JP2007090313A - Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method - Google Patents

Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method Download PDF

Info

Publication number
JP2007090313A
JP2007090313A JP2005307754A JP2005307754A JP2007090313A JP 2007090313 A JP2007090313 A JP 2007090313A JP 2005307754 A JP2005307754 A JP 2005307754A JP 2005307754 A JP2005307754 A JP 2005307754A JP 2007090313 A JP2007090313 A JP 2007090313A
Authority
JP
Japan
Prior art keywords
titanium dioxide
ethylene
ammonium sulfate
particle size
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005307754A
Other languages
Japanese (ja)
Inventor
Ichiro Moriya
市郎 森屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005307754A priority Critical patent/JP2007090313A/en
Publication of JP2007090313A publication Critical patent/JP2007090313A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst having a high photocatalytic activity capable of efficiently decomposing ethylene which is known as a substance giving a significant influence for retaining freshness of agricultural products such as vegetables and fruits and cut flowers even at an indoor with poor sunlight at a low cost. <P>SOLUTION: The high active photocatalyst excellent in photolysis of ethylene is characterized in that a titanium dioxide composite body produced by impregnating/sintering anatase type particulate titanium dioxide and anatase type titanium dioxide having a particle diameter of 50 nm or more with ammonium sulfate is sintered to integrate it. The high active photocatalyst is manufactured by impregnating the anatase type titanium dioxide having different particle diameters with ammonium sulfate, drying and sintering it and sintering the obtained solid substance at 300-700°C to integrate it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は白色蛍光灯などの紫外線の乏しい光に適応する安価な高活性光触媒とその製造方法に関し、特に農産物、切花などの植物の老化ホルモンとして知られ、それらの鮮度保持に重要な影響を及ぼすエチレンに対して高い光分解活性を示す安価な高活性光触媒とその製造方法に関する。
なお、本発明は白色蛍光灯などの紫外線の乏しい光に適応する光触媒に関するものであり、従来から強く実現が望まれていたものである。同じ光触媒という用語であっても、従来の光触媒は、紫外線の豊富な環境、例えば、紫外線放射ランプ照射下や屋外の直射の太陽光のもとで初めて効力を発するものであった。
したがって、本発明は蛍光灯などの紫外線の乏しい光に反応し、屋内や車内の白色蛍光灯のもとでも十分な効力を発揮するので、従来の光触媒とは技術的にも、用途においても異なる分野の発明である。
The present invention relates to an inexpensive highly active photocatalyst adapted to light with poor ultraviolet rays such as a white fluorescent lamp and a method for producing the same, and is particularly known as an aging hormone of plants such as agricultural products and cut flowers, and has an important effect on maintaining the freshness thereof. The present invention relates to an inexpensive highly active photocatalyst exhibiting high photolytic activity with respect to ethylene and a method for producing the same.
The present invention relates to a photocatalyst adapted to light with poor ultraviolet rays such as a white fluorescent lamp, and has been strongly desired to be realized in the past. Even if the term is the same photocatalyst, the conventional photocatalyst is effective for the first time under an environment rich in ultraviolet rays, for example, under the irradiation of an ultraviolet radiation lamp or under the direct sunlight outdoors.
Therefore, the present invention responds to light with poor ultraviolet rays such as fluorescent lamps and exhibits sufficient efficacy even under white fluorescent lamps indoors or in cars, so it differs from conventional photocatalysts in both technical and application. It is a field invention.

二酸化チタンは光触媒作用を有しており、例えば、有機物の分解などに太陽エネルギーを利用できるクリーンで環境適合型の未来志向物質として知られている。それ故、二酸化チタンは空気浄化、水質浄化などの分野においてその光触媒作用を実用化するため活発な技術開発がなされ、また建築外装用タイルの汚染防止などの分野においても輝かしい研究成果が修められている。しかし、これらの成果は主に紫外線を含む太陽光の利用できる屋外分野での成果であり、太陽光が遮断される屋内での実用化は期待されるほどの研究成果は修めていない。また、高活性光触媒用の二酸化チタンは、粒径が非常に小さいため、製造コストが高価となり、実用に際し障害となっている。  Titanium dioxide has a photocatalytic action, and is known as a clean and environmentally-friendly future-oriented substance that can use solar energy to decompose organic substances, for example. Therefore, titanium dioxide has been actively developed in order to put its photocatalytic action into practical use in fields such as air purification and water purification, and has also gained brilliant research results in areas such as pollution prevention of building exterior tiles. Yes. However, these results are mainly in the outdoor field where sunlight including ultraviolet rays can be used, and the research results that are expected to be put to practical use indoors where sunlight is blocked have not been completed. In addition, titanium dioxide for highly active photocatalysts has a very small particle size, which makes the production cost expensive and impedes practical use.

二酸化チタンの光触媒作用を太陽光の当たらない屋内で利用するためには、二酸化チタンの光触媒作用を、紫外光の乏しい白色蛍光灯などの波長で活性化することが必要である。二酸化チタンの高活性光触媒に関しては既に数多くの提案がなされている。具体的には、例えば、二酸化チタンにあって光触媒作用の優れるアナターゼ型二酸化チタンを化学蒸着法で基板上に被膜を生成させ、500〜900℃で焼成し、アナターゼ型の結晶化度を高めて光触媒作用を向上させる方法(特許文献1参照)、チタンアルコキシドを多孔質セラミックに塗工、焼成し微細多孔質膜を形成して光活性を高める方法(特許文献2参照)、二酸化チタンの結晶構造を円錐型とする方法(特許文献3参照)、二酸化チタンの結晶構造を柱状構造とする方法(特許文献4参照)、あるいは二酸化チタンの柱状の結晶構造を中空化し接触面積を高めて活性化する方法(特許文献5参照)、さらにはスパッタ法により基体上に二酸化チタンの被膜を形成、積層して光触媒能を高める方法(特許文献6参照)などが提案されており、その他にも二酸化チタンの結晶構造、結晶化度およびその結晶構造体に関してさまざまな高活性光触媒の検討がなされている。しかし、これら従来検討されている技術における光触媒活性の評価は、アセトアルデヒドなどの化学物質を対象にして太陽光に類似した紫外線に富むキセノンランプ、殺菌灯あるいはブラックライトなどを用いてなされたものであり、紫外線の乏しい屋内を対象とする高活性化光触媒を意図したものではない。  In order to use the photocatalytic action of titanium dioxide indoors where sunlight does not shine, it is necessary to activate the photocatalytic action of titanium dioxide at a wavelength such as a white fluorescent lamp with poor ultraviolet light. Numerous proposals have already been made regarding highly active photocatalysts of titanium dioxide. Specifically, for example, anatase-type titanium dioxide having excellent photocatalytic action in titanium dioxide is formed on a substrate by chemical vapor deposition and baked at 500 to 900 ° C. to increase the anatase-type crystallinity. A method for improving the photocatalytic action (see Patent Document 1), a method in which titanium alkoxide is applied to a porous ceramic and fired to form a microporous film to enhance photoactivity (see Patent Document 2), and a crystal structure of titanium dioxide Is made conical (see Patent Document 3), a method in which the crystal structure of titanium dioxide is a columnar structure (see Patent Document 4), or the columnar crystal structure of titanium dioxide is hollowed out to increase the contact area and activate. Proposed is a method (see Patent Document 5), a method of increasing the photocatalytic activity by forming and laminating a titanium dioxide film on a substrate by sputtering (see Patent Document 6), and the like. And it has the crystal structure of Besides titanium dioxide, study of various highly active photocatalyst respect crystallinity and crystal structure have been made. However, the evaluation of the photocatalytic activity in these conventionally studied technologies was carried out using a xenon lamp, germicidal lamp or black light, which is rich in ultraviolet rays similar to sunlight, targeting a chemical substance such as acetaldehyde. It is not intended to be a highly activated photocatalyst for indoors where UV rays are scarce.

二酸化チタンにおける光触媒作用の高活性化を図る別の手段として、二酸化チタンとともに貴金属を併用する一連の提案がなされている。具体的には二酸化チタンの柱状結晶の表面に白金、パラジウム、金などを担持して光触媒活性を高める方法(特許文献7参照)、ルチル型酸化チタンに白金などを微粒子の形で担持して活性化をはかる方法(特許文献8参照)、酸化チタンにイットリウムを含有させ活性を高める方法(特許文献9参照)などが提案されている。また、特殊な方法としては、チタン酸バリウムにイリジウムなどの貴金属を担持させて高活性な光触媒を得る方法(特許文献10参照)、塩基性硫酸チタニウムアンモニウム、(NHSO・TiOSO・2HOを焼成してアナターゼ型二酸化チタンを合成しチタン金属粉と混合し、少量の硫酸チタンを噴霧しながら300から700℃で焼成した、難分解性の有機ハロゲン化合物を太陽光で分解することのできる光触媒を得る方法(特許文献11参照)などが提案されている。これらの提案も、多くの場合アセトアルデヒドなどの化合物の分解性を評価し、あるいは光源として紫外線に富む水銀ランプなどが用いられあるいは太陽光をそのまま光源に用いて検討したものであり、太陽光の乏しい屋内での光触媒の利用を意図したものではない。As another means for increasing the photocatalytic activity of titanium dioxide, a series of proposals using a noble metal together with titanium dioxide has been made. Specifically, platinum, palladium, gold, etc. are supported on the surface of titanium dioxide columnar crystals to increase the photocatalytic activity (see Patent Document 7), and platinum, etc. are supported on rutile titanium oxide in the form of fine particles. For example, a method for improving the activity (see Patent Document 8) and a method for increasing the activity by adding yttrium to titanium oxide (see Patent Document 9) have been proposed. Further, as a special method, a method of obtaining a highly active photocatalyst by supporting a noble metal such as iridium on barium titanate (see Patent Document 10), basic ammonium ammonium sulfate, (NH 4 ) 2 SO 4 · TiOSO 4・ Sintered 2H 2 O, synthesized anatase-type titanium dioxide, mixed with titanium metal powder, and fired at 300 to 700 ° C while spraying a small amount of titanium sulfate. A method for obtaining a photocatalyst that can be used (see Patent Document 11) has been proposed. These proposals are often evaluated by evaluating the decomposability of compounds such as acetaldehyde, or using mercury-rich lamps that are rich in ultraviolet rays as the light source, or using sunlight directly as the light source. It is not intended for indoor use of photocatalysts.

なお、前記特許文献8に記載されたルチル型二酸化チタンに白金触媒を担持した際には、ルチル型二酸化チタンでは407nm(バンドギャップ3.05eV)の波長までの光で励起し、アナターゼ型二酸化チタンの388nm(バンドギャップ3.20eV)よりも光励起する波長が可視光側(長波長)にあり白金粒子の活性化効果が加わり、白色蛍光灯においても活性を示しアセトアルデヒドを分解することを該明細書で述べている。しかし、白金などの貴金属は酸化チタンに比較して著しく高価でありコストの面において実用上の制約を免れ得ない。  When a platinum catalyst is supported on the rutile type titanium dioxide described in Patent Document 8, the rutile type titanium dioxide is excited by light up to a wavelength of 407 nm (band gap 3.05 eV), and anatase type titanium dioxide. The wavelength of photoexcitation from 388 nm (bandgap 3.20 eV) is on the visible light side (long wavelength), the activation effect of platinum particles is added, the activity is exhibited even in a white fluorescent lamp, and acetaldehyde is decomposed. It is stated in. However, noble metals such as platinum are remarkably expensive as compared with titanium oxide, and practical limitations cannot be avoided in terms of cost.

紫外光を含まない可視光に応答する光触媒に関しては、酸化チタンに窒素(N)またはイオウ(S)をドープすることにより基板上にTi−O−Nまたは、Ti−O−S構造の光触媒構造の膜を形成する(特許文献12参照)が提案されているが、光触媒膜の製造速度を考慮すると製造コストが高くならざるを得ない。可視光に応答し、コストを低減できる光触媒として、酸化チタンの粉末と尿素を攪拌混合した後、加熱して酸窒化チタンを製造する(参考文献13参照)が提案されているが、該特許の実施例に述べられているように、窒素またはアンモニア雰囲気での焼成が必要であり、本特許の光触媒製造方法である空気中での単なる焼成に較べ工程が複雑になり、製造コスト面で不利と思われる。  For photocatalysts that respond to visible light that does not contain ultraviolet light, titanium oxide is doped with nitrogen (N) or sulfur (S) to form a photocatalytic structure of Ti—O—N or Ti—O—S structure on the substrate. (See Patent Document 12) has been proposed, but the production cost must be increased in consideration of the production rate of the photocatalyst film. As a photocatalyst that can respond to visible light and reduce costs, titanium oxide powder and urea are stirred and mixed, and then heated to produce titanium oxynitride (see Reference 13). As described in the examples, firing in a nitrogen or ammonia atmosphere is necessary, and the photocatalyst production method of this patent is more complicated than the simple firing in air, which is disadvantageous in terms of production cost. Seem.

さらに、エチレンの光分解に関する従来の提案は、農産物の品質保持を目的とするエチレンの分解、除去に関する装置面からの提案が多く、二酸化チタンあるいは白金担持二酸化チタンに光照射してエチレンを分解し農産物の鮮度を保つ装置システムの提案などがその1例である(例えば、特許文献14参照)。二酸化チタンに関するエチレンの光分解に関する提案は、ナトリウムなどのアルカリ金属を除去したゼオライト上に酸化チタンを担持した耐水性に優れ光触媒活性に富むエチレン分解触媒(特許文献15参照)、高反射率表面を持つ担体上に光の透過性のよい電荷分離層を設け、その上に10から50ナノメーターの結晶粒子径を有する酸化チタン微粒子を担持することを特徴とするエチレン分解触媒(特許文献16参照)等の提案がなされている。しかし、これらの特許にみられるエチレン分解の評価方法は紫外線殺菌ランプなどを用いてなされたものであり、紫外線の乏しい屋内で適用することができる有効な光触媒としてはその活性はまだ満足すべきものではない。  Furthermore, many of the previous proposals related to the photodecomposition of ethylene are from the aspect of equipment related to the decomposition and removal of ethylene for the purpose of maintaining the quality of agricultural products, and light is irradiated to titanium dioxide or platinum-supported titanium dioxide to decompose ethylene. One example is a proposal of an apparatus system that maintains the freshness of agricultural products (for example, see Patent Document 14). Proposals related to photolysis of ethylene related to titanium dioxide include an ethylene decomposition catalyst (see Patent Document 15) having excellent water resistance and high photocatalytic activity, in which titanium oxide is supported on zeolite from which alkali metals such as sodium have been removed. An ethylene decomposition catalyst characterized in that a charge separation layer having a good light transmission property is provided on a carrier, and titanium oxide fine particles having a crystal particle diameter of 10 to 50 nanometers are supported thereon (see Patent Document 16) Etc. have been proposed. However, the evaluation method of ethylene degradation found in these patents was made using an ultraviolet germicidal lamp, etc., and its activity is not yet satisfactory as an effective photocatalyst that can be applied indoors where ultraviolet rays are scarce. Absent.

特開2000−266902号公報(第1〜5頁)  JP 2000-266902 A (pages 1 to 5) 特開2001−259435号公報(第1〜6頁)  JP 2001-259435 A (pages 1 to 6) 特開2002−253974号公報(第1〜8頁)  JP 2002-253974 A (pages 1 to 8) 特開2002−370034号公報(第1〜7頁)  JP 2002-370034 A (pages 1-7) 特開2003−190810号公報(第1〜15頁)  JP 2003-190810 A (pages 1 to 15) 特開平11−47609号公報(第1〜8頁)  JP-A-11-47609 (pages 1 to 8) 特開2003−299965号公報(第1〜12頁)  JP 2003-299965 A (pages 1 to 12) 特開2000−262906号公報(第1〜11頁)  JP 2000-262906 A (pages 1 to 11) 特開平11−244706号公報(第1〜4頁)  JP 11-244706 A (pages 1 to 4) 特開平9−253486号公報(第1〜7頁)  JP-A-9-253486 (pages 1-7) 特開平7−275702号公報(第1〜5頁)  JP-A-7-275702 (pages 1 to 5) 特開2001−207082号公報(第1〜9頁)  JP 2001-207082 A (pages 1 to 9) 特開2002−154823号公報(第1〜7頁)  JP 2002-154823 A (pages 1 to 7) 特開平1−252244号公報(第1〜11頁)  JP-A-1-252244 (pages 1 to 11) 特開平7−16473号公報(第1〜6頁)  JP 7-16473 A (pages 1 to 6) 特開平7−88367号公報(第1〜6頁)  JP-A-7-88367 (pages 1-6) 尾崎萃ほか編「触媒調製化学」49頁、講談社サイエンティフィク(1980)  Satoshi Ozaki et al. “Catalyst Preparation Chemistry”, p. 49, Kodansha Scientific (1980) 触媒学会主催「第9回キャタリシススクールテキスト」52頁、触媒学会(1998)  52nd page of "9th Catalysis School Text" sponsored by the Catalysis Society of Japan, Catalysis Society of Japan (1998)

本発明は、太陽光の下では勿論のこと、白色蛍光灯の照射下等の太陽光の乏しい屋内においても、野菜、果物などの農産物および切花の鮮度保持に重大な影響を及ぼすことの知られるエチレンを効率よく分解できる高い光触媒活性を有する汎用型でしかも安価な光触媒を提供することを目的とするものである。さらに塗料などへ混合する際に均一に混合が可能で、かつ屋内で通常照明用に用いられる白色蛍光灯の光のもとでも高い光触媒活性を示す安価な汎用光触媒の提供を目的とするものである。  The present invention is known to have a significant effect on maintaining the freshness of agricultural products such as vegetables and fruits and cut flowers, not only under sunlight, but also indoors where sunlight is poor, such as under the irradiation of a white fluorescent lamp. An object of the present invention is to provide a general-purpose and inexpensive photocatalyst having high photocatalytic activity capable of efficiently decomposing ethylene. Furthermore, it is intended to provide an inexpensive general-purpose photocatalyst that can be uniformly mixed when mixed into paint, etc., and exhibits high photocatalytic activity even under the light of a white fluorescent lamp that is used indoors for ordinary lighting. is there.

本発明者は、上記の状況に鑑み、太陽光の乏しい屋内でもエチレンを光分解する二酸化チタンを用いた汎用型光触媒について鋭意研究を進めた結果、白色蛍光灯程度の光源でも高い光触媒活性を有する二酸化チタン複合体を見出し、本発明を完成するに至った。  In view of the above situation, the present inventor has conducted extensive research on a general-purpose photocatalyst using titanium dioxide that photodecomposes ethylene even in sunlight-poor indoors. A titanium dioxide composite was found and the present invention was completed.

即ち、本発明は、以下の内容をその要旨とするものである。
(1)2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化したことを特徴とするエチレンの光分解に優れる高活性光触媒。
(2)二酸化チタンがアナターゼ型の結晶構造を有するものであることを特徴とする(1)に記載の高活性光触媒。
(3)粒径の小さな二酸化チタンの粒径が、8nm未満であり、より粒径の大きな二酸化チタンの粒径が、50nm以上である(1)および(2)に記載の高活性光触媒。
(4)二酸化チタン複合体が、二酸化チタンに硫酸アンモニウムを含浸させることにより得られたものであることを特徴とする(1)〜(3)に記載の高活性光触媒。
(5)いずれの粒径の複合体においても、二酸化チタンに対する硫酸アンモニウムの含浸量が1〜20モル%である、(1)〜(4)に記載の高活性光触媒
(6)粒径の小さな二酸化チタンの複合体と粒径の大きな二酸化チタン複合体の重量比が5/95ないし40/60である(1)〜(5)に記載の高活性光触媒
(7)2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化したことを特徴とする(1)〜(6)に記載の高活性光触媒の製造方法。
(8)2種類以上の粒径の異なる二酸化チタンを焼成し一体とした後、硫酸アンモニウムを含浸して生成する二酸化チタン複合体を焼成したことを特徴とする(7)に記載の高活性光触媒の製造方法。
(9)2種類以上の粒径の異なる二酸化チタンのそれぞれに硫酸アンモニウムを含浸し生成する二酸化チタン複合体を焼成して一体化したことを特徴とする(7)に記載の高活性光触媒の製造方法。
That is, the gist of the present invention is as follows.
(1) A highly active photocatalyst excellent in photolysis of ethylene, wherein a titanium dioxide composite produced from two or more types of titanium dioxide and ammonium sulfate having different particle diameters is baked and integrated.
(2) The highly active photocatalyst according to (1), wherein the titanium dioxide has an anatase type crystal structure.
(3) The highly active photocatalyst according to (1) and (2), wherein the particle size of titanium dioxide having a small particle size is less than 8 nm, and the particle size of titanium dioxide having a larger particle size is 50 nm or more.
(4) The highly active photocatalyst according to any one of (1) to (3), wherein the titanium dioxide composite is obtained by impregnating titanium dioxide with ammonium sulfate.
(5) The high activity photocatalyst according to (1) to (4), wherein the impregnation amount of ammonium sulfate with respect to titanium dioxide is 1 to 20 mol% in any composite of any particle size. The high-activity photocatalyst according to (1) to (5), wherein the weight ratio of the composite of titanium and the titanium dioxide composite having a large particle size is 5/95 to 40/60. The method for producing a highly active photocatalyst according to any one of (1) to (6), wherein a titanium dioxide composite produced from titanium dioxide and ammonium sulfate is baked and integrated.
(8) The highly active photocatalyst according to (7), wherein two or more types of titanium dioxide having different particle diameters are calcined and integrated, and then a titanium dioxide composite formed by impregnation with ammonium sulfate is calcined. Production method.
(9) The method for producing a highly active photocatalyst according to (7), wherein the titanium dioxide composite formed by impregnating ammonium sulfate into each of two or more types of titanium dioxide having different particle diameters is fired and integrated. .

本発明の、2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化したことを特徴とするエチレンの光分解に優れる高活性光触媒は、安価に製造可能であり、しかも室内照明用の白色蛍光灯程度の紫外線が乏しい光によっても、エチレン分解に高い活性を示す光触媒である。従って、本発明の光触媒を用いれば、特別に紫外線を含む太陽光線や紫外線ランプの光を照射する必要がなく、野菜や果物を室内、車内、太陽光が遮断された屋外等に貯蔵する場合であっても、発生するエチレンを効率よく分解することができる。  A highly active photocatalyst excellent in photodecomposition of ethylene, characterized by firing and integrating a titanium dioxide composite produced from two or more types of titanium dioxide and ammonium sulfate having different particle diameters, is manufactured at low cost. It is a photocatalyst that has high activity for ethylene decomposition even with light that is as low in ultraviolet rays as white fluorescent lamps for indoor lighting. Therefore, if the photocatalyst of the present invention is used, it is not necessary to irradiate sunlight rays or ultraviolet lamp light including ultraviolet rays, and vegetables and fruits are stored indoors, in cars, outdoors where sunlight is blocked. Even if it exists, the generated ethylene can be decomposed efficiently.

本発明の高活性光触媒である二酸化チタン複合体は、2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化したものである。具体的には、粒径8nm未満の二酸化チタンと粒径50nm以上の二酸化チタンを混合し、該混合物に硫酸アンモニウムを含浸した後、焼成して得た複合体である。あるいは、粒径8nm未満の二酸化チタンに硫酸アンモニウムを含浸し焼成して得た複合体と、粒径50nm以上の二酸化チタンに硫酸アンモニウムを含浸し焼成して得た複合体を混合し、さらに焼成したものである。そして、いずれの粒径の複合体においても、硫酸アンモニウムを構成する成分元素が二酸化チタンの粒子の表面または内部に一体的に複合化した二酸化チタン複合体である。
このような二酸化チタン複合体を用いた本発明の高活性光触媒は、その構造やメカニズムは必ずしも明確ではないが、本発明の代表的複合体である、硫酸アンモニウムを8mol%含浸した二酸化チタン複合体の紫外・可視吸収スペクトル(図1参照)が400nm付近においてほとんど吸収が認められず、一般的な二酸化チタンと同様なスペクトルが得られることから、特許文献12において、可視光応答性発現の推定根拠とされている400nm付近での吸収スペクトルの増大とは異なり、別の作用によって可視域に近い紫外光ないし可視光領域において光触媒活性の増大が生じていると思われる。そのひとつの可能性として、光を受けて生成した電子と正孔が再結合しにくくなり、その結果、光触媒活性効率が増大していると考えられる。したがって、紫外線の乏しい環境下にあっても、特許文献12とは異なる性質を持つ新規な高活性光触媒と考えられる。
The titanium dioxide composite which is a highly active photocatalyst of the present invention is obtained by firing and integrating a titanium dioxide composite produced from two or more types of titanium dioxide and ammonium sulfate having different particle sizes. Specifically, it is a composite obtained by mixing titanium dioxide having a particle size of less than 8 nm and titanium dioxide having a particle size of 50 nm or more, impregnating the mixture with ammonium sulfate, and then firing the mixture. Alternatively, a composite obtained by impregnating and sintering ammonium sulfate in titanium dioxide having a particle diameter of less than 8 nm and a composite obtained by impregnating and sintering ammonium sulfate in titanium dioxide having a particle diameter of 50 nm or more are mixed and further baked It is. In any composite of any particle size, the component element constituting ammonium sulfate is a titanium dioxide composite that is integrally combined on the surface or inside of the titanium dioxide particles.
Although the structure and mechanism of the highly active photocatalyst of the present invention using such a titanium dioxide composite is not necessarily clear, a typical composite of the present invention is a titanium dioxide composite impregnated with 8 mol% of ammonium sulfate. The ultraviolet / visible absorption spectrum (see FIG. 1) shows almost no absorption around 400 nm, and a spectrum similar to that of general titanium dioxide can be obtained. Unlike the increase in the absorption spectrum near 400 nm, which is different from the above, it seems that the photocatalytic activity is increased in the ultraviolet light or visible light region close to the visible region by another action. One possibility is that electrons and holes generated by receiving light are less likely to recombine, resulting in an increase in photocatalytic activity efficiency. Therefore, it is considered to be a novel highly active photocatalyst having properties different from those of Patent Document 12 even in an environment where ultraviolet rays are scarce.

本発明において用いる原料の二酸化チタン(TiO)は、アナターゼ型、ルチル型若しくはブルッカイト型の結晶系のもの、又はアモルファスのもののいずれも使用し得るが、アナターゼ型の二酸化チタンが好適である。それらの粒径は、小さな粒径のものは8nm(8×10−9m)未満のもの、大きな粒径のものは50nm(50×10−9m)から1μm(10−6m)程度のものまでを使用できる。より好ましくは、小さな粒径のものは3nm(3×10−9m)から7nm(7×10−9m)である。3nm未満のものは製造コストが非常に高くなり、また細かすぎて作業性が悪い。大きな粒径のものの好ましい範囲は100nm(100×10−9m)から500nm(500×10−9m)のものである。100nm未満だと価格が安価でなく本特許の特長が生かせない。また、500nm以上だと粒径が大きすぎて、塗膜に混合した際に塗膜の平滑性が悪くなり、フィルムに練りこむ場合に均一に練りこむことが出来なくなりやすい。なお、本特許で粒径とは1次粒子の径をいう。本発明に用いる二酸化チタンは、製品として市販されているものを原料としてそのまま使用することができるものである。しかし、特に望むならば硫酸チタン、四塩化チタン、硝酸チタンなど無機酸のチタン塩あるいはチタンテトラエトキシド、チタンテトライソプロポキシドあるいはチタンテトラ(2−エチルヘキサノエート)などのチタン化合物を加水分解あるいは苛性ソーダなどの塩基性物質で中和、沈殿、焼成などの方法により調製することもできるものである。上記のもののうちアナターゼ型二酸化チタンは従来型の紫外線の豊富な環境下で利用できる光触媒として販売されている。As the raw material titanium dioxide (TiO 2 ) used in the present invention, any of anatase type, rutile type or brookite type crystal type or amorphous type can be used, but anatase type titanium dioxide is preferred. Those having a small particle size are less than 8 nm (8 × 10 −9 m), and those having a large particle size are about 50 nm (50 × 10 −9 m) to 1 μm (10 −6 m). You can use anything. More preferably, the small particle size is 3 nm (3 × 10 −9 m) to 7 nm (7 × 10 −9 m). If it is less than 3 nm, the manufacturing cost is very high, and it is too fine to work. The preferred range for large particle sizes is from 100 nm (100 × 10 −9 m) to 500 nm (500 × 10 −9 m). If it is less than 100 nm, the price is not cheap and the features of this patent cannot be utilized. Moreover, when it is 500 nm or more, the particle size is too large, and when mixed with the coating film, the smoothness of the coating film becomes poor, and when kneaded into a film, it is difficult to knead uniformly. In this patent, the particle diameter means the diameter of primary particles. The titanium dioxide used in the present invention can be used as a raw material as it is marketed as a product. However, if desired, hydrolysis of titanium salts such as titanium salts of inorganic acids such as titanium sulfate, titanium tetrachloride and titanium nitrate, or titanium tetraethoxide, titanium tetraisopropoxide or titanium tetra (2-ethylhexanoate) Or it can also prepare by methods, such as neutralization, precipitation, and baking, with basic substances, such as caustic soda. Of the above, anatase-type titanium dioxide is sold as a photocatalyst that can be used in a conventional ultraviolet-rich environment.

本発明の、異なる粒径の二酸化チタン複合体が一体化された高活性光触媒においては、粒径の小さな二酸化チタンの複合体と粒径の大きな二酸化チタン複合体の重量比が5/95ないし40/60であることが好ましい。粒径の小さな二酸化チタン複合体の重量比が5%未満だと光触媒活性が不十分となり、40重量%以上だとコストが高くなり好ましくない。また、高活性と安価を両立させるための、さらに好ましい範囲は、重量比が8/92ないし30/70である。In the highly active photocatalyst of the present invention in which titanium dioxide composites having different particle sizes are integrated, the weight ratio of the titanium dioxide composite having a small particle size and the titanium dioxide composite having a large particle size is 5/95 to 40. / 60 is preferable. If the weight ratio of the titanium dioxide composite having a small particle diameter is less than 5%, the photocatalytic activity is insufficient, and if it is 40% by weight or more, the cost increases, which is not preferable. A more preferable range for achieving both high activity and low cost is a weight ratio of 8/92 to 30/70.

市販のアナターゼ型二酸化チタンの代表的な製品としては、テイカ株式会社製のAMT−100、AMT−600、JA−1、堺化学工業株式会社製のSSP−25、A−110、CSPM、CSB、石原産業株式会社製のST−01、ST−41などが知られ、これらの二酸化チタンを使用して、二酸化チタン複合体を調製することが可能である。
なお、二酸化チタンの価格は粒径が小さくなるにしたがって高くなる傾向があり、特に粒径8nm未満のアナターゼ型二酸化チタンにおいては、光触媒活性は高活性であるが非常に高価なものである。それに較べて粒径が50nm以上のやや大きなものでは活性は粒径が大きくなるにしたがって光触媒活性が低下するが、安価に入手でき、100nm以上のものはより安価に入手できる。
本発明者は、8nm未満の微小粒径のアナターゼ型二酸化チタンと50nm以上のアナターゼ型二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化することにより、8nm未満の微小粒径のアナターゼ型二酸化チタンの使用量が少なくても、十分に大きな光触媒活性、それも、紫外線の乏しい白色蛍光灯の照射化での光触媒活性を見出し、本発明を完成した。
Representative products of commercially available anatase titanium dioxide include AMT-100, AMT-600, JA-1, manufactured by Teika Co., Ltd., SSP-25, A-110, CSPM, CSB manufactured by Sakai Chemical Industry Co., Ltd. ST-01 and ST-41 manufactured by Ishihara Sangyo Co., Ltd. are known, and it is possible to prepare a titanium dioxide composite using these titanium dioxides.
Note that the price of titanium dioxide tends to increase as the particle size decreases. In particular, in anatase type titanium dioxide having a particle size of less than 8 nm, the photocatalytic activity is high but very expensive. In contrast, the activity of a slightly larger particle having a particle size of 50 nm or more decreases in photocatalytic activity as the particle size increases, but it can be obtained at a low cost, and the activity of 100 nm or more can be obtained at a lower cost.
The present inventor baked and integrated the anatase-type titanium dioxide having a fine particle size of less than 8 nm, the anatase-type titanium dioxide of 50 nm or more and ammonium sulfate, thereby integrating the fine particle size of less than 8 nm. The present invention was completed by finding a sufficiently large photocatalytic activity even with a small amount of anatase-type titanium dioxide used, that is, photocatalytic activity in irradiation of a white fluorescent lamp with poor ultraviolet rays.

本発明において用いる硫酸アンモニウムは、試薬でも工業用でも使用でき、特に純度を特定しない。なお、硫酸アンモニウムは肥料等として工業的に大量生産されており、安価で品質の安定したものが容易に入手でき、水に対する溶解度が大きいので含浸操作が容易であり、安全性に関しても問題なく、原料として用いる際には非常に優れている。  Ammonium sulfate used in the present invention can be used as a reagent or for industrial use, and its purity is not specified. Ammonium sulfate is industrially mass-produced as a fertilizer, etc., inexpensive and stable quality is readily available, and its solubility in water is large, so that the impregnation operation is easy, and there is no problem with regard to safety. When used as a very good.

次に、本発明の安価でかつ白色蛍光灯等の紫外線が乏しい環境においても高活性を示す光触媒の製造方法について説明する。
ひとつは、2種類以上の粒径の異なる二酸化チタンを焼成し一体とした後、硫酸アンモニウムを含浸して生成する二酸化チタン複合体を焼成する方法である。つまり、アナターゼ型微粒子二酸化チタンと、より粒径の大きなアナターゼ型二酸化チタンを均一に混合、乾燥、焼成して一体化し、次ぎに硫酸アンモニウムを含浸し、乾燥、焼成して一体化アナターゼ型二酸化チタン複合体を得る方法である。
もうひとつは、2種類以上の粒径の異なるアナターゼ型二酸化チタンのそれぞれに硫酸アンモニウムを含浸し乾燥、焼成した後に生成した、粒径の異なるアナターゼ型二酸化チタン複合体を所定の比率で均一に混合し、焼成して一体化する方法である。
Next, a method for producing a photocatalyst exhibiting high activity even in an inexpensive and white environment such as a white fluorescent lamp according to the present invention will be described.
One is a method in which two or more types of titanium dioxide having different particle diameters are baked and integrated, and then a titanium dioxide composite formed by impregnation with ammonium sulfate is baked. That is, anatase type fine particle titanium dioxide and anatase type titanium dioxide having a larger particle size are uniformly mixed, dried and fired to be integrated, then impregnated with ammonium sulfate, dried and fired, and integrated anatase type titanium dioxide composite A way to get a body.
The other is that two or more types of anatase-type titanium dioxide having different particle diameters are impregnated with ammonium sulfate, dried and fired, and then anatase-type titanium dioxide composites having different particle diameters are uniformly mixed at a predetermined ratio. It is a method of firing and integrating.

さらに、本発明の高活性光触媒である二酸化チタン複合体の製造方法について説明する。本発明の二酸化チタン複合体の調製方法は、小さな粒径と大きな粒径の一体化物の複合体の場合も、小さな粒径の複合体の場合も、大きな粒径の複合体の場合も、通常は含浸法を用いる(非特許文献1、2参照)。つまり、二酸化チタンと硫酸アンモニウム水溶液をよく混合して均一化をはかり硫酸アンモニウムを二酸化チタンに含浸または吸着させ、20から100℃程度の温度で乾燥、焼成した後、粉砕して硫酸アンモニウムを含む二酸化チタン複合体を調製すればよい。  Furthermore, the manufacturing method of the titanium dioxide composite which is the highly active photocatalyst of this invention is demonstrated. The method for preparing the titanium dioxide composite of the present invention is usually applied to a composite of a small particle size and a large particle size, a composite of a small particle size, and a composite of a large particle size. Uses an impregnation method (see Non-Patent Documents 1 and 2). That is, titanium dioxide and an aqueous ammonium sulfate solution are mixed well to make uniform, impregnating or adsorbing ammonium sulfate on titanium dioxide, dried and fired at a temperature of about 20 to 100 ° C., and then pulverized to include a titanium dioxide composite containing ammonium sulfate. May be prepared.

小さな粒径と大きな粒径の二酸化チタン複合体を準備するのに共沈殿法(非特許文献1、2参照)を利用することも可能である。共沈殿による場合には、市販の硫酸チタンの水溶液と硫酸アンモニウムの水溶液を混合し、水酸化ナトリウム水溶液やアンモニア水で中和して硫酸アンモニウムを含む二酸化チタンを共沈澱により生成させ、次いで、ろ過、洗浄して得た粉体を20から100℃程度の温度で乾燥、焼成した後、粉砕して硫酸アンモニウムを含む二酸化チタンを調製すればよい。  A coprecipitation method (see Non-Patent Documents 1 and 2) can be used to prepare a titanium dioxide composite having a small particle size and a large particle size. In the case of coprecipitation, a commercially available aqueous solution of titanium sulfate and an aqueous solution of ammonium sulfate are mixed and neutralized with an aqueous sodium hydroxide solution or aqueous ammonia to produce titanium dioxide containing ammonium sulfate by coprecipitation, followed by filtration and washing. The powder obtained as described above may be dried and fired at a temperature of about 20 to 100 ° C. and then pulverized to prepare titanium dioxide containing ammonium sulfate.

二酸化チタンに含ませる硫酸アンモニウムの量は、小さな粒径と大きな粒径の一体化物の複合体も、小さな粒径の複合体も、大きな粒径の複合体も、二酸化チタンに対して通常は1から20モル%程度であるが、好ましくは2から15モル%程度である。1モル%以下では、活性が小さく、20モル%以上では光触媒活性が減少する傾向を生じる場合もみられるため、通常は20モル%以下の量に抑えるのが好ましい。しかし、特に望むなら20モル%以上の量を用いることを妨げるものではない。また、本発明に使用する硫酸アンモニウムを含む二酸化チタンとしては、上記のように含浸、吸着、共沈殿により得られるものの他に、これらの硫酸アンモニウムを含む二酸化チタンを、さらにその後、洗浄、加熱乾燥、焼成、粉砕等の諸工程で熱分解などにより化学構造変化を生じたものも含む。  The amount of ammonium sulfate contained in the titanium dioxide is usually from 1 to the composite of a composite having a small particle size and a large particle size, a composite having a small particle size, and a composite having a large particle size. Although it is about 20 mol%, it is preferably about 2 to 15 mol%. If it is 1 mol% or less, the activity is small, and if it is 20 mol% or more, the photocatalytic activity tends to decrease. Therefore, it is usually preferable to limit the amount to 20 mol% or less. However, it does not preclude the use of an amount of 20 mol% or more if specifically desired. Moreover, as titanium dioxide containing ammonium sulfate used in the present invention, in addition to those obtained by impregnation, adsorption and coprecipitation as described above, titanium dioxide containing ammonium sulfate is further washed, heated and dried, and calcined. In addition, those in which chemical structural changes are caused by thermal decomposition in various processes such as pulverization are also included.

以上のような本発明の二酸化チタン複合体を用いる高活性光触媒は、農産物、切花などを貯蔵中に発生するエチレンを分解するため、それらの品質保持に極めて有用である。該高活性触媒は、そのままで使用しても良いが、塗料に混合する、プラスチックフィルムに担持するなど、さまざまな形態で使用することができるものである。また、白色蛍光灯の光に反応して光触媒活性を生じることから、エチレン分解以外にも、アルデヒドなどの有機物の分解や、悪臭の除去、車の排気ガスの浄化、抗菌性付与等、従来の光触媒が有していた効果を、室内や車内等の紫外線の乏しい環境でも発揮できる。    The highly active photocatalyst using the titanium dioxide composite of the present invention as described above decomposes ethylene generated during storage of agricultural products, cut flowers, etc., and is therefore extremely useful for maintaining the quality of these. The high activity catalyst may be used as it is, but can be used in various forms such as being mixed with a paint or supported on a plastic film. In addition to photocatalytic activity in response to the light of white fluorescent lamps, in addition to the decomposition of ethylene, conventional decomposition of organic substances such as aldehydes, removal of malodors, purification of car exhaust gas, antibacterial properties, etc. The effect of the photocatalyst can be exhibited even in an environment with poor ultraviolet rays, such as indoors or in a car.

次に、本発明の実施例を述べるに先立ち、光触媒が白色蛍光灯照射によりエチレンを分解する際の評価方法について説明する。
(i)装置の構成
評価に用いる装置に付いては特別の制限は設けないが、通常は以下に記す4種の装置からなる。▲1▼ガラス製シャーレ(内径66mm):0.1gの試料を水と混ぜて均一に塗布、乾燥し、薄膜を調製する。▲2▼石英製セル(円筒形、内容積300ml):試料を塗布したシャーレを収め、内部を酸素/アルゴン=20%/80%の合成ガスで置換し、エチレン5ppmを挿入する、光透過性の優れた石英製の気密な容器。▲3▼照射箱(W×L×H=75×70×75cm):石英製セルを内部に納め、白色蛍光灯で光照射を行う容器。空気を循環し温度を調整する。▲4▼ガスクロマトグラフ:エチレンなどの分析装置。
Next, prior to describing examples of the present invention, an evaluation method when the photocatalyst decomposes ethylene by irradiation with a white fluorescent lamp will be described.
(I) Structure of apparatus Although there is no special restriction for the apparatus used for evaluation, it is usually composed of the following four kinds of apparatuses. (1) Glass petri dish (inner diameter 66 mm): A 0.1 g sample is mixed with water and uniformly applied and dried to prepare a thin film. (2) Quartz cell (cylindrical, internal volume 300 ml): The petri dish coated with the sample is stored, the inside is replaced with oxygen / argon = 20% / 80% synthesis gas, and 5 ppm of ethylene is inserted. Excellent quartz airtight container. (3) Irradiation box (W × L × H = 75 × 70 × 75 cm): A container in which a quartz cell is housed and light is irradiated with a white fluorescent lamp. Circulate air and adjust temperature. (4) Gas chromatograph: analyzer for ethylene and the like.

(ii)操作手順
ガラス製シャーレ(内径66mm)中に試料と水を加えて均一に塗布、乾燥し、該シャーレを気密な円筒状の石英製セル内に収める。次いで該セル中のガスを20%の酸素を含むアルゴンガス(合成空気)で充分に置換する。該セルを白色蛍光灯付照射箱内に設置する。照射箱に収められた石英製セル中の試料は、次に示すエチレン分解評価のスケジュールに従って光照射を行い、その間のエチレン分解による濃度変化をガスクロマトグラフにより追跡して測定し、試料の光分解活性を評価する。
(Ii) Operating procedure A sample and water are added and uniformly applied to a glass petri dish (inner diameter 66 mm), dried, and the petri dish is placed in an airtight cylindrical quartz cell. Next, the gas in the cell is sufficiently replaced with argon gas (synthetic air) containing 20% oxygen. The cell is placed in an irradiation box with a white fluorescent lamp. The sample in the quartz cell stored in the irradiation box is irradiated with light according to the schedule for ethylene decomposition evaluation shown below, and the concentration change due to ethylene decomposition during the period is measured by gas chromatograph to measure the photolysis activity of the sample. To evaluate.

(iii)エチレン光分解の評価スケジュール
シャーレ中に試料を収め、予めブラックライト(20W、波長365nmで1mW/cm)を3時間照射して該試料の表面を清浄にし、該シャーレを石英製セル中に置き合成空気(O/Ar=20%/80%)で置換後エチレンガスを5ppm濃度まで挿入、暗所に90分放置。次いで該セルを照射箱に収め、20Wの蛍光灯の半分をアルミホイルで被って光照射(500Lux)を開始し、60、120、180分後のエチレン濃度をガスクロマトグラフにて測定して試料の光分解活性を調べる。
なお、暗所に90分間放置する理由は、試料表面へエチレンが吸着平衡に達するまで吸着させるためである。
(Iii) Evaluation schedule for ethylene photolysis A sample is placed in a petri dish, and the surface of the sample is cleaned by irradiation with black light (20 W, 1 mW / cm 2 at a wavelength of 365 nm) for 3 hours in advance. Place in the interior and replace with synthetic air (O 2 / Ar = 20% / 80%). Insert ethylene gas to a concentration of 5 ppm and leave in the dark for 90 minutes. Next, the cell is placed in an irradiation box, half of a 20 W fluorescent lamp is covered with aluminum foil, and light irradiation (500 Lux) is started. The ethylene concentration after 60, 120, and 180 minutes is measured with a gas chromatograph, Check for photolytic activity.
The reason for leaving it in the dark for 90 minutes is to allow ethylene to be adsorbed on the sample surface until it reaches adsorption equilibrium.

次に実施例により本発明をさらに詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。また、実施例中の「%」および「部」は特に別途注記しない限り質量基準である。  EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the Example shown below. In the examples, “%” and “part” are based on mass unless otherwise noted.

1.1 小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(1.2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(1−1−1)、粒径6nm 比表面積260m/g}の1.0gを磁性のシャーレに入れ、次いで、同じくテイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンJA−1{(1−1−2)、粒径180nm 比表面積9m/g}の9.0gを磁性のシャーレに入れ、均一になるように攪拌し、マッフル炉で600度3時間焼成し冷却した後、軽く粉砕し、ドライヤーの冷風を軽く当て、二酸化チタンの微粉を吹き飛ばして、小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(1.2)の9.7g(収率97.0%)を得た。この一体化二酸化チタン(1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。なお、X線回折装置(XRD)は、マックサイエンス社製、全自動回折装置、MXPAを用いた。以降の実施例、比較例において、X線回折の測定には全て同機を用いた。
1.1 Preparation of an integrated product (1.2) of a small particle size titanium dioxide and a large particle size titanium dioxide White titanium dioxide AMT-100 {(1 -1-1), 1.0 g having a particle size of 6 nm and a specific surface area of 260 m 2 / g} was put into a magnetic petri dish, and then white titanium dioxide JA- having an anatase type crystal structure also provided by Teika Co., Ltd. 1 {(1-1-2), particle size 180 nm, specific surface area 9 m 2 / g} of 9.0 g was put into a magnetic petri dish, stirred uniformly, fired in a muffle furnace for 3 hours at 600 ° C. and cooled. Then, lightly pulverize, lightly apply the cool air of the dryer, blow off the fine powder of titanium dioxide, and integrate the small particle size titanium dioxide and large particle size titanium dioxide (1.2) It was obtained .7g a (97.0% yield). This integrated titanium dioxide (1-2) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD). The X-ray diffractometer (XRD) used was a fully automatic diffractometer, MXP 3 A, manufactured by Mac Science. In the following Examples and Comparative Examples, the same machine was used for all X-ray diffraction measurements.

1.2 一体化二酸化チタン複合体{TiO((NHSO0.08}(1−3)の調整
一体化二酸化チタン(1.2)の10.0gに硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン複合体(1−3)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.5g(収量:84.1%)を得た。この硫酸アンモニウムを含む二酸化チタン(1−3)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
1.2 Adjustment of Integrated Titanium Dioxide Composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (1-3) Ammonium sulfate (pure Wako Pure) to 10.0 g of integrated titanium dioxide (1.2) A uniform solution of 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) of (NH 4 ) 2 SO 4 , MW: 132.14) manufactured by Yaku Kogyo Co., Ltd. and 10 ml of water was mixed well, and ammonium sulfate was added. And then dried at about 80 ° C. for about 2 hours. Next, after calcination at 500 ° C. for 3 hours in a muffle furnace and cooling, 9.5 g of titanium dioxide composite (1-3) pulverized and containing ammonium sulfate [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] Yield: 84.1%) was obtained. This titanium dioxide containing ammonium sulfate (1-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

1.3 一体化された二酸化チタン複合体(1−3)入りシャーレ(1−4)の調製と照射箱中の設置位置の決定
上記1.2で得た一体化された二酸化チタン複合体(1−3)の0.1gを内径66mmのガラス製シャーレに入れ、水3.0gを加えて均一に混合し、乾燥器中で1時間乾燥した。こうしてシャーレの底面にほぼ均一の厚みの二酸化チタン複合体(1−3)を塗布した。次に、20ワット昼白色蛍光灯(東芝ライテック株式会社製FL20SS・EX−N/18−Z)1本の半分をアルミホイルで巻いて遮蔽し、発光部を1/2にして照射箱上部に設置し、点灯して500Luxになる位置を求めた。照度は、ミノルタ照度計T−10で確認した。なお、以下の実施例、および比較例においては、光源として上記20ワット昼白色蛍光灯(東芝ライテック株式会社製FL20SS・EX−N/18−Z、発光部:1/2)を用いた。
1.3 Preparation of petri dish (1-4) with integrated titanium dioxide composite (1-3) and determination of installation position in irradiation box Integrated titanium dioxide composite obtained in 1.2 above ( 1-3) of 0.1 g was put into a glass petri dish having an inner diameter of 66 mm, and 3.0 g of water was added and mixed uniformly, followed by drying for 1 hour in a drier. Thus, the titanium dioxide composite (1-3) having a substantially uniform thickness was applied to the bottom of the petri dish. Next, half of one 20 watt daylight fluorescent lamp (FL20SS · EX-N / 18-Z manufactured by Toshiba Lighting & Technology Co., Ltd.) is covered with aluminum foil to shield it, and the light emitting part is halved to the top of the irradiation box. The position where it was installed and turned on to become 500 Lux was determined. The illuminance was confirmed with a Minolta illuminometer T-10. In the following Examples and Comparative Examples, the 20-watt daylight white fluorescent lamp (FL20SS · EX-N / 18-Z manufactured by Toshiba Lighting & Technology Corp., light emitting unit: 1/2) was used as a light source.

1.4 エチレン200ppm入りの混合ガスの調製と、一体化された二酸化チタン複合体粉末試料入りシャーレ(1−4)が入った石英製セル(1−5)中のエチレン5ppm混合ガスの調製
1リッターのガラス製捕集びん(ジーエルサイエンス社製)中の気体をアルゴン80%酸素20%の混合ガスで約10分間置換し、捕集びんに付属のセプタムを通してエチレンガスを0.2ml注入し200ppmの混合ガスを調製した。
粉末試料を入れたシャーレ(1−4)を石英製セルに入れ、内部の気体をアルゴン80%酸素20%の混合ガスで10分間置換した。200ppmエチレンを含有する混合ガス7.5mlを石英製セルに付属のセプタムを通して注入し、石英製セルの中の混合ガス中のエチレン濃度を5ppmに調製した。これで、試料粉末0.1gとエチレン5ppmおよびアルゴン80%酸素20%の混合ガスを入れセプタムで封をした石英製セル(1−5)の準備が終了した。
1.4 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (1-5) containing a petri dish (1-4) containing an integrated titanium dioxide composite powder sample 1 The gas in the liter glass collection bottle (manufactured by GL Sciences) was replaced with a mixed gas of 80% argon and 20% oxygen for about 10 minutes, and 0.2 ml of ethylene gas was injected through the septum attached to the collection bottle to 200 ppm. A mixed gas was prepared.
The petri dish (1-4) containing the powder sample was placed in a quartz cell, and the gas inside was replaced with a mixed gas of 80% argon and 20% oxygen for 10 minutes. 7.5 ml of a mixed gas containing 200 ppm ethylene was injected through a septum attached to the quartz cell, and the ethylene concentration in the mixed gas in the quartz cell was adjusted to 5 ppm. This completed the preparation of a quartz cell (1-5) in which a mixed gas of 0.1 g of sample powder, 5 ppm of ethylene and 80% of argon and 20% of oxygen was put and sealed with a septum.

1.5 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(1−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(1−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、4.9ppmであった。
1.5 Measurement of ethylene concentration after leaving titanium dioxide composite in dark place Petri dish with integrated titanium dioxide composite (1-4), 5ppm ethylene gas, mixed gas of argon 80% oxygen 20% The quartz cell (1-5) was placed in the dark and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, they were 5.0 ppm and 4.9 ppm, respectively.

1.6 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(1−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(1−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(1−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(1−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、表1に示すように、それぞれ、4.7ppm、4.2ppm、3.8ppmであった。
1.6 Measurement of Ethylene Concentration when Titanium Dioxide Composite is Irradiated with Daylight White Fluorescent Lamp Next, petri dish with titanium dioxide composite (1-4), 5 ppm ethylene gas, argon 80% oxygen, 20% mixed gas Place the quartz cell (1-5) left in the dark place with a illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was rolled and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the ethylene-containing mixed gas in the quartz cell (1-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (1-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC353B type FID, manufactured by GL Sciences Inc.) was extracted. The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in Table 1, the measurement results were 4.7 ppm, 4.2 ppm, and 3.8 ppm, respectively.

2.1 小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(2−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(2−1−1)、粒径6nm 比表面積260m/g}の2.0gを磁性のシャーレに入れ、次いで、同じくテイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンJA−1{(2−1−2)、粒径180nm 比表面積9m/g}の8.0gを磁性のシャーレに入れ、均一になるように攪拌し、マッフル炉で600度3時間焼成し冷却した後、軽く粉砕し、ドライヤーの冷風を軽く当て、二酸化チタンの微粉を吹き飛ばして、一体化物(2−2)の9.6g(収率96.0%)を得た。この一体化二酸化チタン(2−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
2.1 Preparation of Integration (2-2) of Small Titanium Dioxide and Large Titanium Dioxide (2-2) White Titanium Dioxide AMT-100 {(2 -1-1), 2.0 g having a particle size of 6 nm and a specific surface area of 260 m 2 / g} were put into a magnetic petri dish, and then white titanium dioxide JA- having an anatase type crystal structure also provided by Teika Co., Ltd. 1 {(2-1-2), particle size 180 nm, specific surface area 9 m 2 / g} 8.0 g was put into a magnetic petri dish, stirred uniformly, fired in a muffle furnace for 3 hours at 600 ° C. and cooled. Then, it lightly grind | pulverized, the cold wind of the dryer was lightly applied, and the fine powder of titanium dioxide was blown off, and 9.6g (yield 96.0%) of the integrated product (2-2) was obtained. This integrated titanium dioxide (2-2) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

2.2 一体化二酸化チタン複合体{TiO((NHSO0.08}(2−3)の調整
一体化二酸化チタン(2−2)の10.0gに硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、軽く粉砕し、一体化二酸化チタン複合体(2−3)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.7g(収率85.8%)を得た。この一体化二酸化チタン(2−3)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
2.2 Adjustment of Integrated Titanium Dioxide Composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (2-3) To 10.0 g of integrated titanium dioxide (2-2), ammonium sulfate (Wako Pure) A uniform solution of 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) of (NH 4 ) 2 SO 4 , MW: 132.14) manufactured by Yaku Kogyo Co., Ltd. and 10 ml of water was mixed well, and ammonium sulfate was added. And then dried at about 80 ° C. for about 2 hours. Next, after calcination at 500 ° C. for 3 hours in a muffle furnace, cooling, and lightly pulverizing, 9.7 g of an integrated titanium dioxide composite (2-3) [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (Yield 85.8%) was obtained. This integrated titanium dioxide (2-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

2.3 一体化された二酸化チタン複合体(2−3)入りシャーレ(2−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
2.3 Preparation of Petri dish (2-4) with Integrated Titanium Dioxide Composite (2-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

2.4 エチレン200ppm入りの混合ガスの調製と、一体化された二酸化チタン複合体粉末試料入りシャーレ(2−4)が入った石英製セル(2−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
2.4 Preparation of mixed gas containing 200 ppm of ethylene and preparation of mixed gas of 5 ppm of ethylene in quartz cell (2-5) containing petri dish (2-4) with integrated titanium dioxide composite powder sample Performed as in Example 1.

2.5 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(2−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(2−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、5.0ppmであった。
2.5 Measurement of the ethylene concentration after leaving the titanium dioxide composite in the dark An integrated petri dish with titanium dioxide composite (2-4), 5 ppm ethylene gas, 80% argon, 20% oxygen mixed gas entered When the quartz cell (2-5) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes passed was measured, it was 5.0 ppm and 5.0 ppm, respectively, as shown in Table 1.

2.6 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(2−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(2−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(2−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(2−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、表1に示すように、それぞれ、4.5ppm、3.8ppm、3.1ppmであった。
2.6 Measurement of Ethylene Concentration when Titanium Dioxide Composite is Irradiated with White White Fluorescent Lamp Next, Petri dish with titanium dioxide composite (2-4), mixed gas of 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (2-5) left in the dark place with the illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was rolled and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the ethylene-containing mixed gas in the quartz cell (2-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (2-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in Table 1, the measurement results were 4.5 ppm, 3.8 ppm, and 3.1 ppm, respectively.

3.1 小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物。
実施例2で調整した二酸化チタンの一体化物(2−2)を用いた。
3.1 Integration of small particle size titanium dioxide and large particle size titanium dioxide.
The integrated titanium dioxide (2-2) prepared in Example 2 was used.

3.2 一体化二酸化チタン複合体{TiO((NHSO12}(3−3)の調整
3.1で示した一体化二酸化チタン(2−2)の10.0gを磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の2.0g(15mmol、二酸化チタンに対し12モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、軽く粉砕し、一体化二酸化チタン複合体(3−3)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収率77.5%)を得た。この一体化二酸化チタン複合体(3−3)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
3.2 Integrated titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0 . 12 } Adjustment of (3-3) 10.0 g of the integrated titanium dioxide (2-2) shown in 3.1 was placed in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd., (NH 4 ) 2 SO 4 , MW: 132.14) 2.0 g (15 mmol, 12 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, impregnated with ammonium sulfate, and then about 80 ° C. And dried for about 2 hours. Next, after calcination at 500 ° C. for 3 hours in a muffle furnace, cooling, and lightly pulverizing, 9.3 g of an integrated titanium dioxide composite (3-3) [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (Yield 77.5%) was obtained. This integrated titanium dioxide composite (3-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

3.3 一体化された二酸化チタン複合体(3−3)入りシャーレ(3−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
3.3 Preparation of Petri dish (3-4) with Integrated Titanium Dioxide Composite (3-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

3.4 エチレン200ppm入りの混合ガスの調製と、一体化された粉末試料入りシャーレ(3−4)を入れた石英製セル(3−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
3.4 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (3-5) containing a petri dish (3-4) containing an integrated powder sample As in Example 1. Went to.

3.5 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(3−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(3−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、5.0ppmであった。
3.5 Measurement of ethylene concentration after leaving titanium dioxide composite in dark place Petri dish with integrated titanium dioxide composite (3-4), 5ppm ethylene gas, mixed gas of argon 80% oxygen 20% The quartz cell (3-5) was placed in a dark place, and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, they were 5.0 ppm and 5.0 ppm, respectively.

3.6 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(3−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(3−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(3−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(3−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、表1に示すように、それぞれ、4.5ppm、3.9ppm、3.5ppmであった。
3.6 Measurement of Ethylene Concentration when Titanium Dioxide Composite is Irradiated with Daylight White Fluorescent Lamp Next, Petri dish containing titanium dioxide composite (3-4), 5 ppm ethylene gas, mixed gas of argon 80% oxygen 20% Place the quartz cell (3-5) left in the dark in the above position at an illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was wound and shielded and the light emitting part was halved was placed on the upper part of the irradiation box and turned on. The ethylene-containing mixed gas in the quartz cell (3-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (3-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in Table 1, the measurement results were 4.5 ppm, 3.9 ppm, and 3.5 ppm, respectively.

4.1 小さな粒径の二酸化チタン複合体{TiO((NHSO0.08}(4−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(4−1−1)、粒径6nm 比表面積260m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(4−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収量:82.3%)を得た。この硫酸アンモニウムを含む二酸化チタン(4−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
4.1 Preparation of small particle size titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (4-1-2) having an anatase type crystal structure provided by Teika Co., Ltd. White titanium dioxide AMT-100 {(4-1-1), particle size 6 nm, specific surface area 260 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd.) , (NH 4 ) 2 SO 4 , MW: 132.14) 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, and impregnated with ammonium sulfate. And dried at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, 9.3 g of titanium dioxide (4-1-2) [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] containing pulverized ammonium sulfate Yield: 82.3%) was obtained. This titanium dioxide containing ammonium sulfate (4-1-2) was confirmed to have an anatase type crystal structure from the measurement result of an X-ray diffractometer (XRD).

4.2 大きな粒径の二酸化チタン複合体{TiO((NHSO0.08}(4−2−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンJA−1{(4−2−1)、粒径180nm 比表面積9m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(4−2−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.5g(収量:84.1%)を得た。この硫酸アンモニウムを含む二酸化チタン(4−2−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
4.2 Adjustment of large particle size titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (4-2-2) Having anatase type crystal structure provided by Takeca Co., Ltd. White titanium dioxide JA-1 {(4-2-1), particle size 180 nm, specific surface area 9 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd.) , (NH 4 ) 2 SO 4 , MW: 132.14) 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, and impregnated with ammonium sulfate. And dried at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, 9.5 g of titanium dioxide (4-2-2) [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] containing pulverized ammonium sulfate Yield: 84.1%) was obtained. The titanium dioxide containing ammonium sulfate (4-2-2) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

4.3 小さな粒径の二酸化チタン複合体(4−1−2)と大きな粒径の二酸化チタン複合体(4−2−2)の一体化
4.1および4.2で述べた、小さな粒径の二酸化チタン複合体(4−1−2)の1.0gと大きな粒径の二酸化チタン複合体(4−2−2)の9.0gを磁性シャーレに入れ、均一になるように十分に攪拌した後、マッフル炉で600℃、3時間焼成し冷却した後、ドライヤーの冷風を当て、二酸化チタン複合体の微粉を吹き飛ばして、小さな粒径の二酸化チタン複合体(4−1−2)と大きな粒径の二酸化チタン複合体(4−2−2)の一体化物(4−3)を調整した。収量は9.6g(収率96.0%)であり、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
4.3 Integration of small particle size titanium dioxide composite (4-1-2) and large particle size titanium dioxide composite (4-2-2) Small particles as described in 4.1 and 4.2 1.0 g of the titanium dioxide composite (4-1-2) having a diameter and 9.0 g of the titanium dioxide composite (4-2-2) having a large particle diameter are placed in a magnetic petri dish and sufficiently uniform. After stirring, the mixture is baked in a muffle furnace at 600 ° C. for 3 hours and cooled, and then blown with cool air from a dryer to blow off fine powder of the titanium dioxide composite to obtain a titanium dioxide composite (4-1-2) having a small particle diameter. An integrated product (4-3) of a titanium dioxide composite (4-2-2) having a large particle size was prepared. The yield was 9.6 g (yield 96.0%), and it was confirmed from an X-ray diffractometer (XRD) measurement result that it had an anatase type crystal structure.

4.4 一体化された二酸化チタン複合体(4−3)入りシャーレ(4−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
4.4 Preparation of Petri dish (4-4) with Integrated Titanium Dioxide Composite (4-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

4.5 エチレン200ppm入りの混合ガスの調製と、一体化された粉末試料入りシャーレ(4−4)が入った石英製セル(4−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
4.5 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (4-5) containing an integrated petri dish (4-4) containing a powder sample Went to.

4.6 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(4−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(4−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、4.9ppmであった。
4.6 Measurement of Ethylene Concentration after Titanium Dioxide Complex Left in the Dark Petri dish with integrated titanium dioxide complex (4-4), 5 ppm ethylene gas, mixed gas of argon 80% oxygen 20% When the quartz cell (4-5) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes passed was measured, it was 5.0 ppm and 4.9 ppm, respectively, as shown in Table 1.

4.7 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(4−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(4−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(4−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(4−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、図1および表1に示すように、それぞれ、4.7ppm、4.3ppm、4.0ppmであった。
4.7 Measurement of Ethylene Concentration when Titanium Dioxide Composite is Irradiated with White White Fluorescent Lamp Next, Petri dish with titanium dioxide composite (4-4), 5 ppm ethylene gas, mixed gas of argon 80% oxygen 20% Place the quartz cell (4-5) left in the dark in the above position at an illuminance of 500 Lux in the irradiation box, and use aluminum foil for the center part of one 20-watt daylight white fluorescent lamp. What was wound and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the mixed gas containing ethylene in the quartz cell (4-5) was irradiated with light from a daylight fluorescent lamp. At this time, the ethylene concentration in the quartz cell (4-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC353B type FID, manufactured by GL Sciences Inc.) was extracted. The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in FIG. 1 and Table 1, the measurement results were 4.7 ppm, 4.3 ppm, and 4.0 ppm, respectively.

5.1 小さな粒径の二酸化チタン複合体{TiO((NHSO0.08}(5−2−1)
実施例4で調整したものを用いた。
5.1 Titanium dioxide composite with small particle size {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (5-2-1)
What was adjusted in Example 4 was used.

5.2 大きな粒径の二酸化チタン複合体{TiO((NHSO0.08}(5−2−2)
実施例4で調整したものを用いた。
5.2 Titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (5-2-2) having a large particle size
What was adjusted in Example 4 was used.

5.3 小さな粒径の二酸化チタン複合体(5−2−1)と大きな粒径の二酸化チタン複合体(5−2−2)の一体化
5.1および5.2で述べた、小さな粒径の二酸化チタン複合体(5−2−1)の2.0gと大きな粒径の二酸化チタン複合体(5−2−2)の8.0gを磁性シャーレに入れ、均一になるように十分に攪拌した後、マッフル炉で600℃、3時間焼成し冷却した後、ドライヤーの冷風を当て、二酸化チタン複合体の微粉を吹き飛ばして、小さな粒径の二酸化チタン複合体(5−2−1)と大きな粒径の二酸化チタン複合体(5−2−2)の一体化物(5−3)を調整した。収量は9.6g(収率96.0%)であり、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
5.3 Integration of small particle size titanium dioxide composite (5-2-1) and large particle size titanium dioxide composite (5-2-2) Small particles as described in 5.1 and 5.2 2.0 g of the titanium dioxide composite (5-2-1) having a diameter and 8.0 g of the titanium dioxide composite (5-2-2) having a large particle diameter are placed in a magnetic petri dish and sufficiently uniform. After stirring, after baking and cooling in a muffle furnace at 600 ° C. for 3 hours, a cool air of a dryer is applied to blow off fine powder of the titanium dioxide composite, and the titanium dioxide composite (5-2-1) having a small particle diameter An integrated product (5-3) of a titanium dioxide composite (5-2-2) having a large particle size was prepared. The yield was 9.6 g (yield 96.0%), and it was confirmed from an X-ray diffractometer (XRD) measurement result that it had an anatase type crystal structure.

5.4 一体化された二酸化チタン複合体(5−3)入りシャーレ(5−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
5.4 Preparation of Petri dish (5-4) with Integrated Titanium Dioxide Composite (5-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

5.5 エチレン200ppm入りの混合ガスの調製と、一体化された粉末試料入りシャーレ(5−4)が入った石英製セル(5−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
5.5 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (5-5) containing a petri dish (5-4) containing an integrated powder sample As in Example 1. Went to.

5.6 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(5−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(5−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、4.9ppmであった。
5.6 Measurement of ethylene concentration after leaving titanium dioxide composite in dark place Petri dish with integrated titanium dioxide composite (5-4), 5ppm ethylene gas, argon 80% oxygen, 20% oxygen mixed gas entered When the quartz cell (5-5) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes passed was measured, as shown in Table 1, they were 4.9 ppm and 4.9 ppm, respectively.

5.7 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(5−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(5−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(5−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(5−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、表1に示すように、それぞれ、4.5ppm、3.9ppm、3.5ppmであった。
5.7 Measurement of the concentration of ethylene when the titanium dioxide composite was irradiated with daylight white fluorescent lamp Next, a petri dish containing the titanium dioxide composite (5-4), 5 ppm ethylene gas, argon 80% oxygen, 20% mixed gas Place the quartz cell (5-5) left in the dark place in the irradiation box at an illuminance of 500 Lux and place the central part 1/2 of one 20-watt daylight white fluorescent lamp with aluminum foil. What was rolled up and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the ethylene-containing mixed gas in the quartz cell (5-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (5-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in Table 1, the measurement results were 4.5 ppm, 3.9 ppm, and 3.5 ppm, respectively.

比較例1Comparative Example 1

実施例1で粒径の大きな二酸化チタン複合体の調製に使用したテイカ株式会社製の二酸化チタンJA−1を用いて、実施例1の1.3以下と同様に昼白色蛍光灯照射時のエチレン濃度を測定した。その結果は表1に示すように、暗所放置中では、60分、90分経過時での測定値がそれぞれ5.0ppm、4.9ppmであり、昼白色蛍光灯照射時には、60分、120分、180分経過後のいずれの場合も5.0ppmであった。  Using titanium dioxide JA-1 manufactured by Teika Co., Ltd. used for the preparation of a titanium dioxide composite having a large particle size in Example 1, ethylene at the time of day white fluorescent lamp irradiation was the same as 1.3 or less in Example 1. Concentration was measured. As shown in Table 1, the measured values after 60 minutes and 90 minutes are 5.0 ppm and 4.9 ppm when left in the dark, respectively. Min and after 180 minutes, it was 5.0 ppm.

比較例2Comparative Example 2

実施例2で調整した、小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(2.2)(小さな粒径の二酸化チタン/大きな粒径の二酸化チタン=2/8、硫酸アンモニウムの含浸なし)を用いて、実施例1の1.3以下と同様に昼白色蛍光灯照射時のエチレン濃度を測定した。その結果は表1に示すように、暗所放置中では、60分、90分経過時での測定値がそれぞれ5.0ppm、5.0ppmであり、昼白色蛍光灯照射時には、60分、120分、180分経過後のいずれの場合も4.9ppmであった。  An integrated product of small particle size titanium dioxide and large particle size titanium dioxide (2.2) prepared in Example 2 (small particle size titanium dioxide / large particle size titanium dioxide = 2/8, impregnation with ammonium sulfate None) was used to measure the ethylene concentration during daylight white fluorescent lamp irradiation in the same manner as in Example 1 below 1.3. The results are as shown in Table 1. As shown in Table 1, the measured values after 60 minutes and 90 minutes are 5.0 ppm and 5.0 ppm when left in the dark, respectively. Min and after 180 minutes, it was 4.9 ppm.

比較例3Comparative Example 3

6.1 小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物
実施例2で調整した、小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(2.2)(小さな粒径の二酸化チタン/大きな粒径の二酸化チタン=2/8)を用いた。
6.1 Integration of small particle size titanium dioxide and large particle size titanium dioxide Integrated material of small particle size titanium dioxide and large particle size titanium dioxide prepared in Example 2 (2.2) (small particle size Diameter titanium dioxide / large particle diameter titanium dioxide = 2/8) was used.

6.2 一体化二酸化チタン複合体{TiO((NHSO0.25}(6−3)の調整
実施例2で調整した、小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(2.2)(小さな粒径の二酸化チタン/大きな粒径の二酸化チタン=2/8)の10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の4.1g(31.25mmol、二酸化チタンに対し25モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む一体化二酸化チタン複合体(6−3)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.2g(収量:65.2%)を得た。この一体化二酸化チタン複合体(6−3)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
6.2 Adjustment of Integrated Titanium Dioxide Composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.25 } (6-3) The small particle size titanium dioxide and the large particle size adjusted in Example 2 10.0 g (125 mmol) of an integrated product of titanium dioxide (2.2) (small particle size titanium dioxide / large particle size titanium dioxide = 2/8) was put into a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd.) Add a homogeneous solution of 4.1 g (31.25 mmol, 25 mol% with respect to titanium dioxide) of (NH 4 ) 2 SO 4 , MW: 132.14) manufactured by Kogyo Co., Ltd. and 10 ml of water, and mix well. After impregnating with ammonium sulfate, it was dried at about 80 ° C. for about 2 hours. Next, after calcining in a muffle furnace at 500 ° C. for 3 hours and cooling, pulverized and integrated titanium dioxide composite (6-3) containing ammonium sulfate (MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight). 2 g (yield: 65.2%) was obtained. This integrated titanium dioxide composite (6-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

6.3 一体化された二酸化チタン複合体(6−3)入りシャーレ(6−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
6.3 Preparation of Petri dish (6-4) with Integrated Titanium Dioxide Composite (6-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

6.4 エチレン200ppm入りの混合ガスの調製と、一体化された二酸化チタン複合体粉末試料入りシャーレ(6−4)が入った石英製セル(6−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
6.4 Preparation of mixed gas containing 200 ppm of ethylene and preparation of mixed gas of 5 ppm of ethylene in quartz cell (6-5) containing petri dish (6-4) with integrated titanium dioxide composite powder sample Performed as in Example 1.

6.5 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(6−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(6−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、4.9ppmであった。
6.5 Measurement of ethylene concentration after leaving the titanium dioxide composite in the dark Petri dish with integrated titanium dioxide composite (6-4), 5 ppm ethylene gas, argon 80% oxygen, 20% oxygen mixed gas The quartz cell (6-5) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, they were 5.0 ppm and 4.9 ppm, respectively.

6.6 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(6−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(6−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(6−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(6−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、図1および表1に示すように、それぞれ、4.9ppm、4.7ppm、4.5ppmであった。
6.6 Measurement of ethylene concentration when titanium dioxide composite is irradiated with daylight white fluorescent lamp Next, petri dish with titanium dioxide composite (6-4), mixed gas of 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (6-5) left in the dark place with the illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was wound and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the mixed gas containing ethylene in the quartz cell (6-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (6-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in FIG. 1 and Table 1, the measurement results were 4.9 ppm, 4.7 ppm, and 4.5 ppm, respectively.

比較例4Comparative Example 4

7.1 小さな粒径の二酸化チタン複合体{TiO((NHSO0.25}(7−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(7−1−1)、粒径6nm 比表面積260m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の4.1g(31.25mmol、二酸化チタンに対し25モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(7−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.0g(収量:63.8%)を得た。この硫酸アンモニウムを含む二酸化チタン(7−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
7.1 Preparation of small-diameter titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.25 } (7-1-2) having anatase type crystal structure provided by Takeca Co., Ltd. White titanium dioxide AMT-100 {(7-1-1), particle size 6 nm, specific surface area 260 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd.) , (NH 4 ) 2 SO 4 , MW: 132.14) 4.1 g (31.25 mmol, 25 mol% with respect to titanium dioxide) and 10 ml of water in a homogeneous solution were mixed well and impregnated with ammonium sulfate. And then dried at about 80 ° C. for about 2 hours. Next, after firing in a muffle furnace at 500 ° C. for 3 hours and cooling, 9.0 g of titanium dioxide (7-1-2) containing pulverized ammonium sulfate (MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight) ( Yield: 63.8%). It was confirmed that the titanium dioxide containing ammonium sulfate (7-1-2) has an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

7.2 大きな粒径の二酸化チタン複合体{TiO((NHSO0.25}(7−2−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンJA−1{(7−2−1)、粒径180nm 比表面積9m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の4.1g(31.25mmol、二酸化チタンに対し25モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(7−2−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収量:66.0%)を得た。この硫酸アンモニウムを含む二酸化チタン(7−2−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
7.2 Preparation of large-diameter titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.25 } (7-2-2) having an anatase type crystal structure provided by Teika Co., Ltd. White titanium dioxide JA-1 {(7-2-1), particle size 180 nm, specific surface area 9 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, Ltd.) , (NH 4 ) 2 SO 4 , MW: 132.14) 4.1 g (31.25 mmol, 25 mol% with respect to titanium dioxide) and 10 ml of water in a homogeneous solution were mixed well and impregnated with ammonium sulfate. And then dried at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, pulverization and titanium dioxide (7-2-2) containing ammonium sulfate [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (9.3 g) Yield: 66.0%). It was confirmed that the titanium dioxide containing ammonium sulfate (7-2-2) has an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

7.3 小さな粒径の二酸化チタン複合体(7−1−2)と大きな粒径の二酸化チタン複合体(7−2−2)の一体化
7.1および7.2で述べた、小さな粒径の二酸化チタン複合体(7−1−2)の2.0gと大きな粒径の二酸化チタン複合体(7−2−2)の8.0gを磁性シャーレに入れ、均一になるように十分に攪拌した後、マッフル炉で600℃、3時間焼成し冷却した後、ドライヤーの冷風を当て、二酸化チタン複合体の微粉を吹き飛ばして、小さな粒径の二酸化チタン複合体(7−1−2)と大きな粒径の二酸化チタン複合体(7−2−2)の一体化物(7−3)を調整した。収量は9.3g(収率93.0%)であり、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
7.3 Integration of small particle size titanium dioxide composite (7-1-2) and large particle size titanium dioxide composite (7-2-2) Small particles as described in 7.1 and 7.2 2.0 g of the titanium dioxide composite (7-1-2) having a large diameter and 8.0 g of the titanium dioxide composite (7-2-2) having a large particle diameter are placed in a magnetic petri dish and sufficiently uniform. After stirring, after baking and cooling in a muffle furnace at 600 ° C. for 3 hours, the cold air of a dryer is applied, the fine powder of the titanium dioxide composite is blown off, and the titanium dioxide composite (7-1-2) having a small particle diameter is obtained. An integrated product (7-3) of a titanium dioxide composite (7-2-2) having a large particle size was prepared. The yield was 9.3 g (yield 93.0%), and it was confirmed from an X-ray diffractometer (XRD) measurement result that it had an anatase type crystal structure.

7.4 一体化された二酸化チタン複合体(7−3)入りシャーレ(7−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
7.4 Preparation of Petri dish (7-4) with Integrated Titanium Dioxide Composite (7-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

7.5 エチレン200ppm入りの混合ガスの調製と、一体化された粉末試料入りシャーレ(7−4)入りの石英製セル(7−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
7.5 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (7-5) containing a petri dish (7-4) with an integrated powder sample As in Example 1. went.

7.6 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(7−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(7−5)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、5.0ppmであった。
7.6 Measurement of ethylene concentration after leaving the titanium dioxide composite in the dark Petri dish with integrated titanium dioxide composite (7-4), 5 ppm ethylene gas, argon 80% oxygen, 20% oxygen mixed gas The quartz cell (7-5) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, it was 5.0 ppm and 5.0 ppm, respectively.

7.7 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(7−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(7−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(7−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(7−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、表1に示すように、それぞれ、4.9ppm、4.7ppm、4.6ppmであった。
7.7 Measurement of Ethylene Concentration when Irradiating Titanium Dioxide Complex with Daylight White Fluorescent Lamp Next, Petri dish with titanium dioxide complex (7-4), mixed gas of 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (7-5) that is left in the dark place with the illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was wound and shielded and the light emitting part was halved was placed on the top of the irradiation box and turned on, and the ethylene-containing mixed gas in the quartz cell (7-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (7-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in Table 1, the measurement results were 4.9 ppm, 4.7 ppm, and 4.6 ppm, respectively.

比較例5Comparative Example 5

8.1 小さな粒径の二酸化チタンと大きな粒径の二酸化チタンの一体化物(8−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(8−1−1)、粒径6nm 比表面積260m/g}の0.3gを磁性のシャーレに入れ、次いで、同じくテイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンJA−1{(8−1−2)、粒径180nm 比表面積9m/g}の9.7gを磁性のシャーレに入れ、均一になるように十分に攪拌し、マッフル炉で600度3時間焼成し冷却した後、軽く粉砕し、一体化物(8−2)の9.9g(収率99.0%)を得た。この一体化二酸化チタン(8−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
8.1 Preparation of Integration (8-2) of Small Particle Size Titanium Dioxide and Large Particle Size Titanium Dioxide White Titanium Dioxide AMT-100 {(8 -1-1), 0.3 g having a particle size of 6 nm and a specific surface area of 260 m 2 / g} was put in a magnetic petri dish, and then white titanium dioxide JA- having an anatase type crystal structure also provided by Teika Co., Ltd. 9.7 g of 1 {(8-1-2), particle size 180 nm, specific surface area 9 m 2 / g} is placed in a magnetic petri dish, stirred well to be uniform, and baked in a muffle furnace at 600 ° C. for 3 hours. After cooling, the mixture was lightly pulverized to obtain 9.9 g (yield 99.0%) of the integrated product (8-2). This integrated titanium dioxide (8-2) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

8.2 一体化二酸化チタン複合体{TiO((NHSO0.08}(8−3)の調整
一体化二酸化チタン(8−2)の10gに硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、軽く粉砕し、一体化二酸化チタン複合体(8−3)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.8g(収率86.7%)を得た。この一体化二酸化チタン(8−3)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
8.2 Adjustment of Integrated Titanium Dioxide Composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (8-3) To 10 g of integrated titanium dioxide (8-2), ammonium sulfate (Wako Pure Chemical Industries, Ltd.) A uniform solution of 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) of (NH 4 ) 2 SO 4 , MW: 132.14) and 10 ml of water was added, mixed well, and impregnated with ammonium sulfate. And dried at about 80 ° C. for about 2 hours. Next, after calcination at 500 ° C. for 3 hours in a muffle furnace, cooling, and lightly pulverizing, 9.8 g of integrated titanium dioxide composite (8-3) [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (Yield 86.7%) was obtained. This integrated titanium dioxide (8-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

8.3 一体化された二酸化チタン複合体(8−3)入りシャーレ(8−4)の調製と照射箱中の設置位置の決定
実施例1と同様に行った。
8.3 Preparation of Petri dish (8-4) with Integrated Titanium Dioxide Composite (8-3) and Determination of Installation Position in Irradiation Box The same procedure as in Example 1 was performed.

8.4 エチレン200ppm入りの混合ガスの調製と、一体化された二酸化チタン複合体粉末試料入りシャーレ(8−4)が入った石英製セル(8−5)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
8.4 Preparation of mixed gas containing 200 ppm of ethylene and preparation of mixed gas of 5 ppm of ethylene in quartz cell (8-5) containing petri dish (8-4) with integrated titanium dioxide composite powder sample Performed as in Example 1.

8.5 二酸化チタン複合体の暗所放置後のエチレン濃度の測定
一体化された二酸化チタン複合体入りシャーレ(8−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(8−4)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、5.0ppmであった。
8.5 Measurement of ethylene concentration after leaving the titanium dioxide composite in the dark Petri dish with integrated titanium dioxide composite (8-4), 5 ppm ethylene gas, 80% argon, 20% oxygen mixed gas entered When the quartz cell (8-4) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes passed was measured, as shown in Table 1, they were 4.9 ppm and 5.0 ppm, respectively.

8.6 二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、二酸化チタン複合体入りシャーレ(8−4)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(8−5)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(8−5)中のエチレン含有混合ガスに昼白色蛍光灯の光を照射した。この時の石英製セル(8−5)中のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にてエチレン濃度を測定した。測定結果は、図1および表1に示すように、それぞれ、4.9ppm、4.8ppm、4.8ppmであった。
8.6 Measurement of the concentration of ethylene when the titanium dioxide composite is irradiated with a daylight fluorescent lamp Next, a petri dish containing the titanium dioxide composite (8-4), a mixed gas of 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (8-5) left in the dark in the above position at an illuminance of 500 Lux in the irradiation box, and use aluminum foil for the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was rolled and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the ethylene-containing mixed gas in the quartz cell (8-5) was irradiated with daylight white fluorescent light. At this time, the ethylene concentration in the quartz cell (8-5) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and gas chromatograph (manufactured by GL Sciences, GC353B type FID). The ethylene concentration was measured with a gas chromatograph, column: Porapak Q, column temperature 110 ° C. As shown in FIG. 1 and Table 1, the measurement results were 4.9 ppm, 4.8 ppm, and 4.8 ppm, respectively.

Figure 2007090313
Figure 2007090313

実施例1〜5と比較例1〜5の比較
実施例1〜5では、昼白色蛍光灯の照射中に、明らかにエチレンの分解が認められ時間の経過と共にエチレン濃度が低下し、特に実施例2(小さな粒径/大きな粒径=2/8で二酸化チタンを一体化した後に硫酸アンモニウム複合化)では、エチレン濃度の減少が最も大きい。光触媒の本来の性質から、照射を続ければ、さらにエチレンの分解が続き実用に十分に対応できると予想される。
一方、比較例では、硫酸アンモニウムを複合化しない時(比較例1,2)は全く効果が認められない。比較例3、4の硫酸アンモニウム25モル%含浸の時に、エチレン濃度の減少が認められるが、効果は小さい。したがって、本発明の二酸化チタン複合体は、500ルクスという照度の低い昼白色蛍光灯の照射で活性を示し、エチレンを分解する能力を有することが確認された。照度を大きくすればさらに光触媒効果は増大すると思われる。
Comparison of Examples 1-5 and Comparative Examples 1-5 In Examples 1-5, during the daylight white fluorescent lamp irradiation, ethylene was clearly decomposed and the ethylene concentration decreased with the passage of time. In 2 (small particle size / large particle size = 2/8, titanium dioxide was integrated after being integrated with ammonium dioxide), the decrease in ethylene concentration was the largest. Due to the original nature of the photocatalyst, if irradiation continues, it is expected that ethylene will continue to decompose and be able to handle practical use sufficiently.
On the other hand, in the comparative example, when ammonium sulfate is not combined (Comparative Examples 1 and 2), no effect is recognized. When Comparative Examples 3 and 4 were impregnated with 25 mol% ammonium sulfate, a decrease in ethylene concentration was observed, but the effect was small. Therefore, it was confirmed that the titanium dioxide composite of the present invention showed activity when irradiated with a daylight white fluorescent lamp having a low illuminance of 500 lux, and had the ability to decompose ethylene. It seems that the photocatalytic effect is further increased if the illuminance is increased.

本発明の小さな粒径の二酸化チタン複合体と大きな粒径の二酸化チタン複合体を一体化させた高活性光触媒は、太陽光線や紫外線を含む特殊なランプの光の照射がなくても、一般の照明用に使われる白色蛍光灯の光で活性化し、実用上十分なエチレン分解性能を示す。そのうえ、非常に高価なアナターゼ型微粒子二酸化チタンの使用量を低減できるため安価に製造できる。そのため、農産物、切花などを特に屋内や車内で貯蔵中に発生するエチレンを効率よく分解するため、それらの品質保持に極めて有用であり経済的にも優れている。  The highly active photocatalyst in which the titanium dioxide composite having a small particle size and the titanium dioxide composite having a large particle size are integrated is a general substance even without irradiation of light from a special lamp including sunlight or ultraviolet rays. It is activated by the light of a white fluorescent lamp used for lighting, and exhibits practically sufficient ethylene decomposition performance. In addition, since the amount of the very expensive anatase type fine particle titanium dioxide can be reduced, it can be produced at a low cost. Therefore, in order to efficiently decompose ethylene, which is generated during storage of agricultural products, cut flowers, etc., indoors or in vehicles, it is extremely useful for maintaining their quality and is economically superior.

小さい粒径のアナターゼ型二酸化チタン(AMT−100)に硫酸アンモニウムを8モル%含浸、焼成した二酸化チタン複合体の紫外・可視吸収スペクトル。  Ultraviolet / visible absorption spectrum of a titanium dioxide composite obtained by impregnating 8% by mole of ammonium sulfate in a small particle size anatase type titanium dioxide (AMT-100) and calcining.

Claims (9)

2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を一体化したことを特徴とするエチレンの光分解に優れる高活性光触媒。A highly active photocatalyst excellent in photolysis of ethylene, wherein a titanium dioxide composite produced from two or more types of titanium dioxide and ammonium sulfate having different particle diameters is integrated. 二酸化チタンがアナターゼ型の結晶構造を有するものであることを特徴とする、請求項1に記載の高活性光触媒。The highly active photocatalyst according to claim 1, wherein the titanium dioxide has an anatase type crystal structure. 粒径の小さな二酸化チタンの粒径が、8nm未満であり、より粒径の大きな二酸化チタンの粒径が、50nm以上である請求項1および2に記載の高活性光触媒。The high activity photocatalyst according to claim 1 or 2, wherein the particle diameter of titanium dioxide having a small particle diameter is less than 8 nm, and the particle diameter of titanium dioxide having a larger particle diameter is 50 nm or more. 二酸化チタン複合体が、二酸化チタンに硫酸アンモニウムを含浸させることにより得られたものであることを特徴とする請求項1〜3に記載の高活性光触媒。The highly active photocatalyst according to claim 1, wherein the titanium dioxide composite is obtained by impregnating titanium dioxide with ammonium sulfate. いずれの粒径の複合体においても、二酸化チタンに対する硫酸アンモニウムの含浸量が1〜20モル%である請求項1〜4に記載の高活性光触媒The highly active photocatalyst according to any one of claims 1 to 4, wherein the composite of any particle size has an impregnation amount of ammonium sulfate with respect to titanium dioxide of 1 to 20 mol%. 粒径の小さな二酸化チタンの複合体と粒径の大きな二酸化チタン複合体の重量比が5/95ないし40/60である請求項1〜5に記載の高活性光触媒6. The highly active photocatalyst according to claim 1, wherein the weight ratio of the composite of titanium dioxide having a small particle size and the titanium dioxide composite having a large particle size is 5/95 to 40/60. 2種類以上の粒径の異なる二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を焼成して一体化したことを特徴とする請求項1〜6に記載の高活性光触媒の製造方法。The method for producing a highly active photocatalyst according to any one of claims 1 to 6, wherein a titanium dioxide composite produced from two or more types of titanium dioxide and ammonium sulfate having different particle diameters is baked and integrated. 2種類以上の粒径の異なる二酸化チタンを焼成し一体とした後、硫酸アンモニウムを含浸して生成する二酸化チタン複合体を焼成したことを特徴とする請求項7に記載の高活性光触媒の製造方法。The method for producing a highly active photocatalyst according to claim 7, wherein two or more kinds of titanium dioxides having different particle diameters are calcined and integrated, and then the titanium dioxide composite formed by impregnation with ammonium sulfate is calcined. 2種類以上の粒径の異なる二酸化チタンのそれぞれに硫酸アンモニウムを含浸し生成する二酸化チタン複合体を焼成して一体化したことを特徴とする請求項7に記載の高活性光触媒の製造方法。The method for producing a highly active photocatalyst according to claim 7, wherein a titanium dioxide composite formed by impregnating ammonium sulfate with each of two or more types of titanium dioxide having different particle diameters is baked and integrated.
JP2005307754A 2005-09-26 2005-09-26 Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method Abandoned JP2007090313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307754A JP2007090313A (en) 2005-09-26 2005-09-26 Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307754A JP2007090313A (en) 2005-09-26 2005-09-26 Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method

Publications (1)

Publication Number Publication Date
JP2007090313A true JP2007090313A (en) 2007-04-12

Family

ID=37976600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307754A Abandoned JP2007090313A (en) 2005-09-26 2005-09-26 Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method

Country Status (1)

Country Link
JP (1) JP2007090313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187051A (en) * 2016-07-12 2016-12-07 中山市华山高新陶瓷材料有限公司 Nano titanium dioxide inorganic coating and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187051A (en) * 2016-07-12 2016-12-07 中山市华山高新陶瓷材料有限公司 Nano titanium dioxide inorganic coating and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
KR100642973B1 (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
Papadimitriou et al. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light
US20050126428A1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Tryba et al. Influence of TiO2 structure on its photocatalytic activity towards acetaldehyde decomposition
KR20210016527A (en) Nitrogen-doped TiO2 nanoparticles and their use in photocatalysts
US11241671B2 (en) Monolithic composite photocatalysts
JP2007203223A (en) Visible light-responsive titanium oxide-activated carbon composite photocatalyst and manufacturing method
JP4135907B2 (en) Visible light active photocatalyst particles
US20060034752A1 (en) Visible-light-activated photocatalyst and method for producing the same
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2008006344A (en) Visible light-responsive photocatalyst
Johnston et al. Photoactivity of nano-structured calcium silicate–titanium dioxide composite materials
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2007090313A (en) Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method
JP2007090311A (en) High active photocatalyst excellent in photolysis of ethylene
KR101808034B1 (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
JP2007090312A (en) Inexpensive high active photocatalyst excellent in photolysis of ethylene
JP2005305313A (en) High activity photocatalyst excellent in photolysis of ethylene and manufacturing method therefor
Toyoda et al. Effects of carbon coating on TinO2n-1 for decomposition of iminoctadine triacetate in aqueous solution under visible light
JP4625942B2 (en) Visible light responsive titanium oxide powder photocatalyst and process for producing the same
JP2004082114A (en) Photocatalyst composite powder
Tomida et al. Adsorption and photocatalytic decomposition of volatile organic compounds on photocatalyst of TiO 2—Silica beads

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070711