JP2007089440A - Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide - Google Patents

Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide Download PDF

Info

Publication number
JP2007089440A
JP2007089440A JP2005281443A JP2005281443A JP2007089440A JP 2007089440 A JP2007089440 A JP 2007089440A JP 2005281443 A JP2005281443 A JP 2005281443A JP 2005281443 A JP2005281443 A JP 2005281443A JP 2007089440 A JP2007089440 A JP 2007089440A
Authority
JP
Japan
Prior art keywords
cell
nanoparticle
virus
substance
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005281443A
Other languages
Japanese (ja)
Inventor
Akihiko Kondo
昭彦 近藤
Masaru Muraoka
優 村岡
Ichiro Yamada
一朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Beacle Inc
Original Assignee
Kobe University NUC
Beacle Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Beacle Inc filed Critical Kobe University NUC
Priority to JP2005281443A priority Critical patent/JP2007089440A/en
Priority to PCT/JP2006/319176 priority patent/WO2007037273A1/en
Publication of JP2007089440A publication Critical patent/JP2007089440A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medical Informatics (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further enhance the efficiency of the introduction of an objective substance into a target cell or a target tissue. <P>SOLUTION: A nanoparticle having at least one selected from the group consisting of proteins, lipids and organic polymers as a constituent and capable of encapsulating an introduced substance, wherein a cell-permeable peptide is covalently bound to at least one of the constituents, and the cell-permeable peptide is presented on the surface of the nanoparticle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、細胞膜透過ペプチドを提示したナノ粒子に関する。   The present invention relates to nanoparticles presenting cell membrane penetrating peptides.

本発明者らは、これまでに、B型肝炎ウイルス表面抗原タンパク質から構成される粒子(HBsAg粒子)に生体認識分子が導入されたものが、目的箇所へ導入物質を特異的、かつ安全に運搬し、導入するためのDDS運搬体として有効であることを見出している(特許文献1〜3)。   In the past, the present inventors have introduced a biorecognition molecule into particles (HBsAg particles) composed of hepatitis B virus surface antigen protein, and transport the introduced substance specifically and safely to the target location. And found to be effective as a DDS carrier for introduction (Patent Documents 1 to 3).

また、細胞内に物質を導入する他の手段としてリポソームが広く知られている。   Liposomes are widely known as another means for introducing substances into cells.

一方、HBsAg粒子やリポソームなどの、タンパク質ないし脂質から構成される粒子は、生体にとって異物であって抗原性等の問題があり、その投与量はできるだけ少なくすべきであるため、導入物質の細胞内への導入効率をさらに高めることが求められている。
WO01/64930 WO03/082330 WO03/082344
On the other hand, particles composed of proteins or lipids, such as HBsAg particles and liposomes, are foreign to the living body and have problems such as antigenicity, and their dosage should be as small as possible. There is a need to further increase the efficiency of introduction into the market.
WO01 / 64930 WO03 / 082330 WO03 / 082344

本発明は、標的細胞や標的組織への目的物質の導入効率をさらに高めることを目的とする。   An object of the present invention is to further increase the efficiency of introduction of a target substance into a target cell or target tissue.

本発明者は、上記課題に鑑み検討を重ねた結果、ウイルスナノ粒子やリポソームなどのナノ粒子に特定の細胞導入ペプチドを導入して粒子表面に提示させることで、細胞ないし組織への物質の導入効率を格段に高めることが可能であることを見出した。
本発明は、以下のB型肝炎ウイルスナノ粒子に関する。
1. タンパク質、脂質及び有機ポリマーから成る群から選ばれる少なくとも1種を構成要素とする、導入物質を内包可能なナノ粒子であって、該構成要素の少なくとも1種に細胞透過性ペプチドを共有結合し、該ナノ粒子表面に細胞透過性ペプチドを提示させてなるナノ粒子。
2. 前記ナノ粒子がウイルスタンパク質を含むウイルス粒子或いはリン脂質を含むリポソームである、項1に記載のナノ粒子。
3. 前記構成要素がB型肝炎ウイルスタンパク質を含む、項1に記載のナノ粒子。
4. 細胞透過性ペプチドが、PLSSIFSRIGDPのアミノ酸配列を有する、項1〜3のいずれかに記載のナノ粒子。
5. 粒子内に導入物質を有する、項1〜4のいずれかに記載のナノ粒子。
6. B型肝炎ウイルス表面抗原タンパク質において、肝細胞結合領域の一部又は全部が欠損し、かつ、細胞透過性ペプチドを有するB型肝炎ウイルス表面抗原タンパク質改変体。
7. 配列番号4で表される配列を有する、項6に記載の改変体。
As a result of repeated studies in view of the above problems, the present inventor introduced a specific cell-introducing peptide into nanoparticles such as virus nanoparticles and liposomes and presented them on the particle surface, thereby introducing substances into cells or tissues. It has been found that the efficiency can be significantly increased.
The present invention relates to the following hepatitis B virus nanoparticles.
1. A nanoparticle capable of encapsulating a substance to be introduced, comprising at least one selected from the group consisting of proteins, lipids and organic polymers as a constituent, wherein a cell-permeable peptide is covalently bound to at least one of the constituents; A nanoparticle obtained by presenting a cell-permeable peptide on the surface of the nanoparticle.
2. Item 2. The nanoparticle according to Item 1, wherein the nanoparticle is a virus particle containing a virus protein or a liposome containing a phospholipid.
3. Item 2. The nanoparticle according to Item 1, wherein the component comprises a hepatitis B virus protein.
4). Item 4. The nanoparticle according to any one of Items 1 to 3, wherein the cell-penetrating peptide has an amino acid sequence of PLSSIFSRIGDP.
5. Item 5. The nanoparticle according to any one of Items 1 to 4, which has an introduction substance in the particle.
6). A variant of hepatitis B virus surface antigen protein, which is a hepatitis B virus surface antigen protein in which part or all of the hepatocyte binding region is deleted and has a cell-penetrating peptide.
7). Item 7. The variant according to Item 6, which has the sequence represented by SEQ ID NO: 4.

本発明によれば物質の細胞・組織への導入効率を大幅に高めることができ、物質導入のためのナノ粒子の投与量を低減できるだけでなく、タンパク質、遺伝子などの巨大分子も容易に細胞/組織内に導入することができる。   According to the present invention, the efficiency of introducing a substance into cells / tissues can be greatly increased, the dosage of nanoparticles for substance introduction can be reduced, and macromolecules such as proteins and genes can be easily Can be introduced into the organization.

本明細書において、導入物質を内包するナノ粒子としては、ウイルスタンパク質粒子などのウイルス由来のタンパク質を構成要素とするウイルス粒子、リン脂質などの脂質を主成分とするリポソーム、或いは、有機ポリマーを構成要素とするナノキャリアー(Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev. 2002 Feb 21;54(2):203-22. Review;Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003 Feb 24;55(3):403-19. Review;Nishiyama N, Kataoka K. Polymeric micelle drug carrier systems: PEG-PAsp(Dox) and second generation of micellar drugs. Adv Exp Med Biol. 2003;519:155-77. Review.)が挙げられる。   In this specification, as the nanoparticles encapsulating the introduction substance, virus particles containing virus-derived proteins such as virus protein particles, liposomes mainly composed of lipids such as phospholipids, or organic polymers are used. Nano carrier as element (Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev. 2002 Feb 21; 54 (2): 203-22. Review; Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003 Feb 24; 55 (3): 403-19. Review; Nishiyama N, Kataoka K. Polymeric micelle drug carrier systems: PEG-PAsp (Dox) and second generation of micellar drugs. Adv Exp Med Biol. 2003; 519: 155-77. Review.).

ウイルス粒子としては、ナノサイズであって、導入物質を内包できる粒子である限り特に限定されないが、例えばB型肝炎ウイルス、センダイウイルスなどのウイルスのタンパク質を含むナノ粒子が挙げられ、B型肝炎ウイルスのタンパク質を含むナノ粒子が特に好ましい。B型肝炎ウイルスのタンパク質としては、表面抗原タンパク質(HBsAg)、コアタンパク質が挙げられ、HBsAgが好ましく例示される。HBsAgは天然型のタンパク質(配列番号5;血清型yタイプ))を使用してもよく、N末端側のpreS1領域(108アミノ酸)、preS2領域(55アミノ酸)の一部が欠失していてもよい。血清型yタイプにおいて、preS1領域とpreS2領域にまたがる領域、例えば21-153、33-153、50-153を欠失させることができる。ウイルス粒子の平均粒径としては、50〜600nm程度、好ましくは100〜500nm程度、より好ましく100〜400nm程度である。   The virus particles are not particularly limited as long as they are nano-sized particles that can encapsulate the introduced substance. For example, nanoparticles containing virus proteins such as hepatitis B virus, Sendai virus, etc. Nanoparticles containing the protein of are particularly preferred. Examples of hepatitis B virus protein include surface antigen protein (HBsAg) and core protein, and HBsAg is preferably exemplified. HBsAg may be a natural protein (SEQ ID NO: 5; serotype y type)), and the N-terminal preS1 region (108 amino acids) and part of the preS2 region (55 amino acids) are deleted. Also good. In the serotype y type, a region spanning the preS1 region and the preS2 region, for example, 21-153, 33-153, 50-153 can be deleted. The average particle size of the virus particles is about 50 to 600 nm, preferably about 100 to 500 nm, more preferably about 100 to 400 nm.

HBVは各種血清型が知られているが、それらは高いアミノ酸相同性を有しているので、容易に各血清型のHBVの該当部位を特定する事ができる。本明細書の配列番号5は、adr型のN末端側の11個のアミノ酸を削除したHBsAgの全アミノ酸配列を示しており、ayw型のHBsAgに対応している。本明細書では、配列番号5に対応するHBsAg(ayw型に対応)のアミノ酸番号を用いて記載するが、他の血清型或いは亜種のHBsAgの場合には、各々対応するアミノ酸位置が該当し、その位置は、当業者であれば、容易に認識可能である。
リポソームとしては、多重層リポソーム、一枚膜リポソームのいずれであってもよい。リポソームの大きさは平均粒径が50〜500nm程度、好ましくは80〜400nm程度、より好ましくは100〜200nm程度である。リポソームは超音波処理法、逆相蒸発法、凍結融解法、脂質溶解法、噴霧乾燥法などにより製造することができる。リポソームの構成成分としては、リン脂質、コレステロール類、脂肪酸などが挙げられ、具体的にはホスファチジルコリン、ホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジルエタノールアミン、ホスファチジン酸、カルジオリピン、スフィンゴミエリン、卵黄レシチン、大豆レシチン、リゾレシチン等の天然リン脂質、あるいはこれらを常法によって水素添加したものの他、ジステアロイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジパルミトイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルセリン、エレオステアロイルホスファチジルコリン、エレオステアロイルホスファチジルエタノールアミン、エレオステアロイルホスファチジルセリン等の合成リン脂質が挙げられる。
Various serotypes of HBV are known, but since they have high amino acid homology, the corresponding site of HBV of each serotype can be easily identified. SEQ ID NO: 5 in the present specification shows the entire amino acid sequence of HBsAg from which 11 amino acids on the N-terminal side of the adr type are deleted, and corresponds to the ayw type HBsAg. In this specification, it describes using the amino acid number of HBsAg (corresponding to ayw type) corresponding to SEQ ID NO: 5, but in the case of HBsAg of other serotypes or subspecies, the corresponding amino acid position corresponds. The position can be easily recognized by those skilled in the art.
The liposome may be either a multilamellar liposome or a single membrane liposome. The average particle size of the liposome is about 50 to 500 nm, preferably about 80 to 400 nm, and more preferably about 100 to 200 nm. Liposomes can be produced by ultrasonic treatment, reverse phase evaporation, freeze-thaw, lipid dissolution, spray drying, and the like. Examples of liposome components include phospholipids, cholesterols, fatty acids, and the like. Specifically, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, cardiolipin, sphingomyelin, egg yolk lecithin, soybean In addition to natural phospholipids such as lecithin and lysolecithin, or those hydrogenated by conventional methods, distearoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dipalmitoyl phosphatidylethanolamine, dipalmitoyl phosphatidylserine, eleostearoyl phosphatidylcholine, eleostearoyl phosphatidylethanol Amine, eleostearoyl phosphatidylserine Like synthetic phospholipids of.

有機ポリマーを構成要素とするナノ粒子としては、前記のナノキャリアーが挙げられる。   Examples of the nanoparticles having an organic polymer as a constituent element include the aforementioned nanocarriers.

ナノキャリアーとしては、ポリエチレングリコールとリジン、アスパラギン酸、グルタミン酸などのアミノ酸、乳酸、グリコール酸、ε−カプロラクトンなどのポリマーのブロック共重合体が挙げられ、例えばポリエチレングリコールとポリ−L−リジンのブロック共重合体{PEG-PLL}、alpha-acetal-poly-(ethylene glycol)-block-poly(D,L-lactide) {PEG-PLA}、ポリエチレングリコールとポリ−L−グルタミン酸のブロック共重合体、ポリエチレングリコールとポリ−L−アスパラギン酸のブロック共重合体等が例示される。   Examples of nanocarriers include polyethylene glycol and lysine, amino acids such as aspartic acid and glutamic acid, and block copolymers of polymers such as lactic acid, glycolic acid, and ε-caprolactone. For example, a block copolymer of polyethylene glycol and poly-L-lysine. Polymer {PEG-PLL}, alpha-acetal-poly- (ethylene glycol) -block-poly (D, L-lactide) {PEG-PLA}, block copolymer of polyethylene glycol and poly-L-glutamic acid, polyethylene Examples thereof include a block copolymer of glycol and poly-L-aspartic acid.

ナノ粒子表面に提示される細胞透過性ペプチドの導入は以下のようにして行うことができる。   Introduction of the cell penetrating peptide presented on the nanoparticle surface can be performed as follows.

ナノ粒子がタンパク質を構成要素とする場合、該タンパク質の内部又はN末端もしくはC末端に細胞透過性ペプチドを連結すればよい。細胞透過性ペプチドは主鎖に好ましく結合できるが、アミノ酸の側鎖に連結することもできる。なお、細胞透過性ペプチドはナノ粒子の表面に提示される必要があるので、粒子の内部又は中空ナノ粒子の内表面に連結するよりも、ナノ粒子の外表面に連結して表面に提示させるのが好ましい。例えばHBsAgの場合には、Pre−S1(108アミノ酸残基)、Pre−S2(55アミノ酸残基)、S領域(226アミノ酸残基)の中間にあるa抗原決定部位(aエピトープ)が粒子外に露出している領域に細胞透過性ペプチドを挿入してナノ粒子外に提示することが可能である。S領域の外部に露出している部位としては、具体的にはS領域の105番目−155番目のアミノ酸残基が挙げられる。   When the nanoparticle includes a protein as a constituent element, a cell-penetrating peptide may be linked to the inside of the protein or to the N-terminus or C-terminus. The cell penetrating peptide can preferably bind to the main chain, but can also be linked to the side chain of an amino acid. In addition, since the cell-penetrating peptide needs to be presented on the surface of the nanoparticle, it is connected to the outer surface of the nanoparticle rather than the inner surface of the particle or the inner surface of the hollow nanoparticle. Is preferred. For example, in the case of HBsAg, the a antigen determination site (a epitope) in the middle of Pre-S1 (108 amino acid residues), Pre-S2 (55 amino acid residues), and S region (226 amino acid residues) is outside the particle. It is possible to insert a cell-penetrating peptide into the exposed area and present it outside the nanoparticles. Specific examples of the site exposed to the outside of the S region include the 105th to 155th amino acid residues of the S region.

ナノ粒子が脂質(特にリン脂質)を構成要素とする場合、例えばホスファチジルセリン、ホスファチジルエタノールアミン等のリン脂質と細胞透過性ペプチドを連結してもよく、コレステロールのような他の脂質に細胞透過性ペプチドを連結して、リポソーム表面に細胞透過性ペプチドを提示させてもよい。   When the nanoparticles are composed of lipids (particularly phospholipids), for example, phospholipids such as phosphatidylserine and phosphatidylethanolamine may be linked to cell-permeable peptides, and cell-permeable to other lipids such as cholesterol. Peptides may be linked to present the cell permeable peptide on the liposome surface.

ナノ粒子が有機ポリマーを構成要素とする(例えばナノキャリアー等の高分子ミセルの)場合、細胞透過性ペプチドは、有機ポリマーに存在するアミノ酸(リシン、グルタミン酸、アスパラギン酸など)或いはヒドロキシカルボン酸(乳酸、グリコール酸など)に由来するCOOH,NH,OH等の官能基とアミド結合またはエステル結合を介して連結することができる。 When the nanoparticle is composed of an organic polymer (for example, a polymer micelle such as a nanocarrier), the cell-permeable peptide is an amino acid (lysine, glutamic acid, aspartic acid, etc.) or hydroxycarboxylic acid (lactic acid) present in the organic polymer. , Glycolic acid, and the like) and functional groups such as COOH, NH 2 and OH can be linked via an amide bond or an ester bond.

細胞透過性ペプチド(TLM)としては、ナノ粒子の構造を破壊することなく、表面に提示されるものであれば特に限定されず、例えば、以下のものが挙げられる:
1) HBV由来あるいはHBVの改変体として設計可能な細胞透過性ペプチド(TLM):
PLSSIFSRIGDP;
PISSIFSRTGDP;
AISSILSKTGDP;
PILSIFSKIGDL;
PLSSIFSKIGDP;
PLSSIFSHIGDP;及び
PLSSIFSSIGDP。
2) タンパク質に由来する細胞透過性ペプチド:
RKKRRQRRR (Tat(49-57));
RQIKIWFQNRRMKWKK (Penetrarin(43-58));
DAATATRGRSAASRPTERPRAPARSASRPRRPVD (VP22);
AAVALLPAVLLALLAP, AAVLLPVLLAAP (Kaposi FGF signal sequences);
VTVLALGALAGVGVG (Human beta3 integrin signal sequence);
GALFLGWLGAAGSTMGA (gp41 fusion sequence);
MGLGLHLLVLAAALQGA (Caiman crocodylus Ig(v) light chain);及び
LGTYTQDFNKFHTFPQTAIGVGAP (hCT derived peptide)。
3) 合成/キメラ細胞透過性ペプチド
GWTLNSAGYLLKINLKALAALAKKIL (Transportan);
(TPPKKKRKVEDPKKKKK)8− (Loligomer);
RRRRRRR (Arginine peptide);及び
KLALKLALKALKAALKLA (Amphiphilic model peptide)。
The cell penetrating peptide (TLM) is not particularly limited as long as it is presented on the surface without destroying the structure of the nanoparticles, and examples thereof include the following:
1) Cell penetrating peptides (TLM) that can be designed as HBV-derived or HBV variants:
PLSSIFSRIGDP;
PISSIFSRTGDP;
AISSILSKTGDP;
PILSIFSKIGDL;
PLSSIFSKIGDP;
PLSSIFSHIGDP; and
PLSSIFSSIGDP.
2) Cell penetrating peptides derived from proteins:
RKKRRQRRR (Tat (49-57));
RQIKIWFQNRRMKWKK (Penetrarin (43-58));
DAATATRGRSAASRPTERPRAPARSASRPRRPVD (VP22);
AAVALLPAVLLALLAP, AAVLLPVLLAAP (Kaposi FGF signal sequences);
VTVLALGALAGVGVG (Human beta3 integrin signal sequence);
GALFLGWLGAAGSTMGA (gp41 fusion sequence);
MGLGLHLLVLAAALQGA (Caiman crocodylus Ig (v) light chain); and
LGTYTQDFNKFHTFPQTAIGVGAP (hCT derived peptide).
3) Synthetic / chimeric cell penetrating peptide
GWTLNSAGYLLKINLKALAALAKKIL (Transportan);
(TPPKKKRKVEDPKKKKK) 8- (Loligomer);
RRRRRRR (Arginine peptide); and
KLALKLALKALKAALKLA (Amphiphilic model peptide).

B型肝炎ウイルスタンパク質またはその改変体を含むウイルス中空ナノ粒子としては、HBsAgタンパク質粒子などが例示される。HBsAgタンパク質は、B型肝炎ウィルス内部コア抗原タンパク質と組み合わせて粒子を形成してもよい。   Examples of virus hollow nanoparticles containing hepatitis B virus protein or a modified form thereof include HBsAg protein particles. HBsAg protein may be combined with hepatitis B virus internal core antigen protein to form particles.

本発明で導入物質を内包するためのウイルスナノ粒子は、B型肝炎ウイルスタンパク質又はその改変体を主成分として包含し、該タンパク質は糖鎖を有していてもよい。また、該ナノ粒子には脂質成分が含まれていてもよい。   The virus nanoparticles for encapsulating the introduced substance in the present invention include a hepatitis B virus protein or a variant thereof as a main component, and the protein may have a sugar chain. The nanoparticles may contain a lipid component.

本発明の1つの好ましい実施形態において、ウイルスナノ粒子は、75〜85重量部のB型肝炎ウイルスタンパク質改変体、5〜15重量部の脂質、5〜15重量部の糖鎖から構成される。本願の実施例で使用されているウイルス中空ナノ粒子は、B型肝炎ウイルスタンパク質改変体80重量部、糖鎖10重量部、脂質10重量部%からなる(J Biotechnol. 1992 Nov;26(2-3):155-62. Characterization of two differently glycosylated molecular species of yeast-derived hepatitis B vaccine carrying the pre-S2 region. Kobayashi M, Asano T, Ohfune K, Kato K.)。   In one preferred embodiment of the present invention, the virus nanoparticles are composed of 75 to 85 parts by weight of hepatitis B virus protein variant, 5 to 15 parts by weight lipid, and 5 to 15 parts by weight sugar chain. The virus hollow nanoparticles used in the examples of the present application consist of 80 parts by weight of hepatitis B virus protein variant, 10 parts by weight of sugar chain, and 10 parts by weight of lipid (J Biotechnol. 1992 Nov; 26 (2- 3): 155-62. Characterization of two differently glycosylated molecular species of yeast-derived hepatitis B vaccine carrying the pre-S2 region. Kobayashi M, Asano T, Ohfune K, Kato K.).

本発明の改変体は、上記のpreS領域の欠失及び細胞透過性ペプチドの導入に加えて、ウイルスナノ粒子を形成する能力を有する限り種々の変異がさらに導入されていてもよい。例えば、B型肝炎ウイルスタンパク質の1又は数個もしくは複数個、例えば1〜50個、好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個、特に1〜3個のアミノ酸が置換、付加、欠失又は挿入されていてもよい。置換、付加、欠失、挿入などの変異を導入する方法としては、該タンパク質をコードするDNAにおいて、例えばサイトスペシフィック・ミュータジェネシス(Methods in Enzymology, 154, 350, 367-382 (1987);同 100, 468 (1983);Nucleic Acids Res., 12, 9441 (1984))などの遺伝子工学的手法、リン酸トリエステル法やリン酸アミダイト法などの化学合成手段(例えばDNA合成機を使用する)(J. Am. Chem. Soc., 89, 4801(1967);同 91, 3350 (1969);Science, 150, 178 (1968);Tetrahedron Lett.,22, 1859 (1981))などが挙げられる。コドンの選択は、宿主のコドンユーセージを考慮して決定できる。   The variant of the present invention may be further introduced with various mutations as long as it has the ability to form virus nanoparticles in addition to the deletion of the preS region and the introduction of a cell-penetrating peptide. For example, one or several or a plurality of hepatitis B virus proteins, for example 1 to 50, preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 5, particularly 1 to 3 The amino acids may be substituted, added, deleted or inserted. As a method for introducing mutations such as substitution, addition, deletion, insertion and the like, in the DNA encoding the protein, for example, cytospecific mutagenesis (Methods in Enzymology, 154, 350, 367-382 (1987); , 468 (1983); Nucleic Acids Res., 12, 9441 (1984)), chemical synthesis means such as the phosphate triester method and phosphate amidite method (for example, using a DNA synthesizer) ( J. Am. Chem. Soc., 89, 4801 (1967); 91, 3350 (1969); Science, 150, 178 (1968); Tetrahedron Lett., 22, 1859 (1981)). Codon selection can be determined by taking into account the codon usage of the host.

ウイルス中空粒子への物質の内包化は、エレクトロポレーション法により行ってもよく、リポソーム内に導入物質を内包化し、このリポソームとB型肝炎ウイルスナノ粒子を誘導させることにより、該ナノ粒子内に導入物質を内包させてもよい。ウイルスナノ粒子とリポソームの融合は、水又は水性媒体中でリポソームとウイルス粒子を混合し、必要に応じて攪拌ないし振盪することにより容易に実施できる。   Encapsulation of the substance in the virus hollow particle may be performed by an electroporation method. By encapsulating the introduced substance in the liposome and inducing the liposome and hepatitis B virus nanoparticle, The introduction substance may be included. Fusion of virus nanoparticles and liposomes can be easily performed by mixing liposomes and virus particles in water or an aqueous medium, and stirring or shaking as necessary.

以下、本発明のナノ粒子としてHBsAg改変体(配列番号4に記載されるような、細胞透過性ペプチドを含み、肝細胞特異性に関与するpreS1部位の一部又は全部を欠損した改変体)を主成分とするウイルス粒子を主に例に取り説明するが、他のウイルス粒子、リポソーム或いはナノキャリアーなどについても同様に実施することができる。   Hereinafter, as a nanoparticle of the present invention, an HBsAg variant (a variant containing a cell-penetrating peptide and lacking part or all of the preS1 site involved in hepatocyte specificity as described in SEQ ID NO: 4) is used. The description will be made mainly using virus particles as the main component, but other virus particles, liposomes, nanocarriers, and the like can be similarly applied.

HBsAg改変体などの粒子の構成要素には、特定の細胞を認識する分子をさらに導入することによって、物質の導入効率の向上に加えて、標的細胞あるいは標的組織に特異的に物質を導入することもできる。このような特定の細胞を認識する分子としては、例えば成長因子、サイトカイン等の細胞機能調節分子、細胞表面抗原、組織特異的抗原、レセプターなどの細胞および組織を識別するための分子、ウィルスおよび微生物に由来する分子、抗体、糖鎖、脂質などが好ましく用いられる。具体的には、癌細胞に特異的に現れるEGF受容体やIL−2受容体に対する抗体やEGF、またHBVの提示するレセプターも含まれる。或いは、抗体Fcドメインを結合可能なタンパク質(例えば、ZZタグ)、ストレプトアビジンを介してビオチン標識した生体認識分子を提示するためにビオチン様活性を示すストレプトタグなどを使用することもできる。これらは、目的とする細胞、あるいは組織に応じて適宜選択される。細胞認識分子は、公知の方法に従いHBsAg改変体などのナノ粒子の構成要素に導入できる。   In addition to improving the efficiency of substance introduction, the substance can be introduced specifically into target cells or tissues by introducing molecules that recognize specific cells into the components of particles such as HBsAg variants. You can also. Examples of such molecules that recognize specific cells include cell function regulatory molecules such as growth factors and cytokines, cell surface antigens, tissue-specific antigens, molecules such as receptors for identifying cells and tissues, viruses and microorganisms. Molecules derived from, antibodies, sugar chains, lipids and the like are preferably used. Specifically, antibodies against EGF receptor and IL-2 receptor that appear specifically in cancer cells, EGF, and receptors presented by HBV are also included. Alternatively, a protein capable of binding an antibody Fc domain (for example, a ZZ tag), a strept tag showing biotin-like activity to present a biorecognition molecule labeled with biotin via streptavidin, and the like can also be used. These are appropriately selected according to the target cell or tissue. A cell recognition molecule can be introduced into a component of a nanoparticle such as a modified HBsAg according to a known method.

真核細胞でHBsAg改変体を発現させると、該タンパク質は、小胞体膜上に膜蛋白として発現、蓄積され、ナノ粒子として放出されるので好ましい。真核細胞としては、哺乳類等の動物細胞、酵母等が適用できる。このような粒子は、HBVゲノムを全く含まないので、人体への安全性が極めて高い。また、必要に応じて細胞認識分子を粒子を構成するタンパク質の少なくとも一部に導入することにより、肝細胞或いは他の細胞に対する本発明のナノ粒子の細胞選択性を高めることができる。   When the HBsAg variant is expressed in eukaryotic cells, the protein is preferably expressed and accumulated as a membrane protein on the endoplasmic reticulum membrane and released as nanoparticles. As eukaryotic cells, animal cells such as mammals, yeast and the like can be applied. Since such particles do not contain any HBV genome, they are extremely safe for the human body. Moreover, the cell selectivity of the nanoparticles of the present invention for hepatocytes or other cells can be enhanced by introducing a cell recognition molecule into at least a part of the protein constituting the particles as necessary.

導入物質を内包した本発明のナノ粒子は、細胞/組織内で機能を発現するが、細胞/組織内への移行が困難な物質を導入するのに好ましく使用できる。例えば、本発明のナノ粒子を静脈注射などによって体内に投与すれば、当該粒子は体内を循環し、各種細胞に物質を効率的に導入することができる。また、生体内での半減期が短い物質であっても、細胞/組織内に導入されるまで物質は本発明のナノ粒子内で保護されているので、有効に作用し得る。   The nanoparticle of the present invention encapsulating an introduction substance can be preferably used to introduce a substance that expresses a function in a cell / tissue but is difficult to move into the cell / tissue. For example, when the nanoparticles of the present invention are administered into the body by intravenous injection or the like, the particles circulate in the body and can efficiently introduce substances into various cells. Moreover, even if the substance has a short half-life in vivo, the substance is protected in the nanoparticle of the present invention until it is introduced into the cell / tissue, and therefore can act effectively.

また、本発明のナノ粒子は、標的細胞とin vitroで混合することにより細胞導入試薬としても好ましく使用できる。   The nanoparticles of the present invention can also be preferably used as a cell introduction reagent by mixing with target cells in vitro.

導入物質としては、特に限定されず、例えば細胞内に導入されて生理作用を生じる各種薬物、例えばホルモン、リンホカイン、酵素などの生理活性蛋白質;ワクチンとして作用する抗原性蛋白質;細胞内で発現する遺伝子、プラスミド等の遺伝子、又は発現を誘発又は誘導する特定の遺伝子発現に関与する遺伝子;さらに遺伝子治療のために導入される各種遺伝子及びアンチセンス等を挙げることができる。なお、導入される「遺伝子」には、DNAだけでなくRNAも含まれる。また、導入物質は蛋白質、遺伝子などの高分子の生理活性物質が好ましく例示できるが、低分子量の各種薬物に適用しても好ましい結果を得ることができる。また、遺伝子、タンパク質などは天然のものでも合成されたものでもよく、改変された遺伝子、タンパク質であってもよい。   There are no particular limitations on the substance to be introduced, for example, various drugs that are introduced into cells to produce physiological effects, such as physiologically active proteins such as hormones, lymphokines, and enzymes; antigenic proteins that act as vaccines; genes that are expressed in cells And genes such as plasmids, or genes involved in specific gene expression that induces or induces expression; various genes and antisense introduced for gene therapy. The “gene” to be introduced includes not only DNA but also RNA. The introduced substance is preferably exemplified by a high molecular weight physiologically active substance such as a protein or a gene, but preferable results can be obtained even when applied to various low molecular weight drugs. In addition, genes and proteins may be natural or synthesized, and may be modified genes and proteins.

以下、添付した図面に沿って実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものでなく、細部についてはさまざまな態様が可能であることは言うまでもない。   Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

以下の実施例において、HBsAgとは、B型肝炎ウイルス表面抗原(Hepatitis B virus surface antigen)を示す。HBsAgは真核細胞で発現させると、小胞体膜上に膜タンパク質として発現、蓄積される。その後、分子間で凝集を起こし、小胞体膜を取り込みながら出芽様式でルーメン側にHBsAg粒子として放出される。   In the following examples, HBsAg refers to hepatitis B virus surface antigen. When expressed in eukaryotic cells, HBsAg is expressed and accumulated as a membrane protein on the endoplasmic reticulum membrane. After that, aggregation occurs between molecules, and it is released as HBsAg particles to the lumen side in a budding manner while taking up the endoplasmic reticulum membrane.

なお、HBsAg粒子は、酵母細胞、昆虫細胞、哺乳類細胞などの真核細胞を利用して発現させ、これを精製した後に得たものである(特許文献1〜3)。
実施例1
プラスミド構築
B型肝炎ウイルスのLタンパク質(配列番号5)をもとに遺伝子工学的手法により構築した3種類の欠失変異導入タンパク質(21-153,Δ33-153,Δ50-153)に、TLMを挿入したタンパク質を発現させるためのプラスミドの構築を行った。
1. TLMをコードしたオリゴDNAを合成した。
The HBsAg particles are obtained after expression using eukaryotic cells such as yeast cells, insect cells, and mammalian cells and purification thereof (Patent Documents 1 to 3).
Example 1
Plasmid construction
TLM was inserted into three types of deletion mutagenesis proteins (21-153, Δ33-153, Δ50-153) constructed by genetic engineering techniques based on the hepatitis B virus L protein (SEQ ID NO: 5). Plasmids for protein expression were constructed.
1. An oligo DNA encoding TLM was synthesized.

PreS2-TLM (F)(配列番号1)
5’- ggg ggc ggc cgc ccc tta tcg tca atc ttc tcg agg att ggg gac cct ggc ggc cgc ggg -3’
PreS2-TLM (R)(配列番号2)
5’- ccc gcg gcc gcc agg gtc ccc aat cct cga gaa gat tga cga taa ggg gcg gcc gcc ccc -3’

2. 二種類のオリゴDNA(100μM)をそれぞれ10μlずつ下記条件でアニーリングさせた。
PreS2-TLM (F) (SEQ ID NO: 1)
5'- ggg ggc ggc cgc ccc tta tcg tca atc ttc tcg agg att ggg gac cct ggc ggc cgc ggg -3 '
PreS2-TLM (R) (SEQ ID NO: 2)
5'- ccc gcg gcc gcc agg gtc ccc aat cct cga gaa gat tga cga taa ggg gcg gcc gcc ccc -3 '

2. Two types of oligo DNA (100 μM) were annealed at 10 μl each under the following conditions.

3. ベクターpGLDLII-P39-RcT(Δ21-153,Δ33-153, Δ50-153)並びに上記インサートをNotIで消化し、ライゲーションした。 3. The vector pGLDLII-P39-RcT (Δ21-153, Δ33-153, Δ50-153) and the insert were digested with NotI and ligated.

酵母による生産
構築した遺伝子を酵母Saccharomyces cerevisiae AH22R株へスフェロプラスト法により形質転換し、高生産株をスクリーニングした。得られた高生産株を工業用培地により大量培養し、菌体を回収した。酵母をガラスビーズにより破砕し、細胞抽出液を回収、塩化セシウム密度勾配超遠心分離2回、スクロース密度勾配超遠心分離1回行うことによって粒子の精製を行った。
Production by yeast The gene constructed was transformed into the yeast Saccharomyces cerevisiae AH22R strain by the spheroplast method, and a high-producing strain was screened. The obtained high-producing strain was cultured in large quantities with an industrial medium, and the cells were collected. The yeast was crushed with glass beads, the cell extract was collected, and the particles were purified by performing cesium chloride density gradient ultracentrifugation twice and sucrose density gradient ultracentrifugation once.

粒子の解析
糖鎖処理
糖鎖修飾を調べるためにPNGaseFによる処理を行った。

トリプシン処理
粒子表面に存在するドメインをトリプシンにより消化し、タンパク質の分子量変化を調べることで、TLMが粒子表面に存在していることを確認した。
実施例2
カルセイン導入実験
この精製粒子を用いて粒子の解析及び各種細胞への導入実験を行った。導入実験では薬剤のモデルとして蛍光物質カルセイン用いた。まず、TLM提示粒子(約30μg)、カルセイン(終濃度0.5mM)、BufferB(200μl)を混合し、D.W.により500μlにした。これを4mmキュベットに加え、エレクトロポレーション法(160V,950μF)によりカルセインを粒子内に封入した。各種細胞へ添加、約8時間後に蛍光顕微鏡による観察およびFACSによる解析を行った。
プラスミド構築
B型肝炎ウイルスのLタンパク質を遺伝子改変した欠失変異体にTLMを挿入したタンパク質の発現用プラスミドを3種類構築した(図2)。

酵母による生産
3種類のプラスミドを酵母に形質転換を行った結果、Δ21-TLMは形質転換体が得られなかった。Δ33-TLMは、形質転換体は得られたが、粒子の生産量がごくわずかであった。一方、Δ50-TLMは、多数の形質転換体が得られ、粒子の生産量も高かった。Δ50-TLMの形質転換体のセレクションを行い、高生産株を得た。セレクション方法は、試験管で工業用培地3mlにより形質転換体を培養し、その内1ml中の菌体を回収、250mlのBufferAに溶解させ、ガラスビーズで細胞破砕、酵母抽出液をPBSにより100倍希釈し、酵素免疫測定装置IMxにより粒子量を測定した。また、高生産株のウエスタンブロット解析も行った。その結果、Δ50-TLMが最も生産量が高たったため、以降の実験にはこれを用いた。

粒子の解析
銀染色・ウエスタンブロット解析
複数のバンドが見られるが精製粒子が得られた(図3)。

糖鎖処理
ウエスタンブロット解析の結果、N型糖鎖が一つ付加していることが確認された(図4)。

トリプシン処理
ウエスタンブロット解析の結果、主要バンドが低分子側にシフトしたことから、TLMが粒子表面に提示されていることが確認された(図5)。

以上の事を踏まえると、銀染色で確認された複数のバンドは、糖鎖及び、プロテアーゼによる分解産物であると言える。

カルセイン導入実験
接着細胞
HepG2とA431について、Δ50-153とΔ50-153+TLMの比較を行った(図6)。
次に、NuE(ヒト肝癌細胞)、NA(ヒト扁平上皮癌細胞)、Cos7(サル腎細胞)、PC12(ラット副腎褐色細胞腫)への導入実験を行った(図7〜図10)。コントロールのL粒子と比べ、明らかな蛍光強度の差が確認された。

浮遊細胞
H69(ヒト肺癌細胞)、MOLT4(ヒトリンパ芽球細胞)への導入実験を行った(図11,図12)。カルセインとTLM提示粒子を混ぜただけのコントロールと比べ、わずかではあるが蛍光強度の差が確認された。一般に浮遊細胞への導入は困難とされており、本発明のナノ粒子の有用性が明らかにされた。

参考文献
1.Gene Ther. 2000 May; 7(9):750-8.
Oess S, Hildt E
Novel cell permeable motif derived from the PreS2-domain of hepatitis-B
virus surface antigens.

2.EMBO Rep. 2003 Aug; 4(8):767-73.
Hafner A, Brandenburg B, Hildt E
Reconstitution of gene expression from a regulatory-protein-deficient
hepatitis B virus genome by cell-permeable HBx protein.

3.J Hepatol. 2005 Sep; 43(3):442-50.
Hillemann A, Brandenburg B, Schmidt U, Roos M, Smirnow I, Lemken ML, Lauer
UM, Hildt E.
Protein transduction with bacterial cytosine deaminase fused to the TLM intercellular transport motif induces profound chemosensitivity to 5-
fluorocytosine in human hepatoma cells.
It was treated by PNGaseF to examine the analysis <br/> sugar processing glycosylation particles.

We confirmed the presence of TLM on the particle surface by digesting the domain existing on the surface of trypsin-treated particles with trypsin and examining changes in the molecular weight of the protein.
Example 2
Calcein introduction experiment The purified particles were used for particle analysis and introduction experiment into various cells. In the introduction experiment, the fluorescent substance calcein was used as a drug model. First, TLM-presenting particles (about 30 μg), calcein (final concentration 0.5 mM), and Buffer B (200 μl) were mixed and made up to 500 μl with DW. This was added to a 4 mm cuvette, and calcein was encapsulated in the particles by the electroporation method (160 V, 950 μF). After adding to various cells, about 8 hours later, observation with a fluorescence microscope and analysis by FACS were performed.
Plasmid construction
Three types of plasmids for expression of proteins in which TLM was inserted into deletion mutants obtained by genetically modifying the hepatitis B virus L protein were constructed (FIG. 2).

Production by yeast
As a result of transformation of the three types of plasmids into yeast, no transformant was obtained for Δ21-TLM. Δ33-TLM produced a transformant but produced very little particles. On the other hand, a large number of transformants were obtained for Δ50-TLM, and the amount of particles produced was high. A transformant of Δ50-TLM was selected to obtain a high-producing strain. In the selection method, transformants were cultured in 3 ml of industrial medium in a test tube, and 1 ml of the cells was collected, dissolved in 250 ml of Buffer A, disrupted with glass beads, and the yeast extract was 100 times with PBS. After dilution, the amount of particles was measured with an enzyme immunoassay apparatus IMx. We also performed Western blot analysis of high-producing strains. As a result, Δ50-TLM had the highest production volume, and this was used in the subsequent experiments.

Analysis of particles Silver staining / Western blot analysis A plurality of bands were observed, but purified particles were obtained (Fig. 3).

Sugar chain treatment As a result of Western blot analysis, it was confirmed that one N-type sugar chain was added (FIG. 4).

Trypsin treatment As a result of Western blot analysis, the main band was shifted to the low molecule side, confirming that TLM was presented on the particle surface (Fig. 5).

Based on the above, it can be said that the plurality of bands confirmed by silver staining are degradation products of sugar chains and proteases.

Calcein introduction experiment <br/> Adherent cells
For HepG2 and A431, Δ50-153 and Δ50-153 + TLM were compared (FIG. 6).
Next, introduction experiments into NuE (human hepatoma cells), NA (human squamous cell carcinoma cells), Cos7 (monkey kidney cells), and PC12 (rat adrenal pheochromocytoma) were performed (FIGS. 7 to 10). A clear difference in fluorescence intensity was confirmed compared to the control L particles.

Floating cells
Experiments for introduction into H69 (human lung cancer cells) and MOLT4 (human lymphoblast cells) were performed (FIGS. 11 and 12). A slight difference in fluorescence intensity was confirmed compared to the control in which calcein and TLM presentation particles were mixed. In general, introduction into suspension cells is considered difficult, and the usefulness of the nanoparticles of the present invention has been clarified.

Reference 1. Gene Ther. 2000 May; 7 (9): 750-8.
Oess S, Hildt E
Novel cell permeable motif derived from the PreS2-domain of hepatitis-B
virus surface antigens.

2. EMBO Rep. 2003 Aug; 4 (8): 767-73.
Hafner A, Brandenburg B, Hildt E
Reconstitution of gene expression from a regulatory-protein-deficient
hepatitis B virus genome by cell-permeable HBx protein.

3. J Hepatol. 2005 Sep; 43 (3): 442-50.
Hillemann A, Brandenburg B, Schmidt U, Roos M, Smirnow I, Lemken ML, Lauer
UM, Hildt E.
Protein transduction with bacterial cytosine deaminase fused to the TLM intercellular transport motif induces profound chemosensitivity to 5-
fluorocytosine in human hepatoma cells.

HBsAgから構成される本発明のナノ粒子の構造を模式的に示す。The structure of the nanoparticle of this invention comprised from HBsAg is shown typically. 実施例で使用したプラスミドの構造を示す。The structure of the plasmid used in the examples is shown. 精製粒子の銀染・WBの結果を示す。The result of silver dyeing and WB of purified particles is shown. 糖鎖処理(PNGase F処理)の結果を示す。The result of sugar chain treatment (PNGase F treatment) is shown. トリプシン処理の結果を示す。The result of trypsin treatment is shown. Δ50-153とΔ50-153+TLMの比較を示す。A comparison of Δ50-153 and Δ50-153 + TLM is shown. NuE細胞への導入実験の結果を示す。The result of the introduction experiment to NuE cells is shown. NA細胞への導入実験の結果を示す。The result of the introduction experiment into NA cells is shown. Cos7細胞への導入実験の結果を示す。The result of the introduction experiment to Cos7 cells is shown. PC12細胞への導入実験の結果を示す。The result of the introduction experiment to PC12 cells is shown. H69細胞への導入実験の結果を示す。The result of the introduction experiment to H69 cells is shown. MOLT4細胞への導入実験の結果を示す。The result of the introduction experiment to MOLT4 cells is shown.

Claims (7)

タンパク質、脂質及び有機ポリマーから成る群から選ばれる少なくとも1種を構成要素とする、導入物質を内包可能なナノ粒子であって、該構成要素の少なくとも1種に細胞透過性ペプチドを共有結合し、該ナノ粒子表面に細胞透過性ペプチドを提示させてなるナノ粒子。 A nanoparticle capable of encapsulating a substance to be introduced, comprising at least one selected from the group consisting of proteins, lipids and organic polymers as a constituent, wherein a cell-permeable peptide is covalently bound to at least one of the constituents; A nanoparticle obtained by presenting a cell-permeable peptide on the surface of the nanoparticle. 前記ナノ粒子がウイルスタンパク質を含むウイルス粒子或いはリン脂質を含むリポソームである、請求項1に記載のナノ粒子。 The nanoparticle according to claim 1, wherein the nanoparticle is a virus particle containing a viral protein or a liposome containing a phospholipid. 前記構成要素がB型肝炎ウイルスタンパク質を含む、請求項1に記載のナノ粒子。 The nanoparticle of claim 1, wherein the component comprises hepatitis B virus protein. 細胞透過性ペプチドが、PLSSIFSRIGDPのアミノ酸配列を有する、請求項1〜3のいずれかに記載のナノ粒子。 The nanoparticle according to any one of claims 1 to 3, wherein the cell-penetrating peptide has an amino acid sequence of PLSSIFSRIGDP. 粒子内に導入物質を有する、請求項1〜4のいずれかに記載のナノ粒子。 The nanoparticle according to any one of claims 1 to 4, which has an introduction substance in the particle. B型肝炎ウイルス表面抗原タンパク質において、肝細胞結合領域の一部又は全部が欠損し、かつ、細胞透過性ペプチドを有するB型肝炎ウイルス表面抗原タンパク質改変体。 A variant of hepatitis B virus surface antigen protein, which is a hepatitis B virus surface antigen protein in which part or all of the hepatocyte binding region is deleted and has a cell-penetrating peptide. 配列番号4で表される配列を有する、請求項6に記載の改変体。 The variant according to claim 6, which has the sequence represented by SEQ ID NO: 4.
JP2005281443A 2005-09-28 2005-09-28 Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide Pending JP2007089440A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005281443A JP2007089440A (en) 2005-09-28 2005-09-28 Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide
PCT/JP2006/319176 WO2007037273A1 (en) 2005-09-28 2006-09-27 Introduction of substance into cell by using nanoparticle having cell membrane-permeable peptide displayed thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281443A JP2007089440A (en) 2005-09-28 2005-09-28 Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide

Publications (1)

Publication Number Publication Date
JP2007089440A true JP2007089440A (en) 2007-04-12

Family

ID=37899697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281443A Pending JP2007089440A (en) 2005-09-28 2005-09-28 Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide

Country Status (2)

Country Link
JP (1) JP2007089440A (en)
WO (1) WO2007037273A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120532A (en) * 2007-11-14 2009-06-04 Osaka Univ Bio-nanocapsule for material delivery and bio-imaging by utilizing saccharide and sugar chain recognition mechanism
WO2018174325A1 (en) * 2017-03-23 2018-09-27 부경대학교 산학협력단 Peptide surface-modified nanoparticle for controlling freezing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10842755B2 (en) 2018-03-23 2020-11-24 University Of South Carolina Nanoparticles for brain targeted drug delivery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02449A (en) * 1987-04-20 1990-01-05 Takeda Chem Ind Ltd Production of peptide
JP4212921B2 (en) * 2002-03-29 2009-01-21 独立行政法人科学技術振興機構 Therapeutic agents using protein hollow nanoparticles presenting antibodies and protein hollow nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120532A (en) * 2007-11-14 2009-06-04 Osaka Univ Bio-nanocapsule for material delivery and bio-imaging by utilizing saccharide and sugar chain recognition mechanism
WO2018174325A1 (en) * 2017-03-23 2018-09-27 부경대학교 산학협력단 Peptide surface-modified nanoparticle for controlling freezing

Also Published As

Publication number Publication date
WO2007037273A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
Somiya et al. Current progress of virus-mimicking nanocarriers for drug delivery
EP2703491B1 (en) Protein and nucleic acid delivery vehicles, components and mechanisms thereof
Teunissen et al. Production and biomedical applications of virus-like particles derived from polyomaviruses
US20150272885A1 (en) Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof
JP2010540674A (en) HIV preventive vaccine based on HIV specific antibody
Somiya et al. Intracellular trafficking of bio-nanocapsule–liposome complex: Identification of fusogenic activity in the pre-S1 region of hepatitis B virus surface antigen L protein
Lee et al. Nanoglue: an alternative way to display cell-internalizing peptide at the spikes of hepatitis B virus core nanoparticles for cell-targeting delivery
KR101290475B1 (en) Virosome particles comprising antigens from influenza virus and hepatitis B virus
US20070059746A1 (en) Substance carrier using hollow nanoparticle of hepatitis B virus protein and liposome, and method of introducing substance into cell
WO2014058179A2 (en) Low-density lipoprotein analogue nanoparticles, and composition comprising same for targeted diagnosis and treatment of liver
Sakamoto et al. Artificial nanocage formed via self-assembly of β-annulus peptide for delivering biofunctional proteins into cell interiors
Yu et al. The specific delivery of proteins to human liver cells by engineered bio‐nanocapsules
CN105431457A (en) Single domain antibody display
JP2007089440A (en) Introduction of substance into cell with nanoparticle presenting cell membrane-permeable peptide
JP2010077091A (en) METHOD FOR ENCAPSULATION OF siRNA AND CELL-SELECTIVE INTRODUCTION OF siRNA BY USING HOLLOW BIO-NANOCAPSULE OF HEPATITIS B VIRUS PROTEIN AND LIPOSOME
KR100674325B1 (en) Hollow nanoparticles of protein and drug using the same
Park et al. Enhanced delivery of adenovirus, using proteoliposomes containing wildtype or V156K apolipoprotein AI and dimyristoylphosphatidylcholine
Chen et al. Overcoming biological barriers by virus-like drug particles for drug delivery
EP2461827B1 (en) Virus-like particle vector as a polyvalent platform for intracellular delivery of high-molecular-weight therapeutic substances, method for generating a virus like particle vector and use of a virus-like particle vector and a pharmaceutical composition containing said virus-like particle vector
JP2007106752A (en) Substance conveying body using hollow nanoparticle of hepatitis b viral protein and liposome and method for transferring substance to cell
JP2008029249A (en) Nucleic acid transducer using hollow bio nano-particle and transducing method
JP2008031142A (en) Fat tissue-targeting peptide and liposome having the peptide
US9603921B2 (en) Virosome particles comprising antigens from influenza virus and hepatitis b virus
Yu et al. Engineered bio‐nanocapsules, the selective vector for drug delivery system
Collett Topographical, mechanical, and structural investigation of virus-like particles and self-assembling protein nanoparticles