JP2006347776A - Sapphire substrate and its manufacturing method - Google Patents
Sapphire substrate and its manufacturing method Download PDFInfo
- Publication number
- JP2006347776A JP2006347776A JP2005171839A JP2005171839A JP2006347776A JP 2006347776 A JP2006347776 A JP 2006347776A JP 2005171839 A JP2005171839 A JP 2005171839A JP 2005171839 A JP2005171839 A JP 2005171839A JP 2006347776 A JP2006347776 A JP 2006347776A
- Authority
- JP
- Japan
- Prior art keywords
- sapphire substrate
- wafer
- substrate
- warpage
- main surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は単結晶サファイア基板およびその製造方法に関し、特に窒化物半導体発光素子用の結晶成長に適したサファイア基板およびその製造方法に関する。 The present invention relates to a single crystal sapphire substrate and a manufacturing method thereof, and more particularly to a sapphire substrate suitable for crystal growth for a nitride semiconductor light emitting device and a manufacturing method thereof.
サファイア基板は窒化物半導体発光素子のエピタキシャル成長用の基板として用いられている。サファイア基板を用いて窒化物半導体発光素子をエピタキシャル成長させる場合、サファイア基板に反りや厚みのバラツキがあると、反り形状や反り量により、また厚みのバラツキによりサファイア基板主面の面内温度分布に不均一さを生じる。また、基板間でもサファイア基板主面の温度にバラツキが生ずる。 The sapphire substrate is used as a substrate for epitaxial growth of a nitride semiconductor light emitting device. When epitaxially growing a nitride semiconductor light emitting device using a sapphire substrate, if the sapphire substrate has variations in warpage or thickness, the in-plane temperature distribution on the main surface of the sapphire substrate will not be affected by the warpage shape, amount of warpage, or variations in thickness. Produces uniformity. Also, the temperature of the main surface of the sapphire substrate varies between the substrates.
こうしたサファイア基板主面温度の不均一さはエピタキシャル成長する窒化物半導体膜の組成がばらつく原因となる。こうして得られた不均一な組成の窒化物半導体膜を用いた発光素子では、発光素子の出力波長や電気特性にバラツキを生じることとなる。 Such non-uniformity of the main surface temperature of the sapphire substrate causes a variation in the composition of the epitaxially grown nitride semiconductor film. In the light-emitting element using the nitride semiconductor film having a non-uniform composition obtained in this manner, the output wavelength and electrical characteristics of the light-emitting element vary.
尚、反りの緩和に関しては、既にサファイア基板を1150〜1400℃の温度下で熱処理をする方法が開示されており、これによりほぼ完全にサファイア基板の反りを緩和することが可能とされている(特許文献1参照)。この方法は、実施されて、その有効性が追認されている。 As for warping mitigation, a method of heat-treating a sapphire substrate at a temperature of 1150 to 1400 ° C. has already been disclosed, thereby making it possible to almost completely alleviate warping of the sapphire substrate ( Patent Document 1). This method has been implemented and its effectiveness has been confirmed.
ところで、前記方法で反りを緩和したサファイア基板にGaN膜を成長させると、サファイア基板の直径に違いはあるものの、通常主面側が30〜50μm凸となる反りが生じ、最悪の場合、サファイア基板の割れをもたらす。 By the way, when a GaN film is grown on a sapphire substrate whose warpage has been relaxed by the above-described method, although there is a difference in the diameter of the sapphire substrate, a warp that usually has a convex of 30 to 50 μm occurs on the main surface side. Cause cracks.
これは、反りを緩和した基板を用いることにより、エピタキシャル成長時初期に生じるサファイア基板表面温度のバラツキや、用いる基板間での温度分布のバラツキは低減できるが、エピタキシャル成長させるGaN膜の厚みの増加とともに、サファイア結晶とGaN結晶との格子定数の違いにより、エピタキシャル成長面側が凸となる反りが生じ、基板表面温度のバラツキが大きくなる。 This is because the variation in the surface temperature of the sapphire substrate that occurs at the initial stage of epitaxial growth and the variation in temperature distribution between the substrates used can be reduced by using a substrate with relaxed warpage, but with the increase in the thickness of the GaN film to be epitaxially grown, Due to the difference in the lattice constant between the sapphire crystal and the GaN crystal, a warp in which the epitaxial growth surface side is convex occurs, and the variation in the substrate surface temperature increases.
これを防止するため、サファイア基板の熱処理を、サファイア基板の反りが完全に緩和される条件より弱い条件、例えば、反りが完全に緩和されるよりも低い温度で熱処理を行い、故意にエピタキシャル成長で生じる反りと反対方向の反りを持つサファイア基板を作製する試みがなされている(特許文献2参照)。
前記方法に従い、あらかじめ反りが完全に緩和されるよりも低い温度で熱処理を行い、エピタキシャル成長時に生じる反りを打ち消すような反り、即ち育成時に発生する反りと反対方向の反り、即ち、育成面が凹状となる反りを持つサファイア基板を作製するには、熱処理前にサファイア基板の歪み測定を行い、歪に応じて熱処理温度を変更する必要があり、量産に適さず基板コストの増大を招く。加えて、エピタキシャル成長時の温度は通常、前記熱処理温度よりも高く、故意に残留させた歪がエピタキシャル成長中に緩和されるため、エピタキシャル成長後に目的の反り量の窒化物半導体膜付きサファイア基板を得ることは至難の技である。 In accordance with the above method, heat treatment is performed at a temperature lower than that in which the warpage is completely relaxed in advance, and warpage that cancels out warpage that occurs during epitaxial growth, that is, warpage in the opposite direction to warpage that occurs during growth, that is, the growth surface is concave. In order to manufacture a sapphire substrate having a warp, it is necessary to measure the strain of the sapphire substrate before the heat treatment and change the heat treatment temperature according to the strain, which is not suitable for mass production and causes an increase in substrate cost. In addition, the temperature at the time of epitaxial growth is usually higher than the heat treatment temperature, and the strain left intentionally is relaxed during the epitaxial growth, so that it is possible to obtain a sapphire substrate with a nitride semiconductor film having a desired warping amount after epitaxial growth. It is a difficult technique.
本発明の目的は、優れた特性の窒化物半導体発光素子を安定量産可能なサファイア基板の提供を目的とし、具体的には、エピタキシャル成長前,エピタキシャル成長中およびエピタキシャル成長後に基板間の反りのバラツキが無く、かつエピタキシャル成長後に目的の反りを有する窒化物半導体膜付きサファイア基板を得ることを可能とするサファイア基板の提供と、こうしたサファイア基板を安価で安定して得るための方法の提供である。 An object of the present invention is to provide a sapphire substrate capable of stably mass-producing nitride semiconductor light-emitting devices with excellent characteristics. Specifically, there is no variation in warpage between substrates before, during and after epitaxial growth. The present invention also provides a sapphire substrate that makes it possible to obtain a sapphire substrate with a nitride semiconductor film having a desired warp after epitaxial growth, and a method for stably obtaining such a sapphire substrate at low cost.
本発明者は、上記課題を解決するため鋭意研究した結果、量産性に優れ、かつ、エピタキシャル成長前,エピタキシャル成長中およびエピタキシャル成長後に基板間の反りのバラツキが無く、かつエピタキシャル成長後に目的の反を有するGaN膜付きサファイア基板とその製造方法とを見出し、本発明に至った。 As a result of diligent research to solve the above-mentioned problems, the inventor of the present invention is excellent in mass productivity, has no warpage variation between substrates before, during and after epitaxial growth, and has a desired anti-epitaxial property after epitaxial growth. The attached sapphire substrate and its manufacturing method have been found and the present invention has been achieved.
即ち、請求項1に記載した本発明のサファイア基板は、直径3インチ以上のサファイア基板であって、主面(育成面を主面とし、反対側の面を裏面とする。)と裏面とに歪みが無く、かつ、エピタキシャル成長後に窒化物半導体膜を有するサファイア基板の反り量が所望の反り量となるように、主面が、凹度が8〜50μmの範囲内で凹形状に反っていることを特徴とする基板である。 In other words, the sapphire substrate of the present invention described in claim 1 is a sapphire substrate having a diameter of 3 inches or more, and has a main surface (a growth surface is a main surface and an opposite surface is a back surface) and a back surface. There is no distortion, and the main surface is warped in a concave shape within the range of 8 to 50 μm so that the warpage amount of the sapphire substrate having the nitride semiconductor film after epitaxial growth becomes a desired warpage amount. It is the board | substrate characterized by these.
また、請求項2記載の発明は、請求項1記載の発明に加えて、裏面がラップ面、ブラスト面のいずれかであるサファイア基板である。
また、請求項3記載の発明は、前記請求項1又は2記載のいずれかのサファイア基板を製造する方法であり、単結晶を切断してウエハーを得、このウエハーの表面を研磨して単結晶サファイア基板を得るに際して、ウエハーの裏面を、基板完成後の凹度が8〜50μmの凹形状となるように凸形状に研磨加工する工程と、この研磨加工したウエハーを、温度1300〜1700℃で熱処理する工程と、熱処理したウエハーを、このウエハーの裏面をフラット基準として主面をメカノケミカル研磨して鏡面とする工程とを含むことを特徴とする単結晶サファイア基板の製造方法である。
The invention according to claim 2 is the sapphire substrate whose back surface is either a lap surface or a blast surface in addition to the invention according to claim 1.
The invention according to claim 3 is a method for producing the sapphire substrate according to claim 1 or 2, wherein a single crystal is cut to obtain a wafer, and the surface of the wafer is polished to obtain a single crystal. When obtaining the sapphire substrate, the back surface of the wafer is polished into a convex shape so that the concave degree after completion of the substrate is 8 to 50 μm, and the polished wafer is processed at a temperature of 1300 to 1700 ° C. A method for producing a single crystal sapphire substrate, comprising: a step of heat-treating; and a step of subjecting the heat-treated wafer to a mirror surface by mechanochemical polishing of a main surface with the back surface of the wafer as a flat reference.
本発明によれば、裏面に加工歪みの残留が無く、かつ、主面が8〜50μmの範囲で凹形状に反っている直径3インチ以上のサファイア基板を安定的、かつ安価に作製することが可能となり、このようなサファイア基板を用いて作製された窒化物半導体発光素子において波長バラツキ,電気特性バラツキの低減が可能となる。 また、サファイア基板の反り量を8〜50μmで任意に設定することによりエピタキシャル成長後の基板そり量をコントロールすることが可能となりデバイス工程の安定化に繋がる。 According to the present invention, it is possible to stably and inexpensively manufacture a sapphire substrate having a diameter of 3 inches or more that has no residual processing distortion on the back surface and the main surface is warped in a concave shape in the range of 8 to 50 μm. This makes it possible to reduce variations in wavelength and electrical characteristics in a nitride semiconductor light emitting device manufactured using such a sapphire substrate. In addition, by arbitrarily setting the amount of warpage of the sapphire substrate at 8 to 50 μm, the amount of substrate warpage after epitaxial growth can be controlled, leading to stabilization of the device process.
本発明において、凹度とは、凸形状表面側を下に向けて平面上に置いた際の、凹形状面の最低部と凹形状円周最高部との高さの差を言いう。 In the present invention, the degree of concave means the difference in height between the lowest part of the concave surface and the highest part of the concave circumference when the convex surface side is placed on a flat surface.
さて、本発明のサファイア基板には、主面と裏面とに歪みが残留していないためエピタキシャル成長時の温度によりサファイア基板の歪みが緩和されるという事態は生じない。従って、エピタキシャル成長時に発生する反りの原因をサファイア基板の結晶格子定数とエピタキシャル成長させる窒化物半導体の結晶格子定数との差、及び窒化物半導体膜の厚さとの関係でほとんど解析できるように単純化でき、エピタキシャル成長により発生する反り量の推定が容易となる。この結果、事前に主面側をどの程度の凹度の凹形状としておけばよいかを推定でき、かつ膜育成後の形状が、所望の反り量から問題を生じるほどずれることは無い。 In the sapphire substrate of the present invention, no strain remains on the main surface and the back surface, so that a situation in which the strain of the sapphire substrate is alleviated by the temperature during epitaxial growth does not occur. Therefore, the cause of warpage occurring during epitaxial growth can be simplified so that it can be almost analyzed by the relationship between the crystal lattice constant of the sapphire substrate and the crystal lattice constant of the nitride semiconductor to be epitaxially grown, and the thickness of the nitride semiconductor film, It is easy to estimate the amount of warpage generated by epitaxial growth. As a result, it is possible to estimate in advance how much concave shape the main surface side should have as a concave shape, and the shape after film growth does not deviate from a desired amount of warp so as to cause a problem.
サファイア基板の主面の反りがエピタキシャル成長により発生する反りと同方向の場合は無論のこと、反対方向であっても凹度が8μm未満の場合には、エピタキシャル成長により発生する反りを緩和することができず、基板の破壊が起きる事態も発生する。一方、サファイア基板の主面の反りがエピタキシャル成長により発生する反りと反対方向で凹度が50μmを超える場合、特にエピタキシャル成長初期に基板面内の温度分布のバラツキが生じ、得られる窒化物半導体膜の組成に影響を与え発光素子の発光波長のバラツキや電気特性のバラツキが大きくなり、良好な発光素子を安定的に量産することができない。 Of course, if the warp of the main surface of the sapphire substrate is in the same direction as the warp caused by epitaxial growth, the warp caused by epitaxial growth can be mitigated if the concave degree is less than 8 μm even in the opposite direction. In other words, the substrate may be destroyed. On the other hand, when the curvature of the main surface of the sapphire substrate is more than 50 μm in the direction opposite to the warp caused by epitaxial growth, the temperature distribution in the substrate surface varies, particularly in the initial stage of epitaxial growth, and the composition of the nitride semiconductor film obtained As a result, the variation in the emission wavelength of the light emitting element and the variation in the electrical characteristics become large, and a good light emitting element cannot be stably mass-produced.
前記した本発明のサファイア基板を得るには、単結晶を切断してウエハーを得、このウエハーの主面を、例えばワックスを用いてブロックに固定し、基板完成後の凹度が8〜50μmとなるように凸形状に研磨する。この面が裏面となる。次に、ウエハーをブロックから外し、ワックスを除去した後、1300〜1700℃で熱処理する。この熱処理により裏面表面に残留する歪みを除去できる。その後、裏面をワックス等でブロックに平面状態となるように固定し、主面を研磨し、最終的に主面をメカノケミカル研磨して鏡面とする。 In order to obtain the above-described sapphire substrate of the present invention, a single crystal is cut to obtain a wafer, and the main surface of this wafer is fixed to a block using, for example, wax, and the concave degree after completion of the substrate is 8 to 50 μm. Polish to a convex shape. This surface is the back surface. Next, the wafer is removed from the block, the wax is removed, and heat treatment is performed at 1300 to 1700 ° C. This heat treatment can remove strain remaining on the back surface. Thereafter, the back surface is fixed to the block in a flat state with wax or the like, the main surface is polished, and finally the main surface is mechanochemically polished to be a mirror surface.
鏡面仕上げとすることにより、通常、研磨加工による加工歪みは除去される。従って、主面を鏡面研磨した後、ウエハーをブロックより除去し、ワックス等をウエハー表面より除去すれば、本発明の主面と裏面とに歪みを有さないサファイア基板を得ることができる。 By using a mirror finish, processing distortion due to polishing is usually removed. Therefore, after the main surface is mirror-polished, the wafer is removed from the block, and the wax or the like is removed from the wafer surface, whereby a sapphire substrate having no distortion on the main surface and the back surface of the present invention can be obtained.
更に、図を用いて本発明を説明する。図1は本発明のファイア基板例の中央断面図を示す図である。凹度とは、図1において示されるaを言い、本発明ではaが8〜50μmである。サファイア基板の厚みが厚いほどエピタキシャル成長時の反り変化は少なく、エピタキシャル成長時の基板面内温度分布のバラツキが少なくなり、好ましいが、基板コストの増大を招くため600μm以下とすることが好ましい。 Further, the present invention will be described with reference to the drawings. FIG. 1 is a central sectional view of an example of a fire substrate according to the present invention. The concave degree refers to a shown in FIG. 1, and in the present invention, a is 8 to 50 μm. The thicker the sapphire substrate, the smaller the change in warpage during epitaxial growth, and the less the variation in the temperature distribution in the substrate surface during epitaxial growth. This is preferable, but it is preferably 600 μm or less in order to increase the substrate cost.
一方、基板厚みが300μm未満の場合、エピタキシャル成長時の反り変化が大きくなり、基板表面内の温度バラツキが発生しやすく、窒化物半導体層の組成が影響を受けやすく、得られた膜から製造される発光素子の波長バラツキや電気特性のバラツキが大きくなり、安定的に、かつ収率良く良好な発光素子を得ることが困難になってくる。従って、サファイア基板の厚みは300〜600μmが好ましい。なお、切断して得たウエハーの表面と裏面との歪み量の差が大きい場合には、熱処理を行いウエハーの歪みを除去した後、以下の工程で処理をすることが好ましい。 On the other hand, when the substrate thickness is less than 300 μm, the warp change during epitaxial growth becomes large, temperature variation within the substrate surface is likely to occur, the composition of the nitride semiconductor layer is easily affected, and the film is manufactured from the obtained film. The variation in wavelength and electrical characteristics of the light-emitting element increases, and it becomes difficult to obtain a good light-emitting element in a stable and high yield. Therefore, the thickness of the sapphire substrate is preferably 300 to 600 μm. When the difference in strain between the front surface and the back surface of the wafer obtained by cutting is large, it is preferable to perform the following steps after heat treatment to remove the wafer strain.
図2は本発明の製造方法を例示す工程図である。切断工程では、例えば、円柱状の単結晶をワイヤーソー等で切断してウエハーを作製する。そして、表面貼り付け工程では、将来主面とするウエハーの表面を変形させることなく、ワックスにてブロックに貼り付ける。そして、裏面片面ラップ工程では、ウエハーの表面を、遊離砥粒を用いて研磨する。この際、表面の湾曲度は、仕上がった基板の凹度が8〜50μmの範囲内の所望の値となるようにする。 FIG. 2 is a process diagram illustrating the production method of the present invention. In the cutting step, for example, a cylindrical single crystal is cut with a wire saw or the like to produce a wafer. In the surface attaching step, the wafer surface, which will be the main surface in the future, is attached to the block with wax without deforming the surface. And in a back surface single-sided lapping process, the surface of a wafer is grind | polished using a loose abrasive grain. At this time, the degree of curvature of the surface is set so that the concave degree of the finished substrate becomes a desired value within the range of 8 to 50 μm.
次に、ウエハーをブロックより剥がし、ウエハーに付着しているワックスを除去し、1300〜1700℃の温度範囲に1時間以上保持して研磨により発生した裏面の歪みを除去する。なお、歪みの除去ができたかどうかの確認は、裏面片面ラップ工程終了後のブロックに張り付いた状態のウエハーの裏面形状と熱処理後のウエハー裏面形状とが同一となることで確認できる。熱処理温度は歪みが除去される温度1300℃以上であれば問題ないが、1700℃を超えると基板内部に表面に付着した金属等がウエハー内部に拡散して不純物となったり、ウエハー同士やウエハーを保持する治具とウエハーとが融着を起こしたりしてウエハーに損傷が発生するため好ましくない。 Next, the wafer is peeled off from the block, the wax adhering to the wafer is removed, and the wafer is held in the temperature range of 1300 to 1700 ° C. for 1 hour or longer to remove the distortion of the back surface caused by polishing. Whether the distortion has been removed can be confirmed by confirming that the back surface shape of the wafer attached to the block after the back surface single-sided lapping process is the same as the wafer back surface shape after the heat treatment. There is no problem if the temperature of the heat treatment is 1300 ° C. or higher at which the strain is removed, but if it exceeds 1700 ° C., metal attached to the surface inside the substrate diffuses into the wafer and becomes an impurity, This is not preferable because the holding jig and the wafer are fused to cause damage to the wafer.
また、所望に応じて、裏面研磨後に裏面にブラスト加工を行う。こうしたものは、例えば裏面の粗さを均一にでき、エピタキシャル成長時の温度分布のバラツキをより少なくできるという利点がある。なお、裏面の状態をより均一にするためブラスト加工前に裏面をメカノケミカル研磨しても良い。 If desired, the back surface is blasted after the back surface polishing. Such a method has the advantage that, for example, the roughness of the back surface can be made uniform, and variations in temperature distribution during epitaxial growth can be reduced. In order to make the state of the back surface more uniform, the back surface may be mechanochemically polished before blasting.
次の裏面貼り付け工程では、熱処理後のウエハーの裏面をワックスにて裏面が平らになるようにブロックに貼り付け、主面をフラットとなるようにメカノケミカル研磨する。メカノケミカル研磨による主面の平坦度は5μm以下とすると、エピタキシャル成長時の厚みバラツキを低減するため好ましい。通常、このメカノケミカル研磨により、加工面の歪みは除去されるため、主面に加工歪みは見られない。尚、加工コストを低減するため、メカノケミカル研磨前にダイヤモンド等でウエハー主面を研磨し、その後メカノケミカル研磨してもよい。 In the next back surface attaching step, the back surface of the heat-treated wafer is attached to a block so that the back surface becomes flat with wax, and mechanochemical polishing is performed so that the main surface becomes flat. When the flatness of the main surface by mechanochemical polishing is 5 μm or less, it is preferable because thickness variation during epitaxial growth is reduced. Normally, the mechanochemical polishing removes the distortion of the processed surface, so that no processing distortion is seen on the main surface. In order to reduce the processing cost, the main surface of the wafer may be polished with diamond or the like before mechanochemical polishing, and then mechanochemical polishing may be performed.
このような方法で得られたサファイア基板は主面の反り形状が凹であり、反り量は第一の工程での裏面の凸量であり、裏面に加工歪みの残留が無い。 In the sapphire substrate obtained by such a method, the warpage shape of the main surface is concave, the warpage amount is the convex amount of the back surface in the first step, and there is no residual processing distortion on the back surface.
さらに、実施例を基に本発明を説明する。 Further, the present invention will be described based on examples.
(実施例1)
直径3インチのサファイア単結晶インゴットをワイヤーソーにて切断し主面がc面で、厚さが略750μmのウエハーを得た。この時、主面および裏面にはワイヤーソーを用いたことによる、ワイヤーに平行な約20μmの凹凸が存在していた。
次に第一の工程として主面をワックスにてセラミックブロックの表面に貼り付けた。この際、加圧等によりウエハーを変形させないようにした。その後、裏面をGC#320砥粒にて凹定盤を用いて75μm片面ラッピング加工し、セラミックブロックに貼りついた状態で凹度が10μmとなる凸形状とした。
次に、ウエハーをセラミックブロックから剥がしワックスを除去した後、第二の工程として、1時間、1500℃で保持して熱処理を行った。尚、熱処理前の基板をセラミックブロックから剥がした状態では、加工歪みのため裏面の反りは凹度が約50μmとなっていたが、熱処理後は予定した凹度10μmの反りとなっており、一目して加工歪みは完全になくなったことがわかった。
次に基板外周部を面取り加工した後、第三の工程として熱処理後のウエハーの裏面にワックスを塗布し、セラミックブロックに強く押し当てて、ウエハー裏面がフラットになるようにセラミックブロックに固定した。そして、主面を75μmメカノケミカル研磨して主面を鏡面とした。このときの研磨量は5μm以上とした。得られた主面の表面粗さは約1オングストローム程度の面となった。
その後、ウエハーをセラミックブロックから剥がしてワックスを除去し、主面が鏡面で平坦度が5μm以下、反りが凹度10μm、厚さ600μmの片面鏡面のサファイア基板を得た。
次に、このサファイア基板の主面に下記の気相エピタキシャル法を用いて厚さ3μmのGaN単結晶膜を育成した。
得られたGaN単結晶膜付き基板の反りは25μmであり、基板の破損は起きなかった。
本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。
Example 1
A sapphire single crystal ingot having a diameter of 3 inches was cut with a wire saw to obtain a wafer having a c-plane main surface and a thickness of about 750 μm. At this time, the main surface and the back surface had unevenness of about 20 μm parallel to the wire due to the use of a wire saw.
Next, the main surface was affixed on the surface of the ceramic block with wax as a first step. At this time, the wafer was not deformed by pressurization or the like. Then, the back surface was lapped with 75 μm single-sided with a GC # 320 abrasive grain using a concave surface plate to form a convex shape with a concave degree of 10 μm when attached to the ceramic block.
Next, after the wafer was peeled off from the ceramic block to remove the wax, as a second step, heat treatment was performed by holding at 1500 ° C. for 1 hour. In the state where the substrate before the heat treatment was peeled off from the ceramic block, the warpage of the back surface was approximately 50 μm due to processing distortion, but after the heat treatment, the warp was 10 μm as planned. As a result, it was found that the processing distortion was completely eliminated.
Next, after chamfering the outer peripheral portion of the substrate, as a third step, wax was applied to the back surface of the wafer after the heat treatment and pressed firmly against the ceramic block, and fixed to the ceramic block so that the back surface of the wafer was flat. Then, the main surface was mechanochemically polished to 75 μm to make the main surface a mirror surface. The polishing amount at this time was 5 μm or more. The surface roughness of the obtained main surface was about 1 angstrom.
Thereafter, the wafer was peeled off from the ceramic block to remove the wax, and a single-sided sapphire substrate having a main surface as a mirror surface, a flatness of 5 μm or less, a warp of 10 μm in warpage, and a thickness of 600 μm was obtained.
Next, a GaN single crystal film having a thickness of 3 μm was grown on the main surface of the sapphire substrate by using the following vapor phase epitaxial method.
The warpage of the obtained substrate with a GaN single crystal film was 25 μm, and the substrate was not damaged.
When a nitride semiconductor light emitting device is manufactured using the sapphire substrate obtained according to the present invention, it is possible to reduce variations in wavelength and electrical characteristics of the light emitting device, and at the same time, reduce adverse effects due to substrate warpage in the device process.
(実施例2)
熱処理温度を1300度とした以外は実施例1と同様にしてサファイア基板を作成した。
得られたサファイア基板は、主面が、表面粗さ約1オングストローム程度の鏡面で、平坦度が5μm以下、反りが凹度10μm、厚さ600μmのものであり、実施例1で得られたものと差はなかった。
尚、熱処理前の基板をセラミックブロックから剥がした状態では、加工歪みのため裏面の反りは凹度が約49μmとなっていたが、熱処理後は実施例1と同様に、予定した凹度10μmの反りとなっており、一目して加工歪みは完全になくなったことがわかった。
次に、実施例1と同様にして気相エピタキシャル法によりGaN単結晶膜を育成したが、得られたGaN単結晶膜付き基板の反りは実施例1と同程度であり、基板の破損は起きなかった。
本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。
(Example 2)
A sapphire substrate was prepared in the same manner as in Example 1 except that the heat treatment temperature was 1300 degrees.
The obtained sapphire substrate has a mirror surface with a surface roughness of about 1 angstrom, a flatness of 5 μm or less, a warp of 10 μm, and a thickness of 600 μm. There was no difference.
In the state where the substrate before the heat treatment was peeled off from the ceramic block, the warpage of the back surface had a concave degree of about 49 μm due to processing distortion, but after the heat treatment, as in Example 1, the planned concave degree of 10 μm was obtained. It turned out to be warped, and it was found at a glance that the processing distortion was completely eliminated.
Next, a GaN single crystal film was grown by vapor phase epitaxy in the same manner as in Example 1, but the warpage of the obtained substrate with the GaN single crystal film was almost the same as in Example 1, and the substrate was damaged. There wasn't.
When a nitride semiconductor light emitting device is manufactured using the sapphire substrate obtained according to the present invention, it is possible to reduce variations in wavelength and electrical characteristics of the light emitting device, and at the same time, reduce adverse effects due to substrate warpage in the device process.
(実施例3)
熱処理温度を1700度とした以外は実施例1と同様にしてサファイア基板を作成した。
得られたサファイア基板は、主面が、表面粗さ約1オングストローム程度の鏡面で、平坦度が5μm以下、反りが凹度10μm、厚さ600μmのものであり、実施例1で得られたものと差はなかった。
次に、実施例1と同様にして気相エピタキシャル法によりGaN単結晶膜を育成したが、得られたGaN単結晶膜付き基板の反りは実施例1と同程度であり、基板の破損は起きなかった。
尚、熱処理前の基板をセラミックブロックから剥がした状態では、加工歪みのため裏面の反りは凹度が約49μmとなっていたが、熱処理後は実施例1と同様に、予定した凹度10μmの反りとなっており、一目して加工歪みは完全になくなったことがわかった。
また、熱処理により表面の不純物がサファイア基板内部に拡散するという事態も発生していなかった。
本発明により得られたサファイア基板を用いて窒化物半導体発光素子を作製すると発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能である。
(Example 3)
A sapphire substrate was prepared in the same manner as in Example 1 except that the heat treatment temperature was 1700 degrees.
The obtained sapphire substrate has a mirror surface with a surface roughness of about 1 angstrom, a flatness of 5 μm or less, a warp of 10 μm, and a thickness of 600 μm. There was no difference.
Next, a GaN single crystal film was grown by vapor phase epitaxy in the same manner as in Example 1, but the warpage of the obtained substrate with the GaN single crystal film was almost the same as in Example 1, and the substrate was damaged. There wasn't.
In the state where the substrate before the heat treatment was peeled off from the ceramic block, the warpage of the back surface had a concave degree of about 49 μm due to processing distortion, but after the heat treatment, as in Example 1, the planned concave degree of 10 μm was obtained. It turned out to be warped, and it was found at a glance that the processing distortion was completely eliminated.
Moreover, the situation that the impurity of the surface diffuses inside the sapphire substrate by the heat treatment did not occur.
When a nitride semiconductor light emitting device is manufactured using the sapphire substrate obtained according to the present invention, it is possible to reduce variations in wavelength and electrical characteristics of the light emitting device, and at the same time, reduce adverse effects due to substrate warpage in the device process.
(比較例1)
熱処理温度を1800度とした以外は実施例1と同様にしてサファイア基板を作成した。しかしながら、熱処理時に用いるホルダーとサファイアウエハーとが一部融着し、サファイア基板は得られなかった。
(Comparative Example 1)
A sapphire substrate was prepared in the same manner as in Example 1 except that the heat treatment temperature was 1800 degrees. However, the holder used at the time of heat treatment and the sapphire wafer were partially fused, and a sapphire substrate could not be obtained.
(従来例)
実施例と同様にして主面と裏面とにワイヤーに平行な約20μmの凹凸が存在する直径3インチ、厚さが略750μmのサファイア単結晶ウエハーを得た。
次に、このウエハーを両面ラッピング加工を行なった。この際の遊離砥粒には、比較的硬度の高いSiC砥粒とB4C砥粒を混合した粒径60μm程度の砥粒を使用した。また、定盤には、定盤平坦度が定盤外径630mmに対して10μm程度の鋳鉄盤を使用し、加工圧は60g/cm2以下とした。
得られた単結晶サファイアウエハーのそり量は5μm以下であったが、形状は必ずしも凹または凸形状に統一されたものではなく、基板両面に約1.0×109dyn/cm2程度の応力をもったものであった。
次に、得られたウエハーを800℃に約10時間保持して熱処理を行い加工歪み・応力の緩和を行なった。この際、ウエハー表面両面の応力は熱処理によって約7.0×108dyn/cm2程度に緩和された。
その後、単結晶サファイア基板の主面を75μmメカノケミカル研磨し、鏡面としてサファイア基板を得た。このときの研磨量は5μm以上とした。得られた主面の表面粗さは約1オングストローム程度となっていた。また、得られたサファイア基は、主面を鏡面研磨とすることにより、いずれも主面の応力が無くなり、裏面に残留する応力により凹度が約40μmの凹形状になっていた。
得られたサファイア基板を用いても窒化物半導体発光素子を作製すると発光素子の波長バラツキや電気特性のバラツキの低減が図れると同時にデバイス工程での基板反りによる悪影響の低減が可能と思われるが、裏面に残留する応力により凹度が異なるため両面ラッピング加工後、応力を測定し熱処理後に目的の凹度となるように応力値に応じて熱処理条件を変更しなければならないという不利益は避けられない。 また、窒化物半導体発光素子作製時のエピタキシャル成長温度・時間が異なるとエピタキシャル成長時の基板裏面の歪み緩和量に差が生じ、実施例と比較して発光素子の波長バラツキや電気特性のバラツキが大きくなる。
また、本例の方法では10時間の熱処理が必要とされ、熱処理時間が1時間ですむ本発明の方法と比較して、サファイア基板の安定、かつ安価に量産するという点では極めて不利であることがわかる。
(Conventional example)
In the same manner as in the example, a sapphire single crystal wafer having a diameter of 3 inches and a thickness of about 750 μm was obtained in which the main surface and the back surface had irregularities of about 20 μm parallel to the wire.
Next, this wafer was subjected to double-sided lapping. As the free abrasive grains at this time, abrasive grains having a particle diameter of about 60 μm, which is a mixture of SiC abrasive grains having relatively high hardness and B4C abrasive grains, were used. Further, as the surface plate, a cast iron plate having a surface plate flatness of about 10 μm with respect to the surface plate outer diameter of 630 mm was used, and the processing pressure was set to 60 g / cm 2 or less.
Although the amount of warpage of the obtained single crystal sapphire wafer was 5 μm or less, the shape was not necessarily unified to a concave or convex shape, and a stress of about 1.0 × 10 9 dyn / cm 2 on both sides of the substrate. It was a thing with.
Next, the obtained wafer was held at 800 ° C. for about 10 hours and subjected to heat treatment to alleviate processing strain and stress. At this time, the stress on both surfaces of the wafer was relaxed to about 7.0 × 10 8 dyn / cm 2 by heat treatment.
Thereafter, the main surface of the single crystal sapphire substrate was mechanochemically polished to obtain a sapphire substrate as a mirror surface. The polishing amount at this time was 5 μm or more. The surface roughness of the obtained main surface was about 1 angstrom. Further, the obtained sapphire group had a main surface with mirror polishing, so that the stress on the main surface disappeared and the concave surface had a concave shape of about 40 μm due to the stress remaining on the back surface.
Even if the sapphire substrate obtained is used to produce a nitride semiconductor light emitting device, it is possible to reduce the variation in wavelength and electrical characteristics of the light emitting device and at the same time reduce the adverse effects due to substrate warpage in the device process. Since the degree of recession varies depending on the stress remaining on the back surface, the disadvantage that the heat treatment conditions must be changed according to the stress value so that the stress is measured after double-sided lapping processing and the desired recession degree after heat treatment is inevitable. . In addition, if the epitaxial growth temperature and time at the time of fabricating the nitride semiconductor light emitting device are different, there is a difference in the strain relaxation amount on the back surface of the substrate at the time of epitaxial growth, resulting in a larger variation in wavelength and electrical characteristics of the light emitting device than in the examples. .
In addition, the method of this example requires a heat treatment of 10 hours, and is extremely disadvantageous in terms of mass production at a stable and inexpensive sapphire substrate as compared with the method of the present invention that requires a heat treatment time of 1 hour. I understand.
a:凹度
a: Concaveness
Claims (3)
When a sapphire single crystal is cut to obtain a wafer, and the surface of the wafer is polished to obtain a single crystal sapphire substrate, the back surface of the wafer is convex so that the concave degree after completion of the substrate is 8 to 50 μm. A process of polishing into a shape, a process of heat-treating the polished wafer at a temperature of 1300 to 1700 ° C., and a main surface of the heat-treated wafer as a mirror surface by using the back surface of the wafer as a flat reference to make a mirror surface A process for producing a sapphire substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005171839A JP2006347776A (en) | 2005-06-13 | 2005-06-13 | Sapphire substrate and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005171839A JP2006347776A (en) | 2005-06-13 | 2005-06-13 | Sapphire substrate and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006347776A true JP2006347776A (en) | 2006-12-28 |
Family
ID=37644009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005171839A Pending JP2006347776A (en) | 2005-06-13 | 2005-06-13 | Sapphire substrate and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006347776A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009051678A (en) * | 2007-08-24 | 2009-03-12 | Sumitomo Metal Mining Co Ltd | Manufacturing method of sapphire substrate |
WO2010032423A1 (en) * | 2008-09-16 | 2010-03-25 | 昭和電工株式会社 | Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp |
WO2010038740A1 (en) * | 2008-10-03 | 2010-04-08 | 昭和電工株式会社 | Method for manufacturing semiconductor light-emitting element |
JP2010092934A (en) * | 2008-10-03 | 2010-04-22 | Showa Denko Kk | Method of manufacturing semiconductor light-emitting element |
JP2010157609A (en) * | 2008-12-26 | 2010-07-15 | Showa Denko Kk | Method for manufacturing semiconductor light-emitting device |
KR20110009799A (en) * | 2009-07-23 | 2011-01-31 | 주식회사 크리스탈온 | Sapphire substrate and method of fabricating the same |
JP2011071546A (en) * | 2010-12-10 | 2011-04-07 | Showa Denko Kk | Method of manufacturing compound semiconductor wafer |
WO2011108698A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor |
WO2011108703A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method |
WO2011108706A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Single crystal substrate, production method for single crystal substrate, production method for single crystal substrate with multilayer film, and device production method |
EP2388802A1 (en) * | 2009-01-15 | 2011-11-23 | Namiki Seimitsu Houseki Kabushiki Kaisha | Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same |
JP2012106903A (en) * | 2010-10-20 | 2012-06-07 | Disco Corp | Method for manufacturing single crystal sapphire substrate |
US9464365B2 (en) | 2006-12-28 | 2016-10-11 | Saint-Gobain Ceramics & Plastics, Inc. | Sapphire substrate |
US10193014B2 (en) | 2013-03-14 | 2019-01-29 | Applied Materials, Inc. | Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices |
US11919125B2 (en) | 2018-09-29 | 2024-03-05 | Corning Incorporated | Carrier wafers and methods of forming carrier wafers |
-
2005
- 2005-06-13 JP JP2005171839A patent/JP2006347776A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9464365B2 (en) | 2006-12-28 | 2016-10-11 | Saint-Gobain Ceramics & Plastics, Inc. | Sapphire substrate |
JP2009051678A (en) * | 2007-08-24 | 2009-03-12 | Sumitomo Metal Mining Co Ltd | Manufacturing method of sapphire substrate |
WO2010032423A1 (en) * | 2008-09-16 | 2010-03-25 | 昭和電工株式会社 | Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp |
US8772060B2 (en) | 2008-09-16 | 2014-07-08 | Toyoda Gosei Co., Ltd. | Method for manufacturing group III nitride semiconductor light emitting element, group III nitride semiconductor light emitting element and lamp |
WO2010038740A1 (en) * | 2008-10-03 | 2010-04-08 | 昭和電工株式会社 | Method for manufacturing semiconductor light-emitting element |
JP2010092934A (en) * | 2008-10-03 | 2010-04-22 | Showa Denko Kk | Method of manufacturing semiconductor light-emitting element |
US8592240B2 (en) | 2008-10-03 | 2013-11-26 | Toyoda Gosei Co., Ltd. | Method for manufacturing semiconductor light-emitting element |
JP2010157609A (en) * | 2008-12-26 | 2010-07-15 | Showa Denko Kk | Method for manufacturing semiconductor light-emitting device |
EP2388802A1 (en) * | 2009-01-15 | 2011-11-23 | Namiki Seimitsu Houseki Kabushiki Kaisha | Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same |
EP2388802A4 (en) * | 2009-01-15 | 2013-03-06 | Namiki Precision Jewel Co Ltd | Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same |
KR20110009799A (en) * | 2009-07-23 | 2011-01-31 | 주식회사 크리스탈온 | Sapphire substrate and method of fabricating the same |
KR101643342B1 (en) * | 2009-07-23 | 2016-07-28 | 한솔테크닉스(주) | Sapphire substrate and method of fabricating the same |
WO2011108706A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Single crystal substrate, production method for single crystal substrate, production method for single crystal substrate with multilayer film, and device production method |
WO2011108703A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method |
WO2011108698A1 (en) | 2010-03-05 | 2011-09-09 | 並木精密宝石株式会社 | Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor |
JP2012106903A (en) * | 2010-10-20 | 2012-06-07 | Disco Corp | Method for manufacturing single crystal sapphire substrate |
JP2011071546A (en) * | 2010-12-10 | 2011-04-07 | Showa Denko Kk | Method of manufacturing compound semiconductor wafer |
US10193014B2 (en) | 2013-03-14 | 2019-01-29 | Applied Materials, Inc. | Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices |
US10236412B2 (en) | 2013-03-14 | 2019-03-19 | Applied Materials, Inc. | Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices |
US10546973B2 (en) | 2013-03-14 | 2020-01-28 | Applied Materials, Inc. | Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices |
US11081623B2 (en) | 2013-03-14 | 2021-08-03 | Applied Materials, Inc. | Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices |
US11575071B2 (en) | 2013-03-14 | 2023-02-07 | Applied Materials, Inc. | Oxygen controlled PVD ALN buffer for GAN-based optoelectronic and electronic devices |
US11919125B2 (en) | 2018-09-29 | 2024-03-05 | Corning Incorporated | Carrier wafers and methods of forming carrier wafers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006347776A (en) | Sapphire substrate and its manufacturing method | |
JP2007088193A (en) | Sapphire substrate and its manufacturing method | |
JP4678039B2 (en) | SiC substrate | |
JP5014737B2 (en) | Method for manufacturing SiC single crystal substrate | |
JP2004168622A (en) | Single crystal sapphire substrate and its manufacturing method | |
JP4148105B2 (en) | Method for manufacturing SiC substrate | |
JP6232329B2 (en) | Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate | |
JP2015164195A (en) | HIGH SURFACE QUALITY GaN WAFER, AND METHOD OF MANUFACTURING THE SAME | |
JP5569112B2 (en) | Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer obtained by this method | |
JP2007197276A (en) | Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element | |
JP2009182126A (en) | Method of machining compound semiconductor substrate and compound semiconductor substrate | |
JP2007284283A (en) | PROCESSING METHOD FOR GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE | |
JP2015225902A (en) | Sapphire substrate and manufacturing method of the same | |
WO2020022415A1 (en) | SiC WAFER MANUFACTURING METHOD | |
WO2021200203A1 (en) | Diamond crystal substrate and method for producing diamond crystal substrate | |
JP6827469B2 (en) | Nitride semiconductor template, method for manufacturing nitride semiconductor template, and method for manufacturing nitride semiconductor self-supporting substrate | |
WO2018216657A1 (en) | Sic wafer production method, epitaxial wafer production method, and epitaxial wafer | |
JP2014213403A (en) | Method for reducing warpage of substrate, method for manufacturing substrate, and sapphire substrate | |
WO2015107772A1 (en) | Process for producing single-crystal silicon carbide | |
JP2011077508A (en) | Method of manufacturing nitride semiconductor substrate | |
JP2009051678A (en) | Manufacturing method of sapphire substrate | |
JP2005255463A (en) | Sapphire substrate and its producing method | |
JP5332691B2 (en) | Nitride semiconductor substrate processing method | |
JP2007005658A (en) | Compound semiconductor wafer and its manufacturing method | |
JP2020059648A (en) | Diamond substrate, and manufacturing method of diamond substrate |