JP2007090311A - High active photocatalyst excellent in photolysis of ethylene - Google Patents

High active photocatalyst excellent in photolysis of ethylene Download PDF

Info

Publication number
JP2007090311A
JP2007090311A JP2005307752A JP2005307752A JP2007090311A JP 2007090311 A JP2007090311 A JP 2007090311A JP 2005307752 A JP2005307752 A JP 2005307752A JP 2005307752 A JP2005307752 A JP 2005307752A JP 2007090311 A JP2007090311 A JP 2007090311A
Authority
JP
Japan
Prior art keywords
titanium dioxide
ethylene
ppm
ammonium sulfate
dioxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005307752A
Other languages
Japanese (ja)
Inventor
Ichiro Moriya
市郎 森屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005307752A priority Critical patent/JP2007090311A/en
Publication of JP2007090311A publication Critical patent/JP2007090311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst having a high photocatalytic activity capable of efficiently decomposing ethylene which is known as a substance giving a significant influence for retaining freshness of agricultural products such as vegetables and fruits and cut flowers even at indoor with poor sunlight. <P>SOLUTION: The high active photocatalyst body excellent in photolysis of the ethylene is obtained by integrating a titanium dioxide composite body produced from anatase type particulate titanium dioxide and ammonium sulfate with ceramics. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は蛍光灯などの紫外線の乏しい光に適応するセラミックを基材とした高活性光触媒体に関し、特に農産物、切花などの植物の老化ホルモンとして知られ、それらの鮮度保持に重要な影響を及ぼすエチレンに対して高い光分解活性を示す高活性光触媒体に関する。
なお、本発明は白色蛍光灯などの紫外線の乏しい光に適応する光触媒に関するものであり、従来から強く実現が望まれていたものである。同じ光触媒という用語であっても、従来の光触媒は、紫外線の豊富な環境、例えば、紫外線放射ランプ照射下や屋外の直射の太陽光のもとで初めて効力を発するものであった。
したがって、本発明は白色蛍光灯などの紫外線の乏しい光に反応し、屋内や車内の白色蛍光灯のもとでも十分な効力を発揮するので、従来の光触媒ならびにその応用製品とは技術的にも、用途においても異なる分野の発明である。
The present invention relates to a highly active photocatalyst based on a ceramic material adapted to light with poor ultraviolet rays such as a fluorescent lamp, and is particularly known as an aging hormone of plants such as agricultural products and cut flowers, and has an important effect on maintaining the freshness thereof. The present invention relates to a highly active photocatalyst exhibiting high photolytic activity with respect to ethylene.
The present invention relates to a photocatalyst adapted to light with poor ultraviolet rays such as a white fluorescent lamp, and has been strongly desired to be realized in the past. Even if the term is the same photocatalyst, the conventional photocatalyst is effective for the first time under an environment rich in ultraviolet rays, for example, under the irradiation of an ultraviolet radiation lamp or under the direct sunlight outdoors.
Therefore, the present invention responds to light with poor ultraviolet rays such as white fluorescent lamps and exhibits sufficient efficacy under indoor or in-car white fluorescent lamps. Therefore, the conventional photocatalyst and its application products are technically The invention is also in a different field in application.

二酸化チタンは光触媒作用を有しており、例えば、有機物の分解などに太陽エネルギーを利用できるクリーンで環境適合型の未来志向物質として知られている。それ故、二酸化チタンは空気浄化、水質浄化などの分野においてその光触媒作用を実用化するため活発な技術開発がなされ、また建築外装用タイルの汚染防止などの分野においても輝かしい研究成果が修められている。しかし、これらの成果は主に紫外線を含む太陽光の利用できる屋外分野での成果であり、太陽光が遮断される屋内での実用化は期待されるほどの研究成果は修めていない。  Titanium dioxide has a photocatalytic action, and is known as a clean and environmentally-friendly future-oriented substance that can use solar energy to decompose organic substances, for example. Therefore, titanium dioxide has been actively developed in order to put its photocatalytic action to practical use in the fields of air purification and water purification, etc., and brilliant research results have been completed in the field of pollution prevention of building exterior tiles. Yes. However, these results are mainly in the outdoor field where sunlight including ultraviolet rays can be used, and the research results that are expected to be put to practical use indoors where sunlight is blocked have not been completed.

二酸化チタンの光触媒作用を太陽光の当たらない屋内で利用するためには、二酸化チタンの光触媒作用を、紫外光の乏しい白色蛍光灯などの波長で活性化することが必要である。二酸化チタンの高活性光触媒に関しては既に数多くの提案がなされている。具体的には、例えば、二酸化チタンにあって光触媒作用の優れるアナターゼ型二酸化チタンを化学蒸着法で基板上に被膜を生成させ、500〜900℃で焼成し、アナターゼ型の結晶化度を高めて光触媒作用を向上させる方法(特許文献1参照)、チタンアルコキシドを多孔質セラミックに塗工、焼成し微細多孔質膜を形成して光活性を高める方法(特許文献2参照)、二酸化チタンの結晶構造を円錐型とする方法(特許文献3参照)、二酸化チタンの結晶構造を柱状構造とする方法(特許文献4参照)、あるいは二酸化チタンの柱状の結晶構造を中空化し接触面積を高めて活性化する方法(特許文献5参照)、さらにはスパッタ法により基体上に二酸化チタンの被膜を形成、積層して光触媒能を高める方法(特許文献6参照)などが提案されており、その他にも二酸化チタンの結晶構造、結晶化度およびその結晶構造体に関してさまざまな高活性光触媒の検討がなされている。しかし、これら従来検討されている技術における光触媒活性の評価は、アセトアルデヒドなどの化学物質を対象にして太陽光に類似した紫外線に富むキセノンランプ、殺菌灯あるいはブラックライトなどを用いてなされたものであり、紫外線の乏しい屋内を対象とする高活性化光触媒を意図したものではない。  In order to use the photocatalytic action of titanium dioxide indoors where sunlight does not shine, it is necessary to activate the photocatalytic action of titanium dioxide at a wavelength such as a white fluorescent lamp with poor ultraviolet light. Numerous proposals have already been made regarding highly active photocatalysts of titanium dioxide. Specifically, for example, anatase-type titanium dioxide having excellent photocatalytic action in titanium dioxide is formed on a substrate by chemical vapor deposition and baked at 500 to 900 ° C. to increase the anatase-type crystallinity. A method for improving the photocatalytic action (see Patent Document 1), a method in which titanium alkoxide is applied to a porous ceramic and fired to form a microporous film to enhance photoactivity (see Patent Document 2), and a crystal structure of titanium dioxide Is made conical (see Patent Document 3), a method in which the crystal structure of titanium dioxide is a columnar structure (see Patent Document 4), or the columnar crystal structure of titanium dioxide is hollowed out to increase the contact area and activate. Proposed is a method (see Patent Document 5), a method of increasing the photocatalytic activity by forming and laminating a titanium dioxide film on a substrate by sputtering (see Patent Document 6), and the like. And it has the crystal structure of Besides titanium dioxide, study of various highly active photocatalyst respect crystallinity and crystal structure have been made. However, the evaluation of the photocatalytic activity in these conventionally studied technologies was carried out using a xenon lamp, germicidal lamp or black light, which is rich in ultraviolet rays similar to sunlight, targeting a chemical substance such as acetaldehyde. It is not intended to be a highly activated photocatalyst for indoors where UV rays are poor.

二酸化チタンにおける光触媒作用の高活性化を図る別の手段として、二酸化チタンとともに貴金属を併用する一連の提案がなされている。具体的には二酸化チタンの柱状結晶の表面に白金、パラジウム、金などを担持して光触媒活性を高める方法(特許文献7参照)、ルチル型酸化チタンに白金などを微粒子の形で担持して活性化をはかる方法(特許文献8参照)、酸化チタンにイットリウムを含有させ活性を高める方法(特許文献9参照)などが提案されている。また、特殊な方法としては、チタン酸バリウムにイリジウムなどの貴金属を担持させて高活性な光触媒を得る方法(特許文献10参照)、塩基性硫酸チタニウムアンモニウム、(NHSO・TiOSO・2HOを焼成してアナターゼ型二酸化チタンを合成しチタン金属粉と混合し、少量の硫酸チタンを噴霧しながら300から700℃で焼成した、難分解性の有機ハロゲン化合物を太陽光で分解することのできる光触媒を得る方法(特許文献11参照)などが提案されている。これらの提案も、多くの場合アセトアルデヒドなどの化合物の分解性を評価し、あるいは光源として紫外線に富む水銀ランプなどが用いられあるいは太陽光をそのまま光源に用いて検討したものであり、太陽光の乏しい屋内での光触媒の利用を意図したものではない。As another means for increasing the photocatalytic activity of titanium dioxide, a series of proposals using a noble metal together with titanium dioxide has been made. Specifically, platinum, palladium, gold, etc. are supported on the surface of titanium dioxide columnar crystals to increase the photocatalytic activity (see Patent Document 7), and platinum, etc. are supported on rutile titanium oxide in the form of fine particles. For example, a method for improving the activity (see Patent Document 8) and a method for increasing the activity by adding yttrium to titanium oxide (see Patent Document 9) have been proposed. Further, as a special method, a method of obtaining a highly active photocatalyst by supporting a noble metal such as iridium on barium titanate (see Patent Document 10), basic ammonium ammonium sulfate, (NH 4 ) 2 SO 4 · TiOSO 4・ Sintered 2H 2 O, synthesized anatase-type titanium dioxide, mixed with titanium metal powder, and fired at 300 to 700 ° C while spraying a small amount of titanium sulfate. A method for obtaining a photocatalyst that can be used (see Patent Document 11) has been proposed. These proposals are often evaluated by evaluating the decomposability of compounds such as acetaldehyde, or using mercury-rich lamps that are rich in ultraviolet rays as the light source, or using sunlight directly as the light source. It is not intended for indoor use of photocatalysts.

なお、前記特許文献8に記載されたルチル型二酸化チタンに白金触媒を担持した際には、ルチル型二酸化チタンでは407nm(バンドギャップ3.05eV)の波長までの光で励起し、アナターゼ型二酸化チタンの388nm(バンドギャップ3.20eV)よりも光励起する波長が可視光側(長波長)にあり白金粒子の活性化効果が加わり、白色蛍光灯においても活性を示しアセトアルデヒドを分解することを該明細書で述べている。しかし、白金などの貴金属は酸化チタンに比較して著しく高価でありコストの面において実用上の制約を免れ得ない。  In addition, when a platinum catalyst is supported on rutile type titanium dioxide described in Patent Document 8, rutile type titanium dioxide is excited with light up to a wavelength of 407 nm (band gap 3.05 eV), and anatase type titanium dioxide. The wavelength of photoexcitation from 388 nm (bandgap 3.20 eV) is on the visible light side (long wavelength), the activation effect of platinum particles is added, the activity is exhibited even in a white fluorescent lamp, and acetaldehyde is decomposed. It is stated in. However, noble metals such as platinum are remarkably expensive as compared with titanium oxide, and practical limitations cannot be avoided in terms of cost.

紫外光を含まない可視光に応答する光触媒に関しては、酸化チタンに窒素(N)またはイオウ(S)をドープすることにより基板上にTi−O−Nまたは、Ti−O−S構造の光触媒構造の膜を形成する(特許文献12参照)が提案されているが、光触媒膜の製造速度を考慮すると製造コストが高くならざるを得ない。可視光に応答し、コストを低減できる光触媒として、酸化チタンの粉末と尿素を攪拌混合した後、加熱して酸窒化チタンを製造する(参考文献13参照)が提案されているが、該特許の実施例に述べられているように、窒素またはアンモニア雰囲気での焼成が必要であり、本特許の光触媒製造方法である空気中での単なる焼成に較べ工程が複雑になり、製造コスト面で不利と思われる。  For photocatalysts that respond to visible light that does not contain ultraviolet light, titanium oxide is doped with nitrogen (N) or sulfur (S) to form a photocatalytic structure of Ti—O—N or Ti—O—S structure on the substrate. (See Patent Document 12) has been proposed, but the production cost must be increased in consideration of the production rate of the photocatalyst film. As a photocatalyst that can respond to visible light and reduce costs, titanium oxide powder and urea are stirred and mixed, and then heated to produce titanium oxynitride (see Reference 13). As described in the examples, firing in a nitrogen or ammonia atmosphere is necessary, and the photocatalyst production method of this patent is more complicated than the simple firing in air, which is disadvantageous in terms of production cost. Seem.

さらに、エチレンの光分解に関する従来の提案は、農産物の品質保持を目的とするエチレンの分解、除去に関する装置面からの提案が多く、二酸化チタンあるいは白金担持二酸化チタンに光照射してエチレンを分解し農産物の鮮度を保つ装置システムの提案などがその1例である(例えば、特許文献14参照)。二酸化チタンに関するエチレンの光分解に関する提案は、ナトリウムなどのアルカリ金属を除去したゼオライト上に酸化チタンを担持した耐水性に優れ光触媒活性に富むエチレン分解触媒(特許文献15参照)、高反射率表面を持つ担体上に光の透過性のよい電荷分離層を設け、その上に10から50ナノメーターの結晶粒子径を有する酸化チタン微粒子を担持することを特徴とするエチレン分解触媒(特許文献16参照)等の提案がなされている。しかし、これらの特許にみられるエチレン分解の評価方法は紫外線殺菌ランプなどを用いてなされたものであり、紫外線の乏しい屋内で適用することができる有効な光触媒としてはその活性はまだ満足すべきものではない。  Furthermore, many of the previous proposals related to the photodecomposition of ethylene are from the aspect of equipment related to the decomposition and removal of ethylene for the purpose of maintaining the quality of agricultural products, and light is irradiated to titanium dioxide or platinum-supported titanium dioxide to decompose ethylene. One example is a proposal of an apparatus system that maintains the freshness of agricultural products (for example, see Patent Document 14). Proposals related to photolysis of ethylene related to titanium dioxide include an ethylene decomposition catalyst (see Patent Document 15) having excellent water resistance and high photocatalytic activity, in which titanium oxide is supported on zeolite from which alkali metals such as sodium have been removed. An ethylene decomposition catalyst characterized in that a charge separation layer with good light transmission is provided on a carrier having titanium oxide fine particles having a crystal particle diameter of 10 to 50 nanometers supported thereon (see Patent Document 16) Etc. have been proposed. However, the evaluation method of ethylene degradation found in these patents was made using an ultraviolet germicidal lamp, etc., and its activity is not yet satisfactory as an effective photocatalyst that can be applied indoors where ultraviolet rays are scarce. Absent.

特開2000−266902号公報(第1〜5頁)  JP 2000-266902 A (pages 1 to 5) 特開2001−259435号公報(第1〜6頁)  JP 2001-259435 A (pages 1 to 6) 特開2002−253974号公報(第1〜8頁)  JP 2002-253974 A (pages 1 to 8) 特開2002−370034号公報(第1〜7頁)  JP 2002-370034 A (pages 1-7) 特開2003−190810号公報(第1〜15頁)  JP 2003-190810 A (pages 1 to 15) 特開平11−47609号公報(第1〜8頁)  JP-A-11-47609 (pages 1 to 8) 特開2003−299965号公報(第1〜12頁)  JP 2003-299965 A (pages 1 to 12) 特開2000−262906号公報(第1〜11頁)  JP 2000-262906 A (pages 1 to 11) 特開平11−244706号公報(第1〜4頁)  JP 11-244706 A (pages 1 to 4) 特開平9−253486号公報(第1〜7頁)  JP-A-9-253486 (pages 1-7) 特開平7−275702号公報(第1〜5頁)  JP-A-7-275702 (pages 1 to 5) 特開2001−207082号公報(第1〜9頁)  JP 2001-207082 A (pages 1 to 9) 特開2002−154823号公報(第1〜7頁)  JP 2002-154823 A (pages 1 to 7) 特開平1−252244号公報(第1〜11頁)  JP-A-1-252244 (pages 1 to 11) 特開平7−16473号公報(第1〜6頁)  JP 7-16473 A (pages 1 to 6) 特開平7−88367号公報(第1〜6頁)  JP-A-7-88367 (pages 1-6) 尾崎萃ほか編「触媒調製化学」49頁、講談社サイエンティフィク(1980)  Satoshi Ozaki et al. “Catalyst Preparation Chemistry”, p. 49, Kodansha Scientific (1980) 触媒学会主催「第9回キャタリシススクールテキスト」52頁、触媒学会(1998)  "9th Catalysis School Text", 52 pages, Catalytic Society of Japan (1998)

本発明は、太陽光の下では勿論のこと、白色蛍光灯照射下等の太陽光の乏しい屋内においても、野菜、果物などの農産物および切花の鮮度保持に重大な影響を及ぼすことの知られるエチレンを効率よく分解できる高い光触媒活性を有する汎用型な光触媒体を提供することを目的とするものである。  The present invention is known to have a significant effect on maintaining the freshness of agricultural products such as vegetables and fruits and cut flowers, not only under sunlight, but also indoors where sunlight is poor, such as under white fluorescent lighting. It is an object of the present invention to provide a general-purpose photocatalyst having high photocatalytic activity capable of efficiently decomposing.

本発明者は、上記の状況に鑑み、太陽光の乏しい屋内でもエチレンを光分解する二酸化チタンを用いた汎用型光触媒体について鋭意研究を進めた結果、白色蛍光灯程度の光源でも高い光触媒活性を有する、セラミックと二酸化チタン複合体からなる高活性光触媒体を見出し、本発明を完成するに至った。  In view of the above situation, the present inventor has conducted extensive research on a general-purpose photocatalyst using titanium dioxide that photodecomposes ethylene even in sunlight-poor indoors. The present inventors have found a highly active photocatalyst comprising a ceramic and titanium dioxide composite, and have completed the present invention.

即ち、本発明は、以下の内容をその要旨とするものである。
(1)アナターゼ型微粒子二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を、セラミックと一体化させたことを特徴とするエチレンの光分解に優れる高活性光触媒体。
(2)アナターゼ型微粒子二酸化チタンの粒径が、8nm未満である(1)に記載の高活性光触媒体。
(3)アナターゼ型微粒子二酸化チタンに対する硫酸アンモニウムの含浸量が1〜20モル%である(1)および(2)に記載の高活性光触媒体。
That is, the gist of the present invention is as follows.
(1) A highly active photocatalyst excellent in photodecomposition of ethylene, wherein a titanium dioxide composite produced from anatase type fine particle titanium dioxide and ammonium sulfate is integrated with a ceramic.
(2) The highly active photocatalyst according to (1), wherein the particle size of the anatase type fine particle titanium dioxide is less than 8 nm.
(3) The highly active photocatalyst according to (1) and (2), wherein the amount of ammonium sulfate impregnated in anatase type fine particle titanium dioxide is 1 to 20 mol%.

本発明の、アナターゼ型微粒子二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を、セラミックと一体化させたことを特徴とするエチレンの光分解に優れる高活性光触媒体は、室内照明用の白色蛍光灯程度の紫外線が乏しい光によっても、エチレン分解に高い活性を示す光触媒体である。従って、本発明の光触媒体を用いれば、特別に紫外線を含む太陽光線や紫外線ランプの光を照射する必要がなく、野菜や果物を室内、車内、太陽光が遮断された屋外等に貯蔵する場合であっても、発生するエチレンを効率よく分解することができる。
さらに、基体がセラミックであるため、多様な形状に成型でき、寿命も半永久的である。特にガラスのばあいには、板状、円筒状、箱状等、多様な形態で使用が可能である。また、板状および中空立体容器の場合、光が透過するので、板状の場合には表面に、中空立体容器の場合には内部表面に二酸化チタン複合体を一体化することにより、板状の場合には光の方向を問わず光触媒活性を示し、中空立体容器の場合には容器の内部に設置した発光源によっても、容器の外側からの光によっても、光触媒活性を発現する。
The highly active photocatalyst excellent in photodecomposition of ethylene, characterized in that a titanium dioxide composite produced from anatase type fine particle titanium dioxide and ammonium sulfate according to the present invention is integrated with a ceramic, is a white fluorescent for indoor lighting. It is a photocatalyst exhibiting high activity for ethylene degradation even with light that is as low as ultraviolet light. Therefore, when the photocatalyst of the present invention is used, there is no need to irradiate sunlight or ultraviolet lamp light including ultraviolet rays, and vegetables and fruits are stored indoors, in the vehicle, outdoors where sunlight is blocked, etc. Even so, the generated ethylene can be efficiently decomposed.
Furthermore, since the substrate is ceramic, it can be molded into various shapes and has a semi-permanent lifetime. In particular, in the case of glass, it can be used in various forms such as a plate shape, a cylindrical shape, and a box shape. In the case of plate-shaped and hollow three-dimensional containers, light is transmitted. Therefore, by integrating the titanium dioxide composite on the surface in the case of plate-shaped, and on the inner surface in the case of hollow three-dimensional containers, the plate-shaped In some cases, photocatalytic activity is exhibited regardless of the direction of light. In the case of a hollow three-dimensional container, the photocatalytic activity is expressed by a light source installed inside the container or by light from the outside of the container.

本発明の、アナターゼ型微粒子二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を、セラミックと一体化させたことを特徴とするエチレンの光分解に優れる高活性光触媒体は、以下に説明する二酸化チタン複合体をセラミックに一体化させたものである。高活性光触媒成分は、アナターゼ型微粒子二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体であり、具体的には、粒径8nm未満のアナターゼ型微粒子二酸化チタンに硫酸アンモニウムを含浸し焼成して得た複合体である。そして、アナターゼ型微粒子複合体においては、硫酸アンモニウムを構成する成分元素が二酸化チタンの粒子の表面または内部に一体的に複合化した二酸化チタン複合体である。
このような二酸化チタン複合体を用いた本発明の高活性光触媒は、その構造やメカニズムは必ずしも明確ではないが、本発明の代表的複合体である、硫酸アンモニウムを8mol%含浸したアナターゼ型微粒子二酸化チタン複合体の紫外・可視吸収スペクトル(図1参照)が400nm付近においてほとんど吸収が認められず、一般的な二酸化チタンと同様なスペクトルが得られることから、特許文献12において、可視光応答性発現の推定根拠とされている400nm付近での吸収スペクトルの増大とは異なり、別の作用によって可視域に近い紫外光ないし可視光領域において光触媒活性の増大が生じていると思われる。そのひとつの可能性として、光を受けて生成した電子と正孔が再結合しにくくなり、その結果、光触媒活性効率が増大していると考えられる。したがって、紫外線の乏しい環境下にあっても、特許文献12とは異なる性質を持つ新規な高活性光触媒と考えられる。
The highly active photocatalyst excellent in photodecomposition of ethylene, characterized in that the titanium dioxide composite produced from anatase type fine particle titanium dioxide and ammonium sulfate according to the present invention is integrated with a ceramic, is described below. The composite is integrated with ceramic. The highly active photocatalyst component is a titanium dioxide composite formed from anatase type fine particle titanium dioxide and ammonium sulfate. Specifically, a composite obtained by impregnating ammonium sulfate into anatase type fine particle titanium dioxide having a particle diameter of less than 8 nm and baking it. Is the body. The anatase type fine particle composite is a titanium dioxide composite in which the component elements constituting ammonium sulfate are integrally combined on the surface or inside of the titanium dioxide particles.
Although the structure and mechanism of the highly active photocatalyst of the present invention using such a titanium dioxide complex is not necessarily clear, anatase type fine particle titanium dioxide impregnated with 8 mol% of ammonium sulfate is a typical complex of the present invention. The ultraviolet / visible absorption spectrum of the composite (see FIG. 1) shows almost no absorption around 400 nm, and a spectrum similar to that of general titanium dioxide is obtained. Unlike the increase in the absorption spectrum near 400 nm, which is the basis of estimation, it is considered that the photocatalytic activity is increased in the ultraviolet light or visible light region close to the visible region by another action. One possibility is that electrons and holes generated by receiving light are less likely to recombine, resulting in an increase in photocatalytic activity efficiency. Therefore, it is considered to be a novel highly active photocatalyst having properties different from those of Patent Document 12 even in an environment where ultraviolet rays are scarce.

本発明においては、後にさらに詳細に説明する二酸化チタン複合体を一体化する基体にセラミックを用いる。
セラミックは耐熱性に優れ、二酸化チタン複合体を焼成により一体化できるので、接着剤を使わずに一体化が可能である。接着剤を使用すると、接着剤が二酸化チタン複合体の表面に付着し、光触媒活性を低下させる傾向がある。したがって、接着剤を使用せずに一体化することは、二酸化チタン複合体の本来持っている光触媒活性をそのまま利用できる。さらに、セラミックは、二酸化チタン複合体の持っている光触媒活性により、分解等による劣化が生じないので、有機物に一体化しようとする場合のように、光触媒活性体に、あるいは有機物側に、有機物の分解を防ぐための対策をほどこす必要がない。
In the present invention, a ceramic is used for a substrate on which a titanium dioxide composite, which will be described in detail later, is integrated.
Ceramics are excellent in heat resistance, and can be integrated without using an adhesive because the titanium dioxide composite can be integrated by firing. When an adhesive is used, the adhesive tends to adhere to the surface of the titanium dioxide composite and reduce the photocatalytic activity. Therefore, integration without using an adhesive can utilize the photocatalytic activity inherent to the titanium dioxide composite as it is. Furthermore, since the ceramic does not deteriorate due to decomposition or the like due to the photocatalytic activity possessed by the titanium dioxide composite, the organic catalyst is formed on the photocatalytic active material or on the organic material side, as in the case of integrating the organic material. There is no need to take measures to prevent disassembly.

さらにセラミックの中でも、通常のガラスは、上に述べたセラミックの長所を持っている上に透明であるので、容器状にして内部に野菜、果物などの農産物および切花を保管した場合に容器の外部からの光によって光触媒活性を生じさせることができ、基材として特に好ましい。また、鏡、タイル、ホーロー引き製品などでも良い。  Furthermore, among ceramics, normal glass has the advantages of the ceramics described above and is transparent, so when agricultural products such as vegetables and fruits and cut flowers are stored inside the container, The photocatalytic activity can be generated by light from, and is particularly preferable as a substrate. Also, mirrors, tiles, enameled products, etc. may be used.

本発明において用いる原料の二酸化チタン(TiO)は、微小粒径のものはアナターゼ型の二酸化チタンが好適である。それらの粒径は、8nm(80−9m)未満のものであり、より好ましくは、3nm(3×10−9m)から7nm(7×10−9m)である。3nm未満のものは製造コストが非常に高くなり、また細かすぎて作業性が悪い。8nm(80−9m)以上だと光触媒活性がやや劣るようになる。なお、本特許で粒径とは1次粒子の径をいう。Titanium dioxide material used in the present invention (TiO 2) is of a fine particle size is suitably titanium dioxide anatase. Their particle size is less than 8 nm (80 −9 m), more preferably 3 nm (3 × 10 −9 m) to 7 nm (7 × 10 −9 m). If it is less than 3 nm, the production cost is very high, and it is too fine to work. When it is 8 nm (80 −9 m) or more, the photocatalytic activity becomes slightly inferior. In this patent, the particle diameter means the diameter of primary particles.

本発明に用いる二酸化チタンは、製品として市販されているものを原料としてそのまま使用することができる。しかし、特に望むならば硫酸チタン、四塩化チタン、硝酸チタンなど無機酸のチタン塩あるいはチタンテトラエトキシド、チタンテトライソプロポキシドあるいはチタンテトラ(2−エチルヘキサノエート)などのチタン化合物を加水分解あるいは苛性ソーダなどの塩基性物質で中和、沈殿、焼成などの方法により調製することもできるものである。上記のもののうちアナターゼ型微小粒径の二酸化チタンは従来型の紫外線の豊富な環境下で利用できる光触媒として販売されている。  The titanium dioxide used in the present invention can be used as a raw material as it is marketed as a product. However, if desired, hydrolysis of titanium salts such as titanium salts of inorganic acids such as titanium sulfate, titanium tetrachloride and titanium nitrate, or titanium tetraethoxide, titanium tetraisopropoxide or titanium tetra (2-ethylhexanoate) Or it can also prepare by methods, such as neutralization, precipitation, and baking, with basic substances, such as caustic soda. Of the above, titanium dioxide with anatase type fine particle size is sold as a conventional photocatalyst that can be used in an environment rich in ultraviolet rays.

市販のアナターゼ型微小粒径二酸化チタンの代表的な製品としては、テイカ株式会社製のAMT−100、堺化学工業株式会社製のSSP−25、CSPM、CSB、石原産業株式会社製のST−01があり、これらの二酸化チタンを使用して、二酸化チタン複合体を調製することが可能である。
本発明者は、8nm未満のアナターゼ型微小粒径二酸化チタンの硫酸アンモニウム複合体をセラミックの表面に塗布、乾燥、焼成により一体化させることにより、紫外線の乏しい白色蛍光灯の照射化での光触媒活性を見出し、本発明の完成に至った。
Typical products of commercially available anatase type fine particle size titanium dioxide include AMT-100 manufactured by Teika Co., Ltd., SSP-25 manufactured by Sakai Chemical Industry Co., Ltd., CSPM, CSB, ST-01 manufactured by Ishihara Sangyo Co., Ltd. These titanium dioxides can be used to prepare titanium dioxide composites.
The present inventor applied photocatalytic activity in irradiation of a white fluorescent lamp with poor ultraviolet rays by applying an ammonium sulfate complex of anatase type fine particle size titanium dioxide of less than 8 nm to the surface of the ceramic and integrating it by drying and firing. The headline, the present invention has been completed.

本発明において用いる硫酸アンモニウムは、試薬でも工業用でも使用でき、特に純度を特定しない。なお、硫酸アンモニウムは肥料等として工業的に大量生産されており、安価で品質の安定したものが容易に入手でき、水に対する溶解度が大きいので含浸操作が容易であり、安全性に関しても問題なく、原料として用いる際には非常に優れている。  The ammonium sulfate used in the present invention can be used as a reagent or for industrial use, and its purity is not particularly specified. Ammonium sulfate is industrially mass-produced as a fertilizer, etc., inexpensive and stable quality is readily available, and its solubility in water is large, so that the impregnation operation is easy, and there is no problem with regard to safety. When used as a very good.

次に、本発明の高活性光触媒成分であるアナターゼ型微小粒径二酸化チタン複合体の製造方法について説明する。
本発明の二酸化チタン複合体の調製は、通常は含浸法を用いるが、場合によっては共沈法を用いてもよい(非特許文献1、2参照)。つまり、硫酸アンモニウムを溶液の形で二酸化チタンに含浸又は吸着する方法、無機酸のチタン塩等の水溶液と前記硫酸アンモニウムの水溶液を共沈殿する方法、さらに特に望むなら二酸化チタンと前記硫酸アンモニウムを単に混合する方法などが使用可能である。含浸または吸着させる場合は、二酸化チタンと硫酸アンモニウム水溶液をよく混合して均一化をはかり硫酸アンモニウムを二酸化チタンに含浸または吸着させ、20から100℃程度の温度で乾燥、焼成した後、粉砕して硫酸アンモニウムを含む二酸化チタン複合体を調製すればよい。
Next, the manufacturing method of the anatase type fine particle diameter titanium dioxide composite which is the highly active photocatalyst component of the present invention will be described.
In the preparation of the titanium dioxide composite of the present invention, an impregnation method is usually used, but a coprecipitation method may be used in some cases (see Non-Patent Documents 1 and 2). That is, a method of impregnating or adsorbing ammonium sulfate in the form of a solution of ammonium sulfate, a method of coprecipitation of an aqueous solution of a titanium salt of an inorganic acid and the aqueous solution of ammonium sulfate, and a method of simply mixing titanium dioxide and the ammonium sulfate if desired. Etc. can be used. When impregnating or adsorbing, titanium dioxide and an aqueous solution of ammonium sulfate are mixed well to homogenize, impregnating or adsorbing ammonium sulfate on titanium dioxide, dried and fired at a temperature of about 20 to 100 ° C., and then pulverized to obtain ammonium sulfate. What is necessary is just to prepare the titanium dioxide composite containing.

共沈殿による場合には、市販の硫酸チタンの水溶液と硫酸アンモニウムの水溶液を混合し、水酸化ナトリウム水溶液やアンモニア水で中和して硫酸アンモニウムを含む二酸化チタンを共沈澱により生成させ、次いで、ろ過、洗浄して得た粉体を20から100℃程度の温度で乾燥、焼成した後、粉砕して硫酸アンモニウムを含む二酸化チタンを調製すればよい。  In the case of coprecipitation, a commercially available aqueous solution of titanium sulfate and an aqueous solution of ammonium sulfate are mixed and neutralized with an aqueous sodium hydroxide solution or aqueous ammonia to produce titanium dioxide containing ammonium sulfate by coprecipitation, followed by filtration and washing. The powder obtained as described above may be dried and fired at a temperature of about 20 to 100 ° C. and then pulverized to prepare titanium dioxide containing ammonium sulfate.

二酸化チタンに含ませる硫酸アンモニウムの量は、二酸化チタンに対して通常は1から20モル%程度であるが、好ましくは2から15モル%程度である。1モル%以下では、活性が小さく、20モル%以上では光触媒活性が減少する傾向を生じる場合もみられるため、通常は20モル%以下の量に抑えるのが好ましい。しかし、特に望むなら20モル%以上の量を用いることを妨げるものではない。また、本発明に使用する硫酸アンモニウムを含む二酸化チタンとしては、上記のように含浸、吸着、共沈殿、あるいは混合により得られるものの他に、これらの硫酸アンモニウムを含む二酸化チタンを、さらにその後、洗浄、加熱乾燥、焼成、粉砕等の諸工程で熱分解などにより化学構造変化を生じたものも含む。  The amount of ammonium sulfate contained in titanium dioxide is usually about 1 to 20 mol%, preferably about 2 to 15 mol%, relative to titanium dioxide. If it is 1 mol% or less, the activity is small, and if it is 20 mol% or more, the photocatalytic activity tends to decrease. However, it does not preclude the use of an amount of 20 mol% or more if desired. Moreover, as titanium dioxide containing ammonium sulfate used in the present invention, in addition to those obtained by impregnation, adsorption, coprecipitation, or mixing as described above, titanium dioxide containing ammonium sulfate is further washed and heated. Also included are those that have undergone chemical structural changes due to thermal decomposition in various processes such as drying, firing, and pulverization.

二酸化チタン複合体をセラミックと一体化させる方法としては、二酸化チタン複合体粉末をセラミック表面に均一に分布させ、300〜700℃で、かつ、ガラスの場合には、ガラスの軟化点以下の温度で焼成する。この理由は、700℃以上だとアナターゼ型二酸化チタンがルチル型二酸化チタンに変化し、活性が弱まるのを防ぐためと、ガラスの場合に軟化点より高い温度だと、ガラスが変形する恐れがあることによる。
また、共沈殿のさいに、硫酸チタンの水溶液と硫酸アンモニウムの水溶液の混合液中にセラミックを浸漬させ、水酸化ナトリウム水溶液やアンモニア水で中和して硫酸アンモニウムを含む二酸化チタンをセラミック上に共沈澱により生成させ、次いで、20から100℃程度の温度で乾燥、焼成した後、徐冷して高活性光触媒体を製造することもできる。
As a method for integrating the titanium dioxide composite with the ceramic, the titanium dioxide composite powder is uniformly distributed on the surface of the ceramic, and is 300 to 700 ° C. Bake. The reason for this is that anatase-type titanium dioxide changes to rutile-type titanium dioxide when the temperature is 700 ° C. or higher, and the glass may be deformed when the temperature is higher than the softening point in the case of glass. It depends.
Also, during coprecipitation, the ceramic is immersed in a mixed solution of an aqueous solution of titanium sulfate and an aqueous solution of ammonium sulfate, and neutralized with an aqueous solution of sodium hydroxide or aqueous ammonia to co-precipitate titanium dioxide containing ammonium sulfate on the ceramic. Then, after drying and baking at a temperature of about 20 to 100 ° C., it is gradually cooled to produce a highly active photocatalyst.

二酸化チタン複合体粉末をセラミック表面に均一に分布させる方法としては、二酸化チタン複合体を水やアルコールに分散させた分散液をセラミック表面に単に滴下する方法、ディッピング法、スピンコート法等により、二酸化チタン複合体をセラミック表面に分散させる。二酸化チタン複合体の塗布量を増やすために、水ガラス等を添加して分散液の粘度を上げることも可能であるが、二酸化チタン複合体表面に増粘剤が付着して、光触媒活性を低下させる傾向があるので、二酸化チタン複合体の塗布量を増やすためには、分散液の濃度を上げるか、多層塗りをしたほうが良い。  As a method of uniformly distributing the titanium dioxide composite powder on the ceramic surface, a method in which a dispersion in which the titanium dioxide composite is dispersed in water or alcohol is simply dropped onto the ceramic surface, a dipping method, a spin coating method, or the like is used. The titanium composite is dispersed on the ceramic surface. In order to increase the coating amount of titanium dioxide composite, it is possible to increase the viscosity of the dispersion by adding water glass, etc., but the thickener adheres to the surface of the titanium dioxide composite and decreases the photocatalytic activity. Therefore, in order to increase the coating amount of the titanium dioxide composite, it is better to increase the concentration of the dispersion or apply a multilayer coating.

焼成後は、徐冷することが重要である。徐冷の際の冷却速度は特に定めないが、セラミックが熱歪で割れないように、できるだけゆっくり降温させる。
なお、冷却速度による光触媒活性の変化は、白色蛍光灯の照射によるエチレンの分解に関しては認められなかった。
It is important to cool slowly after firing. The cooling rate at the time of slow cooling is not particularly defined, but the temperature is lowered as slowly as possible so that the ceramic does not crack due to thermal strain.
In addition, the change of the photocatalytic activity by the cooling rate was not recognized regarding the decomposition | disassembly of ethylene by irradiation of a white fluorescent lamp.

活性粉体をセラミック等の固体に付着させるために、粉体を水ガラスやシリカゾル、シランカップリング剤を接着剤として用いることは、広く行われており、本発明にても適用できるが、これらの接着剤成分が活性粉体の表面に付着して、活性を弱める傾向がある。本発明のようにガラス等のセラミックと一体化する場合には、活性を維持するために、接着剤を使用せずに、活性粉体とセラミックを焼成によって一体化する方法がもっとも好ましく、経済的でもある。  In order to attach the active powder to a solid such as ceramic, it is widely used that the powder is water glass or silica sol, and a silane coupling agent is used as an adhesive. The adhesive component tends to adhere to the surface of the active powder and weaken the activity. When integrating with a ceramic such as glass as in the present invention, in order to maintain the activity, a method of integrating the active powder and the ceramic by firing without using an adhesive is most preferable and economical. But there is.

本発明の、二酸化チタン複合体を、セラミックと一体化させたことを特徴とするエチレンの光分解に優れる高活性光触媒体において、特にガラスを基体として用いるばあいは、ガラスと二酸化チタン複合体の構成は、次の通りである。A:単にガラス板の片方の表面に二酸化チタン複合体を一体化したもの。B:ガラス板の両面に二酸化チタン複合体を一体化したもの。C:片方の面に本発明の二酸化チタン複合体を一体化し、もう一方の面に、従来の光触媒(紫外光を放射するランプや、太陽光に反応するもの)を付着させたものである。さらに、鏡(ショーケースの天井部などに多く使用されている)の鏡面に二酸化チタン複合体を一体化したものも有用である。  In the highly active photocatalyst excellent in photodecomposition of ethylene, characterized in that the titanium dioxide composite of the present invention is integrated with a ceramic, particularly when glass is used as a substrate, the glass and titanium dioxide composite The configuration is as follows. A: Simply integrated with a titanium dioxide composite on one surface of a glass plate. B: A titanium dioxide composite integrated on both surfaces of a glass plate. C: The titanium dioxide composite of the present invention is integrated on one surface, and a conventional photocatalyst (a lamp that emits ultraviolet light or a material that reacts to sunlight) is attached to the other surface. Further, it is also useful to integrate a titanium dioxide composite with a mirror surface of a mirror (which is often used for a ceiling part of a showcase).

以上のような本発明の二酸化チタン複合体とセラミックを一体化した高活性光触媒体は、農産物、切花などを貯蔵中に発生するエチレンを分解するため、それらの品質保持に極めて有用である。また、白色蛍光灯の光に反応して光触媒活性を生じることから、エチレン分解以外にも、アルデヒドなどの有機物の分解や、悪臭の除去、抗菌性付与等、従来の光触媒が有していた効果を、室内や車内等の紫外線の乏しい環境でも発揮できる。
利用形態としては、高活性光触媒体を農産物、切花などの近傍に置くだけでもよいが、ガラスを基体に用いることによって、農産物、切花などを展示するための店内に設置するショーケースとすることが出来る。あるいは、エチレンによって影響される物品を格納する透明または半透明ケースが考えられる。これらの場合には、ケースの内面に二酸化チタン複合体を一体化する。
The highly active photocatalyst obtained by integrating the titanium dioxide composite of the present invention and the ceramic as described above decomposes ethylene generated during storage of agricultural products, cut flowers, etc., and is extremely useful for maintaining the quality of these. In addition to the decomposition of ethylene, the photocatalytic activity occurs in response to light from white fluorescent lamps, so the effects of conventional photocatalysts such as decomposition of organic substances such as aldehydes, removal of malodors, and addition of antibacterial properties Can be exhibited even in an environment with little ultraviolet light, such as indoors or in a car.
As a usage form, it is sufficient to place a highly active photocatalyst in the vicinity of agricultural products, cut flowers, etc., but by using glass as a substrate, it is possible to make a showcase installed in a store for displaying agricultural products, cut flowers, etc. I can do it. Alternatively, a transparent or translucent case for storing articles affected by ethylene is conceivable. In these cases, the titanium dioxide composite is integrated with the inner surface of the case.

次に、本発明の実施例を述べるに先立ち、光触媒体が白色蛍光灯照射によりエチレンを分解する際の評価方法について説明する。
(i)装置の構成
評価に用いる装置に付いては特別の制限は設けないが、通常は以下に記す3種の装置からなる。▲1▼石英製セル(円筒形、内容積300ml):試料を塗布したガラス板やセラミックを収め、内部を酸素/アルゴン=20%/80%の合成ガスで置換し、エチレン5ppmを挿入する、光透過性の優れた石英製の気密な容器。▲2▼ 照射箱(W×L×H=75×70×75cm):石英製セルを内部に納め、白色蛍光灯で光照射を行う容器。空気を循環し温度を調整する。▲3▼ガスクロマトグラム:エチレンなどの分析装置。
Next, prior to describing examples of the present invention, an evaluation method when the photocatalyst decomposes ethylene by irradiation with a white fluorescent lamp will be described.
(I) Structure of apparatus Although there is no special restriction on the apparatus used for evaluation, it is usually composed of the following three kinds of apparatuses. (1) Quartz cell (cylindrical, internal volume 300 ml): A glass plate or ceramic coated with a sample is contained, the inside is replaced with a synthesis gas of oxygen / argon = 20% / 80%, and 5 ppm of ethylene is inserted. Airtight container made of quartz with excellent light transmission. (2) Irradiation box (W × L × H = 75 × 70 × 75 cm): A container in which a quartz cell is placed and light is irradiated with a white fluorescent lamp. Circulate air and adjust temperature. (3) Gas chromatogram: analyzer for ethylene and the like.

(ii)操作手順
試料に水を加えて均一懸濁液を調整し、ガラス板やセラミックに塗布、乾燥する。試料の塗布量が目標に達しない時は、さらに、塗布、乾燥を繰り返して塗布量を増す。その後焼成、徐冷した後、該ガラス板やセラミックを気密な円筒状の石英製セル内に収める。次いで該セル中のガスを20%の酸素を含むアルゴンガス(合成空気)で充分に置換する。該セルを白色蛍光灯付照射箱内に設置する。照射箱に収められた石英製セル中の試料は、次に示すエチレン分解評価のスケジュールに従って光照射を行い、その間のエチレン分解による濃度変化をガスクロマトグラフにより追跡して測定し、試料の光分解活性を評価する。
(Ii) Operation procedure Water is added to the sample to prepare a uniform suspension, which is applied to a glass plate or ceramic and dried. When the coating amount of the sample does not reach the target, the coating amount is further increased by repeating coating and drying. Thereafter, after firing and slow cooling, the glass plate and ceramic are placed in an airtight cylindrical quartz cell. Next, the gas in the cell is sufficiently replaced with argon gas (synthetic air) containing 20% oxygen. The cell is placed in an irradiation box with a white fluorescent lamp. The sample in the quartz cell stored in the irradiation box is irradiated with light according to the schedule for ethylene decomposition evaluation shown below, and the concentration change due to ethylene decomposition during the period is measured by gas chromatograph to measure the photolysis activity of the sample. To evaluate.

(iii)エチレン光分解の評価スケジュール
試料を塗布したガラスまたはセラミックの試料面に、ブラックライト(20W、波長365nmで1mW/cm)を3時間照射して該試料の表面を清浄にし、該試料付きのガラスまたはセラミックを石英製セル中に置き合成空気(O/Ar=20%/80%)で置換後エチレンガスを5ppm濃度まで挿入、暗所に90分放置。次いで該セルを照射箱に収め、20Wの蛍光灯の半分をアルミホイルで被って光照射(500Lux)を開始し、60、120、180分後のエチレン濃度をガスクロマトグラフにて測定して試料の光分解活性を調べる。
なお、暗所に90分間放置する理由は、試料表面へエチレンが吸着平衡に達するまで吸着させるためである。
(Iii) Evaluation schedule of ethylene photolysis The sample surface of glass or ceramic coated with the sample was irradiated with black light (20 W, 1 mW / cm 2 at a wavelength of 365 nm) for 3 hours to clean the surface of the sample. Glass or ceramic with a mark is placed in a quartz cell and substituted with synthetic air (O 2 / Ar = 20% / 80%), and then ethylene gas is inserted to a concentration of 5 ppm and left in a dark place for 90 minutes. Next, the cell is placed in an irradiation box, half of a 20 W fluorescent lamp is covered with aluminum foil, and light irradiation (500 Lux) is started. The ethylene concentration after 60, 120, and 180 minutes is measured with a gas chromatograph, Check for photolytic activity.
The reason for leaving it in the dark for 90 minutes is to allow ethylene to be adsorbed on the sample surface until it reaches adsorption equilibrium.

次に実施例により本発明をさらに詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。また、実施例中の「%」および「部」は特に別途注記しない限り質量基準である。  EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the Example shown below. In the examples, “%” and “part” are based on mass unless otherwise noted.

1.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.08}(1−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(1−1−1)、粒径6nm 比表面積260m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(1−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収量:82.3%)を得た。この硫酸アンモニウムを含む二酸化チタン(1−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。なお、X線回折装置(XRD)は、マックサイエンス社製、全自動回折装置、MXPAを用いた。以降の実施例、比較例において、X線回折の測定には全て同機を用いた。
1.1 Preparation of Anatase Type Fine Particle Titanium Dioxide Complex {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (1-1-2) White with anatase type crystal structure provided by Takeca Co., Ltd. Of titanium dioxide AMT-100 {(1-1-1), particle size 6 nm, specific surface area 260 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., (NH 4 ) 2 SO 4 , MW: 132.14) 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, impregnated with ammonium sulfate, Dry at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, 9.3 g of titanium dioxide (1-1-2) containing pulverized ammonium sulfate (MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight) ( Yield: 82.3%) was obtained. This titanium dioxide containing ammonium sulfate (1-1-2) was confirmed to have an anatase type crystal structure from the measurement result of an X-ray diffractometer (XRD). The X-ray diffractometer (XRD) used was a fully automatic diffractometer, MXP 3 A, manufactured by Mac Science. In the following Examples and Comparative Examples, the same machine was used for all X-ray diffraction measurements.

1.2アナターゼ型微粒子二酸化チタン複合体(1−1−2)のガラス板への一体化
1.1で述べたアナターゼ型微粒子二酸化チタン複合体(1−1−2)の0.2gを純水10gに懸濁させた懸濁液を調整し、約3mm厚で4cm×4cmのガラス板上に、乾燥後で0.1gになるように塗布、乾燥させた。その後、マッフル炉で600℃3時間焼成し、100℃になるまで、マッフル炉の扉を閉めたまま徐冷し、マッフル炉から取り出して自然冷却してガラス板とアナターゼ型微粒子二酸化チタン複合体(1−1−2)の一体化物(1−2)を得た。
1.2 Integration of anatase type fine particle titanium dioxide complex (1-1-2) into glass plate 0.2 g of anatase type fine particle titanium dioxide complex (1-1-2) described in 1.1 was purified. A suspension suspended in 10 g of water was prepared, and applied and dried on a 4 cm × 4 cm glass plate having a thickness of about 3 mm so as to be 0.1 g after drying. After that, it is baked in a muffle furnace at 600 ° C. for 3 hours, and gradually cooled with the door of the muffle furnace closed until it reaches 100 ° C., taken out of the muffle furnace and naturally cooled, and a glass plate and anatase type fine particle titanium dioxide composite ( An integrated product (1-2) of 1-1-2) was obtained.

1.3ガラスと二酸化チタン複合体の一体化物(1−2)の照射箱中の設置位置の決定
ガラスと二酸化チタン複合体の一体化物(1−2)に20ワット昼白色蛍光灯(東芝ライテック株式会社製FL20SS・EX−N/18−Z)1本の半分をアルミホイルで巻いて遮蔽し、発光部を1/2にして照射箱上部に設置し、点灯して照度が500Luxになる照射箱内の位置を求め、その位置にガラスと二酸化チタン複合体の一体化物(1−2)が入った石英製セルを置けるように準備した。
なお、照度は、ミノルタ照度計T−10で確認した。なお、以下の実施例、および比較例においては、光源として上記20ワット昼白色蛍光灯(東芝ライテック株式会社製FL20SS・EX−N/18−Z、発光部:1/2)を用いた。
1.3 Determination of the installation position in the irradiation box of the glass / titanium dioxide composite (1-2) in the irradiation box 20-watt daylight fluorescent lamp (Toshiba Lighting & Technology) FL20SS ・ EX-N / 18-Z manufactured by Co., Ltd.) Half of one is covered with aluminum foil and shielded, the light emitting part is halved and installed at the top of the irradiation box, and it is turned on and the illumination becomes 500 Lux The position in the box was calculated | required and it prepared so that the cell made from quartz in which the integrated object (1-2) of glass and a titanium dioxide composite_body | complex entered could be put in the position.
The illuminance was confirmed with a Minolta illuminometer T-10. In the following Examples and Comparative Examples, the 20-watt daylight white fluorescent lamp (FL20SS · EX-N / 18-Z manufactured by Toshiba Lighting & Technology Corp., light emitting unit: 1/2) was used as a light source.

1.4エチレン200ppm入りの混合ガスの調製と、ガラスと二酸化チタン複合体の一体化物(1−2)が入った石英製セル(1−3)中のエチレン5ppm混合ガスの調製
1リッターのガラス製捕集びん(ジーエルサイエンス社製)中の気体をアルゴン80%酸素20%の混合ガスで約10分間置換し、捕集びんに付属のセプタムを通してエチレンガスを0.2ml注入し200ppmの混合ガスを調製した。
ガラスと二酸化チタン複合体の一体化物(1−2)を石英製セルに入れ、内部の気体をアルゴン80%酸素20%の混合ガスで10分間置換した。200ppmエチレンを含有する混合ガス7.5mlを石英製セルに付属のセプタムを通して注入し、石英製セルの中の混合ガス中のエチレン濃度を5ppmに調製した。これで、ガラスと二酸化チタン複合体の一体化物(1−2)とエチレン5ppmおよびアルゴン80%酸素20%の混合ガスを入れセプタムで封をした石英製セル(1−3)の準備が終了した。
1.4 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (1-3) containing an integrated glass and titanium dioxide composite (1-2) 1 liter of glass The gas in the collection bottle (manufactured by GL Sciences Inc.) was replaced with a mixed gas of 80% argon and 20% oxygen for about 10 minutes, and 0.2 ml of ethylene gas was injected through the septum attached to the collection bottle into a 200 ppm mixed gas. Was prepared.
The integrated product (1-2) of glass and titanium dioxide composite was placed in a quartz cell, and the gas inside was replaced with a mixed gas of 80% argon and 20% oxygen for 10 minutes. 7.5 ml of a mixed gas containing 200 ppm ethylene was injected through a septum attached to the quartz cell, and the ethylene concentration in the mixed gas in the quartz cell was adjusted to 5 ppm. This completes the preparation of the quartz cell (1-3) in which a glass (titanium dioxide) composite (1-2) and a mixed gas of 5 ppm ethylene and 80% argon and 20% oxygen are sealed with a septum. .

1.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(1−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(1−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、5.0ppmであった。
1.5 Measurement of ethylene concentration after standing in the dark of titanium dioxide composite Glass and titanium dioxide composite (1-2) Quartz containing mixed gas of 5ppm ethylene gas, argon 80% oxygen 20% When the cell (1-3) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes passed was measured, as shown in Table 1, they were 5.0 ppm and 5.0 ppm, respectively.

1.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(1−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(1−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(1−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(1−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、3.8ppm、2.5ppm、1.2ppmであった。
1.6 Measurement of the concentration of ethylene when the titanium dioxide composite was irradiated with daylight white fluorescent lamp Next, an integrated product of glass and titanium dioxide composite (1-2), 5 ppm ethylene gas, argon 80%, oxygen 20% Place the quartz cell (1-3) left in the dark where the mixed gas was placed at the position of illuminance of 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was covered with aluminum foil and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the light of the daylight white fluorescent lamp was irradiated from above the quartz cell (1-3). At this time, the ethylene concentration of the gas in the quartz cell (1-3) was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of fluorescent lamp irradiation, and a gas chromatograph (GC353B, GC Science Corporation) was extracted. FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 3.8 ppm, 2.5 ppm, and 1.2 ppm, respectively.

2.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.08}(2−1−2)
実施例1で調整したものを用いた。
2.1 Anatase type fine particle titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (2-1-2)
What was adjusted in Example 1 was used.

2.2アナターゼ型微粒子二酸化チタン複合体(2−1−2)のガラス板への一体化
実施例1と同様な操作で、ガラス板上に0.05gのアナターゼ型微粒子二酸化チタン複合体(2−1−2)が一体となった一体化物(2−2)を作成した。
2.2 Integration of anatase type fine particle titanium dioxide composite (2-1-2) into glass plate In the same manner as in Example 1, 0.05 g of anatase type fine particle titanium dioxide composite (2 An integrated product (2-2) in which -1-2) was integrated was created.

2.3ガラスと二酸化チタン複合体の一体化物(2−2)の照射箱中の設置位置の決定
実施例1と同様に行った。
2.3 Determination of Installation Position in Irradiation Box of Integrated Material of Glass and Titanium Dioxide Composite (2-2) The same as in Example 1.

2.4エチレン200ppm入りの混合ガスの調製と、ガラスと二酸化チタン複合体の一体化物(2−2)が入った石英製セル(2−3)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
2.4 Preparation of a mixed gas containing 200 ppm of ethylene, and Preparation Example 1 of a mixed gas of 5 ppm of ethylene in a quartz cell (2-3) containing a glass and titanium dioxide composite (2-2) The same was done.

2.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(2−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(2−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ5.0ppm、4.9ppmであった。
2.5 Measurement of ethylene concentration after leaving the titanium dioxide composite in the dark Glass (titanium dioxide composite composite) (2-2) Quartz containing a mixture of 5ppm ethylene gas, argon 80% oxygen 20% The cell (2-3) was placed in a dark place and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, they were 5.0 ppm and 4.9 ppm, respectively.

2.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(2−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(2−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(2−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(2−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、4.5ppm、3.6ppm、3.0ppmであった。
2.6 Measurement of Ethylene Concentration when Titanium Dioxide Composite is Irradiated with Daylight White Fluorescent Lamp Next, glass and titanium dioxide composite (2-2), 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (2-3) in the dark where the mixed gas was placed at the position of illuminance 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was covered with aluminum foil and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the light of the daylight fluorescent lamp was irradiated from above the quartz cell (2-3). The ethylene concentration of the gas in the quartz cell (2-3) at this time was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC Science, GC353B) was extracted. FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 4.5 ppm, 3.6 ppm, and 3.0 ppm, respectively.

3.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.12}(3−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(3−1−1)、粒径6nm 比表面積260m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の2.0g(15mmol、二酸化チタンに対し12モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(3−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収量:77.5%)を得た。この硫酸アンモニウムを含む二酸化チタン(3−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
3.1 Adjustment of Anatase Type Fine Particle Titanium Dioxide Complex {TiO 2 ((NH 4 ) 2 SO 4 ) 0.12 } (3-1-2) White with anatase type crystal structure provided by Takeka Co., Ltd. Of titanium dioxide AMT-100 {(3-1-1), particle size 6 nm, specific surface area 260 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (Wako Pure Chemical Industries, (NH 4 ) 2 SO 4 , MW: 132.14) 2.0 g (15 mmol, 12 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, impregnated with ammonium sulfate, Dry at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, pulverization and titanium dioxide (3-1-2) containing ammonium sulfate [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (9.3 g) Yield: 77.5%). This titanium dioxide containing ammonium sulfate (3-1-2) was confirmed to have an anatase type crystal structure from the measurement result of an X-ray diffractometer (XRD).

3.2アナターゼ型微粒子二酸化チタン複合体(3−1−2)のガラス板への一体化
実施例1と同様な操作で、ガラス板上に0.1gのアナターゼ型微粒子二酸化チタン複合体(3−1−2)が一体となった一体化物(3−2)を作成した。
3.2 Integration of Anatase Type Fine Particle Titanium Dioxide Complex (3-1-2) into Glass Plate In the same manner as in Example 1, 0.1 g of anatase type fine particle titanium dioxide complex (3 An integrated product (3-2) in which -1-2) was integrated was created.

3.3ガラスと二酸化チタン複合体の一体化物(3−2)の照射箱中の設置位置の決定
実施例1と同様に行った。
3.3 Determination of Installation Position in Irradiation Box of Integrated Material (3-2) of Glass and Titanium Dioxide Composite The same as in Example 1.

3.4エチレン200ppm入りの混合ガスの調製と、ガラスと二酸化チタン複合体の一体化物(3−2)が入った石英製セル(3−3)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
3.4 Preparation of a mixed gas containing 200 ppm of ethylene, and Preparation Example 1 of a mixed gas of 5 ppm of ethylene in a quartz cell (3-3) containing an integrated glass and titanium dioxide composite (3-2) The same was done.

3.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(3−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(3−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、5.0ppmであった。
3.5 Measurement of the ethylene concentration after leaving the titanium dioxide composite in the dark (1) Glass and titanium dioxide composite (3-2) Quartz containing 5 ppm ethylene gas, 80% argon, 20% oxygen mixed gas When the cell (3-3) was placed in a dark place and the ethylene concentrations after 60 minutes and 90 minutes were measured, as shown in Table 1, they were 4.9 ppm and 5.0 ppm, respectively.

3.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(3−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(3−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(3−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(3−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、3.7ppm、2.4ppm、1.3ppmであった。
3.6 Measurement of Ethylene Concentration when Titanium Dioxide Composite Is Irradiated with Daylight White Fluorescent Lamp Next, an integrated product of glass and titanium dioxide composite (3-2), 5 ppm ethylene gas, argon 80%, oxygen 20% Place the quartz cell (3-3) in the dark where the mixed gas was placed at the position of illuminance of 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was covered with aluminum foil and shielded and the light emitting part was halved was placed on the top of the irradiation box and turned on, and the light of the daylight white fluorescent lamp was irradiated from above the quartz cell (3-3). The ethylene concentration of the gas in the quartz cell (3-3) at this time was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC353B manufactured by GL Sciences, Inc.). FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 3.7 ppm, 2.4 ppm, and 1.3 ppm, respectively.

4.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.08}(4−1−2)
実施例1で調整したものを用いた。
4.1 Anatase type fine particle titanium dioxide composite {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (4-1-2)
What was adjusted in Example 1 was used.

4.2アナターゼ型微粒子二酸化チタン複合体(4−1−2)の磁性タイルへの一体化
4.1で述べたアナターゼ型微粒子二酸化チタン複合体(4−1−2)の0.2gを純水10gに懸濁させた懸濁液を調整し、約6mm厚で約4cm×約4cmの磁性タイル上に、乾燥後で0.1gになるように塗布、乾燥させた。その後、マッフル炉で600℃3時間焼成し、100℃になるまで、マッフル炉の扉を閉めたまま徐冷し、マッフル炉から取り出して自然冷却してガラス板とアナターゼ型微粒子二酸化チタン複合体(4−1−2)の一体化物(4−2)を得た。
4.2 Integration of anatase type fine particle titanium dioxide composite (4-1-2) into magnetic tile 0.2 g of the anatase type fine particle titanium dioxide composite (4-1-2) described in 4.1 is purified. A suspension suspended in 10 g of water was prepared, and applied onto a magnetic tile having a thickness of about 6 mm and a size of about 4 cm × about 4 cm so as to be 0.1 g after drying and dried. After that, it is baked in a muffle furnace at 600 ° C. for 3 hours, and gradually cooled with the door of the muffle furnace closed until it reaches 100 ° C., taken out of the muffle furnace and naturally cooled, and a glass plate and anatase type fine particle titanium dioxide composite ( 4-1-2) integrated product (4-2) was obtained.

4.3磁性タイルと二酸化チタン複合体の一体化物(4−2)の照射箱中の設置位置の決定
実施例1と同様に行った。
4.3 Determination of Installation Position in Irradiation Box of Integrated Material (4-2) of Magnetic Tile and Titanium Dioxide Composite The same as in Example 1.

4.4エチレン200ppm入りの混合ガスの調製と、磁性タイルと二酸化チタン複合体の一体化物(4−2)が入った石英製セル(4−3)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
4.4 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (4-3) containing an integrated product (4-2) of a magnetic tile and a titanium dioxide composite Example 1 As well as.

4.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(4−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(4−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、4.9ppmであった。
4.5 Measurement of ethylene concentration after leaving the titanium dioxide composite in the dark Integrated glass and titanium dioxide composite (4-2) Quartz containing mixed gas of 5ppm ethylene gas, argon 80% oxygen 20% The cell (4-3) was placed in a dark place, and the ethylene concentrations after 60 minutes and 90 minutes were measured. As shown in Table 1, they were 4.9 ppm and 4.9 ppm, respectively.

4.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(4−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(4−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(4−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(4−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、3.7ppm、2.4ppm、1.1ppmであった。
4.6 Measurement of ethylene concentration when titanium dioxide composite is irradiated with daylight fluorescent lamp Next, glass and titanium dioxide composite (4-2), 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (4-3) in the dark where the mixed gas was placed at the position of illuminance of 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was covered with aluminum foil and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the light of the daylight white fluorescent lamp was irradiated from above the quartz cell (4-3). The ethylene concentration of the gas in the quartz cell (4-3) at this time was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC353B manufactured by GL Sciences, Inc.). FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 3.7 ppm, 2.4 ppm, and 1.1 ppm, respectively.

比較例1Comparative Example 1

実施例1で使用したテイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(1−1−1)、粒径6nm 比表面積260m/g}の0.1gをガラス板に一体化し、実施例1の1.4以下と同様に昼白色蛍光灯照射時のエチレン濃度を測定した。
その結果は、表1に示すように、暗所放置中では、60分、90分経過時での測定値がそれぞれ5.0ppm、5.0ppmであり、昼白色蛍光灯照射時には、60分、120分、180分経過後のいずれの場合も、4.9ppm、4.8ppm、4.8ppmであった。
0.1 g of white titanium dioxide AMT-100 {(1-1-1) having a crystal structure of anatase type provided by Teika Co., Ltd. used in Example 1, particle size 6 nm, specific surface area 260 m 2 / g} Were integrated into a glass plate, and the ethylene concentration at the time of irradiation with a daylight fluorescent lamp was measured in the same manner as in Example 1 below 1.4.
As shown in Table 1, the measured values at the time of elapse of 60 minutes and 90 minutes were 5.0 ppm and 5.0 ppm, respectively, while being left in the dark, and 60 minutes when irradiated with a daylight white fluorescent lamp. In both cases after 120 minutes and 180 minutes, the values were 4.9 ppm, 4.8 ppm, and 4.8 ppm.

比較例2Comparative Example 2

5.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.25}(5−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−100{(5−1−1)、粒径6nm 比表面積260m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の4.1g(31.25mmol、二酸化チタンに対し25モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(5−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.1g(収量:64.5%)を得た。この硫酸アンモニウムを含む二酸化チタン(5−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
5.1 Preparation of Anatase Type Fine Particle Titanium Dioxide Complex {TiO 2 ((NH 4 ) 2 SO 4 ) 0.25 } (5-1-2) White with anatase type crystal structure provided by Takeca Co., Ltd. Of titanium dioxide AMT-100 {(5-1-1), particle size 6 nm, specific surface area 260 m 2 / g} 10.0 g (125 mmol) was put into a magnetic petri dish, and then ammonium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., A homogeneous solution of 4.1 g (31.25 mmol, 25 mol% based on titanium dioxide) of (NH 4 ) 2 SO 4 , MW: 132.14) and 10 ml of water was added, mixed well, and impregnated with ammonium sulfate. Thereafter, it was dried at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, pulverization and titanium dioxide (5-1-2) containing ammonium sulfate [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (9.1 g) Yield: 64.5%). It was confirmed that the titanium dioxide containing ammonium sulfate (5-1-2) has an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD).

5.2アナターゼ型微粒子二酸化チタン複合体(5−1−2)のガラス板への一体化
実施例1と同様な操作で、ガラス板上に0.1gのアナターゼ型微粒子二酸化チタン複合体(5−1−2)が一体となった一体化物(5−2)を作成した。
5.2 Integration of Anatase Type Fine Particle Titanium Dioxide Complex (5-1-2) into Glass Plate In the same manner as in Example 1, 0.1 g of anatase type fine particle titanium dioxide complex (5 An integrated product (5-2) in which -1-2) was integrated was created.

5.3ガラスと二酸化チタン複合体の一体化物(5−2)の照射箱中の設置位置の決定
実施例1と同様に行った。
5.3 Determination of Installation Position in Irradiation Box of Integrated Material (5-2) of Glass and Titanium Dioxide Composite The same as in Example 1.

5.4エチレン200ppm入りの混合ガスの調製と、ガラスと二酸化チタン複合体の一体化物(5−2)が入った石英製セル(5−3)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
5.4 Preparation of a mixed gas containing 200 ppm of ethylene, and Preparation Example 1 of a mixed gas of 5 ppm of ethylene in a quartz cell (5-3) containing an integrated product of glass and titanium dioxide composite (5-2) The same was done.

5.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(5−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(5−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、5.0ppmであった。
5.5 Measurement of ethylene concentration after leaving titanium dioxide composite in dark place Integrated glass and titanium dioxide composite (5-2) Quartz containing mixed gas of 5ppm ethylene gas, argon 80% oxygen 20% The cell (5-3) was placed in a dark place, and the ethylene concentrations after 60 minutes and 90 minutes were measured. As shown in Table 1, they were 4.9 ppm and 5.0 ppm, respectively.

5.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(5−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(5−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(5−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(5−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、4.6ppm、4.1ppm、3.7ppmであった。
5.6 Measurement of the concentration of ethylene when the titanium dioxide composite is irradiated with daylight white fluorescent lamp Next, an integrated product of glass and titanium dioxide composite (5-2), 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (5-3) in the dark where the mixed gas is placed at the position of illuminance of 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. What was covered with aluminum foil and shielded and the light emitting part was halved was placed on the irradiation box and turned on, and the light of the daylight white fluorescent lamp was irradiated from above the quartz cell (5-3). At this time, the ethylene concentration of the gas in the quartz cell (5-3) was extracted with a syringe through a septum after 60 minutes, 120 minutes and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC Science, GC353B) was extracted. FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 4.6 ppm, 4.1 ppm, and 3.7 ppm, respectively.

比較例3Comparative Example 3

6.1アナターゼ型微粒子二酸化チタン複合体{TiO((NHSO0.08}(6−1−2)の調整
テイカ株式会社により提供されたアナターゼ型の結晶構造を有する白色の二酸化チタンAMT−600{(6−1−1)、粒径30nm 比表面積50m/g}10.0g(125mmol)を磁性のシャーレに入れ、次いで、硫酸アンモニウム(和光純薬工業株式会社製、(NHSO、MW:132.14)の1.3g(10mmol、二酸化チタンに対し8モル%)と水10mlの均一溶液を加えて、よく混合し、硫酸アンモニウムを含浸させた後、約80℃で約2時間乾燥した。次いでマッフル炉で500℃、3時間焼成し冷却した後、粉砕し硫酸アンモニウムを含む二酸化チタン(6−1−2)[MW:79.9、硫酸アンモニウムは分子量の計算に含めない]の9.3g(収量:82.3%)を得た。この硫酸アンモニウムを含む二酸化チタン(6−1−2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。
6.1 Anatase Type Fine Particle Titanium Dioxide Complex {TiO 2 ((NH 4 ) 2 SO 4 ) 0.08 } (6-1-2) White with anatase type crystal structure provided by Takeka Corporation Of titanium dioxide AMT-600 {(6-1-1), particle size 30 nm, specific surface area 50 m 2 / g} 10.0 g (125 mmol) was put in a magnetic petri dish, and then ammonium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., (NH 4 ) 2 SO 4 , MW: 132.14) 1.3 g (10 mmol, 8 mol% with respect to titanium dioxide) and 10 ml of water were added in a homogeneous solution, mixed well, impregnated with ammonium sulfate, Dry at about 80 ° C. for about 2 hours. Next, after calcination in a muffle furnace at 500 ° C. for 3 hours and cooling, pulverization and titanium dioxide (6-1-2) containing ammonium sulfate [MW: 79.9, ammonium sulfate is not included in the calculation of molecular weight] (9.3 g) Yield: 82.3%) was obtained. This titanium dioxide containing ammonium sulfate (6-1-2) was confirmed to have an anatase type crystal structure from the measurement result of an X-ray diffractometer (XRD).

6.2アナターゼ型微粒子二酸化チタン複合体(6−1−2)のガラス板への一体化
実施例1と同様な操作で、ガラス板上に0.1gのアナターゼ型微粒子二酸化チタン複合体(6−1−2)が一体となった一体化物(6−2)を作成した。
6.2 Integration of Anatase Type Fine Particle Titanium Dioxide Complex (6-1-2) into Glass Plate In the same manner as in Example 1, 0.1 g of anatase type fine particle titanium dioxide complex (6 An integrated product (6-2) in which -1-2) was integrated was created.

6.3ガラスと二酸化チタン複合体の一体化物(6−2)の照射箱中の設置位置の決定
実施例1と同様に行った。
6.3 Determination of Installation Position in Irradiation Box of Integral Product of Glass and Titanium Dioxide Composite (6-2) The same operation as in Example 1 was performed.

6.4エチレン200ppm入りの混合ガスの調製と、ガラスと二酸化チタン複合体の一体化物(6−2)が入った石英製セル(6−3)中のエチレン5ppm混合ガスの調製
実施例1と同様に行った。
6.4 Preparation of a mixed gas containing 200 ppm of ethylene and preparation of a mixed gas of 5 ppm of ethylene in a quartz cell (6-3) containing a glass and titanium dioxide composite (6-2) The same was done.

6.5二酸化チタン複合体の暗所放置後のエチレン濃度の測定
ガラスと二酸化チタン複合体の一体化物(6−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った石英製セル(6−3)を暗所に置き、60分、90分経過後のエチレン濃度を測定したところ、表1に示すように、それぞれ4.9ppm、5.0ppmであった。
6.5 Measurement of ethylene concentration after leaving titanium dioxide composite in dark place Integrated glass and titanium dioxide composite (6-2) Quartz containing mixed gas of 5ppm ethylene gas, argon 80% oxygen 20% The cell (6-3) was placed in a dark place, and the ethylene concentration after 60 minutes and 90 minutes was measured. As shown in Table 1, they were 4.9 ppm and 5.0 ppm, respectively.

6.6二酸化チタン複合体への昼白色蛍光灯照射時のエチレンの濃度の測定
次に、ガラスと二酸化チタン複合体の一体化物(6−2)、5ppmのエチレンガス、アルゴン80%酸素20%の混合ガスが入った、上記の暗所に放置した石英製セル(6−3)を、照射箱中の照度500Luxの位置に置き、20ワット昼白色蛍光灯1本の中央部1/2をアルミホイルで巻いて遮蔽し発光部を1/2にしたものを照射箱上部に設置し点灯して、石英製セル(6−3)の上方から昼白色蛍光灯の光を照射した。この時の石英製セル(6−3)中の気体のエチレン濃度を、蛍光灯照射の60分、120分、180分経過後に、セプタムを通してシリンジで1ml抜き取り、ガスクロマトグラフ(ジーエルサイエンス社製、GC353B型FIDガスクロマトグラフ、カラム:Porapak Q、カラム温度110℃)にて測定した。測定結果は、表1に示すように、それぞれ、4.7ppm、4.5ppm、4.2ppmであった。
6.6 Measurement of concentration of ethylene during irradiation of daylight white fluorescent lamp to titanium dioxide composite Next, glass and titanium dioxide composite (6-2), 5 ppm ethylene gas, argon 80% oxygen 20% Place the quartz cell (6-3) in the dark where the mixed gas was placed at the position of illuminance 500 Lux in the irradiation box, and place the central part 1/2 of one 20-watt daylight white fluorescent lamp. An aluminum foil wrapped and shielded and the light emitting part halved was placed on the upper part of the irradiation box and turned on, and the light of the daylight white fluorescent lamp was irradiated from above the quartz cell (6-3). The ethylene concentration of the gas in the quartz cell (6-3) at this time was extracted with a syringe through a septum after 60 minutes, 120 minutes, and 180 minutes of irradiation with a fluorescent lamp, and a gas chromatograph (GC Science, GC353B) was extracted. FID gas chromatograph, column: Porapak Q, column temperature 110 ° C.). As shown in Table 1, the measurement results were 4.7 ppm, 4.5 ppm, and 4.2 ppm, respectively.

Figure 2007090311
Figure 2007090311

実施例1〜4と比較例1〜3の比較
実施例1〜4では、500ルクス程度の弱い昼白色蛍光灯の照射中に、明らかにエチレンの分解が認められ時間の経過と共にエチレン濃度が低下し、特に実施例1、3および4(アナターゼ型二酸化チタン複合体を0.1g一体化)では、エチレン濃度の減少が大きい。実施例2(アナターゼ型二酸化チタン複合体を0.05g一体化)でも、比較的大きなエチレン濃度の減少が認められ、光触媒の本来の性質から照射を続ければ、さらにエチレンの分解が続き実用に十分に対応できると予想される。
一方、比較例では、硫酸アンモニウムを複合化しない時(比較例1)は全く効果が認められず、比較例3の粒径のやや大きなアナターゼ型二酸化チタンを使用した場合も、効果が小さい。比較例2の硫酸アンモニウム25モル%含浸の時に、エチレン濃度の減少が認められるが、効果は小さくなっている。
したがって、本発明の二酸化チタン複合体は、500ルクスという照度の低い昼白色の蛍光灯の照射で活性を示し、エチレンを分解する能力を有することが確認された。照度を大きくすればさらに光触媒効果は増大すると思われる。
Comparison of Examples 1 to 4 and Comparative Examples 1 to 3 In Examples 1 to 4, the decomposition of ethylene was clearly observed during irradiation of a weak daylight fluorescent lamp of about 500 lux, and the ethylene concentration decreased with the passage of time. In particular, in Examples 1, 3 and 4 (integrated with 0.1 g of anatase-type titanium dioxide composite), the decrease in ethylene concentration is large. Even in Example 2 (0.05 g of anatase-type titanium dioxide composite was integrated), a relatively large decrease in ethylene concentration was observed, and if irradiation continued from the original properties of the photocatalyst, ethylene was further decomposed and sufficient for practical use. It is expected that
On the other hand, in the comparative example, when ammonium sulfate is not complexed (Comparative Example 1), no effect is observed, and even when the slightly larger anatase type titanium dioxide of Comparative Example 3 is used, the effect is small. When impregnated with 25 mol% ammonium sulfate in Comparative Example 2, a decrease in ethylene concentration was observed, but the effect was small.
Therefore, it was confirmed that the titanium dioxide composite of the present invention showed activity when irradiated with a daylight white fluorescent lamp having a low illuminance of 500 lux, and had the ability to decompose ethylene. It seems that the photocatalytic effect is further increased if the illuminance is increased.

本発明のアナターゼ型微粒子二酸化チタンと硫酸アンモニウムとからなる二酸化チタン複合体をセラミックと一体化した高活性光触媒体は、太陽光線や紫外線を含む特殊なランプの光の照射がなくても、一般の照明用に使われる白色蛍光灯の光で活性化し、高いエチレン分解性能を示す。そのため、農産物、切花などを特に屋内や車内で貯蔵中に発生するエチレンを効率よく分解し、それらの品質保持に極めて有用である。そのため本発明の高活性光触媒体を農産物、切花などの近傍に置くだけでもよく、また、基体にガラスを用いれば、その透明性を生かして、ショーケースや、エチレンに影響される物品の保存用容器に利用できる。また、白色蛍光灯の光に反応して光触媒活性を生じることから、エチレン分解以外にも、アルデヒドなどの有機物の分解や、悪臭の除去、抗菌性付与等、従来の光触媒が有していた効果を、室内や車内等の紫外線の乏しい環境でも発揮できる。  The highly active photocatalyst in which the titanium dioxide composite comprising anatase type fine particle titanium dioxide and ammonium sulfate according to the present invention is integrated with a ceramic is a general illumination even without irradiation of light from a special lamp including sunlight or ultraviolet rays. It is activated by the light of the white fluorescent lamp used for the production, and exhibits high ethylene decomposition performance. Therefore, it is very useful for efficiently decomposing ethylene generated during storage of agricultural products, cut flowers, etc., especially indoors or in vehicles, and maintaining their quality. Therefore, the highly active photocatalyst of the present invention may be placed in the vicinity of agricultural products, cut flowers, etc. Also, if glass is used as the substrate, its transparency can be utilized for showcases and storage of articles affected by ethylene. Available for containers. In addition to the decomposition of ethylene, the photocatalytic activity occurs in response to light from white fluorescent lamps, so the effects of conventional photocatalysts such as decomposition of organic substances such as aldehydes, removal of malodors, and addition of antibacterial properties Can be exhibited even in an environment with little ultraviolet light, such as indoors or in a car.

小さい粒径のアナターゼ型二酸化チタン(AMT−100)に硫酸アンモニウムを8モル%含浸、焼成した二酸化チタン複合体の紫外・可視吸収スペクトル。  Ultraviolet / visible absorption spectrum of a titanium dioxide composite obtained by impregnating 8% by mole of ammonium sulfate in a small particle size anatase type titanium dioxide (AMT-100) and calcining.

Claims (3)

アナターゼ型微粒子二酸化チタンと硫酸アンモニウムとから生成する二酸化チタン複合体を、セラミックと一体化させたことを特徴とするエチレンの光分解に優れる高活性光触媒体。A highly active photocatalyst excellent in photodecomposition of ethylene, wherein a titanium dioxide composite produced from anatase type fine particle titanium dioxide and ammonium sulfate is integrated with a ceramic. アナターゼ型微粒子二酸化チタンの粒径が、8nm未満である請求項1に記載の高活性光触媒体。The highly active photocatalyst according to claim 1, wherein the particle size of the anatase type fine particle titanium dioxide is less than 8 nm. アナターゼ型微粒子二酸化チタンに対する硫酸アンモニウムの含浸量が1〜20モル%である請求項1および2に記載の高活性光触媒体。The highly active photocatalyst according to claim 1 or 2, wherein the impregnation amount of ammonium sulfate with respect to the anatase type fine particle titanium dioxide is 1 to 20 mol%.
JP2005307752A 2005-09-26 2005-09-26 High active photocatalyst excellent in photolysis of ethylene Pending JP2007090311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307752A JP2007090311A (en) 2005-09-26 2005-09-26 High active photocatalyst excellent in photolysis of ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307752A JP2007090311A (en) 2005-09-26 2005-09-26 High active photocatalyst excellent in photolysis of ethylene

Publications (1)

Publication Number Publication Date
JP2007090311A true JP2007090311A (en) 2007-04-12

Family

ID=37976598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307752A Pending JP2007090311A (en) 2005-09-26 2005-09-26 High active photocatalyst excellent in photolysis of ethylene

Country Status (1)

Country Link
JP (1) JP2007090311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241743A1 (en) * 2020-05-29 2021-12-02 ダイキン工業株式会社 Showcase
JP2022019561A (en) * 2020-07-15 2022-01-27 ダイキン工業株式会社 Show case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241743A1 (en) * 2020-05-29 2021-12-02 ダイキン工業株式会社 Showcase
JP2022019561A (en) * 2020-07-15 2022-01-27 ダイキン工業株式会社 Show case

Similar Documents

Publication Publication Date Title
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
KR100642973B1 (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
CN1222580C (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same
US11241671B2 (en) Monolithic composite photocatalysts
JP2009160581A (en) Photocatalyst composite and process for producing the same
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
US12042780B2 (en) Monolithic composite photocatalysts
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
Tryba et al. Influence of TiO2 structure on its photocatalytic activity towards acetaldehyde decomposition
JP2004250239A (en) Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP2002355562A (en) Photoresponsive material and its manufacturing method
JP5627006B2 (en) Photocatalyst and method for producing the same
CA2643730C (en) Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
Ayappan et al. TiO2-based photocatalysts for emerging gaseous pollutants removal: From photocatalysts to reactors design
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2007090311A (en) High active photocatalyst excellent in photolysis of ethylene
Nasr-Esfahani et al. Alumina/TiO 2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air
CN1428299A (en) Titanium oxide and optical catalyst using it, and optical catalyst coating composition
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2003268945A (en) Interior finish material
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JP2007090313A (en) Inexpensive high active photocatalyst excellent in photolysis of ethylene and its production method
JP2006131583A (en) Antibacterial property imparting agent
JP2005305313A (en) High activity photocatalyst excellent in photolysis of ethylene and manufacturing method therefor
JP2007090312A (en) Inexpensive high active photocatalyst excellent in photolysis of ethylene