JP2007087932A - High voltage generation circuit and ionizer - Google Patents

High voltage generation circuit and ionizer Download PDF

Info

Publication number
JP2007087932A
JP2007087932A JP2006213109A JP2006213109A JP2007087932A JP 2007087932 A JP2007087932 A JP 2007087932A JP 2006213109 A JP2006213109 A JP 2006213109A JP 2006213109 A JP2006213109 A JP 2006213109A JP 2007087932 A JP2007087932 A JP 2007087932A
Authority
JP
Japan
Prior art keywords
circuit
high voltage
voltage
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006213109A
Other languages
Japanese (ja)
Other versions
JP2007087932A5 (en
JP4954633B2 (en
Inventor
Shuji Takaishi
修二 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMANASHI GIJUTSU KOBO KK
Original Assignee
YAMANASHI GIJUTSU KOBO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMANASHI GIJUTSU KOBO KK filed Critical YAMANASHI GIJUTSU KOBO KK
Priority to JP2006213109A priority Critical patent/JP4954633B2/en
Publication of JP2007087932A publication Critical patent/JP2007087932A/en
Publication of JP2007087932A5 publication Critical patent/JP2007087932A5/ja
Application granted granted Critical
Publication of JP4954633B2 publication Critical patent/JP4954633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high voltage generation circuit capable of efficiently applying high voltage to a discharging electrode without loss of voltage by a simple circuit configuration and to provide an ionizer. <P>SOLUTION: In this high voltage generation circuit 6 comprising positive polarity and negative polarity voltage doubler rectifier circuits 6a, 6b, and used for the ionizer generating positive and negative ions by corona discharge of the discharging electrode by applying positive or negative direct-current high voltage alternately between the discharging electrode 3 and a ground electrode, current-limiting resistances are provided between output terminals of the positive polarity rectifier circuit and between output terminals of the negative polarity rectifier circuit respectively, and the high voltage generation circuit 6 when it is connected with the positive polarity rectifier circuit and the negative polarity rectifier circuit in series and high voltage is applied to the discharging electrode becomes a circuit equivalent to a circuit wherein the discharging electrode and current-limiting resistances of one voltage doubler rectifier circuit generating the high voltage and the other voltage doubler rectifier circuit not generating the high voltage are connected in series. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、静電気除去装置等に用いられるイオナイザーに関し、特に除電対象物周囲の正負のイオンバランスに応じて正負イオンの発生量を調節し送風するイオナイザーに用いられる高電圧発生回路、及びこの回路を備えたイオナイザーに関する。   The present invention relates to an ionizer used in a static eliminator and the like, and in particular, a high voltage generation circuit used in an ionizer that adjusts the generation amount of positive and negative ions according to the positive and negative ion balance around the object to be neutralized and blows air, and this circuit. It relates to the equipped ionizer.

静電気放電(ESD,electrostatic discharge)は、精密電子デバイスの製造工程や実装工程において、様々な障害の原因となる。半導体回路の微細化に伴って、許容される帯電量が微小化し、僅かな帯電でも、ESDによってシリコンの回路や酸化物の絶縁層が破壊される。   Electrostatic discharge (ESD) causes various obstacles in the manufacturing process and mounting process of precision electronic devices. With the miniaturization of semiconductor circuits, the permissible charge amount is reduced, and even with a slight charge, the silicon circuit and the oxide insulating layer are destroyed by ESD.

また、帯電によって塵埃の付着が促進されることも問題である。半導体回路の高集積化には、帯電防止対策が不可欠であり、一般には放電装置によって発生した正、負イオンを交互に気体ジェットにより除電対象物に吹き付けて、電荷を中和するという方法がとられている。このような装置は除電装置又は除電用イオナイザー(以下、イオナイザーという。)と呼ばれる。   Another problem is that the adhesion of dust is promoted by charging. In order to achieve high integration of semiconductor circuits, antistatic measures are indispensable. In general, the method of neutralizing charges by spraying positive and negative ions generated by a discharge device alternately on a static elimination object by a gas jet It has been. Such a device is called a static elimination device or an ionizer for static elimination (hereinafter referred to as an ionizer).

かかるイオナイザーは、放電電極に高電圧を印加し、先端部に局在したコロナ放電を発生させるものが多い。これらのイオナイザーは、正負の両極性のイオンを発生させるため、放電電極に交流電圧を印加するもの、複数の電極のそれぞれに正又は負の直流電圧を印加するもの、同一の放電電極にパルス状の正負の電圧を交互に印加するもの等種々の方法がある。   Many of these ionizers generate a corona discharge localized at the tip by applying a high voltage to the discharge electrode. These ionizers generate positive and negative bipolar ions, so that an AC voltage is applied to the discharge electrode, a positive or negative DC voltage is applied to each of the electrodes, and the same discharge electrode is pulsed. There are various methods such as alternately applying positive and negative voltages.

従来、交流電圧を印加し正負のイオン発生量を制御するイオン発生回路(高電圧発生回路)では、昇圧トランスの一次側の正負電圧をアンバランスにして昇圧する方法(特許文献1)がある。しかし、この方法は昇圧トランスの一次側波形の正負を何らかの方法によってアンバランスにして昇圧トランスに入力すると、トランスの特性により二次側波形に歪みが生じ、正負の発生イオンを広範囲に制御できないという問題がある。   Conventionally, in an ion generation circuit (high voltage generation circuit) that controls the amount of positive and negative ions generated by applying an AC voltage, there is a method for boosting the voltage by making the positive and negative voltages on the primary side of the step-up transformer unbalanced (Patent Document 1). However, in this method, if the positive / negative of the primary side waveform of the step-up transformer is unbalanced by some method and input to the step-up transformer, the secondary side waveform is distorted due to the characteristics of the transformer, and positive / negative generated ions cannot be controlled over a wide range. There's a problem.

また、昇圧トランスの二次側交流電圧に別の直流電源から供給される直流バイアス電圧を重畳させて正負の波高値を変化させる方法(特許文献2)がある。しかし、この方法は、直流バイアス電圧の大きさが100V〜200V程度であってイオンバランスの調整範囲が比較的狭いとう問題がある。   In addition, there is a method of changing a positive / negative peak value by superimposing a DC bias voltage supplied from another DC power source on a secondary AC voltage of a step-up transformer (Patent Document 2). However, this method has a problem that the magnitude of the DC bias voltage is about 100V to 200V and the adjustment range of the ion balance is relatively narrow.

上述した問題点を解決するため、正極性直流高電圧を放電電極に印加しその放電電極にコロナ放電を発生させ、正のイオンを発生させる。また、負極性直流高電圧を同様に放電電極に印加し、その放電電極にコロナ放電を発生させることにより負のイオンを発生させる方法がある。この方法は直流高電圧であるから電圧の制御が比較的簡単であり、イオン発生量の制御がしやすい。しかし、正負2つの電極を別々に設けることから、電極数が多くなるとともに配線が複雑になるという問題がある。また、常に同一の極性の電圧が印加された放電電極の劣化は、正極性、負極性の電圧が交互に印加される電極よりも消耗が早いという問題もある。   In order to solve the above-described problems, a positive DC high voltage is applied to the discharge electrode to generate corona discharge on the discharge electrode, thereby generating positive ions. In addition, there is a method in which negative ions are generated by applying a negative direct-current high voltage to the discharge electrode and generating a corona discharge in the discharge electrode. Since this method is a direct current high voltage, the voltage control is relatively simple, and the amount of ion generation is easily controlled. However, since two positive and negative electrodes are provided separately, there is a problem that the number of electrodes increases and wiring becomes complicated. In addition, the deterioration of the discharge electrode to which a voltage of the same polarity is always applied has a problem that it is consumed faster than the electrode to which a positive voltage and a negative voltage are applied alternately.

このため、同一の放電電極に直流高電圧を印加することで正負のイオンの発生を制御するイオン発生回路(特許文献3)がある。図6は従来のイオン発生回路(高電圧発生回路)図である。高電圧発生回路40は、直流電源41と、これにスイッチ41a,41bを介して正極性の高電圧発生回路42aと負極性の高電圧発生回路42bとが接続する構成となっている。   For this reason, there is an ion generation circuit (Patent Document 3) that controls generation of positive and negative ions by applying a DC high voltage to the same discharge electrode. FIG. 6 is a diagram showing a conventional ion generation circuit (high voltage generation circuit). The high voltage generation circuit 40 has a configuration in which a DC power source 41 is connected to a positive high voltage generation circuit 42a and a negative high voltage generation circuit 42b via switches 41a and 41b.

高電圧発生回路40は、トランス43a,43bと倍電圧整流回路44a,44bにより構成される。高電圧発生回路40(倍電圧整流回路44a,44b)の出力端子間に等価な抵抗R1,R1を接続し、抵抗R1,R1の接続点46に電極針47を接続する。   The high voltage generation circuit 40 includes transformers 43a and 43b and voltage doubler rectifier circuits 44a and 44b. Equivalent resistors R1 and R1 are connected between the output terminals of the high voltage generation circuit 40 (voltage doubler rectifier circuits 44a and 44b), and an electrode needle 47 is connected to a connection point 46 of the resistors R1 and R1.

制御装置48の制御信号によりスイッチ41a,41bを開閉し、電極針47から正極性及び負極性の高電圧を交互に印加して正極性及び負極性のイオンを交互に出力する。スイッチ41a,41bの開閉時間を制御することにより、電極針47に印加する電圧の周波数と正負の極性の電圧の大きさを制御するものである。電流は抵抗R1から接続点46、抵抗R1、負極性高電圧発生回路42b中のダイオード(順方向に電圧が印加されている)を流れる。この結果、正極性の高電圧発生回路42aが出力する電圧(Em+)の1/2の電圧が電極針47に印加されることになる。これは負極性高電圧回路42bが負の高電圧を発生させている場合も同様である。即ち、従来の回路では高電圧発生回路が発生する電圧の1/2の電圧しか電極針47に印加されないという問題がある。   The switches 41a and 41b are opened / closed by a control signal from the control device 48, and positive and negative high voltages are alternately applied from the electrode needle 47 to alternately output positive and negative ions. By controlling the opening and closing time of the switches 41a and 41b, the frequency of the voltage applied to the electrode needle 47 and the magnitude of the voltage of positive and negative polarity are controlled. The current flows from the resistor R1 to the connection point 46, the resistor R1, and a diode (voltage is applied in the forward direction) in the negative high voltage generation circuit 42b. As a result, a voltage that is ½ of the voltage (Em +) output from the positive high voltage generation circuit 42 a is applied to the electrode needle 47. The same applies to the case where the negative high voltage circuit 42b generates a negative high voltage. That is, in the conventional circuit, there is a problem that only half the voltage generated by the high voltage generating circuit is applied to the electrode needle 47.

特開平9-213493号公報JP-A-9-213493 特許第2520311号Patent No. 2520311 特開2000-058290号公報JP 2000-058290 A

そこで本発明は、このような問題に鑑みて、簡単な回路構成で電圧をロスすることなく効率的に放電電極に高電圧を印加可能な高電圧発生回路及びイオナイザーを提供することを目的とするものである。   Therefore, in view of such problems, the present invention has an object to provide a high voltage generation circuit and an ionizer that can apply a high voltage to a discharge electrode efficiently without losing a voltage with a simple circuit configuration. Is.

本発明は、放電電極と接地電極との間に正又は負の直流高電圧を交互に印加し、放電電極のコロナ放電により正負のイオンを発生させるイオナイザーに用いられる正極性及び負極性倍電圧整流回路を含む高電圧発生回路において、前記正極性整流回路の出力端子間、及び前記負極性整流回路の出力端子間には各々電流制限抵抗が設けられ、前記正極性整流回路と前記負極性整流回路とは直列に接続され、前記放電電極に高電圧が印加されているときの高電圧発生回路は、前記放電電極と、高電圧を発生している前記いずれかの倍電圧整流回路と、高電圧を発生していない他の倍電圧整流回路の電流制限抵抗とが直列に接続された回路と等価な回路であることを特徴とする。   The present invention relates to positive and negative voltage doubler rectification used in an ionizer that alternately applies positive or negative DC high voltage between a discharge electrode and a ground electrode and generates positive and negative ions by corona discharge of the discharge electrode. In the high voltage generation circuit including a circuit, current limiting resistors are provided between the output terminals of the positive rectifier circuit and between the output terminals of the negative rectifier circuit, respectively, and the positive rectifier circuit and the negative rectifier circuit Is connected in series, and when a high voltage is applied to the discharge electrode, the high voltage generation circuit includes the discharge electrode, any one of the voltage doubler rectifier circuits generating a high voltage, and a high voltage The circuit is equivalent to a circuit in which a current limiting resistor of another voltage doubler rectifier circuit that does not generate current is connected in series.

また、本発明は、前記いずれか一方の倍電圧整流回路が電圧を発生しているとき、他の倍電圧整流回路は逆方向電圧が印加された片方向通電素子と前記他の倍電圧整流回路の電流制限抵抗とが並列に接続された回路と等価な回路となるように構成したことを特徴とする。   Further, according to the present invention, when any one of the voltage doubler rectifier circuits generates a voltage, the other voltage doubler rectifier circuit includes a one-way energization element to which a reverse voltage is applied and the other voltage doubler rectifier circuit. The current limiting resistor is configured to be equivalent to a circuit connected in parallel.

このような高電圧発生回路構成とすることにより、正極性又は負極性高電圧発生回路で発生した高電圧を大幅に低下させることなく放電電極に印加せしめることができる。例えば、電流制限抵抗として20MΩの抵抗を高電圧発生回路の出力端間に設けた場合、放電電極と接地電極との抵抗が放電時に200MΩ程度であるから、高電圧発生回路が発生した電圧の90%を放電電極に印加せしめることができる。   By adopting such a high voltage generation circuit configuration, the high voltage generated in the positive or negative high voltage generation circuit can be applied to the discharge electrode without drastically decreasing. For example, if a 20 MΩ resistor is provided between the output terminals of the high voltage generation circuit as a current limiting resistor, the resistance between the discharge electrode and the ground electrode is about 200 MΩ during discharge, so that the voltage generated by the high voltage generation circuit is 90%. % Can be applied to the discharge electrode.

前記倍電圧整流回路が、ビラード回路(Villard回路)又はコッククロフト・ウォルトン回路(Cockcroft-Walton回路)であることは好適である。   The voltage doubler rectifier circuit is preferably a billard circuit (Villard circuit) or a cockcroft-Walton circuit.

本発明は、上述した高電圧発生回路を備えたイオナイザーであることを特徴とする。   The present invention is an ionizer including the above-described high voltage generation circuit.

本発明によれば、簡単な回路構成で、正負の直流高電圧を大幅に低下させることなく交互に単一の放電電極に印加することができる。   According to the present invention, positive and negative DC high voltages can be alternately applied to a single discharge electrode with a simple circuit configuration without significantly decreasing.

以下、実施例に基づいて本発明の好ましい実施形態について詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although preferable embodiment of this invention is described in detail based on an Example, this invention is not limited to this.

図1は、本発明の実施例であるイオナイザーの概略分解図である。このイオナイザーは、紙面と直角な方向に並列に配置された多数の電極によりコロナ放電させ、除電対象物に正負イオンを含む空気流を吹き付けるものである。図1は矩形のイオナイザー本体の中央付近の概略分解図を示している。この装置は、イオナイザー本体1、イオンセンサー2a, 2b、及び後述する高電圧発生回路6等から構成されている。イオナイザー本体1は、放電電極3、対向電極であるグリッド4、空気流を形成する送風ファン5等から構成されている。なお、対向電極であるグリッド4は接地されている。   FIG. 1 is a schematic exploded view of an ionizer that is an embodiment of the present invention. This ionizer causes corona discharge by a large number of electrodes arranged in parallel in a direction perpendicular to the paper surface, and blows an air flow containing positive and negative ions to the static elimination object. FIG. 1 shows a schematic exploded view near the center of a rectangular ionizer body. This apparatus includes an ionizer body 1, ion sensors 2a and 2b, a high voltage generation circuit 6 described later, and the like. The ionizer body 1 includes a discharge electrode 3, a grid 4 as a counter electrode, a blower fan 5 that forms an air flow, and the like. The grid 4 that is the counter electrode is grounded.

図2は、倍電圧整流回路としてビラード回路(Villard回路)を2段用いた4逓倍電圧整流回路を備えた高電圧発生回路である。この高電圧発生回路は電源及び正極性及び負極性の高電圧を交互に印加するスイッチを含む電源制御回路7、及び高電圧発生回路6とから構成されている。電源制御回路7については上述した既存技術で説明した内容と基本的には同じである。   FIG. 2 shows a high voltage generation circuit including a quadruple voltage rectifier circuit using two stages of billard circuits (Villard circuits) as voltage doubler rectifier circuits. The high voltage generation circuit includes a power supply control circuit 7 including a power source and a switch for alternately applying positive and negative high voltages, and a high voltage generation circuit 6. The power supply control circuit 7 is basically the same as that described in the above-described existing technology.

高電圧発生回路6は、正極性高電圧発生回路6aと負極性高電圧発生回路6bとからなり、正極性高電圧発生回路6aは、トランスTra及び正極性倍電圧整流回路、及び出力端に設けた電流制限抵抗Raとからなり、負極性高電圧発生回路6bは、トランスTrb、負極性倍電圧整流回路、及び出力端に設けた電流制限抵抗Rbとから構成される。   The high voltage generation circuit 6 includes a positive high voltage generation circuit 6a and a negative high voltage generation circuit 6b. The positive high voltage generation circuit 6a is provided at the transformer Tra, the positive voltage doubler rectifier circuit, and the output terminal. The negative high voltage generation circuit 6b includes a transformer Trb, a negative voltage doubler rectifier circuit, and a current limiting resistor Rb provided at the output terminal.

図2に示す高電圧発生回路6において、正極性倍電圧整流回路の正極出力端に放電電極3が接続され、負極端は負極性倍電圧整流回路の負極出力端に接続している。また、負極性倍電圧整流回路の正極端は接地されている。   In the high voltage generating circuit 6 shown in FIG. 2, the discharge electrode 3 is connected to the positive output terminal of the positive voltage doubler rectifier circuit, and the negative electrode terminal is connected to the negative output terminal of the negative voltage doubler rectifier circuit. The positive terminal of the negative voltage doubler rectifier circuit is grounded.

図2に示す高電圧発生回路の動作について説明する。電源制御回路7により正極性高電圧発生回路6aに高電圧が印加され、負極性高電圧発生回路6bには高電圧が印加されない場合、正極性倍電圧整流回路の出力端にはトランスTraが発生した電圧Emの4倍電圧(4Em)が発生する。この結果放電電極3にはプラスの電圧が印加され放電電極端にコロナ放電が開始され正イオンが発生し、放電電極3から対向電極(接地電極)方向に電流が流れる。ここで負極性倍電圧整流回路は、この回路のダイオードであるDb1からDb4には逆方向の電圧が印加され、これらのダイオードとRbとが並列に接続した回路と等価な回路とみなすことができる。   The operation of the high voltage generation circuit shown in FIG. 2 will be described. When a high voltage is applied to the positive high voltage generation circuit 6a by the power supply control circuit 7 and no high voltage is applied to the negative high voltage generation circuit 6b, a transformer Tra is generated at the output terminal of the positive voltage doubler rectifier circuit. 4 times the voltage Em (4Em) generated. As a result, a positive voltage is applied to the discharge electrode 3, corona discharge is started at the end of the discharge electrode, positive ions are generated, and a current flows from the discharge electrode 3 toward the counter electrode (ground electrode). Here, the negative voltage doubler rectifier circuit can be regarded as a circuit equivalent to a circuit in which reverse voltages are applied to the diodes Db1 to Db4 of this circuit and these diodes and Rb are connected in parallel. .

電源制御回路7により負極性高電圧発生回路6bに高電圧が印加され、正極性高電圧発生回路6aには高電圧が印加されない場合については、同様に負極性高電圧発生回路6bの出力端にはトランスTrbが発生した電圧-Emの4倍電圧(-4Em)が発生する。この結果、放電電極3にはマイナスの電圧が印加され放電電極端にコロナ放電が開始され負イオンが発生し、対向電極(接地電極)から放電電極3の方向に電流が流れる。ここで正極性倍電圧整流回路は、この回路のダイオードDa1からDa4には逆方向の電圧が印加され、これらのダイオードとRaとが並列に接続した回路と等価な回路とみなすことができる。   Similarly, when the high voltage is applied to the negative polarity high voltage generation circuit 6b by the power supply control circuit 7 and no high voltage is applied to the positive polarity high voltage generation circuit 6a, the output voltage of the negative polarity high voltage generation circuit 6b is similarly applied. Generates a voltage (-4Em) that is four times the voltage -Em generated by the transformer Trb. As a result, a negative voltage is applied to the discharge electrode 3, corona discharge is started at the end of the discharge electrode, negative ions are generated, and current flows from the counter electrode (ground electrode) to the discharge electrode 3. Here, the positive voltage doubler rectifier circuit can be regarded as a circuit equivalent to a circuit in which reverse voltages are applied to the diodes Da1 to Da4 of this circuit and these diodes and Ra are connected in parallel.

図3は正極性倍電圧整流回路及び負極性倍電圧整流回路がそれぞれ動作するときの等価回路を示したものである。正極性倍電圧整流回路に高電圧が印加されるときの等価回路は図3(a)のようになり、負極性倍電圧整流回路に高電圧が印加されるときの等価回路は図3(b)に示すような等価回路となる。ここで、電流制限抵抗Ra及びRbをそれぞれ20MΩとすれば、放電電極3と対向電極(接地電極)との抵抗は約200MΩであるから、放電電極3には倍電圧整流回路で発生した4Emの約90%の電圧が印加されることになる。また、電流制限抵抗Ra、Rbにより過電流から回路を保護することができる。   FIG. 3 shows an equivalent circuit when the positive voltage doubler rectifier circuit and the negative voltage doubler rectifier circuit operate. The equivalent circuit when a high voltage is applied to the positive voltage doubler rectifier circuit is as shown in FIG. 3A, and the equivalent circuit when a high voltage is applied to the negative voltage doubler rectifier circuit is as shown in FIG. The equivalent circuit shown in FIG. Here, if each of the current limiting resistors Ra and Rb is 20 MΩ, the resistance between the discharge electrode 3 and the counter electrode (ground electrode) is about 200 MΩ, so that the discharge electrode 3 has 4 Em generated in the voltage doubler rectifier circuit. A voltage of about 90% will be applied. Further, the circuit can be protected from overcurrent by the current limiting resistors Ra and Rb.

図4は倍電圧整流回路として、ビラード回路(Villard回路)に替えてコッククロフト・ウォルトン回路(Cockcroft-Walton回路)を2段用いた4逓倍電圧整流回路を備えた高電圧発生回路である。正極性高電圧発生回路6cによりプラスの直流高電圧が放電電極3に印加されているときは、図3(a)に示す等価回路となり、負極性高電圧発生回路6dによりマイナスの直流高電圧が放電電極3に印加されているときは、図3(b)に示すような等価回路となる。倍電圧整流回路としてビラード回路(Villard回路)を用いた場合と同様に倍電圧整流回路で発生した電圧を低下させることなく放電電極3に電圧を印加せしめることが
できる。
FIG. 4 shows a high voltage generation circuit including a quadruple voltage rectifier circuit using two stages of a Cockcroft-Walton circuit (Cockcroft-Walton circuit) instead of the billard circuit (Villard circuit) as a double voltage rectifier circuit. When a positive DC high voltage is applied to the discharge electrode 3 by the positive high voltage generating circuit 6c, the equivalent circuit shown in FIG. 3 (a) is obtained, and a negative DC high voltage is generated by the negative high voltage generating circuit 6d. When applied to the discharge electrode 3, an equivalent circuit as shown in FIG. Similarly to the case where a billard circuit (Villard circuit) is used as the voltage doubler rectifier circuit, a voltage can be applied to the discharge electrode 3 without reducing the voltage generated by the voltage doubler rectifier circuit.

図5は図2に示した回路の電源波形を示した図である。図5において、入力電圧波形1は、電源制御回路7により−10Vの電圧をTrbに入力した場合の波形であり、入力電圧波形2は、電源制御回路7により+10Vの電圧をTraに入力した場合の波形である。なお、正負の基準電圧は接地電圧である。   FIG. 5 is a diagram showing power supply waveforms of the circuit shown in FIG. In FIG. 5, input voltage waveform 1 is a waveform when a voltage of −10 V is input to Trb by power supply control circuit 7, and input voltage waveform 2 is a case where a voltage of +10 V is input to Tra by power supply control circuit 7. It is a waveform. The positive / negative reference voltage is a ground voltage.

正極性高電圧発生回路6aと負極性高電圧発生回路6bに+10Vと−10Vの電圧を交互に入力することにより、出力電圧波形3に示すような高電圧が放電電極3に±約4.5KVで出力されることが確認できた。なお、入力電圧波形1及び入力電圧波形2のオフ状態が接地電圧(0V)より少し高なり、これが徐々に下がってくる波形となっているが、5V以下の電圧では倍電圧整流回路はオンとならないので、実質的に接地電圧と等価であり問題とならない。   By alternately inputting + 10V and -10V to the positive high voltage generation circuit 6a and the negative high voltage generation circuit 6b, a high voltage as shown in the output voltage waveform 3 is applied to the discharge electrode 3 at about ± 4.5 KV. It was confirmed that it was output. The OFF state of the input voltage waveform 1 and the input voltage waveform 2 is slightly higher than the ground voltage (0V), and this gradually decreases. However, the voltage doubler rectifier circuit is on when the voltage is 5V or less. Therefore, it is substantially equivalent to the ground voltage and does not cause a problem.

図5に示す出力電圧波形3に示すように、放電電極3には約4.5KVの正負の直流電圧が交互に印加されている。高電圧発生回路6により約5KVがその出力端間には発生するが、上述した通り、電流制限抵抗Ra(20MΩ)又はRb(20MΩ)による電圧降下が放電電極3と接地電極との間の抵抗(約200MΩ)との関係で約10%あることから放電電極3には±4.5KVの電圧が印加されている。   As shown in the output voltage waveform 3 shown in FIG. 5, positive and negative DC voltages of about 4.5 KV are alternately applied to the discharge electrodes 3. Although approximately 5 KV is generated between the output terminals by the high voltage generation circuit 6, as described above, the voltage drop due to the current limiting resistor Ra (20 MΩ) or Rb (20 MΩ) is a resistance between the discharge electrode 3 and the ground electrode. The voltage of ± 4.5 KV is applied to the discharge electrode 3 because it is about 10% in relation to (about 200 MΩ).

本発明によれば簡単な回路で、高電圧発生回路が発生した高電圧を大幅に低下させることなく放電電極に印加せしめることが可能な回路を作成することができる。また、この高電圧発生回路を備えたイオナイザーを製造することが可能であり、産業上の利用性がある。   According to the present invention, it is possible to create a circuit that can be applied to the discharge electrode with a simple circuit without significantly reducing the high voltage generated by the high voltage generation circuit. Further, it is possible to manufacture an ionizer equipped with this high voltage generation circuit, which has industrial applicability.

本発明の実施例であるイオナイザーの概略分解図である。It is a schematic exploded view of the ionizer which is an Example of the present invention. 倍電圧整流回路としてビラード回路(Villard回路)を用いた高電圧発生回路図である。It is a high voltage generation circuit diagram using a Billard circuit (Villard circuit) as a voltage doubler rectifier circuit. 本実施例の高電圧発生回路の正極性倍電圧整流回路、及び負極性倍電圧整流回路がそれぞれ動作するときの等価回路を示した図である。It is the figure which showed the equivalent circuit when the positive polarity voltage doubler rectification circuit and negative polarity voltage doubler rectification circuit of a high voltage generation circuit of a present Example each operate | move. 倍電圧整流回路としてコッククロフト・ウォルトン回路(Cockcroft-Walton回路)を用いた高電圧発生回路図である。It is a high voltage generation circuit diagram using a Cockcroft-Walton circuit (Cockcroft-Walton circuit) as a voltage doubler rectifier circuit. 本実施例の倍電圧整流回路としてビラード回路(Villard回路)を用いた高電圧発生回路の入出力電圧波形図である。It is an input / output voltage waveform diagram of a high voltage generation circuit using a billard circuit (Villard circuit) as a voltage doubler rectifier circuit of the present embodiment. 従来技術における高電圧発生回路図である。It is a high voltage generation circuit diagram in a prior art.

符号の説明Explanation of symbols

1 イオナイザー本体
2a,2b イオンセンサー
3 放電電極
4 グリッド(対向電極)
5 送風ファン
6 イオン発生回路(高電圧発生回路)
7 電源制御回路

1 Ionizer body 2a, 2b Ion sensor 3 Discharge electrode 4 Grid (counter electrode)
5 Fan 6 Ion generation circuit (high voltage generation circuit)
7 Power control circuit

Claims (5)

放電電極と接地電極との間に正又は負の直流高電圧を交互に印加し、放電電極のコロナ放電により正負のイオンを発生させるイオナイザーに用いられる正極性及び負極性倍電圧整流回路を含む高電圧発生回路において、
前記正極性整流回路の出力端子間、及び前記負極性整流回路の出力端子間には各々電流制限抵抗が設けられ、前記正極性整流回路と前記負極性整流回路とは直列に接続され、
前記放電電極に高電圧が印加されているときの高電圧発生回路は、前記放電電極と、高電圧を発生している前記いずれかの倍電圧整流回路と、高電圧を発生していない他の倍電圧整流回路の電流制限抵抗とが直列に接続された回路と等価な回路であることを特徴とする高電圧発生回路。
High voltage including positive and negative voltage doubler rectifier circuits used in ionizers that apply positive or negative DC high voltage alternately between discharge electrode and ground electrode to generate positive and negative ions by corona discharge of discharge electrode In the voltage generation circuit,
Current limiting resistors are provided between the output terminals of the positive rectifier circuit and between the output terminals of the negative rectifier circuit, and the positive rectifier circuit and the negative rectifier circuit are connected in series,
When a high voltage is applied to the discharge electrode, the high voltage generation circuit includes the discharge electrode, any one of the voltage doubler rectifier circuits that generate a high voltage, and another that does not generate a high voltage. A high voltage generation circuit, characterized in that the circuit is equivalent to a circuit in which a current limiting resistor of a voltage doubler rectifier circuit is connected in series.
前記いずれか一方の倍電圧整流回路が電圧を発生しているとき、他の倍電圧整流回路は逆方向電圧が印加された片方向通電素子と前記他の倍電圧整流回路の電流制限抵抗とが並列に接続された回路と等価な回路であることを特徴とする請求項1に記載の高電圧発生回路。   When one of the voltage doubler rectifier circuits generates a voltage, the other voltage doubler rectifier circuit includes a one-way energization element to which a reverse voltage is applied and a current limiting resistor of the other voltage doubler rectifier circuit. 2. The high voltage generation circuit according to claim 1, wherein the high voltage generation circuit is equivalent to a circuit connected in parallel. 前記電流制限抵抗が、前記放電電極と接地電極間の抵抗値の1/10以下であることを特徴とする請求項1又は2に記載の高電圧発生回路。 3. The high voltage generation circuit according to claim 1, wherein the current limiting resistance is 1/10 or less of a resistance value between the discharge electrode and the ground electrode. 前記倍電圧整流回路が、ビラード回路(Villard回路)又はコッククロフト・ウォルトン回路(Cockcroft-Walton回路)であることを特徴とする請求項1から3のいずれかに記載の高電圧発生回路。 4. The high voltage generating circuit according to claim 1, wherein the voltage doubler rectifier circuit is a billard circuit or a cockcroft-walton circuit. 請求項1から4のいずれかに記載の高電圧発生回路を備えたイオナイザー。 An ionizer comprising the high voltage generation circuit according to claim 1.
JP2006213109A 2005-08-24 2006-08-04 High voltage generator and ionizer Expired - Fee Related JP4954633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213109A JP4954633B2 (en) 2005-08-24 2006-08-04 High voltage generator and ionizer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005242690 2005-08-24
JP2005242690 2005-08-24
JP2006213109A JP4954633B2 (en) 2005-08-24 2006-08-04 High voltage generator and ionizer

Publications (3)

Publication Number Publication Date
JP2007087932A true JP2007087932A (en) 2007-04-05
JP2007087932A5 JP2007087932A5 (en) 2009-10-22
JP4954633B2 JP4954633B2 (en) 2012-06-20

Family

ID=37974675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213109A Expired - Fee Related JP4954633B2 (en) 2005-08-24 2006-08-04 High voltage generator and ionizer

Country Status (1)

Country Link
JP (1) JP4954633B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024544A (en) * 2010-06-25 2012-02-09 Toshiba Consumer Electronics Holdings Corp Dish dryer and method of drying and sterilizing dish
CN102573255A (en) * 2010-11-25 2012-07-11 春日电机株式会社 De-electrifying device
WO2013046530A1 (en) * 2011-09-30 2013-04-04 パナソニック 株式会社 Dc/dc converter, ion generation device, and electrostatic atomizing device
JP2015015234A (en) * 2013-06-05 2015-01-22 春日電機株式会社 Static eliminator
CN106602903A (en) * 2016-12-30 2017-04-26 广东美的制冷设备有限公司 Air purifier and control device and method of ion generator
CN106655829A (en) * 2016-12-30 2017-05-10 广东美的制冷设备有限公司 Air purifier and control device and method for ion generator
CN106655828A (en) * 2016-12-30 2017-05-10 广东美的制冷设备有限公司 Ion purifier, and control method and apparatus thereof
US10148193B2 (en) 2015-05-26 2018-12-04 Murata Manufacturing Co., Ltd. Power supply unit and static eliminator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058290A (en) * 1998-06-04 2000-02-25 Keyence Corp Static eliminator
JP2004063431A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator
JP2004063426A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058290A (en) * 1998-06-04 2000-02-25 Keyence Corp Static eliminator
JP2004063431A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator
JP2004063426A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024544A (en) * 2010-06-25 2012-02-09 Toshiba Consumer Electronics Holdings Corp Dish dryer and method of drying and sterilizing dish
CN102573255A (en) * 2010-11-25 2012-07-11 春日电机株式会社 De-electrifying device
WO2013046530A1 (en) * 2011-09-30 2013-04-04 パナソニック 株式会社 Dc/dc converter, ion generation device, and electrostatic atomizing device
JP2015015234A (en) * 2013-06-05 2015-01-22 春日電機株式会社 Static eliminator
US10148193B2 (en) 2015-05-26 2018-12-04 Murata Manufacturing Co., Ltd. Power supply unit and static eliminator
CN106602903A (en) * 2016-12-30 2017-04-26 广东美的制冷设备有限公司 Air purifier and control device and method of ion generator
CN106655829A (en) * 2016-12-30 2017-05-10 广东美的制冷设备有限公司 Air purifier and control device and method for ion generator
CN106655828A (en) * 2016-12-30 2017-05-10 广东美的制冷设备有限公司 Ion purifier, and control method and apparatus thereof

Also Published As

Publication number Publication date
JP4954633B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4954633B2 (en) High voltage generator and ionizer
JP4219451B2 (en) Static eliminator
JP2014507777A (en) Corona discharge type micro pulse bipolar ionizer and method
JP7124705B2 (en) plasma generator
JP2006334503A (en) Electrostatic atomizing apparatus
JP2009016288A (en) High-voltage generating circuit, ion generator, and electric device
TWI760350B (en) Voltage application device and discharge device
JP5002842B2 (en) How to adjust the ion balance
JP2006196291A5 (en)
JP5002843B2 (en) High voltage power supply and ion generator
TWI437786B (en) High voltage generating circuit and ion generator
JP4646796B2 (en) Voltage generation circuit and ion generator
JP4869034B2 (en) Static eliminator
JP2010218750A (en) Static eliminator
JPH09232068A (en) Negative ion generator
WO2010044304A1 (en) Ion generator
JP2009205815A (en) Static eliminator
JP2009059591A (en) Static eliminator
JP5794061B2 (en) Static eliminator
JP2009059590A (en) Static eliminator
JP2007018905A (en) High voltage driving circuit and ion generator
JP2004178812A (en) Destaticizing apparatus
JP2015015234A (en) Static eliminator
JP5791319B2 (en) Power supply circuit for static eliminator
JPWO2009104511A1 (en) Static eliminator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees