JP2007088193A - Sapphire substrate and its manufacturing method - Google Patents

Sapphire substrate and its manufacturing method Download PDF

Info

Publication number
JP2007088193A
JP2007088193A JP2005274917A JP2005274917A JP2007088193A JP 2007088193 A JP2007088193 A JP 2007088193A JP 2005274917 A JP2005274917 A JP 2005274917A JP 2005274917 A JP2005274917 A JP 2005274917A JP 2007088193 A JP2007088193 A JP 2007088193A
Authority
JP
Japan
Prior art keywords
sapphire substrate
substrate
wafer
main surface
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274917A
Other languages
Japanese (ja)
Inventor
Saneyuki Kakimoto
実行 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005274917A priority Critical patent/JP2007088193A/en
Publication of JP2007088193A publication Critical patent/JP2007088193A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sapphire substrate with a nitride semiconductor film which is free from dispersion in warp among substrates before epitaxial growth, during epitaxial growth and after epitaxial growth, and has desired warp after epitaxial growth. <P>SOLUTION: When a single crystal sapphire substrate is obtained by polishing a surface of a wafer obtained by cutting a sapphire single crystal; the rear surface of the wafer is made a mirror surface by performing chemical mechanical polishing for it to a convex form to obtain a concave degree of a desired value in the range of 8 to 50 μm after the substrate is completed, the rear surface is thereafter fixed in its plane state and is subjected to chemical mechanical polishing, so that its major surface is parallel to the rear surface and is made a 300 to 600 μm-thick mirror surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はサファイア基板およびその製造方法に関し、特に窒化物半導体発光素子用の結晶成長に適したサファイア基板の製造方法に関する。   The present invention relates to a sapphire substrate and a method for manufacturing the same, and more particularly to a method for manufacturing a sapphire substrate suitable for crystal growth for a nitride semiconductor light emitting device.

サファイア基板は窒化物半導体発光素子のエピタキシャル成長用の基板として用いられている。サファイア基板を用いて窒化物半導体発光素子をエピタキシャル成長させる場合、サファイア基板に反りや厚みのバラツキがあると、反り形状や反り量により、また厚みのバラツキによりサファイア基板主面の面内温度分布に不均一さを生じる。また、基板間に反りや厚みのばらつきがあると、前記と同様にサファイア基板主面間の温度にバラツキが生ずる。   The sapphire substrate is used as a substrate for epitaxial growth of a nitride semiconductor light emitting device. When epitaxially growing a nitride semiconductor light emitting device using a sapphire substrate, if the sapphire substrate has variations in warpage or thickness, the in-plane temperature distribution on the main surface of the sapphire substrate will not be affected by the warpage shape, amount of warpage, or variations in thickness. Produces uniformity. Further, if there are warping or thickness variations between the substrates, the temperature between the main surfaces of the sapphire substrates varies as described above.

こうしたサファイア基板主面の面内温度の不均一さはエピタキシャル成長する窒化物半導体膜の組成がばらつく原因となる。こうして得られた不均一な組成の窒化物半導体膜を用いた発光素子では、発光素子の出力波長や電気特性にバラツキを生じることとなる。   Such non-uniformity of the in-plane temperature of the main surface of the sapphire substrate causes variations in the composition of the epitaxially grown nitride semiconductor film. In the light-emitting element using the nitride semiconductor film having a non-uniform composition obtained in this manner, the output wavelength and electrical characteristics of the light-emitting element vary.

尚、反りの緩和に関しては、既にサファイア基板を1150〜1400℃の温度下で熱処理をする方法が開示されており、これによりほぼ完全にサファイア基板の反りを緩和することが可能とされている(特許文献1参照)。この方法は、実施されて、その有効性が追認されている。   As for warping mitigation, a method of heat-treating a sapphire substrate at a temperature of 1150 to 1400 ° C. has already been disclosed, thereby making it possible to almost completely alleviate warping of the sapphire substrate ( Patent Document 1). This method has been implemented and its effectiveness has been confirmed.

しかしながら、前記方法で反りを緩和したサファイア基板を用いてその表面にGaN膜を成長させると、サファイア基板の直径による違いはあるものの、通常主面側が30〜50μm突き出した凸形状となる反りが生じ、最悪の場合、サファイア基板の割れをもたらす。これは、エピタキシャル成長するGaN膜の厚みの増加とともに、サファイア結晶とGaN結晶との格子定数の違いにより、エピタキシャル成長面側が凸となる反りが生じるからである。   However, when a GaN film is grown on the surface of the sapphire substrate with the warpage alleviated by the above method, there is a warp that usually has a convex shape with the main surface protruding 30 to 50 μm, although there is a difference depending on the diameter of the sapphire substrate. In the worst case, it causes cracking of the sapphire substrate. This is because, as the thickness of the epitaxially grown GaN film increases, warpage in which the epitaxial growth surface side is convex occurs due to the difference in lattice constant between the sapphire crystal and the GaN crystal.

これを防止するため、サファイア基板の反りが完全に緩和される条件より弱い条件、例えば、反りが完全に緩和される温度よりも低い温度でサファイア基板の熱処理を行い、故意にエピタキシャル成長で生じる反りと反対方向の反りを持つサファイア基板を作製する試みがなされている(特許文献2参照)。   In order to prevent this, heat treatment of the sapphire substrate is performed under conditions that are weaker than the conditions in which the warp of the sapphire substrate is completely relaxed, for example, a temperature lower than the temperature at which the warp is completely relaxed, and the warp that is intentionally caused by epitaxial growth. Attempts have been made to produce a sapphire substrate having warpage in the opposite direction (see Patent Document 2).

特許文献2記載の方法に従い、エピタキシャル成長面が凹状となる反りを有するサファイア基板を作製するには、熱処理前にサファイア基板の歪み測定を行い、得られた歪量に応じて熱処理温度を変更する必要がある。従って、この方法は量産性に乏しく、基板製造コストの増大を招く。加えて、エピタキシャル成長時の温度は通常、前記熱処理温度よりも高く、故意に残留させた歪がエピタキシャル成長中に緩和されるため、エピタキシャル成長後に目的の反り量で反る窒化物半導体膜付きサファイア基板を得ることは至難の技である。   In order to produce a sapphire substrate having a warped epitaxial growth surface according to the method described in Patent Document 2, it is necessary to measure the strain of the sapphire substrate before the heat treatment and to change the heat treatment temperature according to the obtained strain amount. There is. Therefore, this method is poor in mass productivity and causes an increase in substrate manufacturing cost. In addition, the temperature during epitaxial growth is usually higher than the heat treatment temperature, and the strain left intentionally is relaxed during the epitaxial growth, so that a sapphire substrate with a nitride semiconductor film that warps by a desired amount of warpage after epitaxial growth is obtained. That is a difficult technique.

こうした問題を解消しうるものとして、本発明者は、直径3インチ以上のサファイア基板であって、主面が、凹度が8〜50μmの範囲内で凹形状に反っていることを特徴とするサファイア基板が有効であることを示した(特許文献3参照)。   In order to solve such a problem, the present inventor is a sapphire substrate having a diameter of 3 inches or more, wherein the main surface is warped in a concave shape within a concave degree range of 8 to 50 μm. It was shown that a sapphire substrate is effective (see Patent Document 3).

このサファイア基板を製造するに際しては、サファイア単結晶を切断してウエハーを得、ウエハーの裏面を、基板完成後の凹度が8〜50μmの凹形状となるように凸形状に研磨加工し、この研磨加工したウエハーを、温度1300〜1700℃で熱処理して歪みをなくし、得られたウエハーの裏面をフラット基準として主面をメカノケミカル研磨して鏡面とするものである。
特開昭57−095899号公報 特開2004−168622号公報 特願2005−1718392号
When manufacturing this sapphire substrate, a sapphire single crystal is cut to obtain a wafer, and the back surface of the wafer is polished into a convex shape so that the concave degree after completion of the substrate is 8 to 50 μm. The polished wafer is heat-treated at a temperature of 1300 to 1700 ° C. to eliminate distortion, and the main surface is mechanochemically polished to make a mirror surface using the back surface of the obtained wafer as a flat reference.
JP-A-57-095899 JP 2004-168622 A Japanese Patent Application No. 2005-1718392

前記サファイア基板の製造方法では、研磨加工したウエハーを温度1300〜1700℃で熱処理して加工歪みを除去する工程を含むが、熱処理工程が不要となればより安価でかつ安全にサファイア基板を製造することが可能となる。
本発明の目的は、研磨加工したウエハーを温度1300〜1700℃で熱処理して加工歪みを除去する工程を必要とせず、かつ優れた特性の窒化物半導体発光素子の安定量産を可能とするサファイア基板をより安価に製造するための方法の提供である。
The manufacturing method of the sapphire substrate includes a step of removing the processing strain by heat-treating the polished wafer at a temperature of 1300 to 1700 ° C. If the heat treatment step is not necessary, the sapphire substrate is manufactured more inexpensively and safely. It becomes possible.
An object of the present invention is to provide a sapphire substrate that does not require a process of removing a processing strain by heat-treating a polished wafer at a temperature of 1300 to 1700 ° C. and enables stable mass production of a nitride semiconductor light emitting device having excellent characteristics. Is provided at a lower cost.

即ち、本発明の製造方法は、直径3インチ以上のサファイア基板であって、主面と裏面とに歪みが無く、かつ、主面の凹度が8〜50μmの範囲内であるサファイア基板の製造方法であり、サファイア単結晶を切断して得たウエハーの表面を研磨して単結晶サファイア基板を得るに際して、ウエハーの裏面を、基板完成後の凹度が8〜50μmの範囲の所望の値の凹形状となるように凸形状にメカノケミカル研磨して鏡面とする工程と、その後に裏面を平面状態になるように固定し、主面を裏面と平行になるようにメカノケミカル研磨して鏡面とする工程とを主要工程として含むことを特徴とするサファイア基板の製造方法である。   That is, the manufacturing method of the present invention is a method for manufacturing a sapphire substrate having a diameter of 3 inches or more, having no distortion on the main surface and the back surface, and having a concave degree of the main surface in the range of 8 to 50 μm. In this method, when a single crystal sapphire substrate is obtained by polishing the surface of a wafer obtained by cutting a sapphire single crystal, the back surface of the wafer has a desired value in the range of 8 to 50 μm in concave degree after completion of the substrate. A process of mechanochemical polishing to a convex shape to form a concave shape and a mirror surface, and then fixing the back surface to be in a flat state and mechanochemical polishing to make the main surface parallel to the back surface and mirror surface A sapphire substrate manufacturing method including a step of performing as a main step.

そして、本発明の別の態様は、前記発明に加えて得られるサファイア基板の厚さを300〜600μmとするものである。   In another aspect of the present invention, the thickness of the sapphire substrate obtained in addition to the above invention is 300 to 600 μm.

本発明によれば、研磨加工したウエハーを温度1300〜1700℃で熱処理して加工歪みを除去する熱処理工程を要せず、裏面と主面とに加工歪みの残留が無く、かつ、主面が8〜50μmの範囲の所望の値で凹形状に反っている直径3インチ以上のサファイア基板を安定的、安価、かつ安全に製造することが可能となる。このようなサファイア基板を用いて窒化物半導体発光素子を作製すれば、得られる窒化物半導体素子間の波長バラツキや電気特性バラツキの低減が可能となる。   According to the present invention, there is no need for a heat treatment step to remove the processing strain by heat-treating the polished wafer at a temperature of 1300 to 1700 ° C., there is no residual processing strain on the back surface and the main surface, and the main surface is It becomes possible to stably, inexpensively and safely manufacture a sapphire substrate having a diameter of 3 inches or more that warps in a concave shape with a desired value in the range of 8 to 50 μm. If a nitride semiconductor light emitting device is manufactured using such a sapphire substrate, it is possible to reduce variations in wavelength and electrical characteristics among the obtained nitride semiconductor devices.

また、サファイア基板の反り量を8〜50μmの範囲内の所望の値に設定することによりエピタキシャル成長後の基板そり量をコントロールすることも可能となりデバイス工程の安定化を図ることが可能となる。   Further, by setting the warpage amount of the sapphire substrate to a desired value within the range of 8 to 50 μm, it is possible to control the substrate warpage amount after the epitaxial growth and to stabilize the device process.

本発明において、凹度とは、凸形状表面側を下に向けて平面上に置いた際の、凹形状面の最低部と凹形状円周最高部との高さの差を言いう。   In the present invention, the degree of concave means the difference in height between the lowest part of the concave surface and the highest part of the concave circumference when the convex surface side is placed on a flat surface.

さて、本発明の方法で得たサファイア基板には、主面と裏面とに歪みが残留していないためエピタキシャル成長時の温度によりサファイア基板の歪みが緩和されるという事態は生じない。従って、サファイア基板の結晶格子定数とエピタキシャル成長させる窒化物半導体の結晶格子定数との差、及び窒化物半導体膜の厚さとの関係でエピタキシャル成長時に発生する反りの原因を解析できるように単純化でき、エピタキシャル成長により発生する反り量の推定が容易となる。この結果、事前に主面側をどの程度の凹度の凹形状としておけばよいかを容易に推定でき、かつ膜育成後の形状が、所望の反り量から問題を生じるほどずれることは無い。   In the sapphire substrate obtained by the method of the present invention, no strain remains on the main surface and the back surface, so that a situation in which the strain of the sapphire substrate is alleviated by the temperature during epitaxial growth does not occur. Therefore, the difference between the crystal lattice constant of the sapphire substrate and the crystal lattice constant of the nitride semiconductor to be epitaxially grown, and the relationship with the thickness of the nitride semiconductor film can be simplified so that the cause of warpage occurring during epitaxial growth can be analyzed. This makes it easy to estimate the amount of warpage generated. As a result, it is possible to easily estimate in advance how much concave shape the main surface side should have as a concave shape, and the shape after film growth does not deviate from a desired amount of warp to the extent that a problem occurs.

サファイア基板の主面の凹度が8μm未満の場合には、エピタキシャル成長時に発生する反りを緩和することができず、エピタキシャル成長時に基板の破壊が起きる事態も発生する。一方、サファイア基板の主面の凹度が50μmを超える場合には、エピタキシャル成長初期に基板面内の温度分布のバラツキが生じ、得られる窒化物半導体膜の組成が影響を受け、最終的に得られる発光素子の発光波長のバラツキや電気特性のバラツキが大きくなる。この結果、良好な発光素子を安定的に量産することができない。   When the concavo-convexity of the main surface of the sapphire substrate is less than 8 μm, the warp that occurs during epitaxial growth cannot be alleviated, and the substrate may be destroyed during epitaxial growth. On the other hand, when the concave degree of the main surface of the sapphire substrate exceeds 50 μm, the temperature distribution in the substrate surface varies at the initial stage of epitaxial growth, and the composition of the resulting nitride semiconductor film is affected and finally obtained. The variation in the emission wavelength and the variation in the electrical characteristics of the light emitting element increase. As a result, it is impossible to stably mass-produce good light emitting elements.

本発明では、前記したサファイア基板を得るために、例えば、単結晶を切断して得られたウエハーの主面を、ワックスを用いてブロックに固定し、裏面を基板完成後の凹度が8〜50μmの範囲の所望の値となるように凸形状に研磨し、引き続きメカノケミカル研磨して鏡面とする。メカノケミカル研磨することにより1300〜1700℃で熱処理するのと同様に裏面表面に残留する歪みを除去できる。   In the present invention, in order to obtain the sapphire substrate described above, for example, the main surface of a wafer obtained by cutting a single crystal is fixed to a block using wax, and the back surface has a concave degree of 8 to 8 after completion of the substrate. Polishing into a convex shape so as to obtain a desired value in the range of 50 μm, followed by mechanochemical polishing to obtain a mirror surface. By mechanochemical polishing, the strain remaining on the back surface can be removed as in the case of heat treatment at 1300 to 1700 ° C.

その後、裏面をワックス等でブロックに平面状態となるように固定し、主面を裏面と平行になるように研磨し、最終的にメカノケミカル研磨して主面も鏡面とする。   Thereafter, the back surface is fixed to the block in a flat state with wax or the like, the main surface is polished so as to be parallel to the back surface, and finally the mechanochemical polishing is performed to make the main surface a mirror surface.


更に、図を用いて本発明を説明する。図1は本発明の方法で作製されたファイア基板の中央断面図を例示する図である。凹度とは、図1において示されるaを言い、本発明ではaが8〜50μmであるものを作製する。
サファイア基板の厚みが厚いほどエピタキシャル成長時の反り変化は少なくなるので凹度も小さくでき、エピタキシャル成長時の基板面内温度分布のバラツキが少なくなり、好ましいが、基板コストの増大を招くため600μm以下とすることが好ましい。

Further, the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a central cross-sectional view of a fire substrate manufactured by the method of the present invention. Concaveness means a shown in FIG. 1, and in the present invention, a having a of 8 to 50 μm is produced.
The thicker the sapphire substrate, the less the change in warpage during epitaxial growth, so the concave degree can be reduced, and the variation in temperature distribution in the substrate surface during epitaxial growth is reduced. This is preferable, but the substrate cost is increased to 600 μm or less. It is preferable.

一方、基板厚みが300μm未満の場合、エピタキシャル成長時の反り変化が大きくなるので凹度も大きくせざるを得ず、エピタキシャル成長時の基板表面内の温度バラツキが発生しやすく、窒化物半導体層の組成が影響を受けやすく、得られた膜から製造される発光素子の波長バラツキや電気特性のバラツキが大きくなり、安定的に、かつ収率良く良好な発光素子を得ることが困難になってくる。従って、サファイア基板の厚みは300〜600μmとすることが好ましい。   On the other hand, when the substrate thickness is less than 300 μm, the warpage change during epitaxial growth becomes large, so that the degree of concaveness is inevitably increased, and temperature variation in the substrate surface during epitaxial growth is likely to occur, and the composition of the nitride semiconductor layer is increased. It is easily affected, and the variation in wavelength and electrical characteristics of the light-emitting element manufactured from the obtained film becomes large, making it difficult to obtain a good light-emitting element stably and in high yield. Therefore, the thickness of the sapphire substrate is preferably 300 to 600 μm.

図2は本発明の製造方法を例示す工程図である。切断工程では、例えば、円柱状のサファイア単結晶をワイヤーソー等で切断してウエハーを作製する。そして、表面貼り付け工程では、将来主面とするウエハーの表面を変形させることなく、ワックスにてブロックに貼り付ける。そして、裏面研磨工程では、ウエハーの裏面表面を、遊離砥粒を用いて研磨し、その後メカノケミカル研磨して鏡面とする。メカノケミカル研磨後の裏面表面が8〜50μmの範囲の所望の値の凸形状になるように加工する。このメカノケミカル研磨により、加工面の歪みは除去される。なお、加工コストを低減するため、メカノケミカル研磨前にダイヤモンド等でウエハー主面を研磨し、その後メカノケミカル研磨してもよい。なお、市販されているウエハーを用いて研磨加工する場合には図2の切断工程は不要である。   FIG. 2 is a process diagram illustrating the production method of the present invention. In the cutting step, for example, a cylindrical sapphire single crystal is cut with a wire saw or the like to produce a wafer. In the surface attaching step, the wafer surface as the main surface in the future is attached to the block with wax without deforming the surface. In the back surface polishing step, the back surface of the wafer is polished using loose abrasive grains, and then mechanochemically polished to obtain a mirror surface. Processing is performed so that the back surface after the mechanochemical polishing has a convex shape with a desired value in the range of 8 to 50 μm. By this mechanochemical polishing, the distortion of the processed surface is removed. In order to reduce the processing cost, the main surface of the wafer may be polished with diamond or the like before mechanochemical polishing, and then mechanochemical polishing may be performed. In the case of polishing using a commercially available wafer, the cutting step in FIG. 2 is not necessary.

次に、ウエハーをブロックより剥がし、ウエハーに付着しているワックスを除去する。   Next, the wafer is peeled off from the block, and the wax adhering to the wafer is removed.

次の裏面貼り付け工程では、鏡面研磨したウエハーの裏面をワックスにて裏面が平らになるようにブロックに貼り付ける。主面研磨工程では、主面が裏面と平行になるように前記と同様に研磨し、メカノケミカル研磨する。その後ウエハーをブロックから取り外してウエハーに付着しているワックスを除去する。   In the next back surface attaching step, the back surface of the mirror-polished wafer is attached to the block with wax so that the back surface becomes flat. In the main surface polishing step, the main surface is polished in the same manner as described above so as to be parallel to the back surface, and mechanochemical polishing is performed. Thereafter, the wafer is removed from the block, and the wax adhering to the wafer is removed.

メカノケミカル研磨による主面の平坦度は5μm以下とすると、エピタキシャル成長時の厚みバラツキを低減するため好ましい。このメカノケミカル研磨により、加工面の歪みは除去されるため、主面に加工歪みは見られない。尚、加工コストを低減するため、メカノケミカル研磨前にダイヤモンド等でウエハー主面を研磨し、その後メカノケミカル研磨してもよい。   When the flatness of the main surface by mechanochemical polishing is 5 μm or less, it is preferable because thickness variation during epitaxial growth is reduced. Since the mechanochemical polishing removes the distortion of the processed surface, no processing distortion is observed on the main surface. In order to reduce the processing cost, the main surface of the wafer may be polished with diamond or the like before mechanochemical polishing, and then mechanochemical polishing may be performed.

このような方法で得られたサファイア基板は主面の反り形状が凹であり、凹度は第一の工程での裏面の凸量で決まり、主面にも、裏面にも加工歪みが無い。   The sapphire substrate obtained by such a method has a concave warp shape on the main surface, and the degree of concavity is determined by the amount of protrusion on the back surface in the first step, and there is no processing distortion on either the main surface or the back surface.

さらに、実施例を基に本発明を説明する。   Further, the present invention will be described based on examples.

(実施例1)
直径3インチのサファイア単結晶インゴットをワイヤーソーにて切断し主面がc面で、厚さが略750μmのウエハーを得た。この時、主面および裏面にはワイヤーソーを用いたことによる、相互に平行な約20μmの凹凸の溝が存在していた。
Example 1
A sapphire single crystal ingot having a diameter of 3 inches was cut with a wire saw to obtain a wafer having a c-plane main surface and a thickness of about 750 μm. At this time, there were approximately 20 μm concave and convex grooves parallel to each other due to the use of a wire saw on the main surface and the back surface.

次に主面をワックスにてセラミックブロックの表面に貼り付けた。この際、加圧等によりウエハーを変形させないようにした。その後、裏面をGC#320砥粒にて凹定盤を用いて75μm片面ラッピング加工し、そして、75μmメカノケミカル研磨して裏面を鏡面とした。このときの研磨量は5μm以上とした。得られた裏面の表面粗さは約1オングストローム程度の面となった。
尚、裏面はセラミックブロックに貼りついた状態で完成後の凹度が10μmとなる凸形状とした。
次に、ウエハーをセラミックブロックから剥がしワックスを除去した後、基板外周部を面取り加工した。その後、ウエハーの裏面にワックスを塗布し、セラミックブロックに強く押し当てて、ウエハー裏面がセラミックブロックと平行に、フラットになるようにセラミックブロックに固定した。そして、主面を裏面と平行になるように前記と同様に研磨し、75μmメカノケミカル研磨して鏡面とした。このときの研磨量は5μm以上とした。得られた主面の表面粗さは約1オングストローム程度の面となった。
その後、ウエハーをセラミックブロックから剥がしてワックスを除去し、主面と裏面とが鏡面で平坦度が5μm以下、凹度10μm、厚さ600μmのサファイア基板を得た。
Next, the main surface was affixed to the surface of the ceramic block with wax. At this time, the wafer was not deformed by pressurization or the like. Thereafter, the back surface was lapped with a 75 μm single side with a GC # 320 abrasive grain using a concave surface plate, and the back surface was mirror-polished by 75 μm mechanochemical polishing. The polishing amount at this time was 5 μm or more. The obtained back surface had a surface roughness of about 1 angstrom.
In addition, the back surface was made into the convex shape in which the concave degree after completion is 10 μm in a state of being stuck to the ceramic block.
Next, the wafer was peeled off from the ceramic block to remove the wax, and then the outer periphery of the substrate was chamfered. Thereafter, wax was applied to the back surface of the wafer, and pressed firmly against the ceramic block, and fixed to the ceramic block so that the wafer back surface was flat and parallel to the ceramic block. And it grind | polished like the above so that a main surface might become parallel with a back surface, and it was set as the mirror surface by 75 micrometers mechanochemical grinding | polishing. The polishing amount at this time was 5 μm or more. The surface roughness of the obtained main surface was about 1 angstrom.
Thereafter, the wafer was peeled off from the ceramic block to remove the wax, and a sapphire substrate having a mirror surface of the main surface and a back surface of 5 μm or less, a concave degree of 10 μm, and a thickness of 600 μm was obtained.

次に、このサファイア基板の主面に気相エピタキシャル法を用いて厚さ3μmのGaN単結晶膜を育成した。
得られたGaN単結晶膜付き基板の反りは主面側に突き出した形状であり、凹度は25μmであったが基板の破損は起きなかった。
Next, a GaN single crystal film having a thickness of 3 μm was grown on the main surface of the sapphire substrate using a vapor phase epitaxial method.
The warp of the obtained substrate with a GaN single crystal film was a shape protruding to the main surface side, and the concave degree was 25 μm, but the substrate was not damaged.

本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると、得られる発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。   When a nitride semiconductor light emitting device is produced using the sapphire substrate obtained by the present invention, the variation in wavelength and electrical characteristics of the obtained light emitting device can be reduced, and the adverse effect due to the substrate warpage in the device process can be reduced. It is.

(実施例2)
次に得られる基板の厚さが300μmとなるようにした以外は実施例1と同様にしてサファイア基板を作成した。
得られたサファイア基板は、主面と裏面とが、表面粗さ約1オングストローム程度の鏡面で、平坦度が5μm以下、凹度10μm、厚さ300μmのものであり、表面状態は実施例1で得られたものと差はなかった。
(Example 2)
Next, a sapphire substrate was prepared in the same manner as in Example 1 except that the thickness of the obtained substrate was 300 μm.
The obtained sapphire substrate has a main surface and a back surface with a mirror surface with a surface roughness of about 1 angstrom, a flatness of 5 μm or less, a concaveness of 10 μm, and a thickness of 300 μm. There was no difference from the one obtained.

次に、実施例1と同様にして気相エピタキシャル法によりGaN単結晶膜を育成したが、得られたGaN単結晶膜付き基板の反りは主面側に突き出した形状であり、凹度は30μmであったが基板の破損は起きなかった。   Next, a GaN single crystal film was grown by vapor phase epitaxy in the same manner as in Example 1, but the warpage of the obtained substrate with the GaN single crystal film was a shape protruding to the main surface side, and the concave degree was 30 μm. However, the substrate was not damaged.

本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると、得られる発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。   When a nitride semiconductor light emitting device is produced using the sapphire substrate obtained by the present invention, the variation in wavelength and electrical characteristics of the obtained light emitting device can be reduced, and the adverse effect due to the substrate warpage in the device process can be reduced. It is.

(実施例3)
得られる基板の厚さが450μmとなるようにした以外は実施例1と同様にしてサファイア基板を作成した。
得られたサファイア基板は、主面と裏面とが、表面粗さ約1オングストローム程度の鏡面で、平坦度が5μm以下、凹度10μm、厚さが300μmのものであり、表面状態は実施例1で得られたものと差はなかった。
(Example 3)
A sapphire substrate was prepared in the same manner as in Example 1 except that the thickness of the obtained substrate was 450 μm.
The obtained sapphire substrate has a main surface and a back surface with a mirror surface having a surface roughness of about 1 angstrom, a flatness of 5 μm or less, a concaveness of 10 μm, and a thickness of 300 μm. There was no difference from what was obtained in.

次に、実施例1と同様にして気相エピタキシャル法によりGaN単結晶膜を育成したが、得られたGaN単結晶膜付き基板の反りは主面側に突き出した形状であり、凹度は27μmであったが基板の破損は起きなかった。   Next, a GaN single crystal film was grown by vapor phase epitaxy in the same manner as in Example 1, but the warpage of the obtained substrate with the GaN single crystal film was a shape protruding to the main surface side, and the concave degree was 27 μm. However, the substrate was not damaged.

本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると、得られる発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。   When a nitride semiconductor light emitting device is produced using the sapphire substrate obtained by the present invention, the variation in wavelength and electrical characteristics of the obtained light emitting device can be reduced, and the adverse effect due to the substrate warpage in the device process can be reduced. It is.

(比較例1)
最終的に得られる厚さを200μmとした以外は実施例1と同様にしてサファイア基板を作成した。
得られたサファイア基板は、主面と裏面とが、表面粗さ約1オングストローム程度の鏡面で、平坦度が5μm以下、凹度10μm、厚さが200μmのものであり、表面状態は実施例1で得られたものと差はなかった。
(Comparative Example 1)
A sapphire substrate was prepared in the same manner as in Example 1 except that the finally obtained thickness was 200 μm.
The obtained sapphire substrate has a main surface and a back surface with a mirror surface having a surface roughness of about 1 angstrom, a flatness of 5 μm or less, a concaveness of 10 μm, and a thickness of 200 μm. There was no difference from what was obtained in.

次に、実施例1と同様にして気相エピタキシャル法によりGaN単結晶膜を育成した。得られたGaN単結晶膜付き基板は破損しなかったものの、反りが50μmと各実施例より大きかった。   Next, a GaN single crystal film was grown by vapor phase epitaxy as in Example 1. Although the obtained substrate with a GaN single crystal film was not damaged, the warpage was 50 μm, which was larger than each example.

本例により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると、得られる発光素子の波長バラツキや電気特性のバラツキが大きくデバイス工程での基板反りによる悪影響の低減は困難と思われる。   When a nitride semiconductor light emitting device is manufactured using the sapphire substrate obtained in this example, it is considered difficult to reduce adverse effects due to substrate warpage in the device process due to large variations in wavelength and electrical characteristics of the obtained light emitting device.

(従来例)
実施例1と同様にして主面と裏面とに相互に平行な約20μmの凹凸の溝が存在する直径3インチ、厚さが略750μmのウエハーを5枚得た。
次に、これら5枚のウエハーの両面をそれぞれ研磨加工した。この際の遊離砥粒には、比較的硬度の高いSiC砥粒とB4C砥粒を混合した粒径60μm程度の砥粒を使用した。また、定盤には、定盤平坦度が定盤外径630mmに対して10μm程度の鋳鉄盤を使用し、加工圧は60g/cm2以下とした。
得られた5枚のウエハーのそり量はいずれも5μm以下であったが、形状は必ずしも凹または凸形状に統一されたものではなく、ウエハー両面に1.0×109dyn/cm2前後の応力をもったものであった。
次に、この5枚のウエハーを800℃に約10時間保持して熱処理を行い加工歪み・応力の緩和を行なった。この際、ウエハー表面の応力は熱処理によって、いずれも7.0×108dyn/cm2前後に緩和された。
その後、各ウエハーの主面を75μmメカノケミカル研磨し、鏡面としてサファイア基板を得た。このときの研磨量は5μm以上とした。得られた主面の表面粗さは約1オングストローム程度となっていた。また、得られたサファイア基板は、主面を鏡面研磨とすることにより、いずれも主面の応力が無くなり、裏面に残留する応力により凹度が35〜45μmでばらついていた。
(Conventional example)
In the same manner as in Example 1, five wafers having a diameter of 3 inches and a thickness of about 750 μm, in which concave and convex grooves of about 20 μm exist parallel to each other on the main surface and the back surface, were obtained.
Next, both surfaces of these five wafers were polished. As the free abrasive grains at this time, abrasive grains having a particle diameter of about 60 μm, which is a mixture of SiC abrasive grains having relatively high hardness and B4C abrasive grains, were used. Further, as the surface plate, a cast iron plate having a surface plate flatness of about 10 μm with respect to the surface plate outer diameter of 630 mm was used, and the processing pressure was set to 60 g / cm 2 or less.
The warpage amounts of the five wafers thus obtained were all 5 μm or less, but the shape was not necessarily unified to a concave or convex shape, and was about 1.0 × 10 9 dyn / cm 2 on both surfaces of the wafer. It was stressed.
Next, the five wafers were held at 800 ° C. for about 10 hours and subjected to heat treatment to alleviate processing strain and stress. At this time, the stress on the wafer surface was alleviated to about 7.0 × 10 8 dyn / cm 2 by heat treatment.
Thereafter, the main surface of each wafer was mechanochemically polished to 75 μm to obtain a sapphire substrate as a mirror surface. The polishing amount at this time was 5 μm or more. The surface roughness of the obtained main surface was about 1 angstrom. Moreover, the obtained sapphire substrate had the main surface mirror-polished so that the stress on the main surface disappeared and the degree of depression varied from 35 to 45 μm due to the stress remaining on the back surface.

このようにして得られた各サファイア基板を用いても窒化物半導体発光素子を作製すると、得られる発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能と思われるが、最終的に得られる基板の凹度を一定にするためには、両面を研磨加工した後に表面に残留する応力を測定し、得られた応力値に応じて熱処理条件を調整しなければならないという不利益は避けられない。   Even if each sapphire substrate obtained in this way is used to produce a nitride semiconductor light emitting device, it is possible to reduce variations in wavelength and electrical characteristics of the resulting light emitting device, and at the same time, adverse effects due to substrate warpage in the device process. Although it is possible to reduce, in order to make the final substrate concaveness constant, the stress remaining on the surface after polishing on both sides is measured, and the heat treatment conditions according to the obtained stress value The disadvantage of having to adjust is inevitable.

また、本例の基板を用いて窒化物半導体発光素子作製時のエピタキシャル成長時に、温度や時間が異なるとエピタキシャル成長時の基板裏面の歪み緩和量に差が生じ、実施例と比較して発光素子の波長バラツキや電気特性のバラツキが大きくなる。
さらに、本例の方法では前記したように10時間の熱処理が必要とされ、熱処理が不要な本発明の方法と比較して、サファイア基板の安定、かつ安価に量産するという点では極めて不利であることがわかる。
In addition, when the temperature and time are different during epitaxial growth during the fabrication of a nitride semiconductor light emitting device using the substrate of this example, a difference occurs in the amount of strain relaxation on the back surface of the substrate during epitaxial growth. Variations and variations in electrical characteristics increase.
Furthermore, the method of this example requires a heat treatment for 10 hours as described above, and is extremely disadvantageous in that the sapphire substrate is mass-produced stably and inexpensively compared with the method of the present invention that does not require heat treatment. I understand that.

本発明の3インチφサファイア基板を示す図である。It is a figure which shows the 3 inch diameter sapphire substrate of this invention. 本発明のサファイア基板を製造する工程を示す図である。It is a figure which shows the process of manufacturing the sapphire substrate of this invention.

符号の説明Explanation of symbols

a:凹度








a: Concaveness








Claims (2)

直径3インチ以上のサファイア基板であって、主面と裏面とに歪みが無く、かつ、主面の凹度が8〜50μmの範囲内であるサファイア基板の製造方法であり、サファイア単結晶を切断して得たウエハーの表面を研磨して単結晶サファイア基板を得るに際して、ウエハーの裏面を、基板完成後の凹度が8〜50μmの範囲の所望の値の凹形状となるように凸形状にメカノケミカル研磨して鏡面とする工程と、その後に裏面を平面状態になるように固定し、主面を裏面と平行になるようにメカノケミカル研磨して鏡面とする工程とを主要工程として含むことを特徴とするサファイア基板の製造方法。 A method for producing a sapphire substrate having a diameter of 3 inches or more, in which the main surface and the back surface are not distorted, and the main surface has a concave degree in the range of 8 to 50 μm. When the surface of the obtained wafer is polished to obtain a single crystal sapphire substrate, the back surface of the wafer is convex so that the concave degree after completion of the substrate is a desired concave value in the range of 8 to 50 μm. The main process includes a process of mirror polishing by mechanochemical polishing and a process of mirror polishing by fixing the back surface in a flat state and then making the main surface parallel to the back surface. A method for manufacturing a sapphire substrate. 得られるサファイア基板の厚さが300〜600μmであることを特徴とする請求項1記載の製造方法。







The manufacturing method according to claim 1, wherein the thickness of the obtained sapphire substrate is 300 to 600 μm.







JP2005274917A 2005-09-22 2005-09-22 Sapphire substrate and its manufacturing method Pending JP2007088193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274917A JP2007088193A (en) 2005-09-22 2005-09-22 Sapphire substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274917A JP2007088193A (en) 2005-09-22 2005-09-22 Sapphire substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007088193A true JP2007088193A (en) 2007-04-05

Family

ID=37974882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274917A Pending JP2007088193A (en) 2005-09-22 2005-09-22 Sapphire substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007088193A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099734A (en) * 2007-10-16 2009-05-07 Sharp Corp Manufacturing method and manufacturing system for silicon wafer
JP2010062561A (en) * 2008-09-03 2010-03-18 Siltronic Ag Method of polishing semiconductor wafer
WO2010032423A1 (en) * 2008-09-16 2010-03-25 昭和電工株式会社 Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
WO2010038740A1 (en) * 2008-10-03 2010-04-08 昭和電工株式会社 Method for manufacturing semiconductor light-emitting element
JP2010092934A (en) * 2008-10-03 2010-04-22 Showa Denko Kk Method of manufacturing semiconductor light-emitting element
JP2010157609A (en) * 2008-12-26 2010-07-15 Showa Denko Kk Method for manufacturing semiconductor light-emitting device
JP2011025429A (en) * 2009-07-22 2011-02-10 Sumitomo Metal Mining Co Ltd Method for cutting sapphire single crystal by wire saw and single crystal sapphire substrate
JP2011071546A (en) * 2010-12-10 2011-04-07 Showa Denko Kk Method of manufacturing compound semiconductor wafer
JP2011162402A (en) * 2010-02-10 2011-08-25 Disco Abrasive Syst Ltd Method for processing sapphire substrate
JP2011162364A (en) * 2010-02-05 2011-08-25 Disco Abrasive Syst Ltd Method for processing sapphire substrate
JP2013214784A (en) * 2009-10-28 2013-10-17 Siltronic Ag Method for polishing semiconductor wafer
CN105140362A (en) * 2015-06-25 2015-12-09 江苏苏创光学器材有限公司 Production method of sapphire LED filament substrate
CN105154968A (en) * 2015-06-18 2015-12-16 江苏苏创光学器材有限公司 Preparation method for sapphire LED filament substrate
JP2016056057A (en) * 2014-09-09 2016-04-21 日立金属株式会社 Sapphire substrate, and manufacturing method of the same
CN106548925A (en) * 2016-11-02 2017-03-29 山东浪潮华光光电子股份有限公司 A kind of preprocess method for improving reducing thin of sapphire substrate quality

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099734A (en) * 2007-10-16 2009-05-07 Sharp Corp Manufacturing method and manufacturing system for silicon wafer
USRE44986E1 (en) 2008-09-03 2014-07-01 Siltronic Ag Method for polishing a semiconductor wafer
JP2010062561A (en) * 2008-09-03 2010-03-18 Siltronic Ag Method of polishing semiconductor wafer
WO2010032423A1 (en) * 2008-09-16 2010-03-25 昭和電工株式会社 Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
US8772060B2 (en) 2008-09-16 2014-07-08 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride semiconductor light emitting element, group III nitride semiconductor light emitting element and lamp
JP2010092934A (en) * 2008-10-03 2010-04-22 Showa Denko Kk Method of manufacturing semiconductor light-emitting element
US8592240B2 (en) 2008-10-03 2013-11-26 Toyoda Gosei Co., Ltd. Method for manufacturing semiconductor light-emitting element
WO2010038740A1 (en) * 2008-10-03 2010-04-08 昭和電工株式会社 Method for manufacturing semiconductor light-emitting element
JP2010157609A (en) * 2008-12-26 2010-07-15 Showa Denko Kk Method for manufacturing semiconductor light-emitting device
JP2011025429A (en) * 2009-07-22 2011-02-10 Sumitomo Metal Mining Co Ltd Method for cutting sapphire single crystal by wire saw and single crystal sapphire substrate
JP2013214784A (en) * 2009-10-28 2013-10-17 Siltronic Ag Method for polishing semiconductor wafer
JP2011162364A (en) * 2010-02-05 2011-08-25 Disco Abrasive Syst Ltd Method for processing sapphire substrate
JP2011162402A (en) * 2010-02-10 2011-08-25 Disco Abrasive Syst Ltd Method for processing sapphire substrate
JP2011071546A (en) * 2010-12-10 2011-04-07 Showa Denko Kk Method of manufacturing compound semiconductor wafer
JP2016056057A (en) * 2014-09-09 2016-04-21 日立金属株式会社 Sapphire substrate, and manufacturing method of the same
CN105154968A (en) * 2015-06-18 2015-12-16 江苏苏创光学器材有限公司 Preparation method for sapphire LED filament substrate
CN105140362A (en) * 2015-06-25 2015-12-09 江苏苏创光学器材有限公司 Production method of sapphire LED filament substrate
CN106548925A (en) * 2016-11-02 2017-03-29 山东浪潮华光光电子股份有限公司 A kind of preprocess method for improving reducing thin of sapphire substrate quality
CN106548925B (en) * 2016-11-02 2019-03-01 山东浪潮华光光电子股份有限公司 A kind of preprocess method improving reducing thin of sapphire substrate quality

Similar Documents

Publication Publication Date Title
JP2007088193A (en) Sapphire substrate and its manufacturing method
JP2006347776A (en) Sapphire substrate and its manufacturing method
JP4849296B2 (en) GaN substrate
JP4741572B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP4678039B2 (en) SiC substrate
JP4232605B2 (en) Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate
JP2004168622A (en) Single crystal sapphire substrate and its manufacturing method
JP4148105B2 (en) Method for manufacturing SiC substrate
EP2251897A1 (en) A method for producing a wafer comprising a silicon single crystal substrate having a front and a back side and a layer of SiGe deposited on the front side
JP2007197276A (en) Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element
JP2018514498A (en) Method for manufacturing diamond-semiconductor composite substrate
JP2007284283A (en) PROCESSING METHOD FOR GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2009182126A (en) Method of machining compound semiconductor substrate and compound semiconductor substrate
JP2015225902A (en) Sapphire substrate and manufacturing method of the same
JP6827469B2 (en) Nitride semiconductor template, method for manufacturing nitride semiconductor template, and method for manufacturing nitride semiconductor self-supporting substrate
JP2005112713A (en) Method for manufacturing gallium nitride-based single crystal substrate
WO2019146386A1 (en) Method for manufacturing semiconductor substrate
JP2011077508A (en) Method of manufacturing nitride semiconductor substrate
WO2015107772A1 (en) Process for producing single-crystal silicon carbide
JP2014213403A (en) Method for reducing warpage of substrate, method for manufacturing substrate, and sapphire substrate
JP2007005658A (en) Compound semiconductor wafer and its manufacturing method
JP2005255463A (en) Sapphire substrate and its producing method
JP2009051678A (en) Manufacturing method of sapphire substrate
JP2010037139A (en) Method for manufacturing semiconductor substrate
JP2005104742A (en) Substrate for growing single crystal and semiconductor device