窒素ガス・炭酸ガスその他の不活性ガス類である)と同じ値になる。
この濃度Cのバイオガスと濃度Cのバイオガスを同一容量ずつ混合するので、容量が2倍になり、その混合ガスの濃度(C+C)/2は100/2であるので、バイオガス発生濃度の1/2となる。これはメタンガス濃度としては、56/2=28容積%の一定値となり、その他は窒素ガス・炭酸ガスなどの不活性ガスである。
That is, since the inside of both the methane fermentation tank A and the methane fermentation tank B can be regarded as a macroscopically completely mixed state, when the methane fermentation tank is operated under the conditions according to the method of the present invention described above, The total value of gas concentration C 1 value and C 2 value is always the same value as 100 volume% biogas concentration (almost 56 volume% methane gas and the rest are nitrogen gas, carbon dioxide gas and other inert gases). ..
Since the biogas having the concentration C 1 and the biogas having the concentration C 2 are mixed by the same volume, the volume is doubled, and the concentration (C 1 +C 2 )/2 of the mixed gas is 100/2. It becomes 1/2 of the biogas generation concentration. This has a constant value of 56/2=28% by volume as the methane gas concentration, and the others are inert gases such as nitrogen gas and carbon dioxide gas.

このメタン発酵反応開始期とメタン発酵反応終了期は、新たに発生するバイオガスや注入される不活性ガスのガス置換により発酵槽内メタンガス濃度変化が大きく変動する。発酵槽内はメタン発酵のメタン発酵反応開始期からメタン発酵反応終了期のバイオガス追出しに至るまでの期間は充填層の上部空間と充填層内部ともガス相は完全混合状態と判断され、両空間を合わせた全体ともマクロ的には完全混合状態と見なせるので、上述した数式で示す関係式が当てはまる。従って、式(9)はメタン発酵反応開始期、式(16)はメタン発酵反応終了期における発生ガス容量(又は注入ガス容量)の発酵槽容積に対する倍率vt/V、vt/Vに対する残存ガスの割合を示す関係式である。この式を使って注入ガス量から発酵槽内の残存ガスの残存率(容積%)を計算で求めることができる。逆に発酵槽内の残存ガスの残存率から必要とする注入ガス量を計算することもできる。また、その計算値を片対数のグラフ用紙に記載しておけば、現場で運転管理する時には便利に利用できる。 During the methane fermentation reaction start period and the methane fermentation reaction end period, changes in the methane gas concentration in the fermenter greatly fluctuate due to gas replacement of newly generated biogas and injected inert gas. In the fermentation tank, the gas phase is judged to be in a completely mixed state both in the upper space of the packed bed and in the packed bed during the period from the start of the methane fermentation reaction of methane fermentation to the expelling of biogas from the end of the methane fermentation reaction. Since the whole of the above can be regarded as a macroscopically completely mixed state, the relational expression shown by the above-described mathematical expression is applied. Therefore, the formula (9) is the ratio of the generated gas volume (or the injected gas volume) to the fermenter volume v 1 t/V 0 , v 2 t/ in the methane fermentation reaction start period and the formula (16) in the methane fermentation reaction end period. it is a relational expression showing the ratio of the residual gas to V 0. Using this formula, the residual rate (volume%) of the residual gas in the fermenter can be calculated from the amount of injected gas. On the contrary, the required amount of injected gas can be calculated from the residual rate of the residual gas in the fermenter. In addition, if the calculated value is written on a semi-logarithmic graph paper, it can be conveniently used for on-site operation management.

更に、メタン発酵反応設備の運転操作に関して、本発明のもう一つの特徴的技術として、メタン発酵反応の原料として使用する農産或いは林産のさまざまなバイオマス資源とともに家畜類の粘性排泄物を併用できることである。
従来から農業においては稲わら、麦わら、トウモロコシ茎、大豆の豆幹、野菜類の茎や葉などさまざまな未利用の農産バイオマスが大量に発生している。同様に林業においても樹木の枝打ちや落ち葉、あるいは下草刈り作業等により未利用の林産バイオマスが大量に発生している。又、畜産業においても大量の牛や豚等の家畜類の粘性排泄物が発生している。
Further, regarding the operation operation of the methane fermentation reaction equipment, another characteristic technique of the present invention is that viscous excrement of livestock can be used together with various agricultural or forest biomass resources used as raw materials for the methane fermentation reaction. ..
Conventionally, a large amount of various unused agricultural biomasses such as rice straw, straw, corn stalk, soybean stalk, vegetable stalk and leaves have been generated in agriculture. Similarly, in forestry, a large amount of unused forest biomass is generated due to pruning and fallen leaves of trees, mowing work and the like. Also, in the livestock industry, a large amount of viscous excrement of livestock such as cattle and pigs is generated.

このような家畜類の粘性排泄物は、一般的には固体状態のままでのメタン発酵反応は難しく、水溶液系での撹拌混合でないとメタン発酵を進めることはできないと考えられている。本発明では、このような家畜類の粘性排泄物をヌードル状に押し出して乾燥させた棒状の固形物としてバイオマス資源の粗砕物とともに本発明のメタン発酵設備に充填することにより、メタン発酵反応による処理を可能とした。 It is generally considered that such viscous excretions of livestock are difficult to undergo methane fermentation reaction in a solid state, and that methane fermentation cannot proceed without stirring and mixing in an aqueous solution system. In the present invention, such a viscous excrement of livestock is extruded into a noodle shape and dried as a rod-shaped solid material, and the methane fermentation equipment of the present invention is charged with the coarsely crushed material of the biomass resource to treat the methane fermentation reaction. Made possible.

具体的には、家畜類の粘性排泄物を直径が約15mm程度のヌードル状に成型して、バイオマス資源の原料に対して乾燥重量基準で10〜30重量%の範囲の量でバイオマス資源の粗砕物原料に加え、これを天日通風自然乾燥などにより、ヌードル成形物の平均含水率を35重量%以下まで乾燥させる。その他のバイオマス原料を含む全体の混合原料としても平均含水率を35重量%以下にまで乾燥させる。このようにして得られたバイオマス資源の粗砕物と粘性排泄物の成形乾燥物の混合したものを本発明のメタン発酵設備に充填して使用することにより、同様にメタン発酵反応によりメタンガスと発酵堆肥の製造を行うことができる。 Specifically, the viscous excrement of livestock is molded into noodles with a diameter of about 15 mm, and the amount of crude biomass resources in the range of 10 to 30% by weight based on the dry weight of the biomass resources is used. In addition to the raw material of the crushed product, the crushed product is dried by natural ventilation such that the average moisture content of the noodle molded product is reduced to 35% by weight or less. Even if the entire mixed raw material including other biomass raw materials is used, it is dried to an average water content of 35% by weight or less. By using a mixture of the coarsely pulverized material of the biomass resource and the dried product of the viscous excretion thus obtained, which is filled in the methane fermentation equipment of the present invention and used, methane gas and fermented compost are similarly produced by the methane fermentation reaction. Can be manufactured.

特に、原料として使用する含水率が35重量%以下の農産バイオマス資源の粗砕物と同様に、平均含水率を35重量%以下まで乾燥させた家畜の粘性排泄物のヌードル成形物と農産バイオマス資源の粗砕物との混合物を原料として用いてメタン発酵反応を行った場合も、得られる発酵堆肥に含まれる水分量を混合バイオマス原料が含有する水分量と発酵反応で消費される水分量との差引量以上とし、かつ発酵堆肥の含水量を最大で75重量%まで、好ましくは最大で60重量%までとする運転をすれば、バイオマス原料粗砕物単独の場合と同様に、プロセス排水を全く流出すことなくメタンガスと堆肥を製造することができる。 In particular, as with the coarsely crushed agricultural biomass resources having a water content of 35% by weight or less used as a raw material, the noodle moldings of viscous excrement of livestock dried to an average water content of 35% by weight or less and agricultural biomass resources Even when a methane fermentation reaction is performed using a mixture with a coarsely crushed material as the raw material, the amount of water contained in the obtained fermented compost is subtracted from the amount of water contained in the mixed biomass raw material and the amount of water consumed in the fermentation reaction. If the above operation is performed and the water content of the fermented compost is up to 75% by weight, preferably up to 60% by weight, the process wastewater is completely discharged as in the case of the biomass raw material crushed product alone. Can produce methane gas and compost without.

家畜粘性排泄物を農産バイオマス原料と合わせてメタン発酵させる場合は、その牧場の近くに発酵に関わる設備を設置することが望ましい。原料としては、家畜排泄物の他に、棒状原料、稲わら、麦わら、家畜の敷きわらなどを使用する。家畜排泄物と農産バイオマス原料と混ぜてメタン発酵する場合は、家畜粘性排泄物の棒状乾燥品の物理的強度を保持して効率良く乾燥させるために、パドル羽根式攪拌機付きホッパー、スクリュウフィーダー、モーノポンプなどによって十分に混錬して、これを押出ノズルから押し出してヌードル状に成形する。 When viscous excrement of livestock is combined with agricultural biomass feedstock for methane fermentation, it is desirable to install equipment related to fermentation near the farm. As raw materials, in addition to livestock excrement, rod-shaped raw materials, rice straw, straw, livestock bedding and the like are used. When methane fermentation is performed by mixing livestock excrement with agricultural biomass raw material, paddle impeller agitator hopper, screw feeder, and mono pump are used in order to maintain the physical strength of stick-like dried livestock viscous excrement and dry it efficiently. It is sufficiently kneaded by, for example, extruding it from an extrusion nozzle to mold it into noodles.

このような成形物の製造設備としては、例えば兵神装備(株)社製のNES型フィーダー(パドル羽根式攪拌機付きホッパー、スクリュウフィーダーとヘイシンモーノポンプの連結装置)が挙げられる。また、その先にパイプ底部に斜め下向きに穴をあけ、口径が約15mmのノズルを約10cmの等間隔に取付けた粘性物棒状押し出し装置を設ける。 Examples of the equipment for producing such a molded product include NES type feeders (a hopper with a paddle impeller agitator, a connecting device of a screw feeder and a Heishin Monono pump) manufactured by Hyōjin Kikai Co., Ltd. In addition, a viscous rod-shaped extrusion device is provided at the tip of which a hole is made in the bottom of the pipe in a diagonally downward direction, and nozzles having a diameter of about 15 mm are attached at equal intervals of about 10 cm.

使用する家畜の粘性排泄物は、日光通風自然乾燥方式で平均含水率35重量%以下になるように乾燥する。効率よく乾燥させるための設備としては、地面を硬く固めて水が流れるほどの傾斜をつけた舗装面に光透過性の防雨屋根を設置して通風天日自然乾燥が良好な空間を準備する。その床面に最初に棒状原料(大豆の豆がら、剪定した小枝、葦など)を全体の20重量%程分散する。その上に稲わら、麦わら、敷きわらなどを乾燥品基準で全体の60重量%程度の量で分散する。次いで、最上面に上述のようにして製造した外径約15mmヌードル状成形物を分散する。これらをそのまま放置して通風自然乾燥によって乾燥させる。3〜5日後に粘性排泄物の含水率が50重量%程度になったことと硬さを確認する。その後は、大型の網袋などに投入して、農地の一部などを利用して上部を防水シートで覆って約1〜2ケ月間放置し、第2段階の自然乾燥を行い、平均含水率25重量%以下程度とする。このようにして得られた家畜の粘性排泄物を混合したバイオマス資源を本発明のメタン発酵設備の原料として使用する。 The viscous excrement of livestock used is dried by the sunlight-ventilated natural drying method so that the average water content is 35% by weight or less. As an equipment for efficient drying, a light-permeable rainproof roof is installed on a paved surface that hardens the ground and has an inclination to allow water to flow, and prepares a space with good ventilation and natural drying. .. First, a rod-shaped raw material (soybean beans, pruned twigs, reeds, etc.) is dispersed on the floor surface in an amount of about 20% by weight. On top of that, rice straw, straw, bedding and the like are dispersed in an amount of about 60% by weight based on the dry product. Next, a noodle-shaped molded product having an outer diameter of about 15 mm manufactured as described above is dispersed on the uppermost surface. These are left as they are and dried by ventilation natural drying. After 3 to 5 days, it is confirmed that the water content of the viscous excretion is about 50% by weight and the hardness. After that, put it in a large net bag etc., cover the upper part with a waterproof sheet using a part of farmland and leave it for about 1 to 2 months, then perform the second stage natural drying, average water content It is about 25% by weight or less. The biomass resource obtained by mixing the viscous excrement of livestock thus obtained is used as a raw material of the methane fermentation equipment of the present invention.

家畜の粘性排泄物を稲わら、麦わらなどの農産バイオマスや棒状固形物と混合すれば、家畜の粘性排泄物中の未消化セルロースは互いに絡み合ったりしており、外部循環による発酵を行っている期間中はほぼ静止状態に近いので、形が崩れることは問題とならないと考えられる。バラバラに分散・溶解した場合でも農産バイオマスに交わり、交差して捕捉状態になる。尚、家畜の粘性排泄物と農産バイオマス原料を混合して乾燥すると、排泄物の臭気が農産バイオマスの表面に相当量吸着されるようでその臭気は殆ど気にならなくなるので好ましい。又、家畜排泄物の性状によっては、その中に天然の木綿の屑綿や糸屑や紙パルプの廃材などを少量混合してヌードル排泄物の補強と溶解防止の効果を持たせることも可能である。
以下に、さらに実施例によって本発明を説明する。
If the viscous excrement of livestock is mixed with agricultural biomass such as rice straw and straw or stick-shaped solid matter, the undigested cellulose in the viscous excrement of livestock is entangled with each other, and the fermentation is carried out by external circulation. Since the inside is almost stationary, it is not considered that the shape collapses. Even if they are dispersed/dissolved in pieces, they intersect with the agricultural biomass and intersect to become trapped. It is preferable that the viscous excrement of livestock and the raw material of agricultural biomass are mixed and dried, because the odor of the excrement seems to be adsorbed to the surface of the agricultural biomass and the odor is hardly noticed. In addition, depending on the properties of livestock excrement, it is possible to add a small amount of natural cotton waste, lint, paper pulp waste, etc., to enhance the noodle excretion and prevent dissolution. is there.
Hereinafter, the present invention will be described with reference to examples.

実施例1 プロセス排水がゼロとなるメタンガスと発酵堆肥の製造
実験装置として、図1に示すような小型パイロット試験用のメタン発酵設備を用いて、以下のような条件の下でメタン発酵反応を行った。
メタン発酵槽1として、直径600mm、高さ2300mm、内容積が650リットルの円筒形の発酵槽を用いた。その上部にスプレーノズル3が備えられており、これは循環ポンプ5、外部循環配管4に接続し、メタン発酵槽1の底部に溜まった反応水を循環してスプレーノズル3から広角度全面型スプレーを行う。原料となるバイオマス資源として、圃場から収集した稲わらと麦わらを1:1の割合で混ぜて、10cm程度の長さに裁断した平均含水率が約10重量%のバイオマス資源の粗砕物を用いた。このバイオマス原料の粗砕物をメタン発酵槽1の上部から投入し、メタン発酵槽1の中に450リットル充填し、バイオマス資源粗砕物の充填層2を形成した。中継槽6に反応水として(株)明電舎の実用化プラントから入手した養豚排泄物の中温メタン発酵の消化汚泥水を入れておき、この中継槽6からの反応水50リットルを外部循環配管4からスプレーノズル3を通して、充填層2の上部にスプレーしてメタン発酵槽1の中に供給した。
Example 1 Production of methane gas and fermented compost with zero process wastewater .
Using a methane fermentation facility for a small pilot test as shown in FIG. 1 as an experimental apparatus, a methane fermentation reaction was performed under the following conditions.
As the methane fermentation tank 1, a cylindrical fermentation tank having a diameter of 600 mm, a height of 2300 mm and an internal volume of 650 liters was used. A spray nozzle 3 is provided on the upper part of the spray nozzle 3, which is connected to a circulation pump 5 and an external circulation pipe 4 to circulate the reaction water accumulated at the bottom of the methane fermentation tank 1 to spray a wide-angle full-face spray nozzle. I do. As the raw material biomass resource, rice straw and wheat straw collected from the field were mixed at a ratio of 1:1 and cut into a length of about 10 cm, and a roughly crushed biomass resource having an average water content of about 10% by weight was used. .. The coarsely crushed material of the biomass raw material was charged from the upper part of the methane fermentation tank 1 to fill the methane fermentation tank 1 with 450 liters to form a packed layer 2 of the coarsely crushed biomass resource. Digested sludge water of medium-temperature methane fermentation of pig excrement obtained from Meidensha Co., Ltd. commercialization plant was placed in the relay tank 6 as reaction water, and 50 liters of the reaction water from the relay tank 6 was supplied from the external circulation pipe 4. It sprayed on the upper part of the packed bed 2 through the spray nozzle 3, and was supplied into the methane fermentation tank 1.

次いで、メタン発酵槽1を密閉し、メタン発酵槽1の中に導入された反応水を循環ポンプ5と外部循環配管4、スプレーノズル3を通して循環させ、充填層の上部から散布した。反応水の循環量は、充填されたバイオマス原料の表面が濡れるように、毎分1.6リットルとし、この反応水の循環とスプレーを連続して行った。反応水のスプレーを継続していると、好気性発酵反応が起こり、メタン発酵槽1内の温度が室温から48℃へと上昇した(好気発酵期)。時間経過に伴い中継槽6の消化汚泥水が原料バイオマスに吸収されて減少したので、水道水を中継槽6の中間レベルにほぼ一定に保つように時々補充しながらメタン発酵の開始を待った。 Next, the methane fermentation tank 1 was sealed, and the reaction water introduced into the methane fermentation tank 1 was circulated through the circulation pump 5, the external circulation pipe 4 and the spray nozzle 3, and sprayed from the upper part of the packed bed. The circulating amount of the reaction water was 1.6 liters per minute so that the surface of the filled biomass raw material was wet, and the circulating and spraying of the reaction water was continuously performed. When the spray of reaction water was continued, an aerobic fermentation reaction occurred and the temperature in the methane fermentation tank 1 rose from room temperature to 48°C (aerobic fermentation period). Since the digested sludge water in the relay tank 6 was absorbed by the raw material biomass and decreased with the passage of time, the start of methane fermentation was waited for while supplementing the tap water from time to time to keep the tap water at an intermediate level in the relay tank 6 at a substantially constant level.

反応水の循環開始後約6日経過してメタン発酵反応が始まり、バイオガスが発生していることを浮き屋根式ガスホルダー7のレベルから確認できた。その間に水道水の補充量は消化汚泥水の約2倍であった。反応水の循環開始後7日目にメタンガスを含むバイオガスの発生が確認されたので、このバイオガスはガスホルダー7に導入した。この状態で反応水の循環とスプレーをそのまま連続して繰り返し行ったところ、バイオマス原料のメタン発酵によるメタンガスの生成が見られた。これは発生したガスの燃焼実験でも確認した。 About 6 days after the start of circulation of the reaction water, it was confirmed from the level of the floating roof gas holder 7 that the methane fermentation reaction started and biogas was generated. Meanwhile, the amount of tap water replenished was about twice that of digested sludge water. Generation of biogas containing methane gas was confirmed 7 days after the start of circulation of the reaction water, so this biogas was introduced into the gas holder 7. In this state, circulation of reaction water and spraying were continuously repeated as it was, and production of methane gas was observed by methane fermentation of the biomass raw material. This was also confirmed in a combustion test of the generated gas.

この充填層への反応水の循環とスプレーする状態を継続したところ、時間経過に伴い中継槽の液量が徐々に減少したので、初期は毎日、その後は2,3日おきに適宜水道水の補給を行った。反応を開始して実質約60日間経過したところでバイオガスの発生量が減少してきた。それは9月末になり平均温度が22℃を下回りメタン発酵菌の活動が低下し、生産活動が停止したものと判断した。そこで反応水の循環を停止し、発酵反応の終了操作をおこなった。反応終了後、メタン発酵槽1の頂部を開いて、得られた発酵残渣である堆肥を取り出したところ、その重量は約63kgで、含水率は約85重量%であった。この発酵残渣に木製板を乗せて足踏み圧搾して脱水し、圧搾脱水堆肥を得た。その重量は約40kgグラムで、含水率は約60重量%であった。また、圧搾処理によって反応水23リットルが得られ、これは中継槽6へもどした。 When the circulating and spraying state of the reaction water to the packed bed was continued, the liquid volume in the relay tank gradually decreased with the passage of time. Replenished. About 60 days after starting the reaction, the amount of biogas generated decreased. It was at the end of September, and it was judged that the average temperature was below 22°C, the activity of methane-fermenting bacteria decreased, and the production activity stopped. Therefore, the circulation of the reaction water was stopped and the operation for ending the fermentation reaction was performed. After completion of the reaction, the top of the methane fermentation tank 1 was opened and the obtained fermented residue compost was taken out. The weight was about 63 kg and the water content was about 85% by weight. A wooden board was placed on the fermentation residue, which was pressed and dehydrated to obtain a pressed dehydrated compost. Its weight was about 40 kg and its water content was about 60% by weight. Further, 23 liters of reaction water was obtained by the squeezing treatment, and this was returned to the relay tank 6.

この図1に示すパイロット実験装置を用いた1サイクルのメタン発酵反応によって、含水率が約60重量%の良好な発酵堆肥が得られた。このメタン発酵の反応の途中で、中継槽の水量が減少したので小刻みに水道水を補充したが、反応系外に余分な水分を排出することなく、メタン発酵の反応を完結することができ、プロセス排水をゼロにしてメタンガスと堆肥を製造することができた。 By one cycle of methane fermentation reaction using the pilot experimental apparatus shown in FIG. 1, good fermented compost having a water content of about 60% by weight was obtained. In the middle of this methane fermentation reaction, the amount of water in the relay tank decreased, so tap water was replenished in small increments, but the methane fermentation reaction could be completed without discharging excess water outside the reaction system, It was possible to produce methane gas and compost with zero process wastewater.

実施例2 一対の発酵槽を用いた運転サイクルの切り換えによるメタンガスと発酵堆肥の製造
発酵槽1基による原料仕込みから堆肥の取出しまでの一連の発酵運転は小型パイロット実験で経験していたが、一対の発酵槽を用いて運転サイクルの中間部での切り換え運転は未経験であったので、この部分に着目した実験を行った。この部分以外は発酵槽A,Bとも全く同じに再現するので運転サイクル切換え時のメタンガス濃度の変化を確認するために行った。
Example 2 Production of methane gas and fermented compost by switching operation cycles using a pair of fermenters .
A series of fermentation operations from raw material charging to compost removal using one fermenter were experienced in a small pilot experiment, but switching operation in the middle part of the operation cycle using a pair of fermenters was unexperienced. We conducted an experiment focusing on this part. Except for this part, the fermentation tanks A and B are reproduced in exactly the same manner, so it was performed to confirm the change in the methane gas concentration when the operation cycle was switched.

実験装置として、図2に示すようなメタン発酵槽11(メタン発酵槽A)及びメタン発酵槽12(メタン発酵槽B)の2基のメタン発酵槽で構成される小型パイロット試験用のメタン発酵設備を用いて、夏季の外気温度とほぼ同じ室内温度にて、以下のような条件の下でメタン発酵反応を行った。
メタン発酵槽11(メタン発酵槽A)及びメタン発酵槽12(メタン発酵槽B)は、それぞれ同一の大きさと構造のものであり、そのサイズは実施例1で用いたメタン発酵槽と同一である。メタン発酵槽AおよびBは、それぞれその上部にスプレーノズル15及び16を備えるとともに、その底部の充填層の下側に不活性ガス注入管17及び18が備えられている。また、原料となるバイオマス資源の粗砕物は実施例1で用いたものと同一のものを用いた。
As an experimental apparatus, a methane fermentation facility for a small pilot test composed of two methane fermentation tanks, a methane fermentation tank 11 (methane fermentation tank A) and a methane fermentation tank 12 (methane fermentation tank B) as shown in FIG. Was used to carry out a methane fermentation reaction under the following conditions at an indoor temperature almost the same as the outdoor temperature in summer.
The methane fermentation tank 11 (methane fermentation tank A) and the methane fermentation tank 12 (methane fermentation tank B) have the same size and structure, and the size is the same as the methane fermentation tank used in Example 1. .. The methane fermentation tanks A and B are provided with spray nozzles 15 and 16 respectively at the upper part thereof, and inert gas injection pipes 17 and 18 are provided below the packed bed at the bottom thereof. In addition, the same coarsely crushed biomass resource as the raw material was used as in Example 1.

このバイオマス原料の粗砕物をメタン発酵槽11(メタン発酵槽A)及びメタン発酵槽12(メタン発酵槽B)のそれぞれについて上部から投入し、メタン発酵槽の中にそれぞれ450リットル充填し、バイオマス資源粗砕物の充填層13及び14を形成した。その後、両発酵槽とも開口部を密閉にして反応水循環による反応開始を待った。中継槽28に反応水として(株)明電舎の実用化プラントから入手した養豚排泄物の中温メタン発酵の消化汚泥水を入れておいた。 The coarsely crushed material of this biomass raw material was charged from the upper part of each of the methane fermentation tank 11 (methane fermentation tank A) and the methane fermentation tank 12 (methane fermentation tank B), and 450 liters were filled in each of the methane fermentation tanks. Packed layers 13 and 14 of the crushed material were formed. After that, the openings of both fermenters were closed to wait for the reaction to start by circulating the reaction water. In the relay tank 28, digested sludge water of medium temperature methane fermentation of pig excrement obtained from a commercial plant of Meidensha Co., Ltd. was placed as reaction water.

まず、中継槽28からメタン発酵槽Aに反応水50リットルを外部循環配管21からスプレーノズル15を通して、充填層13の上部にスプレーしてメタン発酵槽Aの中に供給した。メタン発酵槽Aのなかに導入された反応水を循環ポンプ19と外部循環配管21、スプレーノズル15を通して循環させた。反応水の循環量は、充填されたバイオマス原料の表面が濡れるように毎分1.6リットルとし、この反応水の循環しスプレーする操作を連続して行った。 First, 50 liters of reaction water from the relay tank 28 to the methane fermentation tank A was sprayed from the external circulation pipe 21 through the spray nozzle 15 onto the top of the packed bed 13 and supplied into the methane fermentation tank A. The reaction water introduced into the methane fermentation tank A was circulated through the circulation pump 19, the external circulation pipe 21, and the spray nozzle 15. The circulation amount of the reaction water was 1.6 liters per minute so that the surface of the filled biomass raw material was wet, and the operation of circulating and spraying the reaction water was continuously performed.

時間の経過とともに原料中に存在する好気発酵菌による発熱を伴う好気発酵反応とそれに続く通性嫌気性菌類による好気と嫌気の両条件下での反応が起こり、メタン発酵槽A内部に存在する空気中の酸素ガスが完全に消費された。この好気発酵反応によりメタン発酵槽A内の温度が室温から48℃へと上昇した。この期間が好気発酵期である。 Over time, aerobic fermentation reaction accompanied by heat generation by aerobic fermentation bacteria present in the raw material and subsequent reaction by facultative anaerobic fungi under both aerobic and anaerobic conditions occur, and inside the methane fermentation tank A. The oxygen gas in the air present was completely consumed. Due to this aerobic fermentation reaction, the temperature in the methane fermentation tank A rose from room temperature to 48°C. This period is the aerobic fermentation period.

更に反応水の循環とスプレーを続けて、好気発酵期として循環開始後約6日経過し,絶対嫌気の条件が整ったときに絶対嫌気性メタン発酵反応へと連鎖的に発酵が移行し、メタンガスを含むバイオガスの発生が認められた。時間の経過とともにメタン発酵が進行し、バイオガスの発生量が増加していった。メタン発酵槽Aのガス出口で槽内のガスをサンプリングし、その中のメタンガス濃度を測定した。反応開始時にはメタンガスの濃度がゼロであったが、時間の経過とともにメタンガス濃度が増加した。メタン発酵反応を開始して8日経過してその濃度が約56%となった。発生したバイオガスは配管24を通って低濃度バイオガスホルダー27に導入した。この期間が図3に示すメタン発酵槽Aの運転サイクルのなかのサイクルIのメタン発酵反応開始期に相当する。 Continuing the circulation and spraying of the reaction water, about 6 days after the start of circulation as the aerobic fermentation period, and when the absolute anaerobic conditions are met, the fermentation shifts in a chain to the absolute anaerobic methane fermentation reaction, Generation of biogas including methane gas was observed. With the passage of time, methane fermentation proceeded and the amount of biogas generated increased. The gas in the tank was sampled at the gas outlet of the methane fermentation tank A, and the methane gas concentration therein was measured. The concentration of methane gas was zero at the start of the reaction, but the concentration of methane gas increased with the passage of time. Eight days after starting the methane fermentation reaction, the concentration became about 56%. The generated biogas was introduced into the low concentration biogas holder 27 through the pipe 24. This period corresponds to the methane fermentation reaction start period of cycle I in the operation cycle of the methane fermentation tank A shown in FIG.

この時期を過ぎると、メタン発酵槽Aでは発生するバイオガスの量は安定し、ほぼ一定の量で発生したが、槽内温度の影響を最も大きくうけ、反応循環水のPHの変化の影響も受けるので温度とPHを急激に変化させないように注意して運転を行った。この時期に発生したメタンガス濃度はほぼ56%で一定していた。発生したバイオガスは配管23を通して高濃度バイオガスホルダー26に導入した。この期間が図3に示すメタン発酵槽Aの運転サイクルのなかのサイクルIIの定常発酵反応期に相当する。 After this period, the amount of biogas generated in the methane fermentation tank A was stable and was generated at a substantially constant amount, but it was most affected by the temperature in the tank and was affected by the change in PH of the reaction circulating water. The operation was carried out with care so as not to change the temperature and PH abruptly. The concentration of methane gas generated during this period was almost constant at 56%. The generated biogas was introduced into the high-concentration biogas holder 26 through the pipe 23. This period corresponds to the stationary fermentation reaction period of cycle II in the operation cycle of the methane fermentation tank A shown in FIG.

メタン発酵槽Aのメタン発酵反応開始後8日経過したところでメタンガス濃度が56容積%あり、定常発酵反応期になったことを確認したが、発酵槽Bからのバイオガス発生を確認するまで、メタン発酵槽Aの運転をそのまま継続した。
メタン発酵槽Bで反応水の循環・スプレーを開始して6日後に発酵槽Bに少量のバイオガスの発生がみられたので、メタン発酵槽Aの底部の不活性ガス注入管17から2%酸素入りの窒素ガスを供給して定常発酵反応を続けていたメタン発酵槽Aの発酵を停止させると共に、メタン発酵槽Bのガス発生流量速度と同量の不活性ガスをメタン発酵槽Aの底部のガス注入管17より調整しながら注入し続けた。
8 days after the start of the methane fermentation reaction in the methane fermentation tank A, the methane gas concentration was 56% by volume, and it was confirmed that the stationary fermentation reaction period was reached. However, until the biogas generation from the fermentation tank B was confirmed, The operation of the fermenter A was continued as it was.
6 days after starting circulation/spraying of the reaction water in the methane fermentation tank B, a small amount of biogas was found in the fermentation tank B, so 2% from the inert gas injection pipe 17 at the bottom of the methane fermentation tank A. Fermentation of the methane fermentation tank A that had continued the steady fermentation reaction by supplying nitrogen gas containing oxygen was stopped, and the same amount of inert gas as the gas generation flow rate of the methane fermentation tank B was supplied to the bottom of the methane fermentation tank A. The gas was continuously injected while adjusting it from the gas injection pipe 17.

この時不活性ガス中の酸素ガスの存在は微量でも劇的にメタン菌に作用してメタンガスの生産を止める働きがあった。この不活性ガスの注入操作によって、メタン発酵槽Aの中に残留しているバイオガスは追い出されるので、このガスを配管24経由で低濃度バイオガスホルダー27へ導入した。 At this time, the presence of oxygen gas in the inert gas had a function of dramatically acting on methane bacteria to stop the production of methane gas even in a trace amount. Since the biogas remaining in the methane fermentation tank A is expelled by this inert gas injection operation, this gas was introduced into the low-concentration biogas holder 27 via the pipe 24.

この期間にメタン発酵槽Aから出てくるガスのサンプリングによってメタンガス濃度を測定した。終了操作開始直前のメタンガス濃度が約56%であったものが、次第に減少してゼロになった。そのメタンガスの濃度変化は図3に示すようになった。この期間が図3に記載のメタン発酵槽Aの運転サイクルのなかのサイクルIIIのメタン発酵反応終了期に相当する。 During this period, the concentration of methane gas was measured by sampling the gas emitted from the methane fermentation tank A. Although the methane gas concentration was about 56% immediately before the start of the termination operation, it gradually decreased to zero. The change in the concentration of the methane gas is shown in FIG. This period corresponds to the end period of the methane fermentation reaction of cycle III in the operation cycle of the methane fermentation tank A shown in FIG.

メタン発酵槽Aが定常発酵反応期に入り、高濃度バイオガスが定常的な発生状態に達していることを確認した後であれば、微量酸素入りの不活性ガスを注入することによりメタン発酵反応はいつでも停止でき、しばらく時間が経過しないとメタンガスの発生は回復しない状態となる。従って、工程が定常発酵反応期になれば実験としてはいつでも発酵終了期に移行できる。ここでは、運転サイクルを通常とは異なるこのような運転を行なうことにより、実施例2の確認実験を正規の運転に比べて大幅に短縮して行った。 After confirming that the high-concentration biogas has reached a steady generation state after the methane fermentation tank A has entered the steady-state fermentation reaction period, the methane fermentation reaction can be performed by injecting a trace amount of oxygen-containing inert gas. Can be stopped at any time, and the generation of methane gas will not recover until some time has passed. Therefore, if the process enters the stationary fermentation reaction period, it is possible to shift to the end of fermentation period as an experiment. Here, by performing such an operation in which the operation cycle is different from the normal operation, the confirmation experiment of Example 2 was significantly shortened as compared with the normal operation.

一方、メタン発酵槽Aで好気発酵期(好気発酵と通性嫌気発酵の期間)として6日間を要したので、メタン発酵槽Bはこの期間を見込んで反応水の循環・スプレーを開始した。即ち、メタン発酵槽Bはバイオマス原料を充填して密閉状態で待機していたが、メタン発酵槽Aのメタン発酵反応を開始して13日経過したタイミングに合わせて好気発酵反応開始の操作を行った。即ち、中継槽28からメタン発酵槽Bに反応水50リットルを外部循環配管22からスプレーノズル16を通して、充填層14の上部にスプレーしてメタン発酵槽Bの中に供給した。メタン発酵槽Bのなかに導入された反応水を循環ポンプ20と外部循環配管22、スプレーノズル16を通して循環させ、充填層14の上部に継続してスプレーした。反応水の循環量等の操作条件は、すべてメタン発酵槽Aと同一とした。反応水の循環量は毎分1.6リットルとし、この反応水の循環とスプレーを連続して行った。 On the other hand, since the aerobic fermentation period (the period of aerobic fermentation and facultative anaerobic fermentation) was required in the methane fermentation tank A for 6 days, the methane fermentation tank B started circulating and spraying the reaction water in anticipation of this period. .. That is, the methane fermentation tank B was filled with the biomass raw material and waited in a sealed state. However, the operation of starting the aerobic fermentation reaction was started at the timing 13 days after starting the methane fermentation reaction of the methane fermentation tank A. went. That is, 50 liters of reaction water from the relay tank 28 to the methane fermentation tank B was sprayed from the external circulation pipe 22 through the spray nozzle 16 onto the upper part of the packed bed 14 and supplied into the methane fermentation tank B. The reaction water introduced into the methane fermentation tank B was circulated through the circulation pump 20, the external circulation pipe 22, and the spray nozzle 16, and continuously sprayed on the top of the packed bed 14. All operating conditions such as the circulating amount of reaction water were the same as those for the methane fermentation tank A. The circulation rate of the reaction water was 1.6 liters per minute, and the circulation and spraying of the reaction water were continuously performed.

反応水の循環とスプレーを続けることにより、まず発熱を伴う好気発酵反応から反応が起こった。この好気発酵反応の進行とともにメタン発酵槽Bの中に残留していた酸素が完全に消費された。更に反応水の循環とスプレーを続けることによりメタン発酵反応に移行し、メタンガスを含むバイオガスの発生が見られた。時間の経過とともにメタン発酵が進行し、メタンガスを含むバイオガスの発生量が増加していった。メタン発酵槽Aと同様に、メタン発酵槽Bのガス出口で槽内のガスをサンプリングし、その中のメタンガス濃度を測定した。反応開始時にはメタンガスの濃度がゼロであったが、時間の経過とともにメタンガス濃度が増加した。メタン発酵反応を開始して8日経過してその濃度がほぼ56容積%となった。発生したバイオガスは配管24を通って低濃度バイオガスホルダー27に導入した。この期間が図3に示すメタン発酵槽Bの運転サイクルのなかのサイクルIIIのメタン発酵反応開始期に相当する。 By continuing circulation of the reaction water and spraying, the reaction first occurred from the aerobic fermentation reaction accompanied by exotherm. With the progress of the aerobic fermentation reaction, oxygen remaining in the methane fermentation tank B was completely consumed. Furthermore, by continuing the circulation and spraying of the reaction water, the reaction proceeded to the methane fermentation reaction, and generation of biogas containing methane gas was observed. With the passage of time, methane fermentation proceeded, and the amount of biogas including methane gas increased. Similar to the methane fermentation tank A, the gas in the tank was sampled at the gas outlet of the methane fermentation tank B, and the methane gas concentration therein was measured. The concentration of methane gas was zero at the start of the reaction, but the concentration of methane gas increased with the passage of time. Eight days after starting the methane fermentation reaction, the concentration became almost 56% by volume. The generated biogas was introduced into the low concentration biogas holder 27 through the pipe 24. This period corresponds to the methane fermentation reaction start period of cycle III in the operation cycle of the methane fermentation tank B shown in FIG.

前述したように、メタン発酵槽Bの反応開始をメタン発酵槽Aの発酵反応終了の時期に計画的に一致させたので、このメタン発酵槽Bのメタン発酵反応開始期であるサイクルIIIはメタン発酵槽Aのメタン発酵反応終了期と同一時期になる。このサイクルIIIでは、メタン発酵槽Aから追い出されて出てくるガス中のメタンガス濃度は図3に示すように急速に低下し最後はゼロになった。一方、メタン発酵槽Bで発生するバイオガス中のメタンガス濃度は図3に示すように急速に増加し、最後は約56容積%になった。このメタン発酵槽Aからのバイオガスとメタン発酵槽Bからのバイオガスは配管24で一つになって低濃度バイオガスホルダー27に導入される。この配管24の中のガスをサンプリングしてサイクルIIIの期間中のメタンガス濃度を調べたところ、サイクルIIIの全期間にわたって28容積%前後でほぼ一定であった。 As described above, since the reaction start of the methane fermentation tank B is systematically matched with the end time of the fermentation reaction of the methane fermentation tank A, the methane fermentation reaction start cycle of the methane fermentation tank B is cycle III. It is the same time as the end of the methane fermentation reaction in tank A. In this cycle III, the concentration of methane gas in the gas expelled from the methane fermentation tank A rapidly decreased to zero at the end as shown in FIG. On the other hand, the concentration of methane gas in the biogas generated in the methane fermentation tank B rapidly increased as shown in FIG. 3, and finally reached about 56% by volume. The biogas from the methane fermentation tank A and the biogas from the methane fermentation tank B are united in the pipe 24 and introduced into the low concentration biogas holder 27. When the gas in the pipe 24 was sampled and the concentration of methane gas during the period of cycle III was examined, it was almost constant at around 28% by volume over the entire period of cycle III.

上記の実施例に示したように、同一のサイズと構造の1対のメタン発酵槽を使用し、同一の操作条件や反応条件で、バイオマス原料のメタン発酵反応を行うと、一つのメタン発酵槽(メタン発酵槽A)と他方のメタン発酵槽(メタン発酵槽B)の反応サイクルを半周分ずらせることによって、定常発酵反応期の約56容積%の高濃度のメタンガスとその半分の約28容積%の低濃度のメタンガスとが得られることが分かった。しかも、高濃度のメタンガスも低濃度のメタンガスも途切れることなく常時一定濃度で得ることができ、効率的にメタンガスを製造することが可能となった。 As shown in the above examples, when a pair of methane fermentation tanks having the same size and structure are used and the methane fermentation reaction of the biomass raw material is performed under the same operating conditions and reaction conditions, one methane fermentation tank is obtained. By shifting the reaction cycle of the (methane fermentation tank A) and the other methane fermentation tank (methane fermentation tank B) by half a cycle, high concentration methane gas of about 56% by volume in the steady fermentation reaction period and about 28 volumes of half thereof It was found that a low concentration of methane gas of about 10% was obtained. Moreover, both high-concentration methane gas and low-concentration methane gas can be constantly obtained at a constant concentration without interruption, and it has become possible to efficiently produce methane gas.

また、低濃度のメタンガスでもその濃度は常に28容積%前後で一定しており、これはメタンガスの爆発限界である5.3〜14容積%よりもかなり大きな値であって、ガス爆発の心配なく取り扱うことができるというメリットも有する。 In addition, the concentration of low-concentration methane gas is always around 28% by volume, which is considerably larger than the explosive limit of methane gas of 5.3 to 14% by volume. It also has the advantage that it can be handled.

本発明の方法を利用することにより、これまで好気発酵法でなされていた堆肥の製造法がここに記載のメタン発酵法により切り替わる可能性がある。従来未利用で農地に鋤きこまれていた稲わら、麦わらなどの農産バイオマス資源の有効活用の可能性が大きく、更には、果樹の剪定枝葉及び家庭等の植栽剪定枝葉、耕作放棄地の雑草や河川敷及び堤防の法面・道路や鉄道沿線の雑草などをバイオマス資源として有効活用する可能性が開けるという点で、またこれらを原料として発酵堆肥とメタンガスが生産されるという点で、産業上の利用可能性が大きい。又、バイオガス中のメタンを改質器で水素に変換後燃料電池に供給して電気や温水にエネルギー変換して利用することが実現し、産業や家庭での利用の可能性がある。又、地球上の各地で利用展開されることにより、地球温暖化防止に役立つ産業へ発展する可能性がある。 By using the method of the present invention, there is a possibility that the compost manufacturing method, which has been performed by the aerobic fermentation method until now, may be switched by the methane fermentation method described here. There is a high possibility of effective utilization of agricultural biomass resources such as rice straw and straw that were previously unused and plowed into plowed land. And the slopes of riverbeds and levees, weeds along roads and railways can be used effectively as biomass resources, and fermented compost and methane gas can be produced from these as raw materials for industrial production. Great availability. In addition, methane in biogas can be converted to hydrogen by a reformer and then supplied to a fuel cell to be converted into electricity or hot water for energy conversion, which can be used in industry or at home. Moreover, there is a possibility that it will be developed into an industry that helps prevent global warming by being used and developed in various places on the earth.

1.メタン発酵槽
2.バイオマス原料粗砕物の充填層
3.スプレーノズル
4.外部循環配管
5.循環ポンプ
6.反応水中継槽
7.バイオガスホルダー
8.バイオガス配管
9.反応水供給配管
10.不活性ガス注入管
11.メタン発酵槽A
12.メタン発酵槽B
13.バイオマス原料粗砕物の充填層
14.バイオマス原料粗砕物の充填層
15.スプレーノズル
16.スプレーノズル
17.不活性ガス注入管
18.不活性ガス注入管
19.循環ポンプ
20.循環ポンプ
21.外部循環配管
22.外部循環配管
23.高濃度バイオガス配管
24.低濃度バイオガス配管
25.反応水戻し配管
26.高濃度バイオガスホルダー
27.低濃度バイオガスホルダー
28.反応水中継槽
1. Methane fermentation tank 2. Packed bed of coarsely crushed biomass raw material 3. Spray nozzle 4. External circulation piping 5. Circulation pump 6. Reaction water relay tank 7. Biogas holder 8. Biogas piping 9. Reaction water supply pipe 10. Inert gas injection pipe 11. Methane fermenter A
12. Methane fermentation tank B
13. Packed bed of coarsely crushed biomass raw material 14. Packed bed of coarsely crushed biomass material 15. Spray nozzle 16. Spray nozzle 17. Inert gas injection pipe 18. Inert gas injection pipe 19. Circulation pump 20. Circulation pump 21. External circulation piping 22. External circulation piping 23. High concentration biogas pipe 24. Low concentration biogas pipe 25. Reaction water return pipe 26. High concentration biogas holder 27. Low concentration biogas holder 28. Reaction water relay tank

Claims (4)

内部に原料となるバイオマス資源の粗砕物を充填し、メタン菌を含有する反応水を外部循環して充填物の上部からスプレーして流し、これを繰り返し実施してメタン発酵反応を行わせる気密性のメタン発酵槽を用いてメタンガスと発酵堆肥を製造する回分式のメタン発酵設備において、同じ形状で同一容積の一対のメタン発酵槽を用いるとともに、一方のメタン発酵槽(発酵槽A)が反応水のスプレーを開始してメタン発酵反応を開始した時点で、他方のメタン発酵槽(発酵槽B)では同じ時点でメタン発酵反応が終了して反応停止のための不活性ガスの注入を開始し、かつ、発酵槽Bの不活性ガスの注入量(流量速度)を発酵槽Aのメタンガスを含むバイオガスの発生量(流量速度)とほぼ同一となるように調節する操作をすることを特徴とする、バイオマス資源を利用したメタンガスと堆肥の製造方法。 Airtightness to fill the crushed material of the biomass resource as the raw material inside, to circulate the reaction water containing the methane bacteria externally and spray it from the top of the filling, and to carry out the methane fermentation reaction by repeating this. In a batch-type methane fermentation facility for producing methane gas and fermented compost using the methane fermentation tank of the above, a pair of methane fermentation tanks of the same shape and the same volume are used, and one methane fermentation tank (fermentation tank A) is the reaction water. When the methane fermentation reaction is started in the other methane fermentation tank (fermentation tank B) at the same time when the spraying of No. 1 is started and the methane fermentation reaction is started, the injection of the inert gas for stopping the reaction is started. Further, it is characterized by performing an operation of adjusting the injection amount (flow rate) of the inert gas in the fermenter B to be substantially the same as the generation amount (flow rate) of the biogas containing methane gas in the fermenter A. , A method for producing methane gas and compost using biomass resources. 一方のメタン発酵槽(発酵槽A)の反応開始から定常発酵反応の段階に入る前までの間に発生したバイオガスと他方のメタン発酵槽(発酵槽B)の不活性ガスの注入開始から終了操作完了までの間に発生したバイオガスとを、同一のメタンガス貯槽に捕集することを特徴とする、請求項1に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 From the start of the injection of biogas generated from the start of the reaction in one methane fermenter (fermentor A) to the time before entering the stage of the steady fermentation reaction and the end of the injection of the inert gas in the other methane fermenter (fermentor B) The method for producing methane gas and compost using biomass resources according to claim 1, wherein biogas generated until the operation is completed is collected in the same methane gas storage tank. 不活性ガスとして、バイオガスを空気過剰係数1.08〜1.10で完全燃焼させて得られる燃焼排ガスを用いることを特徴とする、請求項1又は請求項2に記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 As the inert gas, combustion exhaust gas obtained by completely burning biogas with an air excess coefficient of 1.08 to 1.10 is used, and the biomass resource according to claim 1 or 2 is used. Methane gas and compost manufacturing method. 不活性ガスの注入を、発酵槽底部に設けた穴あきパイプを通して発酵槽の底面全体にほぼ均一になるように行うことを特徴とする、請求項1ないし請求項3のいずれかに記載のバイオマス資源を利用したメタンガスと堆肥の製造方法。 The biomass according to any one of claims 1 to 3, wherein the inert gas is injected through the perforated pipe provided at the bottom of the fermenter so as to be substantially uniform over the entire bottom surface of the fermenter. A method for producing methane gas and compost using resources.
JP2020062199A 2018-10-09 2020-03-31 Method for producing methane gas and compost using biomass resources Active JP6740498B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018191222 2018-10-09
JP2018191222 2018-10-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020500665A Division JP6752990B1 (en) 2018-10-09 2019-09-27 Manufacturing method of methane gas and compost using biomass resources

Publications (2)

Publication Number Publication Date
JP6740498B1 JP6740498B1 (en) 2020-08-12
JP2020125236A true JP2020125236A (en) 2020-08-20

Family

ID=70164548

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020500665A Active JP6752990B1 (en) 2018-10-09 2019-09-27 Manufacturing method of methane gas and compost using biomass resources
JP2020062199A Active JP6740498B1 (en) 2018-10-09 2020-03-31 Method for producing methane gas and compost using biomass resources

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020500665A Active JP6752990B1 (en) 2018-10-09 2019-09-27 Manufacturing method of methane gas and compost using biomass resources

Country Status (2)

Country Link
JP (2) JP6752990B1 (en)
WO (1) WO2020075527A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024065937A (en) * 2022-10-31 2024-05-15 横河電機株式会社 Methane production method, control device, and methane production system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342009A (en) * 2005-06-07 2006-12-21 Nippon Syst Kaken Kk Method for producing pellet compost from compost raw material mainly containing livestock feces or sludge
JP2007090340A (en) * 2005-08-31 2007-04-12 Air Water Inc Batch biogas fermentation apparatus
JP2009255056A (en) * 2008-03-18 2009-11-05 Tomio Nagai Manufacturing method of methane gas and compost using biomass resources
JP2012166190A (en) * 2011-01-26 2012-09-06 Takuma Co Ltd Fermentation treatment device, and method for generating combustible gas by fermentation treatment
JP2013151405A (en) * 2011-12-26 2013-08-08 Tomio Nagai Method for producing methane gas and compost by utilizing biomass resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342009A (en) * 2005-06-07 2006-12-21 Nippon Syst Kaken Kk Method for producing pellet compost from compost raw material mainly containing livestock feces or sludge
JP2007090340A (en) * 2005-08-31 2007-04-12 Air Water Inc Batch biogas fermentation apparatus
JP2009255056A (en) * 2008-03-18 2009-11-05 Tomio Nagai Manufacturing method of methane gas and compost using biomass resources
JP2012166190A (en) * 2011-01-26 2012-09-06 Takuma Co Ltd Fermentation treatment device, and method for generating combustible gas by fermentation treatment
JP2013151405A (en) * 2011-12-26 2013-08-08 Tomio Nagai Method for producing methane gas and compost by utilizing biomass resource

Also Published As

Publication number Publication date
JP6740498B1 (en) 2020-08-12
WO2020075527A1 (en) 2020-04-16
JPWO2020075527A1 (en) 2021-02-15
JP6752990B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
CN106220262B (en) A kind of method of digestion process fowl and animal excrement and stalk
JP4615052B2 (en) Manufacturing method of methane gas and compost using biomass resources
CN100376335C (en) Marsh gas production technology using kitchen residue, straw, stock and fowl dejecta and active mud as material
CN101229982A (en) Method for producing organic compound fertilizer by using biogas residues
CN107628736A (en) A kind of livestock and poultry farm integration treatment for cow manure method
TWI656109B (en) System and method for anaerobic digestion of livestock waste
CN106431555A (en) Method for preparing methane and organic compound fertilizer from plant straws
CN107500815A (en) The aerobic low nitrogen composting method and device strengthened based on oxygen-enriched and free radical
CN110468045A (en) A kind of preaeration heating batch-type anaerobic dry fermentation apparatus and method
JP6740498B1 (en) Method for producing methane gas and compost using biomass resources
CN102503609B (en) Method for harmless treatment of fermentation and squeezing waste solution of marigold
CN106748129A (en) A kind of complexes for producing biological organic fertilizer
CN104787999A (en) Device and method for treating intensive pig farm feces
CN216890944U (en) Double-dry fermentation device for waste biomass
CN203668408U (en) Controllable header type anaerobic fermentation device
KR101183744B1 (en) A method and apparatus for producing livestock manure wastewater discharge, rapid fermentation and liquid fertilization using livestock waste including livestock litter in a cylindrical or polygonal sealed fermenter with moisture control agent.
Eltawil et al. Evaluation and scrubbing of biogas generation from agricultural wastes and water hyacinth
CN110950516B (en) System and method for comprehensively treating livestock and poultry manure and household garbage
CN100390293C (en) Method for improving rice straw anaerobic digestion methane yield by sodium hydroxide solid-state normal-temperature treatment
US11304358B2 (en) System and method for anaerobic digestion of animal wastes
CN205874014U (en) Fecal sewage treatment system of plant
JP2004196570A (en) Method and tank for manufacturing liquid fertilizer
CN105130150A (en) Cattle farm cattle manure originally ecological treatment method and device
CN109233932A (en) A kind of biomass energy sludge fuel stick for strengthening energy regenerating
CN203668374U (en) Biogas anaerobic fermentation and organic fertilizer production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200331

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200331

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6740498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250