JP2007087690A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007087690A
JP2007087690A JP2005273336A JP2005273336A JP2007087690A JP 2007087690 A JP2007087690 A JP 2007087690A JP 2005273336 A JP2005273336 A JP 2005273336A JP 2005273336 A JP2005273336 A JP 2005273336A JP 2007087690 A JP2007087690 A JP 2007087690A
Authority
JP
Japan
Prior art keywords
batteries
insulating layer
electrode plate
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273336A
Other languages
Japanese (ja)
Inventor
Atsushi Ueda
敦史 上田
Yoichi Kurosawa
陽一 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005273336A priority Critical patent/JP2007087690A/en
Publication of JP2007087690A publication Critical patent/JP2007087690A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery normally providing a function as the battery, such as cycle characteristics or storage characteristics in the nonaqueous electrolyte secondary battery having high capacity with a positive electrode and a negative electrode both highly densified. <P>SOLUTION: In the nonaqueous electrolyte secondary battery is quipped with a negative plate, a positive plate, and a separator or a lithium ion conductive layer, a porous insulation layer having a low compression deformation ratio is installed in at least one of an interface between the separator or the lithium ion conductive layer and the negative plate and an interface between the separator or the lithium ion conductive layer and the positive plate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオンを利用する非水電解液二次電池に関し、特にセパレータまたはリチウムイオン導電性層と正極の界面、もしくはセパレータまたはリチウムイオン導電性層と負極の界面の少なくとも一方に絶縁層を有した高容量でサイクル寿命特性に優れた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery using lithium ions, and in particular, an insulating layer is provided on at least one of a separator or an interface between a lithium ion conductive layer and a positive electrode, or an interface between a separator or a lithium ion conductive layer and a negative electrode. The present invention relates to a non-aqueous electrolyte secondary battery having high capacity and excellent cycle life characteristics.

近年、民生用電子機器のポータブル化、コードレス化が急激に進んでおり、これら電子機器の駆動用電源を担う小型、軽量で高エネルギー密度を有する電池への要望が高まっている。非水電解液二次電池、とりわけリチウムイオン二次電池は、高電圧、高エネルギー密度を有する電池であることから、ノートパソコン、携帯電話、AV機器などを中心に使用されている。   In recent years, consumer electronic devices have become increasingly portable and cordless, and there is an increasing demand for small, lightweight, high energy density batteries that serve as power sources for driving these electronic devices. Non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are batteries having a high voltage and a high energy density, and are therefore mainly used for notebook computers, mobile phones, AV devices and the like.

非水電解液二次電池は、より高容量でサイクル寿命が長く、且つ、良好な放電特性を示すことが求められる。   The nonaqueous electrolyte secondary battery is required to have a higher capacity, a longer cycle life, and good discharge characteristics.

特に最近のリチウムイオン二次電池では、更なる高容量化を実現するために、正極活物質及び負極活物質の高密度化が図られており、それに伴って電池ケース内の空間における正極活物質及び負極活物質の占める割合が増加することから、非水電解液の占める割合を低下せざるを得ないという状況になっている。   Particularly in recent lithium ion secondary batteries, the positive electrode active material and the negative electrode active material have been increased in density in order to achieve higher capacity, and accordingly, the positive electrode active material in the space inside the battery case In addition, since the proportion of the negative electrode active material increases, the proportion of the non-aqueous electrolyte solution must be reduced.

しかし、充放電サイクルにより電池内では極板が膨張・収縮し、その極板からの圧力を受けてセパレータが圧縮されたり元に戻ったりする挙動を繰り返しており、その挙動に伴って非水電解液がセパレータ内の空孔から放出されたり、再導入されたりする動きをしていることから、電池ケース内の空間における非水電解液の占める割合が低くなると、非水電解液がセパレータの空孔からの放出・再導入を繰り返される間に非水電解液が空孔内に十分に戻りきれない状況が発生する可能性がある。   However, the electrode plate expands and contracts in the battery due to the charge / discharge cycle, and the separator is repeatedly compressed and returned to the original pressure due to the pressure from the electrode plate. Since the liquid moves from the pores in the separator and is reintroduced, the non-aqueous electrolyte becomes empty when the proportion of the non-aqueous electrolyte in the space in the battery case decreases. There is a possibility that a situation in which the non-aqueous electrolyte cannot fully return into the pores may occur during repeated discharge / reintroduction from the pores.

特に極板からの圧力を受けやすいセパレータの表面近傍が強く圧縮されることから、セパレータの表面近傍で非水電解液の分布が不均一になりやすく、非水電解液が不足した箇所付近に接している極板が充放電に十分に寄与できなくなり、極板内で充電状態の不均一化が発生し活物質の劣化が加速される。   In particular, the vicinity of the surface of the separator that is susceptible to pressure from the electrode plate is strongly compressed, so the distribution of the non-aqueous electrolyte tends to be non-uniform near the surface of the separator, and it is in contact with the area where the non-aqueous electrolyte is insufficient. The electrode plate is not able to sufficiently contribute to charging / discharging, the charge state becomes uneven in the electrode plate, and the deterioration of the active material is accelerated.

そこで、最近では、極板の表面に保液性に優れたポリフッ化ビニリデン樹脂層を設けることにより極板の表面の保液性を改善させ、高温保存時における電池の内部抵抗の上昇を低減することにより容量劣化を抑制することが提案されている。(例えば、特許文献1参照)
しかし、サイクル試験のように充放電毎に非水電解液がセパレータの空孔から放出・再導入を繰り返される状況においては、ポリフッ化ビニリデン樹脂層を設けることによる極板の表面の保液性改善では十分でなく、特に正負極活物質に対する非水電解液の割合が低下した最近の高容量化された非水電解液二次電池では、非水電解液がセパレータの空孔内に十分に戻りきらない状況が発生して、充放電サイクル全般を通して適切な電解液の分布を確保することができず、サイクル寿命が不十分になったり、放電特性が劣化したりする。
Therefore, recently, by providing a polyvinylidene fluoride resin layer with excellent liquid retention on the surface of the electrode plate, the liquid retention property of the surface of the electrode plate is improved, and the increase in the internal resistance of the battery during high temperature storage is reduced. Therefore, it has been proposed to suppress the capacity deterioration. (For example, see Patent Document 1)
However, in a situation where the nonaqueous electrolyte is repeatedly released and reintroduced from the pores of the separator every charge and discharge as in the cycle test, the liquid retention of the electrode plate surface is improved by providing a polyvinylidene fluoride resin layer. Is not enough, especially in recent high capacity non-aqueous electrolyte secondary batteries where the ratio of the non-aqueous electrolyte to the positive and negative electrode active materials has decreased, the non-aqueous electrolyte fully returns to the pores of the separator. An unsatisfactory situation occurs, and an appropriate distribution of the electrolyte cannot be ensured throughout the charge / discharge cycle, resulting in insufficient cycle life or deterioration of discharge characteristics.

また、他の例として、セパレータ自体の保液性を改善することにより、高温でのサイクル寿命性能や放置性能の改善が提案されているが、やはり正負極活物質に対する非水電解
液の割合が低下した最近の高容量化された非水電解液二次電池では十分な保液性改善とは成り得ない。(例えば、特許文献2参照)
特開2001−176497号公報 特開2002−367588号公報
As another example, improvement in cycle life performance and standing performance at high temperatures has been proposed by improving the liquid retention of the separator itself, but the ratio of the non-aqueous electrolyte to the positive and negative electrode active materials is still high. The recent high capacity non-aqueous electrolyte secondary battery that has been reduced cannot be sufficiently improved in liquid retention. (For example, see Patent Document 2)
JP 2001-176497 A JP 2002-367588 A

従来の非水電解液二次電池においては、サイクル試験のように充放電が繰り返される状況においては、極板の表面の保液性が十分ではなく、極板とセパレータの界面において非水電解液の分布が不均一になるという課題があった。特に、最近の高容量化された非電解液二次電池においては正負極活物質に対する非水電解液の割合が低いため、充放電サイクルの進行に伴って非水電解液の分布が顕著に不均一となり、その結果、サイクル寿命特性が低下するという課題を有していた。   In a conventional non-aqueous electrolyte secondary battery, in a situation where charge and discharge are repeated as in a cycle test, the liquid retention of the surface of the electrode plate is not sufficient, and the non-aqueous electrolyte solution is at the interface between the electrode plate and the separator. There has been a problem of non-uniform distribution. In particular, in the recent increase in capacity of non-electrolyte secondary batteries, the ratio of the non-aqueous electrolyte to the positive and negative electrode active materials is low, so that the distribution of the non-aqueous electrolyte is significantly reduced as the charge / discharge cycle progresses. As a result, there was a problem that the cycle life characteristics deteriorated.

本発明は、上記従来の課題を解決するものであり、充放電サイクルに伴う非水電解液の分布の不均一化による容量劣化を抑制し、高容量で且つサイクル寿命特性に優れた非水電解液二次電池を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, suppresses capacity deterioration due to non-uniform distribution of the non-aqueous electrolyte accompanying charge / discharge cycles, and has high capacity and excellent cycle life characteristics. An object is to provide a liquid secondary battery.

上記目的を達成するために、本発明は、負極板と、正極板と、セパレータまたはリチウムイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、前記セパレータまたはリチウムイオン導電性層と前記負極板との界面か、前記セパレータまたはリチウムイオン導電性層と前記正極板との界面の少なくとも一方に圧縮変形率の小さい多孔質状の絶縁層を設けたことを特徴としている。   In order to achieve the above object, the present invention provides a nonaqueous electrolyte secondary battery comprising a negative electrode plate, a positive electrode plate, a separator or a lithium ion conductive layer, and a nonaqueous electrolyte solution, wherein the separator Alternatively, a porous insulating layer having a small compressive deformation rate is provided on at least one of the interface between the lithium ion conductive layer and the negative electrode plate, or the interface between the separator or lithium ion conductive layer and the positive electrode plate. It is a feature.

本発明によれば、充放電サイクルを通して極板の表面近傍に非水電解液の均一な分布を確保できるため、高容量で且つサイクル寿命特性に優れた非水電解液二次電池を提供できる。   According to the present invention, a uniform distribution of the non-aqueous electrolyte can be secured in the vicinity of the surface of the electrode plate through the charge / discharge cycle, so that a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle life characteristics can be provided.

本発明においては、負極板と、正極板と、セパレータまたはリチウムイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、前記セパレータまたはリチウムイオン導電性層と前記負極板との界面か、前記セパレータまたはリチウムイオン導電性層と前記正極板との界面の少なくとも一方に圧縮変形率の小さい多孔質状の絶縁層を設けたものである。   In the present invention, a non-aqueous electrolyte secondary battery comprising a negative electrode plate, a positive electrode plate, a separator or a lithium ion conductive layer, and a non-aqueous electrolyte solution, the separator or the lithium ion conductive layer, A porous insulating layer having a small compressive deformation rate is provided on at least one of the interface with the negative electrode plate or the interface between the separator or the lithium ion conductive layer and the positive electrode plate.

この構成によれば、充放電サイクルを通して極板の表面近傍に非水電解液の均一な分布を確保できるため、高容量で且つサイクル寿命特性に優れた非水電解液二次電池が得られる効果を奏する。   According to this configuration, a uniform distribution of the non-aqueous electrolyte can be ensured near the surface of the electrode plate through the charge / discharge cycle, so that a non-aqueous electrolyte secondary battery having high capacity and excellent cycle life characteristics can be obtained. Play.

また、多孔質状の絶縁層は樹脂および有機化合物フィラー、もしくは樹脂および無機化合物フィラーを用いることが好ましい。   The porous insulating layer is preferably made of resin and organic compound filler, or resin and inorganic compound filler.

この構成によれば、粒子状であるフィラーを主構造体としてそれらを樹脂系バインダーで結合させることにより、多孔度が均一で圧縮変形率の小さい絶縁層が比較的容易に形成できる効果を奏する。   According to this configuration, there is an effect that an insulating layer having a uniform porosity and a small compressive deformation rate can be formed relatively easily by using particulate fillers as a main structure and bonding them with a resinous binder.

有機化合物フィラーの具体例としては、エポキシ樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、ポリイミド樹脂、フッ素系樹脂、ポリアミド樹脂等を有機溶剤に不溶となる
まで高分子化した微粒子タイプあるいは架橋した微粒子タイプのフィラーが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the organic compound filler include epoxy resin, melamine resin, urea resin, phenol resin, polyimide resin, fluorine resin, polyamide resin, etc., which are polymerized until they are insoluble in organic solvent, or crosslinked fine particle type. The filler is mentioned. These may be used alone or in combination of two or more.

無機化合物フィラーの具体例としては、無機酸化物フィラーが好ましく、アルミナ(Al23)、チタニア(TiO2)、ケイ素(SiO2)、ジルコニア、マグネシア等が挙げられる。これらも単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the inorganic compound filler are preferably inorganic oxide fillers, and examples thereof include alumina (Al 2 O 3 ), titania (TiO 2 ), silicon (SiO 2 ), zirconia, and magnesia. These may be used alone or in combination of two or more.

樹脂の具体例としては、芳香族ポリアミド等のアミド樹脂、ポリフッ化ビニリデン(以下、PVDF)およびフッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ素樹脂、アクリロニトリル単位を含むゴム性状高分子等が挙げられる。これらも単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも適度な弾力性、結着性等を有することから、アクリロニトリル単位を含む高分子が最も適している。   Specific examples of the resin include amide resins such as aromatic polyamide, fluororesins such as polyvinylidene fluoride (hereinafter referred to as PVDF) and vinylidene fluoride-hexafluoropropylene copolymers, and rubbery polymers containing acrylonitrile units. It is done. These may be used alone or in combination of two or more. Among them, a polymer containing an acrylonitrile unit is most suitable because it has appropriate elasticity and binding properties.

また、多孔質状の絶縁層は厚みが0.5μm〜4.0μmであり、空孔率が20〜80%であることが好ましい。   The porous insulating layer preferably has a thickness of 0.5 μm to 4.0 μm and a porosity of 20 to 80%.

この構成によれば、適度なリチウムイオン透過性と、適度な非水電解液保持性を実現できる。その結果、更に高容量で且つサイクル寿命特性に優れた非水電解液二次電池が得られる効果を奏する。   According to this configuration, it is possible to realize an appropriate lithium ion permeability and an appropriate non-aqueous electrolyte retention. As a result, there is an effect that a non-aqueous electrolyte secondary battery having a higher capacity and excellent cycle life characteristics can be obtained.

また、正極活物質としては、LixCo1-yy2(1.0≦x≦1.15、0.005≦y≦0.1であり、MはMg、Al、Ti、Mn、Ni、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物からなる群より選択された少なくとも一種類と、LixNiyCoz1-y-z2(1.0≦x≦1.15、0.1≦y≦0.85、0.1≦z≦0.5であり、MはMg、Al、Ti、Mn、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物からなる群より選択された少なくとも一種類を混合して用いることが好ましい。 As the positive electrode active material, Li x Co 1-y M y O 2 ( a 1.0 ≦ x ≦ 1.15,0.005 ≦ y ≦ 0.1, M is Mg, Al, Ti, Mn , Ni, Fe, Y, Zr, Mo, W) at least one selected from the group consisting of compounds represented by: Li x Ni y Co z M 1-yz O 2 (1.0 ≦ x ≦ 1.15, 0.1 ≦ y ≦ 0.85, 0.1 ≦ z ≦ 0.5, and M is Mg, Al, Ti, Mn, Fe, Y, Zr, It is preferable to mix and use at least one selected from the group consisting of compounds represented by at least one selected from Mo and W).

この構成によれば、本発明の多孔質状の絶縁層を具備することによるサイクル寿命特性の改善効果を更に発揮できる。その理由は以下の通りである。   According to this structure, the improvement effect of the cycle life characteristic by having the porous insulating layer of this invention can further be exhibited. The reason is as follows.

LixCo1-yy2(1.0≦x≦1.15、0.005≦y≦0.1であり、MはMg、Al、Ti、Mn、Ni、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物は電子伝導性に優れているものの、活物質単位重量あたりの容量が小さく、高容量化が困難である。 Li x Co 1-y M y O 2 ( a 1.0 ≦ x ≦ 1.15,0.005 ≦ y ≦ 0.1, M is Mg, Al, Ti, Mn, Ni, Fe, Y, Zr , At least one selected from Mo and W) is excellent in electron conductivity, but has a small capacity per unit weight of the active material and is difficult to increase in capacity.

一方、LixNiyCoz1-y-z2(1.0≦x≦1.15、0.1≦y≦0.85、0.1≦z≦0.5であり、MはMg、Al、Ti、Mn、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物は活物質単位重量あたりの容量が大きく、電池の高容量化に有用なものの、電子伝導性に劣ることから電池の低温放電特性が低下するという課題がある。 On the other hand, Li x Ni y Co z M 1-yz O 2 (1.0 ≦ x ≦ 1.15, 0.1 ≦ y ≦ 0.85, 0.1 ≦ z ≦ 0.5, and M is Mg , Al, Ti, Mn, Fe, Y, Zr, Mo, and W) have a large capacity per unit weight of the active material and are useful for increasing the capacity of the battery. However, there is a problem that the low-temperature discharge characteristics of the battery are lowered due to the poor electronic conductivity.

そこで、これらの化合物を混合して用いることにより、より高容量で低温放電特性に優れた電池が得られる可能性がある。しかし、この混合正極活物質を用いて電池を作製すると、従来に比べて大幅に高容量な正極板となり、それに組み合わせる負極板をより高密度化して電池ケース内に収納する必要が生じるため、電池ケース内における非水電解液の占める割合を大幅に低減せざるを得ない状況となる。   Therefore, there is a possibility that a battery having higher capacity and excellent low-temperature discharge characteristics can be obtained by using a mixture of these compounds. However, when a battery is produced using this mixed positive electrode active material, a positive electrode plate having a significantly higher capacity than the conventional one is produced, and the negative electrode plate to be combined with it needs to be densified and stored in the battery case. The ratio of the non-aqueous electrolyte in the case is inevitably reduced.

その結果、充放電サイクルに伴い極板の表面近傍の非水電解液の分布が不均一になり、サイクル寿命特性が低下するという課題が発生する。   As a result, the non-aqueous electrolyte distribution in the vicinity of the surface of the electrode plate becomes non-uniform with the charge / discharge cycle, causing a problem that the cycle life characteristics are deteriorated.

そこで、この混合正極活物質を用いて作製した電池に、本発明の多孔質状の絶縁層を具備させることにより前記課題が改善され、高容量で低温放電特性に優れ、且つサイクル寿命特性に優れた非水電解液二次電池が実現可能となる。   Therefore, the above problem is improved by providing the battery produced using this mixed positive electrode active material with the porous insulating layer of the present invention, which has a high capacity, excellent low-temperature discharge characteristics, and excellent cycle life characteristics. In addition, a non-aqueous electrolyte secondary battery can be realized.

尚、多孔質状の絶縁層は10kg/cm2の荷重を加えた時の圧縮変形率が5%以下であれば、充放電に伴う極板の膨張・収縮による圧力を受けても、ほとんど圧縮変形しない強度を保持できる多孔質状の絶縁層を極板の表面に形成できる。 If the compressive deformation rate when a load of 10 kg / cm 2 is applied is 5% or less, the porous insulating layer is almost compressed even if it receives pressure due to expansion / contraction of the electrode plate due to charge / discharge. A porous insulating layer capable of maintaining the strength without deformation can be formed on the surface of the electrode plate.

以下、図面を参照して本発明の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

尚、ここで示す図は本発明の電池の一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   In addition, the figure shown here is an example of the battery of this invention, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

<実施例1>
(電池の作製)
図1は本発明の非水電解液二次電池の一実施例を示す一部切欠斜視図、図2は極板群の概略断面図であり、図2(a)は多孔質状の絶縁層を設けない極板群を示す比較例の概略断面図、図2(b)は本発明の一実施例である多孔質状の絶縁層を正極板の表面に設けた極板群の概略断面図、図2(c)は本発明の一実施例である多孔質状の絶縁層を負極板の表面に設けた極板群の概略断面図、図2(d)は本発明の一実施例である多孔質状の絶縁層を正負極板の両表面に設けた極板群の概略断面図である。
<Example 1>
(Production of battery)
FIG. 1 is a partially cutaway perspective view showing an embodiment of the nonaqueous electrolyte secondary battery of the present invention, FIG. 2 is a schematic sectional view of an electrode plate group, and FIG. 2A is a porous insulating layer. FIG. 2B is a schematic cross-sectional view of an electrode plate group in which a porous insulating layer according to an embodiment of the present invention is provided on the surface of a positive electrode plate. FIG. 2 (c) is a schematic sectional view of an electrode plate group in which a porous insulating layer according to an embodiment of the present invention is provided on the surface of a negative electrode plate, and FIG. 2 (d) is an embodiment of the present invention. It is a schematic sectional drawing of the electrode group which provided the certain porous insulating layer on both surfaces of the positive / negative electrode board.

図1に示したように、セパレータを介して帯状の正極板と負極板を複数回渦巻状に巻回して、極板群1が構成される。正極板と負極板にはそれぞれアルミニウム製の正極リード2およびニッケル製負極リード3を接続している。それをアルミニウム製の電池ケース4内に収容する。正極リード2の他端をアルミニウム製の封口板5にスポット溶接し、また負極リード3の他端は封口板5の中心部にあるニッケル製の負極端子6の下部にスポット溶接する。電池ケース4の開口部周囲と封口板5とをレーザー溶接し、所定量の非水電解液を注入口7から注入する。最後に注入口7をアルミニウム製の栓を用いてレーザー溶接し、電池が完成する。   As shown in FIG. 1, the electrode plate group 1 is configured by winding a belt-like positive electrode plate and a negative electrode plate in a spiral shape through a separator. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 are connected to the positive electrode plate and the negative electrode plate, respectively. It is accommodated in a battery case 4 made of aluminum. The other end of the positive electrode lead 2 is spot welded to the aluminum sealing plate 5, and the other end of the negative electrode lead 3 is spot welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5. The periphery of the opening of the battery case 4 and the sealing plate 5 are laser welded, and a predetermined amount of non-aqueous electrolyte is injected from the inlet 7. Finally, the inlet 7 is laser welded using an aluminum stopper to complete the battery.

(1)正極の作製
LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を5対5で混合したものを正極活物質とした。この混合正極活物質100重量部に導電材としてアセチレンブラック3重量部、結着剤としてポリフッ化ビニリデンが5重量部になるようにポリフッ化ビニリデンのN−メチルピロリジノン(NMP)溶液を調整し、撹拌混合してペースト状の正極合剤13を得た。
(1) Production of Positive Electrode A mixture of LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 in a ratio of 5 to 5 was used as a positive electrode active material. An N-methylpyrrolidinone (NMP) solution of polyvinylidene fluoride is prepared and stirred so that 100 parts by weight of the mixed positive electrode active material is 3 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder. By mixing, a paste-like positive electrode mixture 13 was obtained.

次に、厚さ20μmのアルミニウム箔を正極集電体11とし、その両面に前記ペースト状正極合剤13を塗布し、乾燥後圧延ローラーで圧延を行い、所定寸法に裁断して正極板8とした。   Next, an aluminum foil having a thickness of 20 μm is used as the positive electrode current collector 11, the paste-like positive electrode mixture 13 is applied to both surfaces thereof, dried and then rolled with a rolling roller, and cut into a predetermined size to obtain the positive electrode plate 8. did.

尚、正極用導電材としては、構成された電池において実質的に化学安定な電子伝導性材料であればよい。例えば、グラファイト類、カーボンブラック類、導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などが挙げられ、これらを単独または混合物として用いても良い。   The positive electrode conductive material may be any electron conductive material that is substantially chemically stable in the constructed battery. Examples include graphites, carbon blacks, conductive fibers, metal powders, conductive whiskers, organic conductive materials such as conductive metal oxides or polyphenylene derivatives, and these are used alone or as a mixture. Also good.

正極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂などが用いられる。例えば、ポリ
フッ化ビニリデン(PVDF)の他、ポリテトラフルオロエチレン(PTFE)などが好ましい。
As the positive electrode binder, a thermoplastic resin, a thermosetting resin, or the like is used. For example, polytetrafluoroethylene (PTFE) is preferable in addition to polyvinylidene fluoride (PVDF).

正極用集電体の形状としては、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などを用いることができる。厚みは、特に限定されないが、1〜500μmのものが好ましい。   As the shape of the positive electrode current collector, a foil, a film, a sheet, a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like can be used. The thickness is not particularly limited, but is preferably 1 to 500 μm.

(2)負極の作製
平均粒径が約20μmになるように粉砕、分級した鱗片状黒鉛と結着剤のスチレン/ブタジエンゴム3重量部を混合した後、黒鉛に対しカルボキシメチルセルロースが1%となるようにカルボキシメチルセルロ−ス水溶液を加え、撹拌混合しペースト状負極合剤14とした。次に、厚さ15μmの銅箔を負極集電体12とし、その両面にペースト状の負極合剤14を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板9とした。
(2) Production of negative electrode After mixing crushed and classified scaly graphite so that the average particle diameter is about 20 μm and 3 parts by weight of binder styrene / butadiene rubber, carboxymethyl cellulose becomes 1% with respect to graphite. Thus, a carboxymethyl cellulose aqueous solution was added and mixed by stirring to obtain a paste-like negative electrode mixture 14. Next, a copper foil having a thickness of 15 μm is used as the negative electrode current collector 12, a paste-like negative electrode mixture 14 is applied on both sides thereof, dried and then rolled using a rolling roller, and cut into a predetermined size to obtain a negative electrode plate It was set to 9.

尚、負極活物質としては、例えばリチウムをドープ・脱ドープすることが可能な炭素質を主体とする材料として、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等が挙げられ、これらを単独もしくは2種以上を混合して用いることができる。負極活物質の平均粒径は特に限定されないが、1〜30μmのものが好ましい。   Examples of the negative electrode active material include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and the like, which are mainly carbonaceous materials that can be doped and dedoped with lithium. , Glassy carbons, organic polymer compound fired bodies (phenol resins, furan resins, etc., fired at a suitable temperature and carbonized), carbon fibers, activated carbon, etc., and these may be used alone or in combination of two or more. It can be used by mixing. The average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 30 μm.

負極用導電材としては、電子伝導性材料であれば特に限定されないが、例えば、人造黒鉛、アセチレンブラック、炭素繊維などが好ましい。   The negative electrode conductive material is not particularly limited as long as it is an electron conductive material. For example, artificial graphite, acetylene black, and carbon fiber are preferable.

負極用結着剤としては、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体などが好ましい。   Examples of the binder for the negative electrode include styrene butadiene rubber, polyvinylidene fluoride, ethylene-acrylic acid copolymer, or (Na +) ion-crosslinked product of the above material, ethylene-methacrylic acid copolymer, or (Na +) of the above material. An ionic cross-linked product, an ethylene-methyl acrylate copolymer, or a (Na +) ionic cross-linked product of the material, an ethylene-methyl methacrylate copolymer, or a (Na +) ionic cross-linked product of the material are preferable.

負極用集電体としては、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂などの他に、銅またはステンレス鋼の表面をカーボン、ニッケルまたはチタンで処理して得られる複合材料などを用いることができる。これらのなかでも、銅および銅合金が特に好ましく、これらの材料の表面を酸化して用いても良い。また、表面処理により集電体表面に凹凸を付けても良い。形状や厚みとしては、前記正極用集電体と同様である。   As the negative electrode current collector, in addition to stainless steel, nickel, copper, titanium, carbon, conductive resin, etc., a composite material obtained by treating the surface of copper or stainless steel with carbon, nickel, or titanium is used. be able to. Among these, copper and copper alloys are particularly preferable, and the surfaces of these materials may be oxidized and used. Moreover, you may give an unevenness | corrugation to the collector surface by surface treatment. The shape and thickness are the same as those of the positive electrode current collector.

(3)多孔質状の絶縁層の原料ペーストの調製
無機酸化物フィラーとして、メディアン径0.3μmのアルミナを950gと、樹脂成分である日本ゼオン(株)製のBM−720H(アクリロニトリル単位を含むゴム性状高分子を8重量%含むNMP溶液)625gと、適量のNMPとを、双腕式練合機にて攪拌し、多孔質状の絶縁層10の原料ペーストを調製した。
(3) Preparation of raw material paste of porous insulating layer As inorganic oxide filler, 950 g of alumina having a median diameter of 0.3 μm and BM-720H (containing acrylonitrile units) manufactured by Nippon Zeon Co., Ltd., which is a resin component 625 g of an NMP solution containing 8% by weight of a rubber-like polymer) and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a raw material paste for the porous insulating layer 10.

(4)非水電解液の調製
エチレンカーボネートとエチルメチルカーボネートを20℃において30:70の体積割合で調整した溶媒に1.0mol/lのLiPF6を溶解したものを用いた。
(4) Preparation of non-aqueous electrolyte A solution prepared by dissolving 1.0 mol / l LiPF 6 in a solvent prepared by adjusting ethylene carbonate and ethyl methyl carbonate at a volume ratio of 30:70 at 20 ° C. was used.

尚、本発明のリチウムイオン伝導性の非水電解液としては、溶媒と、その溶媒に溶解するリチウム塩及び添加剤とから構成されている。非水溶媒としては、公知の材料を使用することができる。   The lithium ion conductive non-aqueous electrolyte of the present invention is composed of a solvent, a lithium salt and an additive dissolved in the solvent. Known materials can be used as the non-aqueous solvent.

(5)電池の組立
(実施例1の電池A1〜A9)
前記(3)で調整した多孔質状の絶縁層10の原料ペーストを前記(1)で作製した正極板8の両面にグラビア塗布し、塗膜を温風乾燥させて、各面に厚みが1.0μmの多孔質状の絶縁層10を具備する正極板8を作製した。
(5) Battery assembly (Batteries A1 to A9 of Example 1)
The raw material paste for the porous insulating layer 10 prepared in the above (3) is gravure-coated on both surfaces of the positive electrode plate 8 prepared in the above (1), the coating film is dried with hot air, and the thickness is 1 on each surface. A positive electrode plate 8 having a porous insulating layer 10 having a thickness of 0.0 μm was produced.

そして、多孔質状の絶縁層10を具備する正極板8、負極板9および厚さ25μmの微多孔性ポリエチレン樹脂製のセパレータを渦巻状に巻回し、これに前記(4)で調整した非水電解液を注液した後密封栓した。   Then, the positive electrode plate 8 and the negative electrode plate 9 having the porous insulating layer 10 and a separator made of a microporous polyethylene resin having a thickness of 25 μm are spirally wound, and the non-water adjusted in (4) above is wound around this. The electrolyte was poured and sealed.

負極活物質の重量に対する比が(表1)に示した値となるように非水電解液の注液重量を調整し、このようにして作製した電池を本発明の実施例1の電池A1からA9とした。   The non-aqueous electrolyte injection weight was adjusted so that the ratio to the weight of the negative electrode active material was the value shown in (Table 1), and the battery thus produced was manufactured from the battery A1 of Example 1 of the present invention. A9.

(実施例1の電池B1〜B9)
負極板9の両面に塗布した以外は電池A1〜A9と同様にして作製した電池を本発明の実施例1の電池B1〜B9とした。
(Batteries B1 to B9 of Example 1)
Batteries produced in the same manner as the batteries A1 to A9 except that they were applied to both surfaces of the negative electrode plate 9 were designated as batteries B1 to B9 of Example 1 of the present invention.

(実施例1の電池C1〜C9)
正極板8、および負極板9の両面に塗布した以外は電池A1〜A9と同様にして作製した電池を本発明の実施例1の電池C1〜C9とした。
(Batteries C1 to C9 of Example 1)
Batteries produced in the same manner as the batteries A1 to A9 except that the positive electrode plate 8 and the negative electrode plate 9 were coated on both surfaces were designated as batteries C1 to C9 of Example 1 of the present invention.

(比較例の電池D1〜D9)
前記(3)で調整した多孔質状の絶縁層10を塗布しなかった以外は、実施例1と同様にして作製した電池を比較例の電池D1〜D9とした。
(Comparison batteries D1 to D9)
Batteries produced in the same manner as in Example 1 except that the porous insulating layer 10 prepared in (3) was not applied were designated as batteries D1 to D9 of comparative examples.

(サイクル寿命特性評価)
実施例1および比較例の電池D1〜D9を用い、環境温度20℃で充放電サイクルを500回行った。充電条件は最大電流600mA、充電終止電圧が4.20Vでの定電圧充電を2時間とした。放電条件は電流値600mA、放電終止電圧3.0Vの定電流で行い、500サイクル経過後の放電容量を測定し、初期容量に対する比率で評価結果を示した。
(Cycle life characteristics evaluation)
Using the batteries D1 to D9 of Example 1 and Comparative Example, the charge / discharge cycle was performed 500 times at an environmental temperature of 20 ° C. The charging conditions were a constant voltage charge with a maximum current of 600 mA and a charge end voltage of 4.20 V for 2 hours. The discharge conditions were a constant current with a current value of 600 mA and a discharge end voltage of 3.0 V, the discharge capacity after 500 cycles had been measured, and the evaluation results were shown as a ratio to the initial capacity.

(表1)に実施例1の電池A1〜A9,B1〜B9,C1〜C9、および比較例の電池D1〜D9の500サイクル後容量維持率を示す。   Table 1 shows the capacity retention ratios after 500 cycles of the batteries A1 to A9, B1 to B9, C1 to C9 of Example 1, and the batteries D1 to D9 of Comparative Examples.

(表1)からわかるように、負極活物質の重量に対する非水電解液の重量比(非水電解液の重量(g)/負極活物質の重量(g))が同じ条件である電池の500サイクル後容量維持率を各々比較すると、多孔質状の絶縁層10を具備しなかった比較例の電池D1〜D9は明かに低下傾向を示している。 As can be seen from (Table 1), the weight ratio of the non-aqueous electrolyte to the weight of the negative electrode active material (the weight of the non-aqueous electrolyte (g) / the weight of the negative electrode active material (g)) is 500 under the same conditions. When comparing the capacity retention ratios after the cycle, the batteries D1 to D9 of the comparative examples that did not include the porous insulating layer 10 clearly show a decreasing tendency.

また、比較例の電池D1〜D9では、負極活物質の重量に対する非水電解液の重量比(非水電解液の重量(g)/負極活物質の重量(g))が0.9以下となる電池D4〜D9において、500サイクル後容量維持率が顕著に低下傾向を示しており、特に0.75以下の比率となる電池D7〜D9では大幅な低下が認められる。   Moreover, in batteries D1 to D9 of comparative examples, the weight ratio of the non-aqueous electrolyte to the weight of the negative electrode active material (weight of non-aqueous electrolyte (g) / weight of negative electrode active material (g)) was 0.9 or less. In the batteries D4 to D9, the capacity maintenance rate after 500 cycles shows a markedly decreasing tendency, and in particular, the batteries D7 to D9 having a ratio of 0.75 or less show a significant decrease.

一方、多孔質状の絶縁層10を具備する実施例1の電池A1〜A9,B1〜B9,C1〜C9のうち、正極板8、もしくは負極板9のいずれか一方の極板の表面に多孔質状の絶縁層10を具備した電池A1〜A9,B1〜B9では、負極活物質の重量に対する非水電解液の重量比(非水電解液の重量(g)/負極活物質の重量(g))が0.9以下となる電池A4〜A9、および電池B4〜B9においても比較的良好な容量維持率を示しており、0.75以下の比率においても大きな維持率の低下は認められない。   On the other hand, among the batteries A1 to A9, B1 to B9, and C1 to C9 of Example 1 including the porous insulating layer 10, the surface of one of the positive electrode plate 8 and the negative electrode plate 9 is porous. In the batteries A1 to A9 and B1 to B9 having the insulating layer 10, the weight ratio of the nonaqueous electrolyte to the weight of the negative electrode active material (weight of the nonaqueous electrolyte (g) / weight of the negative electrode active material (g The batteries A4 to A9 and the batteries B4 to B9 having a ratio of)) of 0.9 or less also show a relatively good capacity maintenance rate, and even when the ratio is 0.75 or less, no significant reduction in the maintenance rate is observed. .

更に、正極板8、および負極板9の両方に多孔質状の絶縁層10を具備した電池C1〜C9では、より良好な容量維持率が得られた。   Furthermore, in the batteries C1 to C9 having the porous insulating layer 10 on both the positive electrode plate 8 and the negative electrode plate 9, a better capacity retention rate was obtained.

500サイクル後容量維持率の低下が大きい比較の電池D9を分解し観察を行った結果、セパレータと極板の界面で、明らかに非水電解液が涸渇している部位が認められた。そのような部位周辺の正極のX線回折分析を行うと、正極活物質の結晶構造が変化しており、充電の不均一化が発生して正極活物質が顕著に劣化していることがわかった。また、そのような部位周辺の負極においては、充電の不均一化によりリチウム析出が認められた。   As a result of disassembling and observing the comparative battery D9 having a large decrease in capacity retention after 500 cycles, a portion where the nonaqueous electrolyte was clearly depleted was observed at the interface between the separator and the electrode plate. When X-ray diffraction analysis of the positive electrode around such a part is performed, it is found that the crystal structure of the positive electrode active material is changed, the charge non-uniformity occurs, and the positive electrode active material is significantly deteriorated. It was. Further, in the negative electrode around such a part, lithium deposition was observed due to non-uniform charging.

一方、正極板8、および負極板9の両方に多孔質状の絶縁層10を具備した500サイクル後の電池C9を分解し観察を行った結果、セパレータや極板の界面で非水電解液が涸渇している部位は認められなかった。また、正極のX線回折分析による正極活物質の結晶構造の顕著な変化はなく、負極板9においてもリチウム析出は認められなかった。   On the other hand, as a result of disassembling and observing the battery C9 after 500 cycles in which both the positive electrode plate 8 and the negative electrode plate 9 were provided with the porous insulating layer 10, the nonaqueous electrolytic solution was found at the interface between the separator and the electrode plate. There was no depleted site. Further, there was no significant change in the crystal structure of the positive electrode active material by X-ray diffraction analysis of the positive electrode, and no lithium deposition was observed in the negative electrode plate 9.

以上の結果より、負極活物質の重量に対する非水電解液の重量比(非水電解液の重量(g)/負極活物質の重量(g))が0.9以下の電池においても、セパレータと正極板8の界面、もしくはセパレータと負極板9の界面の少なくとも一方に多孔質状の絶縁層10を具備することにより、充放電サイクルにおける非水電解液の分布の不均一化が抑制され、充放電に伴う極板の反応が均一に行われることから活物質が劣化せず、良好なサイクル寿命特性が得られることが明らかとなった。特に、0.75以下の比率の電池においてより大きな効果が得られている。   From the above results, even in a battery in which the weight ratio of the non-aqueous electrolyte to the weight of the negative electrode active material (weight of the non-aqueous electrolyte (g) / weight of the negative electrode active material (g)) is 0.9 or less, the separator and By providing the porous insulating layer 10 at least one of the interface of the positive electrode plate 8 or the interface between the separator and the negative electrode plate 9, non-uniform distribution of the non-aqueous electrolyte in the charge / discharge cycle is suppressed, It has been clarified that since the reaction of the electrode plate accompanying the discharge is uniformly performed, the active material is not deteriorated and good cycle life characteristics can be obtained. In particular, a greater effect is obtained in a battery having a ratio of 0.75 or less.

また、セパレータと正極板8の界面、もしくはセパレータと負極板9の界面のどちらか一方に多孔質状の絶縁層10を具備することで改善効果が認められるが、両方に多孔質状の絶縁層10を具備することで、より大きな効果が得られている。   Moreover, although the improvement effect is recognized by providing the porous insulating layer 10 in either one of the interface between the separator and the positive electrode plate 8 or the interface between the separator and the negative electrode plate 9, the porous insulating layer is formed in both. By having 10, the larger effect is acquired.

<実施例2>
(実施例2の電池E1〜E4、比較例の電池E5〜E7)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーと樹脂成分の混合比を調整して、塗膜にした場合に10kg/cm2の荷重を加えた時の圧縮変形率が(表2)に記載された値になるペーストを作製した以外は実施例1の電池A9と同様に作製した電池を実施例2の電池E1〜E4、比較例の電池E5〜E7とした。
<Example 2>
(Batteries E1 to E4 of Example 2 and batteries E5 to E7 of Comparative Examples)
As a raw material paste for the porous insulating layer 10, when the mixing ratio of the inorganic oxide filler and the resin component is adjusted to form a coating film, the compression deformation rate when a load of 10 kg / cm 2 is applied (Table Batteries produced in the same manner as the battery A9 of Example 1 except that the paste having the values described in 2) were produced were designated as batteries E1 to E4 of Example 2 and batteries E5 to E7 of Comparative Examples.

(実施例2の電池F1〜F4、比較例の電池F5〜F7)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーと樹脂成分の混合比を調整して、塗膜にした場合に10kg/cm2の荷重を加えた時の圧縮変形率が(表2)に記載された値になるペーストを作製した以外は実施例1の電池B9と同様に作製した電池を実施例2の電池F1〜F4、比較例の電池F5〜F7とした。
(Batteries F1 to F4 of Example 2 and batteries F5 to F7 of Comparative Examples)
As a raw material paste for the porous insulating layer 10, when the mixing ratio of the inorganic oxide filler and the resin component is adjusted to form a coating film, the compression deformation rate when a load of 10 kg / cm 2 is applied (Table The batteries produced in the same manner as the battery B9 of Example 1 except that the paste having the values described in 2) were produced were designated as batteries F1 to F4 of Example 2 and batteries F5 to F7 of Comparative Examples.

(実施例2の電池G1〜G4、比較例の電池G5〜G7)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーと樹脂成分の混合比を調整して、塗膜にした場合に10kg/cm2の荷重を加えた時の圧縮変形率が(表2)に記載された値になるペーストを作製した以外は実施例1の電池C9と同様に作製した電池を実施例2の電池G1〜G4、比較例の電池G5〜G7とした。
(Batteries G1 to G4 of Example 2 and batteries G5 to G7 of Comparative Examples)
As a raw material paste for the porous insulating layer 10, when the mixing ratio of the inorganic oxide filler and the resin component is adjusted to form a coating film, the compression deformation rate when a load of 10 kg / cm 2 is applied (Table The batteries produced in the same manner as the battery C9 of Example 1 except that the paste having the values described in 2) were produced were designated as batteries G1 to G4 of Example 2 and batteries G5 to G7 of Comparative Examples.

(表2)に500サイクル後容量維持率の評価結果を示す。   Table 2 shows the evaluation results of the capacity retention rate after 500 cycles.

10kg/cm2の荷重を加えた時の圧縮変形率が5%以下の多孔質状の絶縁層10を具備する実施例2の電池E1〜E4,F1〜F4,G1〜G4は、いずれも良好な500サイクル後の容量維持率を示しているが、変形率が6%以上の電池E5〜E7,F5〜F7,G5〜G7では、容量維持率の低下が認められた。 The batteries E1 to E4, F1 to F4, and G1 to G4 of Example 2 each including the porous insulating layer 10 having a compressive deformation rate of 5% or less when a load of 10 kg / cm 2 is applied are all good. The capacity retention rate after 500 cycles was shown, but in the batteries E5 to E7, F5 to F7, and G5 to G7 having a deformation rate of 6% or more, a decrease in the capacity retention rate was observed.

これは、変形率が6%以上になると充放電に伴う多孔質状の絶縁層10中の空孔体積の変化が大きくなり、放出された非水電解液が多孔質状の絶縁層10中の空孔内に十分に戻りきれずに非水電解液の分布が不均一になるためと考えられる。   This is because when the deformation rate is 6% or more, the change in the pore volume in the porous insulating layer 10 due to charge / discharge increases, and the discharged non-aqueous electrolyte is in the porous insulating layer 10. This is thought to be because the distribution of the non-aqueous electrolyte is not uniform because it cannot fully return to the pores.

以上の結果より、充放電サイクル中に多孔質状の絶縁層10中の空孔内から放出された非水電解液が再び空孔内に再導入され続けるには、10kg/cm2の荷重を加えた時の圧縮変形率が5%以下となるような多孔質状の絶縁層10を設けることが好ましいといえる。 From the above results, a load of 10 kg / cm 2 was applied in order for the nonaqueous electrolytic solution released from the pores in the porous insulating layer 10 during the charge / discharge cycle to be reintroduced into the pores again. It can be said that it is preferable to provide the porous insulating layer 10 so that the compression deformation rate when added is 5% or less.

<実施例3>
(実施例3の電池H3〜H6、比較例の電池H1,H2,H7)
多孔質状の絶縁層10の厚みを(表3)に示した値となるように塗布した以外は実施例1の電池A9と同様に作製した電池を実施例3の電池H3〜H6、比較例の電池H1,H2,H7とした。
<Example 3>
(Batteries H3 to H6 of Example 3, batteries H1, H2, and H7 of comparative examples)
A battery produced in the same manner as the battery A9 of Example 1 except that the thickness of the porous insulating layer 10 was applied so as to have the value shown in (Table 3) was designated as batteries H3 to H6 of Example 3, and Comparative Example. Batteries H1, H2, and H7.

(実施例3の電池I3〜I6、比較例の電池I1,I2,I7)
多孔質状の絶縁層10の厚みを(表3)に示した値となるように塗布した以外は実施例1の電池B9と同様に作製した電池を実施例3の電池I3〜I6、比較例の電池I1,I2,I7とした。
(Batteries I3 to I6 of Example 3 and batteries I1, I2, and I7 of Comparative Examples)
A battery produced in the same manner as the battery B9 of Example 1 except that the thickness of the porous insulating layer 10 was applied so as to have the value shown in Table 3 was obtained. Batteries I1, I2, and I7.

(実施例3の電池J3〜J6、比較例の電池J1,J2,J7)
多孔質状の絶縁層10の厚みを(表3)に示した値となるように塗布した以外は実施例1の電池C9と同様に作製した電池を実施例3の電池J3〜J6、比較例の電池J1,J2,J7とした。
(Batteries J3 to J6 of Example 3, batteries J1, J2, and J7 of comparative examples)
A battery produced in the same manner as the battery C9 of Example 1 except that the thickness of the porous insulating layer 10 was applied so as to have the value shown in Table 3 was obtained. The batteries J1, J2, and J7 were used.

(表3)に500サイクル後容量維持率の評価結果を示す。   Table 3 shows the evaluation results of the capacity retention rate after 500 cycles.

多孔質状の絶縁層10の厚みが0.3μm以下の比較例の電池H1,H2,I1,I2,J1,J2では、500サイクル後の容量維持率に低下が認められており、0.3μm以下では非水電解液を保持するための十分な厚みが得られていないと考えられる。一方、多孔質状の絶縁層10の厚みが5.0μm以上の比較例の電池H7,I7,J7では、多孔質状の絶縁層10の厚みが厚すぎることからリチウムイオンの透過性が低下し、500サイクル後の容量維持率が低下したと考えられる。 In the batteries H1, H2, I1, I2, J1, and J2 of comparative examples in which the thickness of the porous insulating layer 10 is 0.3 μm or less, a decrease in capacity retention rate after 500 cycles is recognized, and 0.3 μm In the following, it is considered that a sufficient thickness for holding the non-aqueous electrolyte is not obtained. On the other hand, in the batteries H7, I7, and J7 of comparative examples in which the thickness of the porous insulating layer 10 is 5.0 μm or more, the lithium ion permeability decreases because the porous insulating layer 10 is too thick. It is considered that the capacity maintenance rate after 500 cycles was lowered.

以上の結果より、多孔質状の絶縁層10の厚みとしては、0.5μm〜4.0μmが好ましいといえる。   From the above results, it can be said that the thickness of the porous insulating layer 10 is preferably 0.5 μm to 4.0 μm.

<実施例4>
(実施例4の電池K3〜K6、比較例の電池K1,K2)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーのメディアン径を調整して、塗膜にした場合の空孔率が(表4)に記載された値になるペーストを作製した以外は実施例1の電池A9と同様に作製した電池を実施例4の電池K3〜K6、比較例の電池K1,K2とした。
<Example 4>
(Batteries K3 to K6 of Example 4, batteries K1 and K2 of Comparative Examples)
As a raw material paste for the porous insulating layer 10, except that the median diameter of the inorganic oxide filler was adjusted to produce a paste having a porosity described in (Table 4) when used as a coating film. The batteries produced in the same manner as the battery A9 of Example 1 were designated as batteries K3 to K6 of Example 4 and batteries K1 and K2 of comparative examples.

(実施例4の電池L3〜L6、比較例の電池L1,L2)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーのメディアン径を調整して、塗膜にした場合の空孔率が(表4)に記載された値になるペーストを作製した以外は実施例1の電池B9と同様に作製した電池を実施例4の電池L3〜L6、比較例の電池L1,L2とした。
(Batteries L3 to L6 of Example 4, batteries L1 and L2 of comparative examples)
As a raw material paste for the porous insulating layer 10, except that the median diameter of the inorganic oxide filler was adjusted to produce a paste having a porosity described in (Table 4) when used as a coating film. The batteries produced in the same manner as the battery B9 of Example 1 were designated as batteries L3 to L6 of Example 4 and batteries L1 and L2 of comparative examples.

(実施例4の電池M3〜M6、比較例の電池M1,M2)
多孔質状の絶縁層10の原料ペーストとして、無機酸化物フィラーのメディアン径を調整して、塗膜にした場合の空孔率が(表4)に記載された値になるペーストを作製した以
外は実施例1の電池C9と同様に作製した電池を実施例4の電池M3〜M6、比較例の電池M1,M2とした。
(Batteries M3 to M6 of Example 4, batteries M1 and M2 of Comparative Examples)
As a raw material paste for the porous insulating layer 10, except that the median diameter of the inorganic oxide filler was adjusted to produce a paste having a porosity described in (Table 4) when used as a coating film. The batteries produced in the same manner as the battery C9 of Example 1 were designated as batteries M3 to M6 of Example 4 and batteries M1 and M2 of comparative examples.

(表4)に500サイクル後容量維持率の評価結果を示す。   Table 4 shows the evaluation results of the capacity retention rate after 500 cycles.

多孔質状の絶縁層10の空孔率が15%以下の実施例4の電池K1,K2,L1,L2,M1,M2では、500サイクル後の容量維持率に低下が認められた。これは空孔率が15%以下では多孔質状の絶縁層10中においてリチウムイオンの透過性を確保するための非水電解液量が十分ではなく、その結果、良好なイオンパスが得られないためと考えられる。 In the batteries K1, K2, L1, L2, M1, and M2 of Example 4 in which the porosity of the porous insulating layer 10 was 15% or less, a decrease in capacity retention rate after 500 cycles was observed. This is because when the porosity is 15% or less, the amount of non-aqueous electrolyte for securing lithium ion permeability in the porous insulating layer 10 is not sufficient, and as a result, a good ion path cannot be obtained. it is conceivable that.

尚、空孔率が85%以上の多孔質状の絶縁層10については、10kg/cm2の荷重を加えた時の圧縮変形率を5%以下とすることが不可能であったため電池は作製していない。 For the porous insulating layer 10 having a porosity of 85% or more, it was impossible to make the compression deformation rate 5% or less when a load of 10 kg / cm 2 was applied, so that a battery was produced. Not done.

以上の結果より、多孔質状の絶縁層10の空孔率としては、20%〜80%が好ましいといえる。   From the above results, it can be said that the porosity of the porous insulating layer 10 is preferably 20% to 80%.

<実施例5>
(実施例5の電池N1〜N8)
正極活物質として、LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を表5に示した比率で混合させた以外は実施例1の電池A9と同様に作製した電池を実施例5の電池N1〜N8とした。
<Example 5>
(Batteries N1 to N8 of Example 5)
A battery manufactured in the same manner as the battery A9 of Example 1 except that LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 were mixed in the ratio shown in Table 5 as the positive electrode active material. 5 batteries N1 to N8.

(実施例5の電池O1〜O8)
正極活物質として、LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を表5に示した比率で混合させた以外は実施例1の電池B9と同様に作製した電池を実施例5の電池O1〜O8とした。
(Batteries O1 to O8 of Example 5)
A battery manufactured in the same manner as the battery B9 of Example 1 except that LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 were mixed in the ratio shown in Table 5 as the positive electrode active material. 5 batteries O1 to O8.

(実施例5の電池P1〜P8)
正極活物質として、LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を表5に示した比率で混合させた以外は実施例1の電池C9と同様に作製した電池を実
施例5の電池P1〜P8とした。
(Batteries P1 to P8 of Example 5)
A battery produced in the same manner as the battery C9 of Example 1 except that LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 were mixed in the ratio shown in Table 5 as the positive electrode active material. No. 5 batteries P1 to P8.

(比較例の電池Q1〜Q8)
多孔質状の絶縁層10を塗布しなかった以外は、実施例5と同様にして作製した電池を比較例の電池Q1〜Q8とした。
(Comparison batteries Q1 to Q8)
Batteries produced in the same manner as in Example 5 except that the porous insulating layer 10 was not applied were designated as batteries Q1 to Q8 of comparative examples.

(電池容量評価)
環境温度20℃で電池容量測定を行った。充電条件は最大電流600mA、充電終止電圧が4.20Vでの定電圧充電を2時間とした。放電条件は電流値600mA、放電終止電圧3.0Vの定電流で行い、それぞれの電池の放電容量を測定した。
(Battery capacity evaluation)
The battery capacity was measured at an environmental temperature of 20 ° C. The charging conditions were a constant voltage charge with a maximum current of 600 mA and a charge end voltage of 4.20 V for 2 hours. The discharge conditions were a constant current with a current value of 600 mA and a discharge end voltage of 3.0 V, and the discharge capacity of each battery was measured.

実施例5の電池N1の放電容量を100として、それぞれの電池の放電容量を比率で表して電池容量の比較を行った。   The battery capacity of the battery N1 of Example 5 was set to 100, and the battery capacity was compared by expressing the discharge capacity of each battery as a ratio.

(放電特性評価)
環境温度20℃、および0℃で電池容量測定を行った。充電条件は最大電流600mA、充電終止電圧が4.20Vでの定電圧充電を2時間とした。放電条件は電流値600mA、放電終止電圧3.0Vの定電流で行い、それぞれの電池の放電容量を測定した。
(Discharge characteristic evaluation)
The battery capacity was measured at an environmental temperature of 20 ° C and 0 ° C. The charging conditions were a constant voltage charge with a maximum current of 600 mA and a charge end voltage of 4.20 V for 2 hours. The discharge conditions were a constant current with a current value of 600 mA and a discharge end voltage of 3.0 V, and the discharge capacity of each battery was measured.

それぞれの電池において、20℃の放電容量に対する0℃の放電容量を比率で表し比較を行った。   In each battery, the discharge capacity at 0 ° C. with respect to the discharge capacity at 20 ° C. was expressed as a ratio and compared.

(表5)に本発明の実施例5の電池N1〜N8,O1〜O8,P1〜P8、および比較例の電池Q1〜Q8の電池容量、放電特性、500サイクル後容量維持率の評価結果を示す。   Table 5 shows the evaluation results of the battery capacity, discharge characteristics, and capacity retention rate after 500 cycles of the batteries N1 to N8, O1 to O8, P1 to P8 of Example 5 of the present invention, and the batteries Q1 to Q8 of Comparative Examples. Show.

本発明の実施例5の電池N1〜N8,O1〜O8,P1〜P8、および比較例の電池Q
1〜Q8において、正極活物質としてLiNi0.5Co0.4Mn0.12の比率が高くなるに従って、電池容量が増加しており、LiNi0.5Co0.4Mn0.12が電池の高容量化に適した材料であることがわかる。しかし、LiNi0.5Co0.4Mn0.12の比率が高くなるに従って放電特性の低下が認められ、LiNi0.5Co0.4Mn0.12だけを用いた本発明の実施例5の電池N8,O8,P8、および比較例の電池Q8では、放電特性の大幅な低下が認められる。
Batteries N1 to N8, O1 to O8, P1 to P8 of Example 5 of the present invention, and battery Q of the comparative example
1 to Q8, the battery capacity increases as the ratio of LiNi 0.5 Co 0.4 Mn 0.1 O 2 as the positive electrode active material increases, and LiNi 0.5 Co 0.4 Mn 0.1 O 2 is a material suitable for increasing the capacity of the battery. It can be seen that it is. However, as the ratio of LiNi 0.5 Co 0.4 Mn 0.1 O 2 increases, a decrease in discharge characteristics is observed, and the batteries N8, O8, P8 of Example 5 of the present invention using only LiNi 0.5 Co 0.4 Mn 0.1 O 2 , In the battery Q8 of the comparative example, a significant decrease in discharge characteristics is observed.

一方、LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を95/5〜5/95の比率で混合した正極活物質を用いた実施例5の電池N2〜N7,O2〜O7,P2〜P7、および比較例の電池Q2〜Q7では、より高容量で、放電特性に優れた電池が実現可能となる。 On the other hand, the batteries N2 to N7 and O2 to O7 of Example 5 using the positive electrode active material in which LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 were mixed at a ratio of 95/5 to 5/95. , P2 to P7 and comparative batteries Q2 to Q7, a battery having a higher capacity and excellent discharge characteristics can be realized.

しかし、多孔質状の絶縁層10を具備しない比較例の電池Q1〜Q8では、多孔質状の絶縁層10を具備する実施例5の電池N1〜N8,O1〜O8,P1〜P8に比べて500サイクル後の容量維持率が大幅に低下しており、特にLiNi0.5Co0.4Mn0.12の比率を上げて電池が高容量化されるに従い、容量維持率が大幅に低下している。 However, the batteries Q1 to Q8 of the comparative example not including the porous insulating layer 10 are compared with the batteries N1 to N8, O1 to O8, and P1 to P8 of Example 5 including the porous insulating layer 10. The capacity retention rate after 500 cycles has greatly decreased, and in particular, as the battery capacity is increased by increasing the ratio of LiNi 0.5 Co 0.4 Mn 0.1 O 2 , the capacity retention ratio has decreased significantly.

多孔質状の絶縁層10を具備する実施例5の電池N1〜N8,O1〜O8,P1〜P8では、LiNi0.5Co0.4Mn0.12の比率を上げて電池が高容量化されても良好な容量維持率を保っており、実施例1の結果と同様に、多孔質状の絶縁層10を具備することにより充放電サイクルにおける非水電解液の分布の不均一化が抑制され、充放電に伴う極板の反応が均一に行われることから活物質が劣化せず、良好なサイクル寿命特性が得られたと考えられる。 In the batteries N1 to N8, O1 to O8, and P1 to P8 of Example 5 including the porous insulating layer 10, the ratio of LiNi 0.5 Co 0.4 Mn 0.1 O 2 can be increased to increase the capacity of the battery. As with the results of Example 1, the porous insulating layer 10 is provided to suppress the non-uniform distribution of the non-aqueous electrolyte in the charge / discharge cycle, and charge / discharge is maintained. It is considered that the active material was not deteriorated because the reaction of the electrode plate accompanying the process was performed uniformly, and good cycle life characteristics were obtained.

以上の結果より、LiCo0.94Mg0.05Al0.012とLiNi0.5Co0.4Mn0.12を95/5〜5/95の比率で混合した正極活物質を用い、本発明の多孔質状の絶縁層を極板の表面に具備することで、高容量で低温放電特性に優れ、且つ良好なサイクル寿命特性が得られることが明らかとなった。 From the above results, using the positive electrode active material in which LiCo 0.94 Mg 0.05 Al 0.01 O 2 and LiNi 0.5 Co 0.4 Mn 0.1 O 2 are mixed at a ratio of 95/5 to 5/95, the porous insulating layer of the present invention is used. It has been clarified that a high capacity, low temperature discharge characteristics and good cycle life characteristics can be obtained by providing the electrode plate on the surface.

<実施例6>
本発明の実施例1の電池A9,B9,C9と、比較例の電池D9を用いて、サイクル寿命特性評価における充電終止電圧を表6に示した各電圧に設定して評価を行った。
<Example 6>
Using the batteries A9, B9, C9 of Example 1 of the present invention and the battery D9 of the comparative example, evaluation was performed by setting the charge end voltage in the cycle life characteristic evaluation to each voltage shown in Table 6.

(表6)に500サイクル後容量維持率の評価結果を示す。   Table 6 shows the evaluation results of the capacity retention rate after 500 cycles.

比較例の電池D9は、充電終止電圧を高く設定するに従って大幅に容量維持率が低下し、4.40V以上では500サイクルに到達する前に充放電が不可能になった。 In the battery D9 of the comparative example, the capacity maintenance rate greatly decreased as the charge end voltage was set higher, and charging and discharging became impossible before reaching 500 cycles at 4.40 V or higher.

一方、実施例1の電池A9,B9,C9では、4.20V以上の充電終止電圧でも良好な容量維持率を保っており、充電終止電圧を従来に比べて高い4.25〜4.50Vに設定することにより高容量化が図られた高電圧充電電池において、本発明による多孔質状の絶縁層10を具備させることにより、より高容量で、且つサイクル寿命特性に優れた非水電解液二次電池が実現可能となることが明らかとなった。   On the other hand, in the batteries A9, B9, C9 of Example 1, a good capacity maintenance rate is maintained even at a charge end voltage of 4.20V or higher, and the charge end voltage is set to 4.25 to 4.50V, which is higher than before. In the high voltage rechargeable battery whose capacity is increased by setting, the non-aqueous electrolyte solution 2 having higher capacity and excellent cycle life characteristics can be obtained by providing the porous insulating layer 10 according to the present invention. It became clear that a secondary battery would be feasible.

しかし、充電終止電圧を4.60Vに設定した場合は容量維持率の低下が確認された。これは、充電終止電圧を4.60Vに設定した場合は、正極活物質自体の結晶構造の崩壊が起こっているためと考えられる。   However, when the end-of-charge voltage was set to 4.60V, a decrease in capacity maintenance rate was confirmed. This is probably because when the charge end voltage is set to 4.60 V, the crystal structure of the positive electrode active material itself has collapsed.

以上の結果より、本発明の多孔質状の絶縁層10は、充電終止電圧を従来に比べて高い4.25〜4.5Vに設定し高容量化を図った高電圧充電電池においても有用であり、良好なサイクル寿命特性が得られることが明らかとなった。   From the above results, the porous insulating layer 10 of the present invention is also useful in a high-voltage rechargeable battery in which the end-of-charge voltage is set to 4.25 to 4.5 V, which is higher than the conventional one, and the capacity is increased. It was revealed that good cycle life characteristics can be obtained.

尚、本発明の多孔質状の絶縁層10はグラビア塗布により構成したが、噴射式塗布でも同様の効果が得られた。   In addition, although the porous insulating layer 10 of this invention was comprised by gravure coating, the same effect was acquired also by spray type coating.

また、本発明の実施例のセパレータはリチウムイオン導電性層であっても同様の効果が得られた。リチウムイオン導電性層として、ポリマー材料に溶媒とその溶媒に溶解するリチウム塩とから構成される有機電解質を吸収保持させたものを正極合剤、負極合剤に含ませ、さらに有機電解質を吸収保持するポリマーからなる多孔性のセパレータを正極、負極
と一体化して用いることができる。このポリマー材料としては、有機電解質を吸収保持できるものであればよいが、特にフッ化ビニリデンが好ましい。
Moreover, the same effect was acquired even if the separator of the Example of this invention was a lithium ion electroconductive layer. As a lithium ion conductive layer, an organic electrolyte composed of a polymer material consisting of a solvent and a lithium salt dissolved in the solvent is absorbed and held in the positive electrode mixture and the negative electrode mixture, and further the organic electrolyte is absorbed and held. A porous separator made of a polymer can be integrated with the positive electrode and the negative electrode. The polymer material is not particularly limited as long as it can absorb and retain the organic electrolyte, but vinylidene fluoride is particularly preferable.

本発明にかかる非水電解質二次電池は、高度に高密度化された正極、負極により高容量化された非水電解液二次電池においても、サイクル特性や保存特性等に優れるので非水電解液二次電池として有用である。   The nonaqueous electrolyte secondary battery according to the present invention is excellent in cycle characteristics, storage characteristics, etc. even in a nonaqueous electrolyte secondary battery with a high capacity due to a highly densified positive electrode and a negative electrode. It is useful as a liquid secondary battery.

本発明の非水電解液二次電池の一実施例を示す一部切欠斜視図The partially cutaway perspective view showing one embodiment of the nonaqueous electrolyte secondary battery of the present invention (a)多孔質状の絶縁層を設けない極板群を示す比較例の概略断面図、(b)本発明の一実施例である多孔質状の絶縁層を正極板の表面に設けた極板群の概略断面図、(c)本発明の一実施例である多孔質状の絶縁層を負極板の表面に設けた極板群の概略断面図、(d)本発明の一実施例である多孔質状の絶縁層を正負極板の両表面に設けた極板群の概略断面図(A) Schematic sectional view of a comparative example showing an electrode plate group not provided with a porous insulating layer, (b) Electrode provided with a porous insulating layer according to an embodiment of the present invention on the surface of a positive electrode plate Schematic cross-sectional view of the plate group, (c) Schematic cross-sectional view of the electrode plate group provided with the porous insulating layer according to one embodiment of the present invention on the surface of the negative electrode plate, (d) In one embodiment of the present invention Schematic sectional view of an electrode plate group in which a certain porous insulating layer is provided on both surfaces of the positive and negative electrode plates

符号の説明Explanation of symbols

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 注入口
8 正極板
9 負極板
10 多孔質状の絶縁層
11 アルミニウム箔
12 銅箔
13 正極合剤
14 負極合剤
15 セパレータ


DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Inlet 8 Positive electrode plate 9 Negative electrode plate 10 Porous insulating layer 11 Aluminum foil 12 Copper foil 13 Positive electrode mixture 14 Negative electrode mixture 15 Separator


Claims (5)

負極板と、正極板と、セパレータまたはリチウムイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、
前記セパレータまたはリチウムイオン導電性層と前記負極板との界面か、前記セパレータまたはリチウムイオン導電性層と前記正極板との界面の少なくとも一方に圧縮変形率の小さい多孔質状の絶縁層を設けた非水電解液二次電池。
A nonaqueous electrolyte secondary battery comprising a negative electrode plate, a positive electrode plate, a separator or a lithium ion conductive layer, and a nonaqueous electrolyte solution,
A porous insulating layer having a low compressive deformation rate was provided at least one of the interface between the separator or lithium ion conductive layer and the negative electrode plate, or the interface between the separator or lithium ion conductive layer and the positive electrode plate. Non-aqueous electrolyte secondary battery.
前記絶縁層は樹脂および有機化合物フィラーからなる請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the insulating layer is made of a resin and an organic compound filler. 前記絶縁層は樹脂および無機化合物フィラーからなる請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the insulating layer is made of a resin and an inorganic compound filler. 前記絶縁層は厚みが0.5μm〜4.0μmであり、空孔率が20%〜80%である請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the insulating layer has a thickness of 0.5 μm to 4.0 μm and a porosity of 20% to 80%. 前記正極板の活物質として、LixCo1-yy2(1.0≦x≦1.15、0.005≦y≦0.1であり、MはMg、Al、Ti、Mn、Ni、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物からなる群より選択された少なくとも一種類と、
LixNiyCoz1-y-z2(1.0≦x≦1.15、0.1≦y≦0.85、0.1≦z≦0.5であり、MはMg、Al、Ti、Mn、Fe、Y、Zr、Mo、Wの中から選ばれた少なくとも1種)で表される化合物からなる群より選択された少なくとも一種類を混合して用いる請求項1に記載の非水電解液二次電池。























As the active material of the positive electrode plate, Li x Co 1-y M y O 2 ( a 1.0 ≦ x ≦ 1.15,0.005 ≦ y ≦ 0.1, M is Mg, Al, Ti, Mn At least one selected from the group consisting of compounds represented by: at least one selected from Ni, Fe, Y, Zr, Mo, W),
Li x Ni y Co z M 1-yz O 2 (1.0 ≦ x ≦ 1.15, 0.1 ≦ y ≦ 0.85, 0.1 ≦ z ≦ 0.5, M is Mg, Al , Ti, Mn, Fe, Y, Zr, Mo, and W) are used in a mixture of at least one selected from the group consisting of compounds represented by: Non-aqueous electrolyte secondary battery.























JP2005273336A 2005-09-21 2005-09-21 Nonaqueous electrolyte secondary battery Pending JP2007087690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273336A JP2007087690A (en) 2005-09-21 2005-09-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273336A JP2007087690A (en) 2005-09-21 2005-09-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007087690A true JP2007087690A (en) 2007-04-05

Family

ID=37974467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273336A Pending JP2007087690A (en) 2005-09-21 2005-09-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007087690A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
CN103904310A (en) * 2012-12-28 2014-07-02 北京当升材料科技股份有限公司 Preparation method for mixed nickel-cobalt-lithium manganate material
EP2950369A2 (en) 2014-05-28 2015-12-02 GS Yuasa International Ltd. Energy storage device
WO2016052648A1 (en) * 2014-09-30 2016-04-07 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
KR20180006429A (en) 2015-06-19 2018-01-17 우베 고산 가부시키가이샤 Polyolefin microporous film, separator film for electric storage device, and electric storage device
US11329349B2 (en) 2015-06-19 2022-05-10 Ube Industries, Ltd. Polyolefin micro porous film, separator film for power-storage device, and power-storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031165A (en) * 2002-06-26 2004-01-29 Sony Corp Nonaqueous electrolyte battery
WO2005067079A1 (en) * 2004-01-05 2005-07-21 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2005243303A (en) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd Member for electrochemical element and its manufacturing method, and the electrochemical element using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031165A (en) * 2002-06-26 2004-01-29 Sony Corp Nonaqueous electrolyte battery
WO2005067079A1 (en) * 2004-01-05 2005-07-21 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2005243303A (en) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd Member for electrochemical element and its manufacturing method, and the electrochemical element using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
CN103904310A (en) * 2012-12-28 2014-07-02 北京当升材料科技股份有限公司 Preparation method for mixed nickel-cobalt-lithium manganate material
EP2950369A2 (en) 2014-05-28 2015-12-02 GS Yuasa International Ltd. Energy storage device
WO2016052648A1 (en) * 2014-09-30 2016-04-07 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
CN106716684A (en) * 2014-09-30 2017-05-24 株式会社杰士汤浅国际 Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
JPWO2016052648A1 (en) * 2014-09-30 2017-08-17 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte storage element, nonaqueous electrolyte storage element, and storage device
KR20180006429A (en) 2015-06-19 2018-01-17 우베 고산 가부시키가이샤 Polyolefin microporous film, separator film for electric storage device, and electric storage device
US11329349B2 (en) 2015-06-19 2022-05-10 Ube Industries, Ltd. Polyolefin micro porous film, separator film for power-storage device, and power-storage device

Similar Documents

Publication Publication Date Title
JP5673545B2 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4604460B2 (en) Nonaqueous electrolyte secondary battery and battery charge / discharge system
JP7038951B2 (en) Negative electrode active material and negative electrode for all-solid-state battery containing it
JP4748949B2 (en) Nonaqueous electrolyte secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
KR102080255B1 (en) Negative electrode active material and negative electrode for secondary battery comprising the same
EP2717375A1 (en) Lithium secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2006216276A (en) Lithium secondary battery and its manufacturing method
JP6129993B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2003049216A1 (en) Lithium ion secondary cell
JP3983601B2 (en) Non-aqueous secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
JPWO2012011189A1 (en) Lithium ion secondary battery
JP2007087690A (en) Nonaqueous electrolyte secondary battery
JP7282925B2 (en) Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
CN114551875A (en) Secondary battery positive electrode including ferroelectric component and method of manufacturing the same
JP5884039B2 (en) Nonaqueous electrolyte secondary battery
JPH09204936A (en) Battery
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN114930577A (en) Negative electrode active material, and negative electrode and secondary battery comprising same
JP2007273313A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906