JP2007086492A - Method for manufacturing semiconductive member and endless belt - Google Patents

Method for manufacturing semiconductive member and endless belt Download PDF

Info

Publication number
JP2007086492A
JP2007086492A JP2005276069A JP2005276069A JP2007086492A JP 2007086492 A JP2007086492 A JP 2007086492A JP 2005276069 A JP2005276069 A JP 2005276069A JP 2005276069 A JP2005276069 A JP 2005276069A JP 2007086492 A JP2007086492 A JP 2007086492A
Authority
JP
Japan
Prior art keywords
carbon black
semiconductive
paint
resistance
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005276069A
Other languages
Japanese (ja)
Other versions
JP5023459B2 (en
Inventor
Junji Suzuki
淳司 鈴木
Shigeru Fukuda
茂 福田
Naoya Kamata
直哉 鎌田
Yuichi Yashiki
雄一 矢敷
Kyoko Nishikawa
恭子 西川
Yuji Hara
祐二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005276069A priority Critical patent/JP5023459B2/en
Publication of JP2007086492A publication Critical patent/JP2007086492A/en
Application granted granted Critical
Publication of JP5023459B2 publication Critical patent/JP5023459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductive member, whereby a semiconductive coating material for obtaining a semiconductive member having a desired electric resistance value is efficiently prepared, load on a manufacturing process is reduced, and the semiconductive member with uniform electric resistance value is stably obtained, and to provide an endless belt using the semiconductive member. <P>SOLUTION: The method for manufacturing the semiconductive member includes: a step of mixing a carbon black dispersion liquid containing carbon black dispersed in a resin solution and a viscosity adjustment liquid containing no carbon black, thereby obtaining the semiconductive coating material; and a step of applying the semiconductive coating material, thereby forming the semiconductive member. In the manufacturing method for the semiconductive member, the carbon black dispersion liquid is prepared by dispersing the carbon black in the resin solution with a viscosity of 1 to 20 Pa s, and the carbon black dispersion liquid and the viscosity adjustment liquid with viscosity higher than that of the resin solution are mixed to obtain the semiconductive coating material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機やプリンタ等の静電複写方式の画像形成装置に用いられる半導電性部材の製造方法及びそれを用いた無端ベルトに関し、特に、所望の抵抗値を有する半導電性部材を効率的に得るための方法に関する。   The present invention relates to a method of manufacturing a semiconductive member used in an electrophotographic image forming apparatus such as a copying machine or a printer, and an endless belt using the same, and more particularly to a semiconductive member having a desired resistance value. It relates to a method for obtaining efficiently.

電子写真装置では、感光体、転写部材、定着部材などに、金属、樹脂、またはゴム製の回転体が使用されるが、装置の小型化或いは高性能化のために、回転体は変形可能なものが好ましいことがあり、それには肉厚が薄い樹脂製ベルトが用いられる。その材料としては、強度や寸法安定性、耐熱性等の面でポリイミド(以後、「PI」と略す場合がある)樹脂や、ポリアミドイミド(以後、「PAI」と略す場合がある)樹脂が好ましい。この場合、ベルトに継ぎ目(シーム)があると、出力画像に継ぎ目に起因する欠陥が生じるので、継ぎ目がない無端ベルトが好ましい。   In an electrophotographic apparatus, a rotating body made of metal, resin, or rubber is used for a photosensitive member, a transfer member, a fixing member, etc., but the rotating body can be deformed for downsizing or high performance of the apparatus. In some cases, a resin belt having a small thickness is used. The material is preferably a polyimide (hereinafter abbreviated as “PI”) resin or a polyamideimide (hereinafter abbreviated as “PAI”) resin in terms of strength, dimensional stability, heat resistance and the like. . In this case, if there is a seam in the belt, a defect due to the seam occurs in the output image. Therefore, an endless belt without a seam is preferable.

無端ベルトの製造方法として、例えば、円筒芯体の表面に皮膜形成樹脂溶液を塗布して乾燥し、必要に応じて加熱して反応させた後、樹脂皮膜を芯体から剥離する方法がある(例えば、特許文献1参照)。   As a method for producing an endless belt, for example, there is a method in which a film-forming resin solution is applied to the surface of a cylindrical core, dried, heated and reacted as necessary, and then the resin film is peeled from the core ( For example, see Patent Document 1).

一方、無端ベルトを感光体や転写体等に使用する場合には、抵抗値を所定の半導電性領域(体積抵抗率で105〜1011Ωcm程度の範囲)の値に調整した半導電性部材を用いる必要がある。半導電性部材の成形は、前記所定の抵抗値が得られるように調整された半導電性塗料を塗布してなされる。 On the other hand, when an endless belt is used for a photoconductor or a transfer body, the semiconductive property is adjusted to a value in a predetermined semiconductive region (a volume resistivity range of about 10 5 to 10 11 Ωcm). It is necessary to use a member. The semiconductive member is formed by applying a semiconductive paint adjusted to obtain the predetermined resistance value.

半導電性塗料は、皮膜形成樹脂溶液に導電性を付与するカーボンブラックを分散して作製するが、使用する材料のロットや、カーボンブラック分散時の条件ばらつきなどの影響により、同じ組成比で製造しても、得られる部材の抵抗値は、同じにならない場合がある。また、カーボンブラックは微細に分散しないと、抵抗値の不均一や変動が生じる不具合があった。   Semi-conductive paint is made by dispersing carbon black that imparts conductivity to the film-forming resin solution, but it is manufactured with the same composition ratio due to the influence of lots of materials used and variations in conditions when carbon black is dispersed. Even so, the resistance values of the obtained members may not be the same. Further, when carbon black is not finely dispersed, there is a problem that the resistance value is uneven or fluctuates.

すなわち、前記半導電性塗料の抵抗値の調整は、主にカーボンブラックの添加量で制御できるが、上記ばらつきのため、カーボンブラックの添加量を一定に、あるいは調整して分散しても、期待通りの抵抗値が得られないことがある。このような抵抗のずれや分散不良は、半導電性部材、すなわち無端ベルトの電気的特性に大きく影響し画像特性の低下につながるので、極力低く抑える必要がある。   That is, the adjustment of the resistance value of the semiconductive paint can be controlled mainly by the amount of carbon black added, but due to the above-mentioned variation, the amount of carbon black added is expected to be constant or adjusted and dispersed. The street resistance value may not be obtained. Such deviation of resistance and poor dispersion greatly affect the electrical characteristics of the semiconductive member, that is, the endless belt, leading to deterioration of image characteristics.

皮膜形成樹脂がPI樹脂の場合、抵抗値を調整するにはPI前駆体であるポリアミド酸へカーボンブラックを分散するほか、溶剤やモノマー溶液中にあらかじめカーボンブラックを分散しておき、重合して分散液を作る方法がある。   When the film-forming resin is a PI resin, in order to adjust the resistance value, carbon black is dispersed in polyamic acid, which is a PI precursor, and carbon black is dispersed in advance in a solvent or a monomer solution and polymerized and dispersed. There is a way to make liquid.

上記方法に関しては、メディアを用いた分散機を用い、ポリアミド酸溶液中にDBP吸収量が40cm3以上90cm3以下、比表面積100m2/g当りの揮発分が2.5質量%以上の酸性カーボンブラックを微細に分散することが記載されているが(例えば、特許文献2参照)、抵抗の維持安定性を得るためには十分ではない。また、メディアを用いた分散機は、メディアや容器に残る量が約20質量%と多いほか、メディアや容器から入る不純物による皮膜欠陥が発生する、メディア径が使用中に小さくなって分散能力が変化する、メディアを高速で回転させるので高粘度の溶液には適用できない、といった問題がある。 Regarding the above method, acidic carbon having a DBP absorption amount of 40 cm 3 or more and 90 cm 3 or less and a volatile content per specific surface area of 100 m 2 / g in a polyamic acid solution is 2.5% by mass or more using a disperser using media. Although it is described that black is finely dispersed (see, for example, Patent Document 2), it is not sufficient to obtain resistance maintenance stability. In addition, the disperser using the media has a large amount of about 20% by mass remaining in the media and the container, and also causes film defects due to impurities entering from the media and the container. There is a problem that it cannot be applied to a highly viscous solution because the medium is rotated at a high speed.

また、溶剤中にカーボンブラックを分散させた後、酸無水物とジアミンとを加えてポリアミド酸を重合する方法が提案されているが(例えば、特許文献3参照)、この方法では、カーボンブラック表面の各種の官能基がポリアミド酸重合反応に不具合を生じるため、カーボンブラックをあらかじめ不活性化しておく必要があるという問題がある。   Further, a method of polymerizing polyamic acid by adding an acid anhydride and diamine after carbon black is dispersed in a solvent has been proposed (see, for example, Patent Document 3). Since these various functional groups cause problems in the polyamic acid polymerization reaction, there is a problem that it is necessary to deactivate carbon black in advance.

一方、転写部材として、カーボンブラックの混合液を2つ以上に分割し、150MPa以上の圧力で衝突させて分散して作製したPI樹脂無端ベルトが開示されている(例えば、特許文献4参照)。このような衝突型分散機でカーボンブラックを分散すると、上記メディアを用いた分散機の問題点は解消されるのであるが、分散に好適な溶液の粘度と、塗布に好適な液の粘度が必ずしも同等ではないため、それぞれ最適な条件では処理できない問題点があった。   On the other hand, as a transfer member, a PI resin endless belt is disclosed which is prepared by dividing a mixed liquid of carbon black into two or more and colliding with a pressure of 150 MPa or more (see, for example, Patent Document 4). Dispersing carbon black with such a collision type disperser eliminates the problems of the disperser using the above media, but the viscosity of the solution suitable for dispersion and the viscosity of the solution suitable for coating are not necessarily limited. Since they are not equivalent, there was a problem that they could not be processed under optimal conditions.

さらに、前記のような各種分散法によりカーボンブラック分散液を作製しても、結局分散ロットごとで分散状態がばらつくため、成形した半導電性部材の電気抵抗値もばらついてしまい、抵抗値の微妙な調整を要求される無端ベルト用の半導電性部材の製造上、大きな問題となっていた。
特開2002−91027号公報 特開2001−342344号公報 特開2000−355432号公報 特開2004−279531号公報
Furthermore, even if the carbon black dispersion liquid is prepared by various dispersion methods as described above, since the dispersion state varies from dispersion lot to dispersion lot, the electrical resistance value of the formed semiconductive member also varies, and the resistance value is subtle. This has been a serious problem in the production of a semiconductive member for an endless belt that requires careful adjustment.
JP 2002-91027 A JP 2001-342344 A JP 2000-355432 A JP 2004-279531 A

本発明は、上記従来技術の問題点を解決することを目的とする。
すなわち、本発明は、所望の電気抵抗値を有する半導電性部材を得るための半導電性塗料を効率的に調製することができ、製造工程への負荷を低減することができると共に、電気抵抗値の均一な半導電性部材を安定して得ることができる半導電性部材の製造方法及びそれを用いた無端ベルトを提供することを目的とする。
The object of the present invention is to solve the above-mentioned problems of the prior art.
That is, according to the present invention, it is possible to efficiently prepare a semiconductive paint for obtaining a semiconductive member having a desired electric resistance value, to reduce the load on the manufacturing process, and to increase the electric resistance. It is an object of the present invention to provide a method for producing a semiconductive member capable of stably obtaining a semiconductive member having a uniform value and an endless belt using the same.

上記課題は、以下の本発明により達成される。すなわち本発明は、
<1> 樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない粘度調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
粘度が1〜20Pa・sの範囲の樹脂溶液にカーボンブラックを分散させて前記カーボンブラック分散液を調製し、該カーボンブラック分散液と前記樹脂溶液より粘度の高い粘度調整液とを混合して前記半導電性塗料を作製する半導電性部材の製造方法である。
The above-mentioned subject is achieved by the following present invention. That is, the present invention
<1> A step of preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a viscosity adjusting liquid not containing carbon black, and applying the semiconductive paint to make the semiconductor conductive Forming a member, and a method for producing a semiconductive member comprising:
Carbon black is dispersed in a resin solution having a viscosity in the range of 1 to 20 Pa · s to prepare the carbon black dispersion, and the carbon black dispersion is mixed with a viscosity adjusting liquid having a higher viscosity than the resin solution. It is a manufacturing method of the semiconductive member which produces a semiconductive paint.

<2> 前記カーボンブラックの分散を、2つ以上に分割したカーボンブラック混合液を、150MPa以上の圧力で衝突させて行う<1>に記載の半導電性部材の製造方法である。 <2> The method for producing a semiconductive member according to <1>, wherein the dispersion of the carbon black is performed by causing a carbon black mixed liquid divided into two or more to collide with a pressure of 150 MPa or more.

<3> 樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない抵抗調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
予め、前記カーボンブラック分散液及び前記粘度調整液の混合比の異なる2種以上の試験塗料を調製し、該試験塗料を用いて各々抵抗確認部材を成形し、該各々の抵抗確認部材の抵抗値から前記半導電性塗料におけるカーボンブラック分散液及び抵抗調整液の混合比を決定する半導電性部材の製造方法である。
<3> A step of preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a resistance adjusting liquid not containing carbon black, and applying the semiconductive paint to make the semiconductive Forming a member, and a method for producing a semiconductive member comprising:
Two or more kinds of test paints having different mixing ratios of the carbon black dispersion liquid and the viscosity adjusting liquid are prepared in advance, each of the resistance check members is molded using the test paint, and the resistance value of each of the resistance check members To the semiconductive member manufacturing method for determining the mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive paint.

<4> 樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない抵抗調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
予め、作製した半導電性塗料Bと半導電性部材としての抵抗値が既知の半導電性塗料Aとを一定混合比で混合して混合塗料を調製し、該混合塗料を用いて抵抗確認部材を成形し、該抵抗確認部材の抵抗値から前記半導電性塗料Bにおけるカーボンブラック分散液と抵抗調整液との混合比を再調整する半導電性部材の製造方法である。
<4> A step of preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a resistance adjusting liquid not containing carbon black, and applying the semiconductive paint to make the semiconductor conductive Forming a member, and a method for producing a semiconductive member comprising:
A prepared semi-conductive paint B and a semi-conductive paint A having a known resistance value as a semi-conductive member are mixed at a constant mixing ratio to prepare a mixed paint, and the resistance confirmation member is prepared using the mixed paint Is formed, and the mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive coating material B is readjusted from the resistance value of the resistance confirmation member.

<5> <1>〜<4>のいずれかに記載の半導電性部材の製造方法により得られる半導電性部材を用いた無端ベルトである。 <5> An endless belt using a semiconductive member obtained by the method for producing a semiconductive member according to any one of <1> to <4>.

本発明によれば、所望の電気抵抗値を有する半導電性部材を得るための半導電性塗料を効率的に調製することができ、製造工程への負荷を低減することができると共に、電気抵抗値の均一な半導電性部材を安定して得ることができる半導電性部材の製造方法及びそれを用いた無端ベルトを提供することができる。   According to the present invention, it is possible to efficiently prepare a semiconductive paint for obtaining a semiconductive member having a desired electric resistance value, to reduce the load on the manufacturing process, and to increase the electric resistance. It is possible to provide a method for producing a semiconductive member capable of stably obtaining a semiconductive member having a uniform value and an endless belt using the same.

以下、本発明を詳細に説明する。
<半導電性部材の製造方法>
本発明の第1の半導電性部材の製造方法(以下、「第1の本発明」と称する)は、樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない粘度調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、粘度が1〜20Pa・sの範囲の樹脂溶液にカーボンブラックを分散させて前記カーボンブラック分散液を調製し、該カーボンブラック分散液と前記樹脂溶液より粘度の高い粘度調整液とを混合して前記半導電性塗料を作製することを特徴とする。
Hereinafter, the present invention will be described in detail.
<Method for producing semiconductive member>
The first method for producing a semiconductive member of the present invention (hereinafter referred to as “first present invention”) includes a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a viscosity adjusting liquid not containing carbon black. A method for producing a semiconductive member, comprising: mixing to produce a semiconductive paint; and applying the semiconductive paint to form a semiconductive member, wherein the viscosity is 1 to 20 Pa. The carbon black dispersion is prepared by dispersing carbon black in a resin solution in the range of s, and the semiconductive paint is prepared by mixing the carbon black dispersion and a viscosity adjusting liquid having a higher viscosity than the resin solution. It is characterized by producing.

また、本発明の第2の半導電性部材の製造方法(以下、「第2の本発明」と称する)は、前記第1の製造方法と同様の工程を有し、予め前記カーボンブラック分散液及びカーボンブラックを含まない抵抗調整液の混合比の異なる2種以上の試験塗料を調製し、該試験塗料を用いて各々抵抗確認部材を成形し、該各々の抵抗確認部材の表面抵抗率から前記半導電性塗料におけるカーボンブラック分散液及び抵抗調整液の混合比を決定することを特徴とする。   The second semiconductive member manufacturing method of the present invention (hereinafter referred to as “second present invention”) includes the same steps as the first manufacturing method, and the carbon black dispersion liquid is previously prepared. And two or more kinds of test paints having different mixing ratios of the resistance adjusting liquid not containing carbon black, each resistance confirmation member is molded using the test paint, and the surface resistivity of each of the resistance confirmation members is The mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive paint is determined.

さらに、本発明の第3の半導電性部材の製造方法(以下、「第3の本発明」と称する)は、前記第1の製造方法と同様の工程を有し、予め作製した前記半導電性塗料Bと、半導電性部材としての表面抵抗率が既知の半導電性塗料Aとを一定混合比で混合して混合塗料を調製し、該混合塗料を用いて抵抗確認部材を成形し、該抵抗確認部材の表面抵抗率から前記半導電性塗料Bにおけるカーボンブラック分散液とカーボンブラックを含まない抵抗調整液との混合比を再調整することを特徴とする。   Furthermore, the third method for producing a semiconductive member of the present invention (hereinafter referred to as “third invention”) includes the same steps as the first method for producing the semiconductive member produced in advance. A mixed paint by mixing the conductive paint B and the semiconductive paint A having a known surface resistivity as a semiconductive member at a constant mixing ratio, and forming a resistance confirmation member using the mixed paint, The mixing ratio of the carbon black dispersion liquid and the resistance adjustment liquid not containing carbon black in the semiconductive paint B is readjusted from the surface resistivity of the resistance confirmation member.

半導電性部材を半導電性塗料から成形して作製する場合、カーボンブラックを分散した半導電性塗料を用いるが、前記のように樹脂溶液中へのカーボンブラックの微細な分散困難であり、その結果、分散液ごとに分散状態がばらつきやすい。そのため、同一配合で半導電性塗料を作製しても成形される半導電性部材の抵抗値は一定とならず、抵抗値のそろった半導電性部材を安定して効率よく製造することができなかった。特に、粘度が21Pa・s以上の高粘度の樹脂溶液を用いた分散液を作製する場合には、分散がより困難となり、上記問題が顕著となる。   When a semiconductive member is formed from a semiconductive paint, a semiconductive paint in which carbon black is dispersed is used. However, as described above, it is difficult to finely disperse carbon black in a resin solution. As a result, the dispersion state tends to vary from dispersion to dispersion. Therefore, even if a semiconductive paint is prepared with the same composition, the resistance value of the formed semiconductive member is not constant, and a semiconductive member having a uniform resistance value can be manufactured stably and efficiently. There wasn't. In particular, when preparing a dispersion using a high viscosity resin solution having a viscosity of 21 Pa · s or more, dispersion becomes more difficult, and the above problem becomes remarkable.

本発明者等は、半導電性塗料の作製をカーボンブラックを分散したカーボンブラック分散液とカーボンブラックを含まない粘度調整液を混合することにより行うこととし、さらに、前記カーボンブラック分散液の分散状態の均一化、カーボンブラック分散液及び粘度調整液の混合比の決定法等について検討を行うことにより、前記問題を解決することができることを見出した。
以下、第1〜第3の本発明について、各々説明する。
The inventors of the present invention have prepared a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed and a viscosity adjusting liquid not containing carbon black, and further, a dispersion state of the carbon black dispersion liquid. It has been found that the above-mentioned problems can be solved by examining the method for determining the mixing ratio of the carbon black dispersion liquid and the viscosity adjusting liquid.
Hereinafter, the first to third aspects of the present invention will be described.

(第1の本発明)
前記のように、第1の本発明に係る半導電性部材の製造方法は、カーボンブラック分散液と粘度調整液とを混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程とを含むものである。第1の本発明においては、上記カーボンブラック分散液を粘度が1〜20Pa・sの範囲の樹脂溶液を用いて分散を行うことにより調製し、これに前記樹脂溶液より高粘度の粘度調整液を混合することにより、半導電性塗料を作製する。
(First invention)
As described above, the method for producing a semiconductive member according to the first aspect of the present invention includes a step of producing a semiconductive paint by mixing a carbon black dispersion and a viscosity adjusting liquid, and the semiconductive paint. And a step of forming a semiconductive member by coating. In the first aspect of the present invention, the carbon black dispersion is prepared by dispersing using a resin solution having a viscosity in the range of 1 to 20 Pa · s, and a viscosity adjusting solution having a viscosity higher than that of the resin solution is prepared. A semiconductive paint is produced by mixing.

このようにカーボンブラックの樹脂溶液への分散を、最終的な半導電性塗料に近い高粘度の状態で行うのではなく、カーボンブラックの分散に適した比較的低粘度の状態で行い、次いで、より高粘度の粘度調整液を混合して半導電性塗料とすることで、従来に比べてカーボンブラックの分散粒径が小さく、しかも粒径が均一な分散液を得ることができる。   Thus, the dispersion of the carbon black into the resin solution is not performed in a high viscosity state close to the final semiconductive paint, but in a relatively low viscosity state suitable for the dispersion of the carbon black, and then By mixing a viscosity adjusting liquid having a higher viscosity to obtain a semiconductive coating material, a dispersion liquid having a smaller dispersed particle diameter of carbon black and a uniform particle diameter can be obtained.

また、上記カーボンブラック分散液は分散状態が均一で安定しているため、分散ロットごとで抵抗値のばらつきが少なくなり、前記粘度調整液と混合する場合にもほぼ一定の混合比で同程度の抵抗値の半導電性部材が得られるようになる。さらに、作製後の液特性(分散状態、粘度等)が安定しているため、製造時における部材ごとの抵抗変化が少なく、また塗布条件の調整を行う必要もない。   In addition, since the carbon black dispersion liquid has a uniform and stable dispersion state, there is less variation in resistance value among the dispersion lots, and even when mixed with the viscosity adjusting liquid, the carbon black dispersion liquid has a substantially constant mixing ratio. A semiconductive member having a resistance value can be obtained. Furthermore, since the liquid properties (dispersion state, viscosity, etc.) after production are stable, there is little change in resistance for each member during production, and there is no need to adjust the coating conditions.

−半導電性塗料作製工程−
まず、本発明におけるカーボンブラック分散液について説明する。
カーボンブラック分散液は樹脂溶液に所定量のカーボンブラックを混合し、分散機にて分散することにより調製される。樹脂溶液に用いられる樹脂としては、特に制限されないが、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアミドイミド樹脂などの熱可塑性樹脂、熱硬化性樹脂等から選択することができる。
-Semi-conductive paint manufacturing process-
First, the carbon black dispersion in the present invention will be described.
The carbon black dispersion is prepared by mixing a predetermined amount of carbon black in a resin solution and dispersing it with a disperser. Although it does not restrict | limit especially as resin used for a resin solution, From thermoplastic resins, such as a polyimide resin, an epoxy resin, an acrylic resin, a silicone resin, a polyester resin, a polycarbonate resin, a polyamide resin, a polyamide-imide resin, a thermosetting resin, etc. You can choose.

これらの中では特に、PI樹脂、PAI樹脂が無端ベルトとしての強度や柔軟性等を確保できる点で好ましい。
なお、本発明においては、前記各種樹脂を溶剤に溶解して樹脂溶液を調製するが、該樹脂溶液としては、高分子量化した樹脂を溶解した溶液だけでなく、後述するポリイミド前駆体溶液のように、反応して樹脂になる樹脂前駆体の溶液も含まれる。
Among these, PI resin and PAI resin are particularly preferable in terms of ensuring the strength and flexibility as an endless belt.
In the present invention, a resin solution is prepared by dissolving the various resins in a solvent. The resin solution is not only a solution in which a high molecular weight resin is dissolved, but also a polyimide precursor solution to be described later. In addition, a solution of a resin precursor that reacts to become a resin is also included.

ここでは、好ましい樹脂であるPI樹脂、PAI樹脂を用いた樹脂溶液について詳述する。
PI樹脂はその前駆体を加熱反応して得る。PI前駆体であるポリアミド酸溶液は、テトラカルボン酸の無水物とジアミンとから合成される。テトラカルボン酸無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、及びこれらの混合物が挙げられる、ジアミンとしては、例えば、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテル等が挙げられる。
Here, the resin solution using PI resin and PAI resin which are preferable resin is explained in full detail.
PI resin is obtained by heating the precursor. The polyamic acid solution that is a PI precursor is synthesized from an anhydride of tetracarboxylic acid and a diamine. Examples of the tetracarboxylic acid anhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and mixtures thereof. Examples of the diamine include, for example, para Examples include phenylenediamine and 4,4′-diaminodiphenyl ether.

特に、ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリアミド酸、ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとからなるポリアミド酸、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリアミド酸は、皮膜強度等、無端ベルトとしての諸特性を満たすことが可能な点から好適である。   In particular, polyamic acid composed of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, polyamic acid composed of biphenyltetracarboxylic dianhydride and paraphenylenediamine, pyromellitic dianhydride and 4,4 Polyamic acid composed of '-diaminodiphenyl ether is preferable because it can satisfy various properties as an endless belt such as film strength.

一方、PAI樹脂は、酸無水物、例えばトリメリット酸無水物、エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、3,3’,4,4’−ビフェニルテトラカルボン酸無水物等と、上記ジアミンとを組み合わせて、当モル量で重縮合反応することで得られる。PAI樹脂は100%イミド化したものが好ましい。   On the other hand, PAI resins are acid anhydrides such as trimellitic anhydride, ethylene glycol bisanhydro trimellitate, propylene glycol bisanhydro trimellitate, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, 3, It can be obtained by combining 3 ′, 4,4′-biphenyltetracarboxylic acid anhydride and the like with the diamine and performing a polycondensation reaction in an equimolar amount. The PAI resin is preferably 100% imidized.

前駆体溶液(樹脂溶液)は、前記成分をN−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、アセトアミド、N,N−ジメチルホルムアミド等の非プロトン系極性溶剤などに溶解することで調製される。なお、この調製の際における前駆体の混合比等の選択は、適宜調整して行われる。   In the precursor solution (resin solution), the above components are dissolved in an aprotic polar solvent such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, acetamide, N, N-dimethylformamide and the like. It is prepared with. In addition, selection of the mixing ratio of the precursor in the case of this preparation is performed by adjusting suitably.

第1の本発明においては、樹脂溶液の粘度を1〜20Pa・sの範囲とする。樹脂溶液の粘度をこの範囲とすることにより、カーボンブラックの分散時における粘度を分散に適正な範囲とすることができ、目標とする分散状態に短時間で到達させることができる。
粘度が1Pa・s未満の場合、カーボンブラックのブラウン運動が起こりやすいために、粒子の結合による再凝集が起きやすい。また、粘度が20Pa・sを越える場合、溶液の流動性が低下するために、分散時の圧力をさらに高くしなくてはならなくなったり、分散により多くの時間を要するようになり、通過回数を増やさなくてはならなくなったりする。
In the first aspect of the present invention, the resin solution has a viscosity of 1 to 20 Pa · s. By setting the viscosity of the resin solution within this range, the viscosity at the time of dispersion of the carbon black can be set to an appropriate range for dispersion, and the target dispersion state can be reached in a short time.
When the viscosity is less than 1 Pa · s, the Brownian motion of the carbon black is likely to occur, and therefore reaggregation due to particle bonding is likely to occur. Also, when the viscosity exceeds 20 Pa · s, the fluidity of the solution decreases, so the pressure during dispersion must be further increased, or more time is required for dispersion, and the number of passes is reduced. I have to increase it.

樹脂溶液の粘度は1〜18Pa・sの範囲とすることが好ましく、2〜15Pa・sの範囲とすることがより好ましい。なお、上記樹脂溶液の粘度は、円錐平板方式粘度計(東機産業(株)製、型式RE80U)を用いて、ローター:3°×R14を使用して、5rpmの条件下、25℃、55%RHの測定環境下で測定した。以下の粘度についても同様である。   The viscosity of the resin solution is preferably in the range of 1 to 18 Pa · s, and more preferably in the range of 2 to 15 Pa · s. The resin solution has a viscosity of 25 ° C., 55 ° C. under conditions of 5 rpm using a conical plate type viscometer (manufactured by Toki Sangyo Co., Ltd., model RE80U) using a rotor: 3 ° × R14. It was measured under the measurement environment of% RH. The same applies to the following viscosities.

樹脂溶液の濃度は、上記粘度範囲となるように適宜選択されるが、好ましい溶液の固形分濃度は10〜40質量%であり、より好ましくは12〜30質量%の範囲である。   Although the density | concentration of a resin solution is suitably selected so that it may become the said viscosity range, the solid content concentration of a preferable solution is 10-40 mass%, More preferably, it is the range of 12-30 mass%.

カーボンブラックとしては、pHが5以下でかつ揮発分が3.5質量%以上のものを好ましく用いることができ、例えば、オイルファーネスブラック、チャンネルブラック等の一般的なカーボンブラックが挙げられるが、分散性の点でカーボンブラックを酸化処理したものが好ましい。また、1種類でなく複数種類配合することも可能である。   As the carbon black, those having a pH of 5 or less and a volatile content of 3.5% by mass or more can be preferably used, and examples thereof include general carbon blacks such as oil furnace black and channel black. From the viewpoint of properties, those obtained by oxidizing carbon black are preferable. Moreover, it is also possible to mix | blend multiple types instead of one type.

カーボンブラックの混合量は、分散が可能であれば特に制限はないが、後述する分散作業というのは手間と時間がかかるので、分散時はカーボンブラックをなるべく高濃度で行って液量を少なくし、分散後に樹脂溶液(粘度調整液など)を加えて増量し、所定のカーボンブラック含有量に調整するのが好ましい。そのため、分散時のカーボンブラック混合量は、皮膜形成用樹脂100質量部に対して、40〜120質量部の範囲が好ましく、50〜100質量部の範囲とするのがより好ましい。   The amount of carbon black to be mixed is not particularly limited as long as it can be dispersed. However, since the dispersion work described later takes time and effort, the carbon black is dispersed at as high a concentration as possible during dispersion. It is preferable to increase the amount by adding a resin solution (viscosity adjusting liquid or the like) after dispersion to adjust the content to a predetermined carbon black. Therefore, the mixing amount of carbon black at the time of dispersion is preferably in the range of 40 to 120 parts by mass, more preferably in the range of 50 to 100 parts by mass with respect to 100 parts by mass of the film-forming resin.

カーボンブラックの分散は、通常の塗料作製に用いられる種々の方法、例えばボールミル、サンドミル、ペイントシェーカーなどを用いた方法により行うことができる。ただし、カーボンブラックは均一かつ微細に分散しないと、所望の抵抗特性を有し、表面抵抗率の維持性に優れた半導電性部材は得られない。   The dispersion of carbon black can be performed by various methods used for ordinary coating preparation, for example, a method using a ball mill, a sand mill, a paint shaker or the like. However, unless carbon black is uniformly and finely dispersed, a semiconductive member having desired resistance characteristics and excellent surface resistivity maintenance property cannot be obtained.

上記観点から、本発明においては、分散後のカーボンブラックの数平均粒子径を500nm以下にすることが好ましく、400nm以下とすることがより好ましい。カーボンブラックの数平均粒子径が500nmより大きいと、成形後の半導電性部材の機械的強度が落ちることがあるほか、表面抵抗率変化量が大きくなることがある。
なお、カーボンブラックの数平均粒子径は、例えば大塚電子製の動的光散乱式測定器PAR−IIIを用いて測定できる。測定条件は、clock rate:100μs、accumulate time:10回、correlate ch:128、温度:20℃、溶媒:N−メチルピロロドンである。
From the above viewpoint, in the present invention, the number average particle diameter of carbon black after dispersion is preferably 500 nm or less, and more preferably 400 nm or less. When the number average particle diameter of carbon black is larger than 500 nm, the mechanical strength of the semiconductive member after molding may be lowered, and the amount of change in surface resistivity may be increased.
In addition, the number average particle diameter of carbon black can be measured using, for example, a dynamic light scattering type measuring device PAR-III manufactured by Otsuka Electronics. The measurement conditions are: clock rate: 100 μs, accumulate time: 10 times, correlate ch: 128, temperature: 20 ° C., solvent: N-methylpyrrolodon.

以下に、第1の本発明において、カーボンブラックを均一かつ微細に分散する方法として、好適な例を挙げて説明する。
本発明においては、分散方法としてメディアを使用しない衝突型分散機を用いるのが好適である。衝突型分散機とは、2つ以上に分割した溶液を衝突させて分散する分散機であり、上記溶液として、樹脂溶液とカーボンブラックとを混合したカーボンブラック混合液を用いる。
Hereinafter, as a method for uniformly and finely dispersing carbon black in the first aspect of the present invention, a preferred example will be described.
In the present invention, it is preferable to use a collision type disperser that does not use media as a dispersion method. The collision type disperser is a disperser that collides and disperses two or more divided solutions. As the solution, a carbon black mixed solution obtained by mixing a resin solution and carbon black is used.

分散をするには、まず前記樹脂溶液にカーボンブラックを混合し、予備分散を行う。予備分散とは、撹拌機でカーボンブラックの混合液をよく撹拌し、カーボンブラックの固まりを細かくほぐすことである。次に、予備分散が済んだカーボンブラック混合液を衝突型分散機に通す。   In order to disperse, carbon black is first mixed with the resin solution, and preliminary dispersion is performed. Pre-dispersion is to stir the carbon black mixture well with a stirrer to loosen the carbon black mass finely. Next, the preliminarily dispersed carbon black mixed liquid is passed through a collision type disperser.

図1は、衝突型分散機の原理を模式的に示す説明図であり、矢印で示す液の流れの上流から下流に向かって一点に連結された2つの第1流路管50と、連結部を構成する連結管52と、この連結管52の一端から2つ以上に分岐した第2流路管54と、から構成された流路に、カーボンブラック混合液を流すことにより分散する。   FIG. 1 is an explanatory view schematically showing the principle of a collision-type disperser, in which two first flow path pipes 50 connected at one point from upstream to downstream of a liquid flow indicated by arrows, and a connecting portion Is dispersed by flowing a carbon black mixed liquid in a flow path constituted by a connection pipe 52 constituting the first pipe and a second flow path pipe 54 branched into two or more from one end of the connection pipe 52.

その操作はまず、2つの第1流路管50にそれぞれカーボンブラック混合液を流す。この流圧を一定以上とし、連結部を構成する連結管52の一端52a近傍で互いの溶液を衝突させる。衝突した混合液は、連結管52を通過し、2つ以上に分岐した第2流路管54にそれぞれ流れ、再び2つに分割される。この再び2つに分割された混合液を、さらに第1流路管50に流し、混合・分割を2回以上の複数回繰り返すこともできる。このように、混合液を衝突させて混合させることで、カーボンブラック混合液にせん断力と共に、強い圧力で衝突力を付加することが可能となり、均一かつ微細にカーボンブラックを高濃度で分散させることができる。   In the operation, first, the carbon black mixed solution is caused to flow through the two first flow path tubes 50 respectively. The fluid pressure is set to a certain level or more, and the solutions collide with each other in the vicinity of one end 52a of the connecting pipe 52 constituting the connecting portion. The collided liquid mixture passes through the connecting pipe 52 and flows into the second flow path pipe 54 branched into two or more, and is divided into two again. The mixed liquid divided into two parts can be further passed through the first flow path pipe 50, and the mixing / division can be repeated two or more times. In this way, by mixing and mixing the mixed liquid, it becomes possible to add a collision force with a strong pressure together with a shearing force to the carbon black mixed liquid, and uniformly and finely disperse the carbon black at a high concentration. Can do.

前記流圧は、150MPa以上とすることが好ましく、より好ましくは150〜250MPaの範囲、さらに好ましくは180〜220MPaの圧力で互いに衝突させることが好ましい。流圧が150MPa未満であると、カーボンブラックを微細に分散することができなくなる場合がある。   The flow pressure is preferably 150 MPa or more, more preferably in the range of 150 to 250 MPa, and even more preferably in the range of 180 to 220 MPa. If the flow pressure is less than 150 MPa, carbon black may not be finely dispersed.

衝突した混合液は、連結管52を通過するが、この2つの第1流路管50の連結部(図中では、連結管52の一端52a近傍)、即ち2つの溶液が衝突する衝突部の最小断面積を0.07mm2以下(好ましくは0.007〜0.05mm2以下、より好ましくは0.015〜0.04mm2)とするのが好ましい。これは、混合液を衝突させる面積を小さくすることで、効率良く混合液に圧力を付加させることができるからである。ここで、2つの溶液が衝突する衝突部の最小断面積は、図中では連結管52入り口近傍での流路管50の断面積に相当する。 The mixed liquid that has collided passes through the connecting pipe 52, but the connecting part of the two first flow path pipes 50 (in the vicinity of one end 52a of the connecting pipe 52 in the figure), that is, the collision part where the two solutions collide. the minimum cross-sectional area of 0.07 mm 2 or less (preferably 0.007~0.05Mm 2 or less, more preferably 0.015~0.04mm 2) preferably with. This is because the pressure can be efficiently applied to the mixed liquid by reducing the area where the mixed liquid collides. Here, the minimum cross-sectional area of the collision portion where the two solutions collide corresponds to the cross-sectional area of the flow channel pipe 50 in the vicinity of the inlet of the connecting pipe 52 in the drawing.

上記衝突型分散機としては、例えば、ジーナス製「Geanus PY」や、スギノマシン製「アルティマイザ」、ナノマイザ製「ナノマイザ」等が挙げられる。   Examples of the collision type disperser include “Geanus PY” manufactured by Genus, “Ultimizer” manufactured by Sugino Machine, “Nanomizer” manufactured by Nanomizer, and the like.

分散時間としては、分散する全カーボンブラック混合液量によるが、例えばカーボンブラック混合液量100Lを、流圧200Pa・sとして好ましい分散状態まで分散するためには、約5〜10時間分散することが好ましい。
なお、分散後の溶液粘度は、微細に分散されたカーボンブラックが加わることにより分散前の粘度より上昇し、3〜30Pa・sになることがある。
The dispersion time depends on the total amount of carbon black mixed liquid to be dispersed. For example, in order to disperse 100 L of carbon black mixed liquid to a preferable dispersion state with a flow pressure of 200 Pa · s, it may be dispersed for about 5 to 10 hours. preferable.
In addition, the solution viscosity after dispersion | distribution rises from the viscosity before dispersion | distribution by adding the finely disperse | distributed carbon black, and may be 3-30 Pa.s.

さらに、分散時、不純物の混入やカーボンブラック凝集体があった場合、溶液を例えば、目開き25μm以下のフィルタを通すことで粗大粒子を除去し、均一な分散状態のカーボンブラック分散液を得ることが可能である。   Further, when there are impurities mixed in or carbon black aggregates during dispersion, coarse particles are removed by passing the solution through, for example, a filter having an aperture of 25 μm or less to obtain a carbon black dispersion in a uniform dispersion state. Is possible.

次に、得られたカーボンブラック分散液に粘度調整液を加え混合して半導電性塗料を作製する。上記粘度調整液は、カーボンブラックを分散するために低粘度で調製したカーボンブラック分散液の粘度を、実際の塗布に使用する塗布液の粘度まで上昇させ、同時にカーボンブラック(P)と樹脂(B)とのP/B比を調整する目的で加えられる。したがって、通常は前記樹脂溶液に用いた樹脂と同一の樹脂を含む溶液が用いられる。   Next, a viscosity adjusting liquid is added to and mixed with the obtained carbon black dispersion to prepare a semiconductive paint. The viscosity adjusting liquid increases the viscosity of the carbon black dispersion prepared at a low viscosity to disperse the carbon black up to the viscosity of the coating liquid used for actual coating, and at the same time, carbon black (P) and resin (B For the purpose of adjusting the P / B ratio. Therefore, a solution containing the same resin as that used for the resin solution is usually used.

第1の本発明では、粘度調整液としてカーボンブラック分散液に用いた樹脂溶液より粘度の高い溶液を用いる。具体的には、樹脂溶液の粘度の5〜100倍程度の粘度を有することが好ましく、より具体的には、粘度を50〜1000Pa・sの範囲とすることが好ましく、100〜500Pa・sの範囲とすることがより好ましい。   In the first aspect of the present invention, a solution having a higher viscosity than the resin solution used for the carbon black dispersion is used as the viscosity adjusting liquid. Specifically, it is preferable to have a viscosity of about 5 to 100 times the viscosity of the resin solution, and more specifically, the viscosity is preferably in the range of 50 to 1000 Pa · s, and is preferably 100 to 500 Pa · s. It is more preferable to set the range.

粘度調整液の粘度が50Pa・sより低いと、カーボンブラック分散液の粘度を上げる効果が小さい場合があり、粘度1000Pa・sより高すぎると、カーボンブラック分散液と混合する際の作業が行いにくくなる場合がある。   If the viscosity of the viscosity adjusting liquid is lower than 50 Pa · s, the effect of increasing the viscosity of the carbon black dispersion may be small. If the viscosity is higher than 1000 Pa · s, the work when mixing with the carbon black dispersion is difficult. There is a case.

以上のような樹脂溶液と粘度調整液との粘度の組み合わせとしては、低粘度の樹脂溶液の粘度が1〜20Pa・sの範囲であるとき、高粘度の粘度調整液の粘度が50〜1000Pa・sの範囲であることが好ましい。また、カーボンブラック分散液の混合液量Aと粘度調整液の混合液量Bとの質量比A/Bは、1/5〜5/1の範囲とすることが好ましい。   As a combination of the viscosity of the resin solution and the viscosity adjusting liquid as described above, when the viscosity of the low viscosity resin solution is in the range of 1 to 20 Pa · s, the viscosity of the high viscosity adjusting liquid is 50 to 1000 Pa ·. The range of s is preferable. The mass ratio A / B of the mixed liquid amount A of the carbon black dispersion and the mixed liquid amount B of the viscosity adjusting liquid is preferably in the range of 1/5 to 5/1.

このように、カーボンブラックを高濃度で分散し、次いで、高粘度の溶液を加えてカーボンブラック含有量を調整することにより、分散時の液量を少なくして、分散作業の効率化を図ることができる。   In this way, carbon black is dispersed at a high concentration, and then a high viscosity solution is added to adjust the carbon black content, thereby reducing the amount of liquid during dispersion and improving the efficiency of the dispersion work. Can do.

なお、後述する画像形成装置に用いられる無端ベルト用の半導電性部材に必要とされる電気抵抗値を考慮すると、混合後のカーボンブラックの含有量は、前記皮膜形成用の樹脂100質量部に対して22〜33質量部の範囲となることが好ましく、24〜32質量部の範囲となることがより好ましい。   In consideration of the electric resistance value required for the semiconductive member for an endless belt used in the image forming apparatus described later, the carbon black content after mixing is 100 parts by mass of the resin for film formation. On the other hand, it is preferably in the range of 22 to 33 parts by mass, and more preferably in the range of 24 to 32 parts by mass.

カーボンブラックの含有量が22質量部未満であると、例えば転写部材として半導電性部材を用いる場合抵抗が高くなってトナーを転写できなくなることがある。一方、33質量部を超えると、抵抗が低くなりすぎるとともに、皮膜がもろくなって屈曲性が低下することになる場合がある。   When the content of carbon black is less than 22 parts by mass, for example, when a semiconductive member is used as a transfer member, the resistance may increase and the toner may not be transferred. On the other hand, when it exceeds 33 parts by mass, the resistance becomes too low and the film becomes brittle and the flexibility may be lowered.

カーボンブラック分散液と粘度調整液との混合は、通常液混合に用いる攪拌機等を用いて、通常の混合条件で行うことができる。カーボンブラックの分散の安定性を考慮すると、カーボンブラック分散液を攪拌しながら所定量の粘度調整液を徐々に加えていくことが好ましい。   Mixing of the carbon black dispersion and the viscosity adjusting liquid can be carried out under normal mixing conditions using a stirrer or the like used for normal liquid mixing. Considering the stability of carbon black dispersion, it is preferable to gradually add a predetermined amount of the viscosity adjusting liquid while stirring the carbon black dispersion.

混合後の半導電性塗料の粘度は5〜100Pa・sとすることが好ましく、10〜50Pa・sの範囲とすることがより好ましい。具体的には、樹脂、カーボンブラックを含めた固形分量が20〜40質量%の範囲の塗料とすることが好ましい。   The viscosity of the semiconductive paint after mixing is preferably 5 to 100 Pa · s, and more preferably 10 to 50 Pa · s. Specifically, it is preferable to use a coating material having a solid content including resin and carbon black in the range of 20 to 40% by mass.

−半導電性部材成形工程−
本工程では、作製した半導電性塗料を金属等の基体に塗布して、必要により乾燥、熱処理等を行って半導電性部材を成形する工程である。
以下、本発明の半導電性部材が好ましく用いられる無端ベルトの成形を例にとって説明する。
-Semiconductive member molding process-
In this step, the produced semiconductive paint is applied to a substrate such as a metal and dried, heat treated, etc., if necessary, to form a semiconductive member.
In the following, description will be given by taking an example of forming an endless belt in which the semiconductive member of the present invention is preferably used.

まず、前記半導電性塗料を円筒状芯体等の基体の表面に塗布し、塗膜を形成する。この塗布方法としては浸漬塗布法や環状塗布法があるが、環状体を用いて膜厚を調整する環状塗布法を用いることが好ましい。   First, the semiconductive paint is applied to the surface of a substrate such as a cylindrical core to form a coating film. As this coating method, there are a dip coating method and an annular coating method, but it is preferable to use an annular coating method in which the film thickness is adjusted using an annular body.

基体は、アルミニウムやステンレス、ニッケル等の金属製の円筒状芯体が好ましい。円筒状芯体の長さは、目的とする無端ベルト以上の長さが必要であり、複数の無端ベルトを同時に作製する場合には、その本数分以上の長さが必要である。また、端部に生じる無効領域に対する余裕幅を確保するため、目的の長さより、10〜40%程度長いことが望ましい。   The substrate is preferably a cylindrical core made of metal such as aluminum, stainless steel, or nickel. The length of the cylindrical core is required to be equal to or longer than the target endless belt, and when a plurality of endless belts are manufactured at the same time, a length equal to or more than the number is required. Further, in order to secure a margin for the invalid area generated at the end, it is desirable that the length is about 10 to 40% longer than the target length.

円筒状芯体の外径は、目的とする無端ベルトの直径に合わせ、肉厚は芯体としての強度が保てる厚さにする。形成される皮膜が円筒状芯体表面に接着するのを防ぐため、円筒状芯体の表面には離型性を付与するが、それには、芯体表面をフッ素樹脂やシリコーン樹脂で被覆したり、表面に離型剤を塗布したりする方法がある。   The outer diameter of the cylindrical core body is adjusted to the diameter of the target endless belt, and the thickness is set to a thickness that can maintain the strength of the core body. In order to prevent the formed film from adhering to the surface of the cylindrical core body, the surface of the cylindrical core body is given releasability. For this purpose, the surface of the core body is covered with a fluororesin or a silicone resin. There is a method of applying a release agent to the surface.

なお、前記PI樹脂の場合、イミド化時には残留溶剤や反応時に発生する水の蒸発があり、反応後の皮膜には部分的に膨れを生じることがあり、特に膜厚が50μmを越える場合に顕著である。この膨れを防止するために、特開2002−160239号公報開示の如く、芯体表面を粗面化することが好ましい。その方法には、ブラスト、切削、サンドペーパーがけ等の方法があり、表面粗さは算術平均粗さRaで0.2〜2μmの範囲程度が好ましい。これにより、皮膜から生じる気体は、芯体と皮膜の間に形成されるわずかな隙間を通って外部に出ることができ、膨れを生じない。   In the case of the PI resin, there is evaporation of residual solvent and water generated during the reaction at the time of imidation, and the film after the reaction may partially swell, particularly when the film thickness exceeds 50 μm. It is. In order to prevent this swelling, it is preferable to roughen the core surface as disclosed in JP-A-2002-160239. As the method, there are methods such as blasting, cutting, sandpaper peeling, etc., and the surface roughness is preferably about 0.2 to 2 μm in terms of arithmetic average roughness Ra. Thereby, the gas generated from the film can go out through a slight gap formed between the core and the film, and does not swell.

次に、前記環状体を用いる環状塗布方法の一例を説明する。
図2は、塗布中の塗布装置の概略断面図である。但し、塗布主要部のみを示し、円筒状芯体の昇降手段などの周辺部は省略した。なお、本明細書において、「円筒状芯体上に塗布する」とは、円筒状芯体の表面及び該表面に層を有する場合はその層上に塗液を塗布する意味である。また、「円筒状芯体を上昇」とは液面との相対関係であり、「円筒状芯体を停止し、塗布液面を下降」させる場合を含む。
Next, an example of an annular coating method using the annular body will be described.
FIG. 2 is a schematic cross-sectional view of the coating apparatus during coating. However, only the main part of the application is shown, and the peripheral part such as the lifting / lowering means of the cylindrical core is omitted. In the present specification, “applying onto the cylindrical core” means that the coating liquid is applied onto the surface of the cylindrical core and, when the surface has a layer, the layer. Further, “rising the cylindrical core” is a relative relationship with the liquid level, and includes the case of “stopping the cylindrical core and lowering the coating liquid level”.

図2において、溶液(半導電性塗料)2を環状塗布槽7に入れ、その下部から上部へ円筒状芯体1を通過させると、塗膜4が形成され、塗布が行われる。円筒状芯体1の下には、他の円筒状芯体1’が重ねられる。環状塗布槽7の底部には、溶液2が漏れないよう、シール材8を取り付ける。シール材8は、ポリエチレンやシリコーンゴム、フッソ樹脂等の柔軟性板材から成る。塗液2の液面には、円筒状芯体1の軸方向の断面の外周外径よりも大きな円孔6を設けた環状体5を自由移動可能状態で設置する。環状体5は、塗布中は溶液2に浮上するが、静止時に浮力が不足する場合は、沈没防止のために環状体5の外周面または塗布槽に、環状体5を支える足や腕を設けてもよい。   In FIG. 2, when a solution (semi-conductive paint) 2 is put into an annular coating tank 7 and passed through the cylindrical core 1 from the lower part to the upper part, a coating film 4 is formed and coating is performed. Under the cylindrical core body 1, another cylindrical core body 1 ′ is overlaid. A sealing material 8 is attached to the bottom of the annular coating tank 7 so that the solution 2 does not leak. The sealing material 8 is made of a flexible plate material such as polyethylene, silicone rubber, or fluorine resin. On the liquid surface of the coating liquid 2, an annular body 5 having a circular hole 6 larger than the outer peripheral outer diameter of the axial cross section of the cylindrical core body 1 is installed in a freely movable state. The annular body 5 floats on the solution 2 during application, but if the buoyancy is insufficient at rest, the legs and arms that support the annular body 5 are provided on the outer peripheral surface of the annular body 5 or the application tank to prevent sinking. May be.

塗布の際は、円筒状芯体1と円孔6との間隙により、塗膜4の膜厚が調整されるので、その間隙は、所望の塗布膜厚を鑑みて調整する。円筒状芯体1の上昇速度は0.1〜1.5m/min程度であるのが好ましく、円孔6を通して円筒状芯体1を上昇させると、溶液2の介在により、円筒状芯体1と環状体5との間隙にて摩擦抵抗が生じ、環状体5は持ち上げられる。このように環状体5が持ち上げられた際、環状体5は円筒状芯体1との摩擦抵抗が周方向で一定になるように水平方向に移動し、間隙が周方向で一定になる。そこで、環状体5が円筒状芯体1と接触することはなく、常に一定間隙が保たれる。   At the time of application, the film thickness of the coating film 4 is adjusted by the gap between the cylindrical core body 1 and the circular hole 6, so the gap is adjusted in view of the desired coating film thickness. The rising speed of the cylindrical core body 1 is preferably about 0.1 to 1.5 m / min. When the cylindrical core body 1 is lifted through the circular hole 6, the cylindrical core body 1 is interposed by the solution 2. A frictional resistance is generated in the gap between the annular body 5 and the annular body 5 is lifted. When the annular body 5 is lifted in this way, the annular body 5 moves in the horizontal direction so that the frictional resistance with the cylindrical core body 1 is constant in the circumferential direction, and the gap is constant in the circumferential direction. Therefore, the annular body 5 does not come into contact with the cylindrical core body 1 and a constant gap is always maintained.

この塗布方法が適用できる溶液の粘度は、1〜1000Pa・sの範囲であるが、無端ベルトの塗布溶液を塗布するのに好適な溶液の粘度は、5〜100Pa・sの範囲である。したがって、本発明における前記カーボンブラック分散液は、前記の通り、カーボンブラックの含有量を調整するのに合わせて、粘度を高くするよう、粘度調整液を加えられて半導電性塗料として調製される   The viscosity of the solution to which this coating method can be applied is in the range of 1 to 1000 Pa · s, but the viscosity of the solution suitable for coating the endless belt coating solution is in the range of 5 to 100 Pa · s. Therefore, as described above, the carbon black dispersion liquid in the present invention is prepared as a semiconductive paint by adding a viscosity adjusting liquid so as to increase the viscosity in accordance with the adjustment of the carbon black content.

前記円筒状芯体1への塗布後、塗膜4を乾燥して溶媒を除去することが行なわれる。乾燥条件は、乾燥後の塗膜に含まれる残留溶剤が30〜50質量%前後になるように設定することが好ましく、温度は100〜200℃の範囲、時間は10〜60分程度が好ましい。溶剤の乾燥を促進するために、塗膜表面には熱風を吹きつけてもよい。乾燥時、塗膜が下方に垂れないよう、円筒状芯体1の軸方向を水平にして、2〜20rpmで回転させるのが好ましい。   After the application to the cylindrical core 1, the coating film 4 is dried to remove the solvent. The drying conditions are preferably set so that the residual solvent contained in the coated film after drying is about 30 to 50% by mass, the temperature is in the range of 100 to 200 ° C., and the time is preferably about 10 to 60 minutes. In order to accelerate the drying of the solvent, hot air may be blown onto the surface of the coating film. When drying, the axial direction of the cylindrical core 1 is preferably horizontal and rotated at 2 to 20 rpm so that the coating film does not hang downward.

次いで、円筒状芯体1を加熱して皮膜を形成する。皮膜形成樹脂がPI樹脂の場合、加熱温度は一般に250〜400℃の範囲、好ましくは300〜350℃の範囲程度である。一方、皮膜形成樹脂がPAI樹脂の場合、反応はないが、残留溶剤を完全に乾燥させるために、通常220〜320℃の範囲、好ましくは250〜300℃の範囲程度に加熱する。   Next, the cylindrical core body 1 is heated to form a film. When the film-forming resin is a PI resin, the heating temperature is generally in the range of 250 to 400 ° C, preferably in the range of 300 to 350 ° C. On the other hand, when the film-forming resin is a PAI resin, there is no reaction, but in order to completely dry the residual solvent, it is usually heated in the range of 220 to 320 ° C, preferably in the range of 250 to 300 ° C.

前記PI樹脂の加熱温度に関し、酸成分としてビフェニルテトラカルボン酸二無水物を主成分とするPI樹脂のイミド化反応は、250℃以上の温度にある時間以上置かないと完結しにくく、250℃の温度に2時間以上置くことで、イミド化がほほ完結する。時間が2時間未満の場合、イミド化が不十分であり、諸特性が十分に発揮されない。   Regarding the heating temperature of the PI resin, the imidation reaction of the PI resin mainly composed of biphenyltetracarboxylic dianhydride as an acid component is difficult to complete unless it is placed at a temperature of 250 ° C. or higher for a certain period of time. The imidization is almost completed when the temperature is kept for 2 hours or more. When time is less than 2 hours, imidation is inadequate and various characteristics are not fully exhibited.

一方、該PI樹脂の耐屈曲性が向上するのは、300℃以上の温度で1時間以上加熱した時である。したがって、上記2条件を組み合せ、250℃の温度に2時間以上、かつ300℃以上の温度で1時間以上加熱することが、PI樹脂のイミド化を完結させ、かつ必要な耐屈曲性も獲得するために好ましい条件となる。   On the other hand, the bending resistance of the PI resin is improved when heated at a temperature of 300 ° C. or higher for 1 hour or longer. Therefore, combining the above two conditions and heating to a temperature of 250 ° C. for 2 hours or more and at a temperature of 300 ° C. or more for 1 hour or more completes imidation of the PI resin and obtains necessary bending resistance. Therefore, this is a preferable condition.

上記の加熱条件について、図11に示すグラフを用いて具体的に説明する。図11の横軸は時間、縦軸は芯体の温度であり、時間の経過と共に芯体温度が上昇し、次いで下降する経過を示すものである。なお、縦軸の芯体温度は実温を測定した値であり、PI皮膜と同じ温度を示していると言えるが、加熱炉の設定温度や炉内雰囲気温度はこれより高いことがある。   The heating conditions will be specifically described with reference to the graph shown in FIG. The horizontal axis in FIG. 11 is time, and the vertical axis is the temperature of the core body. The temperature of the core body increases with time and then decreases. The core temperature on the vertical axis is a value obtained by measuring the actual temperature, and can be said to indicate the same temperature as the PI film, but the set temperature of the heating furnace and the furnace atmosphere temperature may be higher than this.

図中、条件イは、常温から300℃まで2時間で上昇させ、300℃に1時間20分保持し、常温まで1時間40分で冷却した例であり、条件ロは、常温から250℃まで1時間で上昇させ、次いで250℃から300℃まで30分間で上昇させ、300℃に1時間保持し、常温まで1時間40分かけて冷却した例である。また、条件ハは常温から250℃まで30分間で上昇させ、250℃に30分間保持し、次いで250℃から300℃まで20分間で上昇させ、300℃に1時間保持し、常温まで1時間30分かけて冷却した例である。   In the figure, Condition A is an example in which the temperature is raised from room temperature to 300 ° C. in 2 hours, held at 300 ° C. for 1 hour and 20 minutes, and cooled to room temperature in 1 hour and 40 minutes. Condition B is from room temperature to 250 ° C. In this example, the temperature was raised in 1 hour, then raised from 250 ° C. to 300 ° C. in 30 minutes, held at 300 ° C. for 1 hour, and cooled to room temperature over 1 hour and 40 minutes. Further, the condition C is raised from room temperature to 250 ° C. over 30 minutes, held at 250 ° C. for 30 minutes, then raised from 250 ° C. to 300 ° C. over 20 minutes, held at 300 ° C. for 1 hour, and held at room temperature for 1 hour 30 This is an example of cooling over a minute.

加熱条件としては上記どの条件によってもよいが、条件ロは250℃まで速やかに昇温させたので、全体の所要時間は条件イより短く、条件ハはさらに条件ロより短くしたものである。但し、250℃まで急速に加熱しすぎると、温度むらが大きくなるばかりでなく、皮膜中の残留溶剤が泡になることがあるので、限度がある。また、芯体の熱容量が大きい場合、急速に加熱するのは困難なことがある。   The heating conditions may be any of the above conditions. However, since the temperature of condition b was quickly raised to 250 ° C., the total time required was shorter than condition i, and condition c was further shorter than condition b. However, if it is heated too rapidly up to 250 ° C., not only will the temperature unevenness increase, but the residual solvent in the film may become foamed, so there is a limit. Moreover, when the heat capacity of the core is large, it may be difficult to heat rapidly.

なお、250℃の温度に置かれる時間には、300℃以上の温度に置かれた後の冷却過程での時間も含まれる。具体的に条件イでは、点線の補助線で示した250℃に2時間、300℃に1時間20分置かれており、条件ロでは、250℃に2時間、300℃に1時間置かれ、条件ハでは250℃に2時間15分、300℃に1時間置かれている。加熱条件はこのほか各種取りうるが、本発明では要するに、250℃の温度に2時間以上、かつ300℃以上の温度に1時間以上置くことが要件である。   Note that the time at which the temperature is set to 250 ° C. includes the time in the cooling process after the temperature is set to 300 ° C. or higher. Specifically, in condition i, it is placed at 250 ° C. for 2 hours and 300 ° C. for 1 hour and 20 minutes as indicated by the dotted auxiliary line, and in condition b, it is placed at 250 ° C. for 2 hours and 300 ° C. for 1 hour, In Condition C, it is placed at 250 ° C. for 2 hours and 15 minutes and at 300 ° C. for 1 hour. In addition to various heating conditions, the present invention is required to be placed at a temperature of 250 ° C. for 2 hours or more and at a temperature of 300 ° C. or more for 1 hour or more.

一方、250℃の温度に置く時間として、4時間を越える時間は、製造時間として非効率であるばかりでなく、樹脂を劣化させる虞もあるので不要である。また、300℃以上の温度で2時間を越えて置くことは、非効率であるほか、熱エネルギーのむだにもなるので、やはり不要である。さらに、温度の上限として、400℃以上の温度では、PI樹脂の剛直性が高くなり過ぎ、耐屈曲性が逆に低下することがあるので好ましくない。ジアミン成分がパラフェニレンジアミン以外のPI樹脂の場合、温度の上限が350℃以下であることはさらに好ましい。   On the other hand, a time exceeding 4 hours as the temperature at 250 ° C. is unnecessary because it is not only inefficient as a manufacturing time but also may deteriorate the resin. In addition, it is not necessary to leave it at a temperature of 300 ° C. or more for more than 2 hours because it is inefficient and wastes heat energy. Furthermore, as the upper limit of the temperature, a temperature of 400 ° C. or higher is not preferable because the rigidity of the PI resin becomes too high and the bending resistance may be lowered. When the diamine component is a PI resin other than paraphenylenediamine, it is more preferable that the upper limit of the temperature is 350 ° C. or less.

一方、イミド化は、加熱時の温度むらによって反応速度のばらつきを生じやすい。一般にPI樹脂はイミド化の際に収縮することが知られているが、反応速度のばらつきがあると、収縮度合いにもばらつきを生じ、膜厚や機械的特性のばらつきの原因になって好ましくない。特にPI樹脂にカーボンブラックなどの導電性粒子を分散させてある場合、抵抗値のばらつきを生じやすい。無端ベルトを転写ベルトとして使用する場合、抵抗値のばらつきが大きいと、転写画像の濃度むらになるので好ましくない。   On the other hand, imidation tends to cause variation in reaction rate due to temperature unevenness during heating. In general, it is known that PI resin shrinks during imidation, but if there is a variation in reaction rate, the degree of shrinkage also varies, which is not preferable because it causes variations in film thickness and mechanical properties. . In particular, when conductive particles such as carbon black are dispersed in the PI resin, the resistance value tends to vary. When an endless belt is used as a transfer belt, a large variation in resistance value is not preferable because the density of the transferred image becomes uneven.

温度むらを小さくするには、溶剤乾燥後のPI前駆体皮膜を加熱する時、熱風を芯体表面に直に当てない方が良い。その方法として、例えば加熱炉として、熱風が上方から吹き降りる方式の装置が好ましい。また、熱風が芯体内側を通り、芯体表面に当たらないようにすることも好ましい。   In order to reduce the temperature unevenness, it is better not to apply hot air directly to the core surface when the PI precursor film after solvent drying is heated. As the method, for example, a heating furnace is preferably used that blows hot air from above. It is also preferable that the hot air does not hit the surface of the core body through the inside of the core body.

熱風が側面から吹き出される加熱炉においては、例えば図13に示すように、円筒状芯体30に覆い32を被せて加熱炉に入れる方法もある。この場合、円筒状芯体30と覆い32の隙間は、20〜100mm程度が好ましい。たとえその隙間に熱風が入っても、皮膜に強く当たることはないので、この程度の隙間はあっても良い。円筒状芯体30への伝熱は、円筒状芯体30の内部に入る熱風によるほか、覆い32が加熱されることからくる輻射熱によってもなされる。   In a heating furnace in which hot air is blown out from the side surface, for example, as shown in FIG. 13, there is a method in which a cylindrical core body 30 is covered with a cover 32 and placed in the heating furnace. In this case, the gap between the cylindrical core body 30 and the cover 32 is preferably about 20 to 100 mm. Even if hot air enters the gap, it does not hit the film strongly, so there may be such a gap. Heat transfer to the cylindrical core body 30 is performed not only by hot air entering the inside of the cylindrical core body 30 but also by radiant heat from heating the cover 32.

冷却後、円筒状芯体を取り出し、形成された皮膜(半導電性部材)を芯体から剥離して無端ベルトを得る。無端ベルトは、端部の不要部分を切って所定長さに切断し、さらに必要に応じて、穴あけ加工やリブ付け加工、等が施されることがある。   After cooling, the cylindrical core is taken out, and the formed film (semiconductive member) is peeled from the core to obtain an endless belt. The endless belt may be cut to a predetermined length by cutting an unnecessary portion of the end, and may be subjected to drilling or ribbing as necessary.

本発明における半導電性部材は、転写ベルトなどに用いる無端ベルト成形する場合には、厚さは75〜85μの範囲とすることが好ましい。
また、好ましい表面抵抗率は1×108Ω/□〜1×1015Ω/□の範囲、より好ましくは1×1010Ω/□〜1×1013Ω/□の範囲であり、さらに好ましくは1×1011Ω/□〜1×1012Ω/□の範囲である。
When the semiconductive member in the present invention is formed into an endless belt used for a transfer belt or the like, the thickness is preferably in the range of 75 to 85 μm.
Further, the preferable surface resistivity is in the range of 1 × 10 8 Ω / □ to 1 × 10 15 Ω / □, more preferably in the range of 1 × 10 10 Ω / □ to 1 × 10 13 Ω / □, and more preferably. Is in the range of 1 × 10 11 Ω / □ to 1 × 10 12 Ω / □.

一方、好ましい体積抵抗率は1×106Ω・cm〜1×1013Ω・cmの範囲であり、より好ましくは1×108Ω・cm〜1×1012Ω・cmの範囲であり、さらに好ましくは1×109Ω・cm〜1×1011Ω・cmの範囲である。
表面抵抗率または体積抵抗率が低すぎると、例えば、転写部材として用いる場合に転写時に電流が流れすぎて転写画像が乱れることがあり、一方、表面抵抗率または体積抵抗率が高すぎると、転写電流が流れないために転写できなくなることがある。
On the other hand, the preferred volume resistivity is in the range of 1 × 10 6 Ω · cm to 1 × 10 13 Ω · cm, more preferably in the range of 1 × 10 8 Ω · cm to 1 × 10 12 Ω · cm, More preferably, it is in the range of 1 × 10 9 Ω · cm to 1 × 10 11 Ω · cm.
If the surface resistivity or volume resistivity is too low, for example, when used as a transfer member, the current may flow too much during transfer and the transferred image may be disturbed. On the other hand, if the surface resistivity or volume resistivity is too high, Transfer may not be possible because no current flows.

また、本発明の製造方法によれば、カーボンブラックを均一かつ微細に樹脂に含有させることができるので、転写ベルトとして用いた場合、半導電性部材の使用前後での表面抵抗率の変化量(常用対数値)を±0.8logΩ以内とすることが可能となり維持性に優れたものとなる。変化量(常用対数値)が±0.8logΩを越えると転写時の濃度ムラとなることがある。   Further, according to the production method of the present invention, carbon black can be contained in the resin uniformly and finely, so when used as a transfer belt, the amount of change in surface resistivity before and after use of the semiconductive member ( The common logarithm value) can be within ± 0.8 logΩ, and the maintainability is excellent. If the amount of change (common logarithm) exceeds ± 0.8 logΩ, density unevenness may occur during transfer.

なお、この表面抵抗率の変化量とは、表面抵抗率値を常用対数で表し、使用後の表面抵抗率値から使用前の表面抵抗率値を引いたときの値である。また、使用前後とは、100〜1000V程度の印加電圧条件で1時間程度画像出力に供した前後をいう。   The amount of change in surface resistivity is a value obtained when the surface resistivity value is expressed as a common logarithm, and the surface resistivity value before use is subtracted from the surface resistivity value after use. Moreover, before and after use means before and after being subjected to image output for about 1 hour under an applied voltage condition of about 100 to 1000V.

なお、前記表面抵抗率は、図3に示す円形電極(例えば、三菱油化(株)製ハイレスターIPのHRプローブ)を用い、JIS K6911に従い、22℃、55%RHにて電圧100Vを印加し、10秒後の電流値から求めた値である。図3は、円形電極の例を示す概略平面図(a)及び概略断面図(b)であり、円形電極は、第一電圧印加電極Aと板状絶縁体Bとを備える。第一電圧印加電極Aは、円柱状電極部Cと、該円柱状電極部Cの外径よりも大きい内径を有し、かつ円柱状電極部Cを一定の間隔で囲む円筒状のリング状電極部Dとを備える。   For the surface resistivity, a circular electrode shown in FIG. 3 (for example, HR probe of Hiresta IP manufactured by Mitsubishi Yuka Co., Ltd.) is used, and a voltage of 100 V is applied at 22 ° C. and 55% RH according to JIS K6911. The value obtained from the current value after 10 seconds. FIG. 3 is a schematic plan view (a) and a schematic cross-sectional view (b) showing an example of a circular electrode. The circular electrode includes a first voltage application electrode A and a plate-like insulator B. The first voltage application electrode A has a columnar electrode portion C and a cylindrical ring electrode having an inner diameter larger than the outer diameter of the columnar electrode portion C and surrounding the columnar electrode portion C at regular intervals. Part D is provided.

第一電圧印加電極Aにおける円柱状電極部C及びリング状電極部Dと板状絶縁体Bとの間に試験片Tを挟持し、第一電圧印加電極Aにおける円柱状電極部Cとリング状電極部Dとの間に電圧V(V)を印加したときに流れる電流I(A)を測定し、下記式(1)により、表面抵抗率ρs(Ω/□)を算出することができる。ここで、下記式(1)中、d(mm)は円柱状電極部Cの外径を示し、D(mm)はリング状電極部Dの内径を示す。
ρs=π×(D+d)/(D−d)×(V/I) ・・・ 式(1)
A test piece T is sandwiched between the cylindrical electrode part C and the ring-shaped electrode part D and the plate-like insulator B in the first voltage application electrode A, and the cylindrical electrode part C and the ring shape in the first voltage application electrode A. The current I (A) flowing when the voltage V (V) is applied between the electrode part D is measured, and the surface resistivity ρs (Ω / □) can be calculated by the following formula (1). Here, in the following formula (1), d (mm) indicates the outer diameter of the cylindrical electrode portion C, and D (mm) indicates the inner diameter of the ring-shaped electrode portion D.
ρs = π × (D + d) / (D−d) × (V / I) (1)

また、前記体積抵抗率は、図4に示す円形電極(例えば、三菱油化(株)製ハイレスターIPのHRプローブ)を用い、JIS K6911に従って、22℃、55%RHにて電圧100Vを印加し、30秒後の電流値から求めた値である。図4は、円形電極の例を示す概略平面図(a)及び概略断面図(b)であり、円形電極は、第一電圧印加電極A’と第二電圧印加電極B’とを備える。第一電圧印加電極A’は、円柱状電極部C’と、該円柱状電極部C’の外径よりも大きい内径を有し、且つ円柱状電極部C’を一定の間隔で囲む円筒状のリング状電極部D’とを備える。   In addition, the volume resistivity is determined by applying a voltage of 100 V at 22 ° C. and 55% RH in accordance with JIS K6911 using a circular electrode shown in FIG. 4 (for example, HR probe of Hiresta IP manufactured by Mitsubishi Yuka Co., Ltd.). The value obtained from the current value after 30 seconds. FIG. 4 is a schematic plan view (a) and a schematic cross-sectional view (b) illustrating an example of a circular electrode, and the circular electrode includes a first voltage application electrode A ′ and a second voltage application electrode B ′. The first voltage application electrode A ′ has a cylindrical electrode part C ′ and a cylindrical shape having an inner diameter larger than the outer diameter of the cylindrical electrode part C ′ and surrounding the cylindrical electrode part C ′ at a constant interval. Ring-shaped electrode portion D ′.

第一電圧印加電極A’における円柱状電極部C’及びリング状電極部D’と第二電圧印加電極B’との間に試験片Tを挟持し、第一電圧印加電極A’における円柱状電極部C’と第二電圧印加電極B’との間に電圧V(V)を印加したときに流れる電流I(A)を測定し、下記式(2)により、転写部材T’の体積抵抗率ρv(Ωcm)を算出することができる。ここで、下記式(2)中、tは転写部材T’の厚さを示す。
ρv=19.6×(V/I)×t ・・・ 式(2)
A test piece T is sandwiched between the cylindrical electrode portion C ′ and the ring-shaped electrode portion D ′ of the first voltage application electrode A ′ and the second voltage application electrode B ′, and the cylindrical shape of the first voltage application electrode A ′. The current I (A) that flows when the voltage V (V) is applied between the electrode portion C ′ and the second voltage application electrode B ′ is measured, and the volume resistance of the transfer member T ′ is calculated by the following equation (2). The rate ρv (Ωcm) can be calculated. Here, in the following formula (2), t represents the thickness of the transfer member T ′.
ρv = 19.6 × (V / I) × t (2)

(第2の本発明)
第2の本発明に係る半導電性部材の製造方法は、第1の本発明と同様の工程を含み、半導電性塗料を作製する工程において、予め、前記カーボンブラック分散液及びカーボンブラックを含まない抵抗調整液の混合比の異なる2種以上の試験塗料を作製し、該試験塗料を用いて各々抵抗確認部材を成形し、該各々の抵抗確認部材の抵抗値から前記半導電性塗料におけるカーボンブラック分散液及び抵抗調整液の混合比を決定するものである。
ここで、上記抵抗確認部材の抵抗値とは、表面抵抗率または体積抵抗率のいずれかを意味する。以下同様である。
(Second invention)
The method for producing a semiconductive member according to the second aspect of the present invention includes the same steps as in the first aspect of the present invention, and in the step of producing a semiconductive paint, the carbon black dispersion liquid and carbon black are included in advance. Two or more kinds of test paints having different mixing ratios of resistance adjusting liquids are prepared, and resistance check members are molded using the test paints, and carbon in the semiconductive paint is determined from the resistance values of the resistance check members. The mixing ratio of the black dispersion liquid and the resistance adjusting liquid is determined.
Here, the resistance value of the resistance confirmation member means either surface resistivity or volume resistivity. The same applies hereinafter.

前述のように、カーボンブラックを含む半導電性塗料を用いて半導電性部材を製造する場合、塗料に用いる材料のロットや、カーボンブラック分散時の条件ばらつきなどの影響により、同じ組成比で塗料を作製しても、得られる部材の抵抗値はほとんど同じにならない。これは転写部材などの精密な抵抗値制御が必要な部材として半導電性部材を製造する場合に大きな問題である。   As described above, when a semiconductive member is manufactured using a semiconductive paint containing carbon black, the paint has the same composition ratio due to the influence of the lot of materials used in the paint and the variation in conditions when carbon black is dispersed. However, the resistance values of the obtained members are not almost the same. This is a serious problem when a semiconductive member is manufactured as a member that requires precise resistance control, such as a transfer member.

そこで、第2の本発明では、予めカーボンブラックを高い濃度で分散してカーボンブラック分散液を調製し、これとカーボンブラックを含まない樹脂溶液(抵抗調整液)とを混合して、その混合比の異なる2種以上の半導電性塗料を作製し、それぞれについて抵抗確認部材を成形して抵抗値を求め、これらの抵抗値から所望の抵抗値にするためのカーボンブラック分散液と抵抗調整液との混合比を決定することで、精度良く一定の抵抗値をもつ半導電性部材が得られることを見出した。   Therefore, in the second aspect of the present invention, carbon black is previously dispersed at a high concentration to prepare a carbon black dispersion, and this is mixed with a resin solution not containing carbon black (resistance adjusting solution), and the mixing ratio is mixed. Two or more kinds of semiconductive paints having different from each other are prepared, a resistance confirmation member is molded for each, a resistance value is obtained, and a carbon black dispersion liquid and a resistance adjusting liquid for obtaining a desired resistance value from these resistance values; It has been found that a semiconductive member having a constant resistance value can be obtained with high accuracy by determining the mixing ratio.

この方法は、予め高い濃度で分散したカーボンブラック分散液を用いて半導電性試料を成形し、その抵抗値からカーボンブラック分散液とカーボンブラックを含まない抵抗調整液との混合比を決定するよりも、誤差は小さくなる。その理由は、高い濃度で分散したカーボンブラック分散液を用いた試料は、最終的に半導電性部材として所望の抵抗値よりも低く離れた抵抗値を示すので、この値からカーボンブラック分散液と抵抗調整液との混合比を決定すると、誤差が大きくなるからである。   In this method, a semiconductive sample is formed using a carbon black dispersion dispersed at a high concentration in advance, and the mixing ratio of the carbon black dispersion and the resistance adjusting liquid not containing carbon black is determined from the resistance value. However, the error is reduced. The reason is that the sample using the carbon black dispersion dispersed at a high concentration finally shows a resistance value that is lower than the desired resistance value as a semiconductive member. This is because determining the mixing ratio with the resistance adjusting liquid increases the error.

−半導電性塗料作製工程−
第2の本発明におけるカーボンブラック分散液、抵抗調整液に用いられる好ましい材料は、第1の本発明において説明したカーボンブラック分散液、粘度調整液に各々好ましく用いられるものと同様であり、また、カーボンブラック分散液における樹脂とカーボンブラックとの比率も同様である。
-Semi-conductive paint manufacturing process-
Preferred materials used for the carbon black dispersion and resistance adjusting liquid in the second invention are the same as those preferably used for the carbon black dispersion and viscosity adjusting liquid described in the first invention, respectively. The same applies to the ratio of resin to carbon black in the carbon black dispersion.

しかし、第2の本発明においては、必ずしも抵抗調整液の粘度をカーボンブラック分散液作製のための樹脂溶液の粘度より高くする必要はなく、抵抗調整液の粘度と樹脂溶液の粘度とは同じであってもよい。ただし、第1の本発明で説明したように、カーボンブラックの分散のためには低粘度で行うことが好ましいので、抵抗調整液の粘度より樹脂溶液の粘度を低くすることが好ましい(この場合、第2の本発明における抵抗調整液と第1の本発明における粘度調整液とは、機能的に同一のものとなる)。   However, in the second aspect of the present invention, the viscosity of the resistance adjusting liquid is not necessarily higher than the viscosity of the resin solution for preparing the carbon black dispersion, and the resistance adjusting liquid and the resin solution have the same viscosity. There may be. However, as described in the first aspect of the present invention, it is preferable to carry out the dispersion at a low viscosity for the dispersion of carbon black, so that the viscosity of the resin solution is preferably lower than the viscosity of the resistance adjusting liquid (in this case, The resistance adjusting liquid in the second invention and the viscosity adjusting liquid in the first invention are functionally the same).

具体的には、樹脂溶液の粘度は1〜20Pa・sの範囲とすることが好ましく、抵抗調整液の粘度は50〜1000Pa・sの範囲とすることが好ましい。このとき、樹脂溶液の固形分濃度は10〜40質量%の範囲とすることが好ましく、抵抗調整液の固形分濃度は10〜40質量%の範囲とすることが好ましい。また、カーボンブラックの分散は、特に制限されないが、第1の本発明で説明した衝突型分散機を用いて行うことが好ましい。   Specifically, the viscosity of the resin solution is preferably in the range of 1 to 20 Pa · s, and the viscosity of the resistance adjusting liquid is preferably in the range of 50 to 1000 Pa · s. At this time, the solid content concentration of the resin solution is preferably in the range of 10 to 40% by mass, and the solid content concentration of the resistance adjusting liquid is preferably in the range of 10 to 40% by mass. Further, the dispersion of the carbon black is not particularly limited, but it is preferably performed using the collision type disperser described in the first aspect of the present invention.

第2の本発明では、半導電性塗料におけるカーボンブラック塗料と抵抗調整液との混合比を、例えば2種以上の試験塗料を用いた抵抗確認部材の表面抵抗率から決定する。
すなわち、塗料中のカーボンブラック含有量と該塗料から成形される部材の表面抵抗率は比例関係にあるため、図5の抵抗調整液の混合比と部材の表面抵抗率との関係に示すように、抵抗調整液の混合比と部材の表面抵抗率との関係も比例関係となる。したがって、所望の抵抗値を跨るように任意の混合比P、Qの試験塗料を調整しそれらの部材としての表面抵抗率を確認すれば、比例計算により最適混合比Rを決定することができる。
In the second aspect of the present invention, the mixing ratio of the carbon black paint and the resistance adjusting liquid in the semiconductive paint is determined from the surface resistivity of the resistance confirmation member using, for example, two or more kinds of test paints.
That is, since the carbon black content in the paint and the surface resistivity of the member molded from the paint are in a proportional relationship, as shown in the relationship between the mixing ratio of the resistance adjusting liquid and the surface resistivity of the member in FIG. The relationship between the mixing ratio of the resistance adjusting liquid and the surface resistivity of the member is also proportional. Therefore, the optimum mixing ratio R can be determined by proportional calculation by adjusting the test paints having arbitrary mixing ratios P and Q so as to straddle the desired resistance value and confirming the surface resistivity as those members.

なお、上記混合比の決定法に関して、表面抵抗率により説明したが、体積抵抗率の確認によっても同様に行うことができる。   In addition, although the method for determining the mixing ratio has been described based on the surface resistivity, it can be similarly performed by confirming the volume resistivity.

上記混合比の異なる2種以上の試験塗料を作製し、それぞれについて抵抗確認部材を成形する際、目的とする半導電性部材そのものを抵抗確認部材としても可であるが、抵抗値の相関がとれれば、目的とする部材より小さなテストピース等でも可能であり、試料作製時の塗料使用量の削減や作業のしやすさ等のために好ましい。   When two or more kinds of test paints having different mixing ratios are prepared and a resistance confirmation member is molded for each, the target semiconductive member itself can be used as the resistance confirmation member, but the resistance values can be correlated. For example, a test piece smaller than the target member can be used, which is preferable for reducing the amount of paint used during sample preparation and ease of operation.

前記テストピースとして、形状が板状のものを用いる場合、試験塗料の塗布方法は、ワイヤーバーや、掻き取りブレードや、棒を使用した簡便な方法をとることができる。具体的には、例えば図6に示すように、金属等の基板10上に一定の厚さを有する粘着テープ12を必要なテストピースの形の型となるように貼り付け、端部に液溜まりとして配置した試験塗料16を掻き取り棒14により矢印方向に広げて試験塗膜を作製する。   When the test piece has a plate shape, the test paint can be applied by a simple method using a wire bar, a scraping blade, or a bar. Specifically, as shown in FIG. 6, for example, an adhesive tape 12 having a certain thickness is attached on a substrate 10 such as a metal so as to form a required test piece shape, and a liquid pool is collected at the end. The test paint 16 arranged as follows is spread in the direction of the arrow by the scraping bar 14 to produce a test coating film.

この状態を図6の左側から見ると、図7に示すようになる。図7(A)は塗膜形成直前の状態を示すが、基板10の左端に配置された試験塗料16は、掻き取り棒14が矢印方向にスライドすることによって広げられる。その結果、図7(B)の断面図に示すように、一定の厚さ(高さ)を有する粘着テープ12によって囲まれた部分には一定の厚さの試験塗料が充填される。最後に図7(C)に示すように、粘着テープ14を剥がせば基板10上に一定厚みの試験塗膜が形成されることとなる。その後、これをそのまま加熱すれば抵抗確認用のテストピースが得られる。   FIG. 7 shows this state when viewed from the left side of FIG. FIG. 7A shows a state immediately before the coating film is formed, but the test paint 16 arranged at the left end of the substrate 10 is spread by sliding the scraping bar 14 in the arrow direction. As a result, as shown in the cross-sectional view of FIG. 7B, the portion surrounded by the adhesive tape 12 having a certain thickness (height) is filled with the test paint having a certain thickness. Finally, as shown in FIG. 7C, when the adhesive tape 14 is peeled off, a test coating film having a certain thickness is formed on the substrate 10. Then, if this is heated as it is, a test piece for resistance confirmation can be obtained.

このような方法でテストピースを作製することによって、常に一定の大きさ、厚さのテストピースを簡易的に得ることができ、また、抵抗確認部材としての抵抗値のばらつきを少なくすることができる。
テストピースの面積は50mm×200mm程度、厚みは2〜10mm程度とすることが好ましい。
By producing a test piece by such a method, a test piece of a constant size and thickness can always be easily obtained, and variations in resistance values as resistance confirmation members can be reduced. .
The area of the test piece is preferably about 50 mm × 200 mm, and the thickness is preferably about 2 to 10 mm.

一方、板状のテストピースよりは、大きさは小さくても、実際の無端ベルトに合わせるために、円筒状のテストピースも好ましい。
円筒状のテストピースの場合、簡便な塗布方法として、図8に示すように、試験塗料26を付着させた金属等の円柱基体20を回転させてこれに掻き取り棒を押し当てて塗布する方法が採用できる。その際、所望の膜厚を得るには、例えば円柱基体20表面の両端部に所望の厚さの粘着テープ22を巻いて、円柱基体20の表面から段差を持たせ、その間隙に試験溶液26を付着させ、円柱基体20を回転させて掻き取り棒を押し当てて掻きとることが好ましい。
On the other hand, a cylindrical test piece is also preferable to match an actual endless belt even if the size is smaller than a plate-like test piece.
In the case of a cylindrical test piece, as a simple coating method, as shown in FIG. 8, a method is used in which a cylindrical substrate 20 such as a metal to which a test paint 26 is attached is rotated and a scraping bar is pressed against the cylindrical substrate 20 for coating. Can be adopted. At that time, in order to obtain a desired film thickness, for example, a pressure-sensitive adhesive tape 22 having a desired thickness is wound around both ends of the surface of the cylindrical base body 20 so as to have a step from the surface of the cylindrical base body 20, and the test solution 26 is provided in the gap. It is preferable that the cylindrical substrate 20 is rotated and pressed with a scraping bar to scrape off.

その状態を図8の左側から見ると、図9(A)に示すようになる。図9(A)は回転する円柱基体20に掻き取り棒24を押し当てている状態を示すが、円柱基体20に付着させた試験塗料26は、掻き取り棒24が押し当てられることにより一定膜厚の塗膜に広げられる(図では粘着テープを省略している)。その結果、図9(B)に示すように、一定の厚さ(高さ)を有する粘着テープ12によって囲まれた部分には一定の厚さの試験塗料が充填される。最後に図7(C)に示すように、粘着テープ24を剥がせば円柱基体20上に一定厚みの試験塗膜が形成されることとなる。その後、これをそのまま加熱すれば抵抗確認用のテストピースが得られる。   When this state is viewed from the left side of FIG. 8, it is as shown in FIG. FIG. 9A shows a state in which the scraping bar 24 is pressed against the rotating columnar base 20, but the test paint 26 adhered to the columnar base 20 has a certain film thickness when the scraping bar 24 is pressed. It is spread over a thick film (adhesive tape is omitted in the figure). As a result, as shown in FIG. 9B, the portion surrounded by the adhesive tape 12 having a certain thickness (height) is filled with the test paint having a certain thickness. Finally, as shown in FIG. 7C, if the adhesive tape 24 is peeled off, a test coating film having a certain thickness is formed on the cylindrical substrate 20. Then, if this is heated as it is, a test piece for resistance confirmation can be obtained.

このような方法でテストピースを作製することによって、実際の無端ベルト製造と同様の条件で、一定厚さのテストピースを簡易的に得ることができ、また、抵抗確認部材としての抵抗値のばらつきを少なくすることができる。
この場合の円柱基体20の外径は30〜80mm、長さは100〜500mmとするこが好ましく、また、テストピースの厚みは1〜5mm程度とすることが好ましい。
By producing a test piece by such a method, a test piece having a constant thickness can be easily obtained under the same conditions as in actual endless belt manufacturing, and variation in resistance value as a resistance confirmation member. Can be reduced.
In this case, the cylindrical substrate 20 preferably has an outer diameter of 30 to 80 mm, a length of 100 to 500 mm, and a test piece thickness of about 1 to 5 mm.

なお、抵抗値の相関を正確にとるためには、上記抵抗確認用の試験塗膜の加熱処理も実際の無端ベルト等の製品と同じ条件で行わないと、誤差を生じる原因になる。そこで、前記基板10や円柱基体20に試験塗料を塗布したものを、製品の半導電性部材を成形する工程と同じ条件で乾燥・焼成等の加熱処理をすることが、抵抗を確実に合わせることができるため好ましい。
上記半導電性部材を成形する工程と同じ条件としては、第1の本発明において無端ベルトの加熱処理条件として例示した条件が好ましい。
In order to accurately correlate the resistance values, if the heat treatment of the test coating film for resistance confirmation is not performed under the same conditions as those of an actual endless belt or the like, an error may be caused. Therefore, by subjecting the substrate 10 or the cylindrical substrate 20 to which a test paint is applied, a heat treatment such as drying and firing under the same conditions as the step of forming the semiconductive member of the product, the resistance can be surely matched. Is preferable.
As the same conditions as the step of forming the semiconductive member, the conditions exemplified as the heat treatment conditions of the endless belt in the first invention are preferable.

−半導電性部材成形工程−
上記のようにして作製した半導電性塗料を用いて半導電性部材を成形する工程の詳細は、第1の本発明において説明した内容と同様である。第2の本発明により製造された半導電性部材は、前述の好ましい表面抵抗率、体積抵抗率の範囲において所望の抵抗値に精度よく制御されたものであり、また、第1の本発明のように調製したカーボンブラック分散液を用いれば、同様に使用前後での表面抵抗率の変化量が少ないものとして製造することができる。
-Semiconductive member molding process-
The details of the process of forming the semiconductive member using the semiconductive paint produced as described above are the same as those described in the first aspect of the present invention. The semiconductive member manufactured according to the second aspect of the present invention is precisely controlled to have a desired resistance value within the above-described preferable surface resistivity and volume resistivity ranges. If the carbon black dispersion liquid prepared in this way is used, it can be manufactured with a small amount of change in surface resistivity before and after use.

(第3の本発明)
第3の本発明に係る半導電性部材の製造方法は、第1の本発明と同様の工程を含み、半導電性塗料を作製する工程において、予め、作製した半導電性塗料Bと半導電性部材としての表面抵抗率が既知の半導電性塗料Aとを一定混合比で混合して混合塗料を作製し、該混合塗料を用いて抵抗確認部材を成形し、該抵抗確認部材の抵抗値から前記半導電性塗料Bにおけるカーボンブラック分散液と抵抗調整液との混合比を再調整するものである。
(Third invention)
The method for producing a semiconductive member according to the third aspect of the present invention includes the same steps as in the first aspect of the present invention. In the step of producing the semiconductive paint, the semiconductive paint B and the semiconductive material produced in advance are produced. A semi-conductive paint A having a known surface resistivity as a conductive member is mixed at a constant mixing ratio to produce a mixed paint, a resistance check member is formed using the mixed paint, and a resistance value of the resistance check member From the above, the mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive paint B is readjusted.

第3の本発明は、半導電性塗料を用いた半導電性部材の製造工程において、例えば、既に使用中の半導電性塗料Aから次の半導電性塗料Bにロットが切り替わるときなどに、成形される部材の抵抗の微調整のために有用な方法である。すなわち、次ロットの半導電性塗料Bをその前のロットの半導電性塗料Aと同様の仕込み組成により作製した場合、前述のように、塗料に用いる材料のロットや、カーボンブラック分散時の条件ばらつきなどの影響により、同じ組成比で塗料を作製しても、得られる部材の抵抗値はほとんど同じにならないため、次ロットの半導電性塗料から成形される部材の抵抗値はその前ロットの半導電性塗料から成形される部材の抵抗値とずれてしまう。   The third aspect of the present invention is a process for producing a semiconductive member using a semiconductive paint. For example, when a lot is switched from a semiconductive paint A that is already in use to the next semiconductive paint B, This is a useful method for fine adjustment of the resistance of the molded member. That is, when the semi-conductive paint B of the next lot is prepared with the same charging composition as the semi-conductive paint A of the previous lot, as described above, the lot of the material used for the paint and the conditions when dispersing the carbon black Even if a paint is produced with the same composition ratio due to the influence of variation, the resistance value of the obtained member is almost the same, so the resistance value of the member molded from the semiconductive paint of the next lot is the same as the previous lot. It will deviate from the resistance value of the member molded from the semiconductive paint.

この問題を避けるため、第2の本発明のように、次ロットの半導電性塗料Bもカーボンブラック分散液及び抵抗調整液を用いて、2種以上の試験塗料から得られる部材の表面抵抗率からカーボンブラック分散液と抵抗調整液との混合比を決定して作製すればよいが、連続する製造工程において一々複数の抵抗確認部材を作製して半導電性塗料を配合するのは煩雑な場合もある。   In order to avoid this problem, as in the second aspect of the present invention, the surface resistivity of the member obtained from two or more kinds of test paints using the carbon black dispersion liquid and the resistance adjusting liquid also for the semiconductive paint B of the next lot. It is sufficient to determine the mixing ratio of the carbon black dispersion and the resistance adjusting liquid from the above, but it is complicated to prepare a plurality of resistance confirmation members one by one in a continuous manufacturing process and to mix the semiconductive paint. There is also.

そこで第3の本発明においては、ロットごとにカーボンブラック分散液と抵抗調整液とを同一の配合で半導電性塗料を作製しても、使用中の半導電性塗料Aを用いて別ロットの半導電性塗料Bの部材とした時の抵抗値を見積もることで、最小限の工数で配合ロット間の抵抗値の微調整(再調整)することができることが見出された。   Therefore, in the third aspect of the present invention, even if a semiconductive paint is prepared with the same composition of the carbon black dispersion and the resistance adjusting liquid for each lot, another lot is prepared using the semiconductive paint A in use. It has been found that by estimating the resistance value when the member of the semiconductive paint B is used, the resistance value between blending lots can be finely adjusted (readjusted) with a minimum number of man-hours.

−半導電性塗料作製工程−
第3の本発明におけるカーボンブラック分散液、抵抗調整液に用いられる好ましい材料は、第1の本発明において説明したカーボンブラック分散液、粘度調整液に各々好ましく用いられるものと同様であり、また、カーボンブラック分散液における樹脂とカーボンブラックとの比率も同様である。
-Semi-conductive paint manufacturing process-
Preferred materials used for the carbon black dispersion and the resistance adjusting liquid in the third aspect of the present invention are the same as those preferably used for the carbon black dispersion and the viscosity adjusting liquid described in the first aspect of the present invention. The same applies to the ratio of resin to carbon black in the carbon black dispersion.

ただし、第3の本発明においても、第2の本発明同様、必ずしも抵抗調整液の粘度をカーボンブラック分散液作製のための樹脂溶液の粘度より高くする必要はない。したがって、第3の本発明に用いられる樹脂溶液、抵抗調整液の好ましい粘度範囲、好ましい固形分濃度範囲は、さらに好ましいカーボンブラック分散方法等は、第2の本発明において説明した内容と同様である。   However, also in the third aspect of the present invention, as in the case of the second aspect of the present invention, it is not always necessary to make the viscosity of the resistance adjusting liquid higher than the viscosity of the resin solution for preparing the carbon black dispersion. Therefore, the preferred viscosity range and the preferred solid content concentration range of the resin solution and resistance adjusting solution used in the third invention are the same as the contents described in the second invention in the more preferred carbon black dispersion method. .

第3の本発明では、例えば先行する使用ロットである半導電性塗料Aと同一の配合で半導電性塗料Bを作製し、部材としての抵抗値が既知の半導電性塗料Aを利用して半導電性塗料Bの配合を再調整して、部材としての抵抗値が半導電性塗料Aと同等となるようにする。   In the third aspect of the present invention, for example, a semiconductive paint B is prepared with the same composition as the semiconductive paint A which is the preceding use lot, and a semiconductive paint A having a known resistance value as a member is used. The blending of the semiconductive paint B is readjusted so that the resistance value as a member is equivalent to that of the semiconductive paint A.

具体的に図を用いて説明する。
図10は、塗料ごとの成形された部材の表面抵抗率を模式的に示した図である。図において、半導電性塗料Aによる部材の表面抵抗率ρAは所望の上下限値内にあり既知である。一方、半導電性塗料Bの部材としての表面抵抗率を仮にρB(確認していないため未知である)とすると、この値は上限値を外れているため再調整が必要である。
This will be specifically described with reference to the drawings.
FIG. 10 is a diagram schematically showing the surface resistivity of the molded member for each paint. In the figure, the surface resistivity [rho A member according semiconductive coating material A are known are within the desired upper and lower limits. On the other hand, if the surface resistivity as a member of the semiconductive coating material B is ρ B (it is unknown because it has not been confirmed), this value is out of the upper limit value, so readjustment is necessary.

未知の表面抵抗率ρBを求めるため、例えば半導電性塗料Aと半導電性塗料Bとを質量比で1/1で混合して混合塗料を調製し、この混合塗料から抵抗確認部材を成形し表面抵抗率ρA+Bを求める。これにより、前記混合塗料における半導電性塗料Aの混合量をa、半導電性塗料Bの混合量をbとすれば、半導電性塗料Bの部材としての表面抵抗率ρBは次式(3)から求められる。
ρB={ρA+B×(a+b)/b}−{ρA×a/b} ・・・ 式(3)
In order to obtain the unknown surface resistivity ρ B , for example, a semi-conductive paint A and a semi-conductive paint B are mixed at a mass ratio of 1/1 to prepare a mixed paint, and a resistance confirmation member is formed from the mixed paint The surface resistivity ρ A + B is obtained. Accordingly, when the mixing amount of the semiconductive paint A in the mixed paint is a and the mixing amount of the semiconductive paint B is b, the surface resistivity ρ B as a member of the semiconductive paint B is expressed by the following formula ( It is obtained from 3).
ρ B = {ρ A + B × (a + b) / b} − {ρ A × a / b} (3)

ρBが求められれば、半導電性塗料Bにおけるカーボンブラック分散液及び抵抗調整液の混合比はわかっているため、ρBをρAと同等とするため該混合比を調整することにより半導電性塗料の部材としての表面抵抗率を、上下限値内であるρB'とすることができる。この方法によれば、抵抗確認部材を1つ作製するだけで、次ロットの半導電性塗料Bの混合比を調整することができる。 If ρ B is obtained, the mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive coating material B is known. Therefore, by adjusting the mixing ratio to make ρ B equal to ρ A , the semiconductivity can be obtained. The surface resistivity of the conductive paint member can be set to ρ B ′ which is within the upper and lower limit values. According to this method, the mixing ratio of the semiconductive coating material B of the next lot can be adjusted only by producing one resistance confirmation member.

なお、上記混合比の調整法に関して、表面抵抗率により説明したが、体積抵抗率の確認によっても同様に行うことができる。   The method for adjusting the mixing ratio has been described based on the surface resistivity, but it can be similarly performed by confirming the volume resistivity.

前記抵抗値の確認は、テストピースを作製せずに実際の製品としての無端ベルトについて行ってもよいし、第2の本発明で説明したテストピースを同様に作製して行ってもよい。   The confirmation of the resistance value may be performed on an endless belt as an actual product without producing a test piece, or may be carried out by similarly producing the test piece described in the second aspect of the present invention.

−半導電性部材成形工程−
上記のようにして作製した半導電性塗料を用いて半導電性部材を成形する工程の詳細は、第1の本発明において説明した内容と同様である。第3の本発明により製造された半導電性部材は、前述の好ましい表面抵抗率、体積抵抗率の範囲において所望の抵抗値に精度よく制御されたものであり、また、第1の本発明のように調製したカーボンブラック分散液を用いれば、同様に使用前後での表面抵抗率の変化量が少ないものとして製造することができる。
-Semiconductive member molding process-
The details of the process of forming the semiconductive member using the semiconductive paint produced as described above are the same as those described in the first aspect of the present invention. The semiconductive member manufactured according to the third aspect of the present invention is precisely controlled to a desired resistance value within the above-described preferable surface resistivity and volume resistivity ranges. If the carbon black dispersion liquid prepared in this way is used, it can be manufactured with a small amount of change in surface resistivity before and after use.

<無端ベルト>
本発明の無端ベルトは、前記各製造方法により作製される半導電性部材を用いてなる。無端ベルトを構成する好ましい材料、好ましい製造方法は前述の通りである。無端ベルトの厚さは、75〜85μmの範囲であることが好ましい。
<Endless belt>
The endless belt of the present invention is formed using a semiconductive member produced by the above manufacturing methods. The preferred material constituting the endless belt and the preferred production method are as described above. The thickness of the endless belt is preferably in the range of 75 to 85 μm.

本発明の無端ベルトは、前記各製造方法により作製される半導電性部材を用いているため、常に抵抗値が所望の範囲内にあるものとして得ることができる。また、前述のように、カーボンブラック分散性に優れた半導電性部材をも得ることができるので、無端ベルトとしても使用前後での抵抗値の変化や抵抗値ばらつきが少ない。   Since the endless belt of the present invention uses the semiconductive member produced by each of the above manufacturing methods, the endless belt can always be obtained as having a resistance value within a desired range. Further, as described above, a semiconductive member having excellent carbon black dispersibility can also be obtained, so that even an endless belt has little change in resistance value and variation in resistance value before and after use.

また、酸成分としてビフェニルテトラカルボン酸二無水物を主成分とし、前記の好ましい条件で加熱処理して得られたPI樹脂からなる半導電性部材では、MIT試験による耐屈曲回数を1000回以上確保できるので、これにより作製された無端ベルトは、破断に対して強いものとなる。   In addition, the semiconductive member made of PI resin, which is mainly composed of biphenyltetracarboxylic dianhydride as an acid component and is heat-treated under the above-mentioned preferable conditions, ensures a bending resistance of 1000 times or more by the MIT test. As a result, the endless belt produced in this way is strong against breakage.

なお、膜厚は、ダイヤルゲージや渦電流式膜厚計などで測定でき、MIT試験による耐屈曲回数は、既製のMIT試験機(例えば上島製作所製や東洋精機製作所製)で測定することができる。通常、MIT試験による耐屈曲回数の測定には誤差が大きいので、本発明においては、無端ベルトから10点以上の試験片を取り、耐屈曲回数を測定し、その平均値が1000回以上であることを要件とする。さらに、各測定値全てが1000回以上であることが好ましい。   The film thickness can be measured with a dial gauge or an eddy current film thickness meter, etc., and the bending resistance by the MIT test can be measured with an off-the-shelf MIT tester (for example, manufactured by Ueshima Seisakusho or Toyo Seiki Seisakusho). . Usually, since there is a large error in the measurement of the number of bending resistances by the MIT test, in the present invention, 10 or more test pieces are taken from the endless belt, the number of bending resistances is measured, and the average value is 1000 times or more. Is a requirement. Furthermore, it is preferable that all the measured values are 1000 times or more.

本発明の無端ベルトを転写ベルトとして用いる場合、抵抗値は、体積抵抗率で107〜1013Ωcm、表面抵抗率で108〜1013Ω/□程度であるのが好ましいが、ばらつきはその中心値に対して、それぞれ1桁以下の範囲内であるのがよい。前記本発明の半導電性部材の製造方法では、半導電性部材を上記抵抗範囲の所望の抵抗値に容易に制御することができる。 When the endless belt of the present invention is used as a transfer belt, the resistance value is preferably about 10 7 to 10 13 Ωcm in terms of volume resistivity and about 10 8 to 10 13 Ω / □ in terms of surface resistivity. It is preferable to be within a range of one digit or less with respect to the center value. In the method for producing a semiconductive member of the present invention, the semiconductive member can be easily controlled to a desired resistance value within the above resistance range.

また、前述のようにイミド化時の温度むらを小さくして加熱したものは、耐屈曲回数や抵抗値のむらが小さくなっているので好ましい。   In addition, as described above, a material heated by reducing the temperature unevenness at the time of imidization is preferable because the number of bending resistances and the resistance value unevenness are small.

本発明の無端ベルトから定着ベルトを製造するには、樹脂表面にトナーの付着を防止するために、非粘着性被膜を形成する。非粘着性の材料としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が好ましい。フッ素樹脂層の厚さは5〜50μmが好ましく、10〜45μmがより好ましい。   In order to produce a fixing belt from the endless belt of the present invention, a non-adhesive film is formed on the resin surface in order to prevent toner adhesion. Examples of non-adhesive materials include fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). Is preferred. 5-50 micrometers is preferable and, as for the thickness of a fluororesin layer, 10-45 micrometers is more preferable.

フッ素樹脂層を形成するには、その水分散液を塗布して焼き付け加工する方法を適用することが好ましい。塗布方法としては、PI前駆体皮膜を形成した芯体を、フッ素樹脂分散液に浸漬し、次いで上昇させて、フッ素樹脂の塗膜を形成する浸漬塗布方法が、塗膜の平滑性や膜厚の均一性の面で好ましい。   In order to form the fluororesin layer, it is preferable to apply a method in which the aqueous dispersion is applied and baked. As a coating method, the core body on which the PI precursor film is formed is dipped in a fluororesin dispersion and then raised to form a fluororesin coating film. It is preferable in terms of uniformity.

塗布後、溶媒を乾燥し、フッ素樹脂を焼成する。焼成の際に、PI前駆体皮膜のイミド化処理を同時に行ってもよい。   After application, the solvent is dried and the fluororesin is baked. During the firing, the imidation treatment of the PI precursor film may be performed simultaneously.

本発明の無端ベルトを感光体に適用する場合、無端ベルト表面に導電層を設け、必要に応じて下引き層を形成した後、感光層を形成する。感光層には、単層型と、電荷発生層(CGL)と電荷輸送層(CTL)に機能分離した積層型がある。   When the endless belt of the present invention is applied to a photoreceptor, a conductive layer is provided on the surface of the endless belt, and if necessary, an undercoat layer is formed, and then a photosensitive layer is formed. As the photosensitive layer, there are a single layer type and a laminated type in which a charge generation layer (CGL) and a charge transport layer (CTL) are functionally separated.

CGLはフタロシアニン顔料、ビスアゾ顔料、トリスアゾ顔料等を、ポリビニルブチラール、ポリエステル、アクリル系などのバインダー樹脂に分散して塗布される。
CTLはヒドラゾン化合物、スチルベン化合物、ベンジジン化合物、ブタジエン化合物、トリフェニルアミン化合物などの電荷輸送剤を、ポリカーボネート、ポリアリレート、ポリメチルメタクリレート、ポリエステルなどのバインダー樹脂と混合して塗布される。
CGLの膜厚は、0.05〜1μm程度、CTLの膜厚は、15〜40μm程度が一般的である。上記各層の形成は、環状塗布法や他の公知の方法で行ってよい。各層形成の際、特開2003−337434号公報開示のように、芯体上の無端ベルトを取り外さない状態で各層を塗布し、全てができた後に芯体から取り外すのがよい。
CGL is applied by dispersing a phthalocyanine pigment, a bisazo pigment, a trisazo pigment or the like in a binder resin such as polyvinyl butyral, polyester, or acrylic.
The CTL is applied by mixing a charge transport agent such as a hydrazone compound, a stilbene compound, a benzidine compound, a butadiene compound, or a triphenylamine compound with a binder resin such as polycarbonate, polyarylate, polymethyl methacrylate, or polyester.
The film thickness of CGL is generally about 0.05 to 1 μm, and the film thickness of CTL is generally about 15 to 40 μm. Each of the above layers may be formed by an annular coating method or other known methods. When forming each layer, as disclosed in Japanese Patent Application Laid-Open No. 2003-337434, it is preferable to apply each layer without removing the endless belt on the core, and remove it from the core after all the layers are formed.

以下、本発明を、実施例を挙げてさらに具体的に説明する。
<各特性の測定方法>
まず、下記の実施例等において用いた特性測定方法について説明する。
(カーボンブラックの数平均粒子径)
各例において、ポリアミド酸ワニスにカーボンブラックを分散した分散液について、大塚電子製の動的光散乱式測定器PAR−IIIを用いて測定を行った。測定条件はclock rate:100μs、accumulate time:10回、correlate ch:128、温度:20℃、溶媒:NMPである。このときの個数基準平均粒子径のメジアン値を数平均粒子径とした。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Measurement method for each characteristic>
First, the characteristic measurement method used in the following examples etc. will be described.
(Number average particle size of carbon black)
In each example, the dispersion obtained by dispersing carbon black in a polyamic acid varnish was measured using a dynamic light scattering type measuring device PAR-III manufactured by Otsuka Electronics. The measurement conditions are: clock rate: 100 μs, accumulate time: 10 times, correlate ch: 128, temperature: 20 ° C., solvent: NMP. The median value of the number-based average particle size at this time was defined as the number-average particle size.

(表面抵抗率)
表面抵抗率の測定は、図3に示す円形電極(三菱油化(株)製ハイレスターIPのHRプローブ、円柱状電極部Cの外径:16mm、リング状電極部Dの内径:30mm、外径:40mm)を用い、電圧100Vを印加し、10秒後の電流値を求めて算出した。
(Surface resistivity)
The surface resistivity was measured using the circular electrode shown in FIG. 3 (HR probe of Hiresta IP manufactured by Mitsubishi Yuka Co., Ltd., outer diameter of cylindrical electrode portion C: 16 mm, inner diameter of ring electrode portion D: 30 mm, outer (Diameter: 40 mm), a voltage of 100 V was applied, and the current value after 10 seconds was calculated.

(体積抵抗率)
体積抵抗率の測定は、図4に示す円形電極(三菱油化(株)製ハイレスターIPのHRプローブ、円柱状電極部Cの外径:16mm、リング状電極部Dの内径:30mm、外径:40mm)を用い、電圧100Vを印加し、30秒後の電流値を求めて算出した。
(Volume resistivity)
The volume resistivity is measured using the circular electrode shown in FIG. 4 (HR probe of HI-Lester IP manufactured by Mitsubishi Yuka Co., Ltd., outer diameter of the cylindrical electrode portion C: 16 mm, inner diameter of the ring-shaped electrode portion D: 30 mm, outer Diameter: 40 mm), a voltage of 100 V was applied, and a current value after 30 seconds was obtained and calculated.

〔第1の本発明に関する試験例〕
<実施例1−1>
低粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとが等モル含まれるポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が5Pa・s)100質量部に、カーボンブラック(Degussa製、SpecialBlack4、pH:3、揮発分:14質量%)を14.4質量部添加して混合しカーボンブラック混合液とし、衝突型分散機であるジーナス製「Geanus PY、衝突部の最小部断面積0.032mm2」を用い、圧力を200MPaで前記カーボンブラック混合液を2分割後衝突させ、再度2分割する経路を5回通過させて分散した。分散に要した時間は、12時間であった。次いで、目開き25μmのステンレス焼結フィルターを用いてろ過し、粗大粒子物類を除去し、カーボンブラック分散液を得た。分散液の収率は93%であった。
[Test Example for First Invention]
<Example 1-1>
Low-viscosity varnish (NMP solution of polyamic acid containing equimolar amounts of biphenyltetracarboxylic dianhydride and 4,4'-diaminodiphenyl ether, solid fraction after imide conversion is 18% by mass, viscosity is 5 Pa · s) Carbon black (Degussa, Special Black 4, pH: 3, volatile content: 14% by mass) was added to 14.4 parts by mass and mixed to obtain a carbon black mixed solution. The carbon black mixed solution was collided after being divided into two at a pressure of 200 MPa using a Genus PY, the minimum cross-sectional area of the collision part of 0.032 mm 2 , and dispersed again by passing through the path divided into two again. The time required for dispersion was 12 hours. Next, the mixture was filtered using a stainless sintered filter having an opening of 25 μm to remove coarse particles and obtain a carbon black dispersion. The yield of the dispersion was 93%.

上記カーボンブラック分散液100質量部に、高粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとが等モル含まれるポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が140Pa・s)を150質量部添加し、プラネタリー型ミキサーを使用して減圧状態で30分間攪拌した。攪拌後2時間真空脱泡して、粘度が46Pa・sの半導電性塗料を得た。
この半導電性塗料の特性を表1に示す。
In 100 parts by mass of the above carbon black dispersion, NMP solution of polyamic acid containing equimolar amounts of high-viscosity varnish (biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether), the solid fraction after imide conversion is 150 mass parts of 18 mass% and a viscosity of 140 Pa.s) were added, and it stirred for 30 minutes in the pressure reduction state using the planetary mixer. After stirring, vacuum degassing was performed for 2 hours to obtain a semiconductive paint having a viscosity of 46 Pa · s.
The properties of this semiconductive paint are shown in Table 1.

別途、外径366mm、肉厚10mm、長さ450mmのアルミニウム製円筒を用意し、ブラスト処理により、表面を算術平均粗さRaで1.0μmに粗面化した。次いで、円筒の表面にシリコーン系離型剤(商品名:セパコート、信越化学製)を塗布し、円筒状芯体とした。   Separately, an aluminum cylinder having an outer diameter of 366 mm, a wall thickness of 10 mm, and a length of 450 mm was prepared, and the surface was roughened to 1.0 μm with an arithmetic average roughness Ra by blasting. Next, a silicone release agent (trade name: Sepacoat, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the surface of the cylinder to obtain a cylindrical core.

図2に示す環状塗布装置において、内径500mm、内高80mmの環状塗布槽7の底面に内径386mmの穴をあけ、底面の裏面には、内径362mmの穴を有する厚さ0.5mmの硬質ポリエチレン製の環状シール材8を取り付けた。環状塗布槽7の側面には、下から20mmの位置に、内径9mmのフッ素樹脂チューブが取り付けられる供給口を、60°間隔で6箇所設置した。   In the annular coating apparatus shown in FIG. 2, a rigid polyethylene having a thickness of 0.5 mm having an inner diameter of 386 mm and a bottom surface of the bottom surface of the annular coating tank 7 having an inner diameter of 500 mm and an inner height of 80 mm and an inner diameter of 362 mm. An annular sealing material 8 made of was attached. On the side surface of the annular coating tank 7, six supply ports to which a fluororesin tube having an inner diameter of 9 mm is attached at a position 20 mm from the bottom are installed at 60 ° intervals.

環状体5として、外径420mm、円孔6の最小部の内径367.1mm、高さ50mmのアルミニウム製のものを作製した。内壁は直線傾斜状であり、鉛直線との傾斜角は7°とした。上端には円筒状芯体と平行になる部分を2mm形成したが、その内径の真円度は8μmであった。   As the annular body 5, an aluminum body having an outer diameter of 420 mm, an inner diameter of 367.1 mm at the smallest part of the circular hole 6 and a height of 50 mm was produced. The inner wall was linearly inclined, and the inclination angle with respect to the vertical line was 7 °. A portion parallel to the cylindrical core was formed at the upper end by 2 mm, and the roundness of the inner diameter was 8 μm.

環状塗布装置の中央に円筒状芯体1を通し、環状体5を配置した後、加圧容器(図示せず)から0.5MPaの圧力で、環状塗布槽7に前記半導電性塗料を注入した。該塗料が環状塗布槽7を満たした後、液面の高さが50mmになった時点で、塗料の注入を停止した。次いで、円筒状芯体1の下にもう一つの円筒状芯体1’を配置し、約0.8m/分で押し上げて塗布を行った。その際、環状体5は約20mm持ち上げられた。これにより、円筒状芯体1には、濡れ膜厚が約500μmのPI前駆体塗膜4が形成された。   After the cylindrical core body 1 is passed through the center of the annular coating device and the annular body 5 is arranged, the semiconductive paint is injected into the annular coating tank 7 at a pressure of 0.5 MPa from a pressurized container (not shown). did. After the coating material filled the annular coating tank 7, the injection of the coating material was stopped when the liquid level reached 50 mm. Next, another cylindrical core body 1 ′ was placed under the cylindrical core body 1 and applied by pushing up at about 0.8 m / min. At that time, the annular body 5 was lifted by about 20 mm. Thereby, the PI precursor coating film 4 having a wet film thickness of about 500 μm was formed on the cylindrical core body 1.

塗布後、円筒状芯体1を水平にし、6rpmで回転させながら、80℃で20分間、130℃で30分間、加熱してPI前駆体塗膜を乾燥させた。これにより、厚さ約150μmのPI前駆体皮膜を得た。次いで、円筒状芯体1を垂直にし、加熱装置に入れて200℃で30分、320℃で30分加熱反応させ、円筒状のPI樹脂皮膜(半導電性部材)を形成した。   After the application, the cylindrical core body 1 was leveled and heated at 80 ° C. for 20 minutes and at 130 ° C. for 30 minutes while rotating at 6 rpm to dry the PI precursor coating film. As a result, a PI precursor film having a thickness of about 150 μm was obtained. Next, the cylindrical core body 1 was made vertical and placed in a heating device, and reacted by heating at 200 ° C. for 30 minutes and at 320 ° C. for 30 minutes to form a cylindrical PI resin film (semiconductive member).

室温に冷えた後、皮膜を円筒状芯体1から抜き取り、上記半導電性部材を用いた無端ベルトを得た。この無端ベルトの初期の表面抵抗率、体積抵抗率を表1にまとめて示す。   After cooling to room temperature, the film was extracted from the cylindrical core 1 to obtain an endless belt using the semiconductive member. Table 1 summarizes the initial surface resistivity and volume resistivity of the endless belt.

得られたPI樹脂無端ベルトを、カラーレーザープリンタDocuPrint C2220(富士ゼロックス社製)に転写ベルトとして組み込み、10℃、15%RHの環境でA4縦サイズの用紙を用いて30000枚コピーを行い、3000枚コピー後、用紙が通過しなかった部分の無端ベルトの表面抵抗率を前述の方法で測定し、テスト前の表面抵抗率からテスト後の表面抵抗率を差し引いて表面抵抗率の変化量(常用対数値)を求めた。
結果を表1に示す。なお、この変化量(常用対数値)が±0.8logΩを越えると転写時の濃度ムラとなる。
The obtained PI resin endless belt was incorporated in a color laser printer DocuPrint C2220 (made by Fuji Xerox Co., Ltd.) as a transfer belt, and 30000 copies were made using A4 vertical size paper in an environment of 10 ° C. and 15% RH. After copying the sheet, measure the surface resistivity of the endless belt where the paper did not pass by the method described above, and subtract the surface resistivity after the test from the surface resistivity before the test. Logarithmic value) was obtained.
The results are shown in Table 1. Note that if this amount of change (common logarithm value) exceeds ± 0.8 logΩ, density unevenness occurs during transfer.

<実施例1−2>
低粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルが等モル含まれるポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が20Pa・s)100質量部に、カーボンブラック(Degussa製SpecialBlack4、pH:3、揮発分:14質量%)を11.2質量部添加し、衝突型分散機であるジーナス製「Geanus PY、衝突部の最小部断面積0.032mm2」を用い、圧力を200MPaで溶液を2分割後衝突させ、再度2分割する経路を5回通過させて分散した。分散に要した時間は、12時間であった。次いで、目開き25μmのステンレス焼結フィルターを用いてろ過し、粗大粒子物類を除去し、カーボンブラック分散液を得た。
<Example 1-2>
Low-viscosity varnish (NMP solution of polyamic acid containing equimolar amounts of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, solid fraction after imide conversion is 18% by mass, viscosity is 20 Pa · s) 100 11.2 parts by mass of carbon black (Degussa Special Black 4, pH: 3, volatile content: 14% by mass) is added to parts by mass, and the collision type disperser “Geanus PY”, the minimum cross-sectional area of the collision part. 0.032 mm < 2 >", the pressure was 200 MPa, the solution was divided into two and then collided, and then again passed through the path divided into two and dispersed five times. The time required for dispersion was 12 hours. Next, the mixture was filtered using a stainless sintered filter having an opening of 25 μm to remove coarse particles, and a carbon black dispersion was obtained.

上記カーボンブラック分散液100質量部に、高粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとが等モル含まれるポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が80Pa・s)を100質量部添加し、プラネタリー型ミキサーを使用して減圧状態で30分間攪拌した。攪拌後2時間真空脱泡して、粘度が49Pa・sの半導電性塗料を得た。   In 100 parts by mass of the above carbon black dispersion, NMP solution of polyamic acid containing equimolar amounts of high-viscosity varnish (biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether), the solid fraction after imide conversion is 18 parts by mass and a viscosity of 80 Pa · s) were added, and the mixture was stirred for 30 minutes under reduced pressure using a planetary mixer. After stirring, vacuum degassing was performed for 2 hours to obtain a semiconductive paint having a viscosity of 49 Pa · s.

この半導電性塗料を使用して実施例1と同じ方法で無端ベルトを作製し、同様の評価を行った。半導電性塗料の特性、無端ベルトの初期抵抗値、表面抵抗率変化量(常用対数値)をまとめて表1に示す。   Using this semiconductive paint, an endless belt was produced in the same manner as in Example 1, and the same evaluation was performed. Table 1 summarizes the characteristics of the semiconductive paint, the initial resistance value of the endless belt, and the amount of change in surface resistivity (common logarithm).

<比較例1−1>
低粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを等モル含むポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が35Pa・s)100質量部に、カーボンブラック(Degussa製SpecialBlack4、pH:3、揮発分:14質量%)を5.6質量部添加し、衝突型分散機であるジーナス製「Geanus PY、衝突部の最小部断面積0.032mm2」を用い、圧力を200MPaで溶液を2分割後衝突させ、再度2分割する経路を5回通過させて分散した。分散に要した時間は、14時間であった。次いで、目開き25μmのステンレス焼結フィルターを用いてろ過し、粗大粒子物類を除去し、カーボンブラック分散液を得た。
<Comparative Example 1-1>
Low-viscosity varnish (NMP solution of polyamic acid containing equimolar amounts of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, solid fraction after imide conversion is 18% by mass, viscosity is 35 Pa · s) 100 5.6 parts by mass of carbon black (Degussa Special Black 4, pH: 3, volatile content: 14% by mass) is added to parts by mass, and the collision-type disperser “Geanus PY, minimum cross-sectional area of collision part” 0.032 mm < 2 >", the pressure was 200 MPa, the solution was divided into two and then collided, and then again passed through the path divided into two and dispersed five times. The time required for dispersion was 14 hours. Next, the mixture was filtered using a stainless sintered filter having an opening of 25 μm to remove coarse particles, and a carbon black dispersion was obtained.

このカーボンブラック分散液をそのまま塗布液として使用して、実施例1と同じ方法で無端ベルトを作製し、同様の評価を行った。
カーボンブラック分散液の特性と無端ベルトの初期抵抗値、表面抵抗率変化量(常用対数値)をまとめて表1に示す。
Using this carbon black dispersion as it was as a coating solution, an endless belt was produced in the same manner as in Example 1, and the same evaluation was performed.
Table 1 summarizes the characteristics of the carbon black dispersion, the initial resistance value of the endless belt, and the amount of change in surface resistivity (common logarithm).

<比較例1−2>
低粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを等モル含むポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が35Pa・s)100質量部に、カーボンブラック(Degussa製SpecialBlack4、pH:3、揮発分:14質量%)を11.2質量部添加し、衝突型分散機であるジーナス製「Geanus PY、衝突部の最小部断面積0.032mm2」を用い、圧力を200MPaで溶液を2分割後衝突させ、再度2分割する経路を5回通過させて分散した。分散に要した時間は、35時間であった。次いで、目開き25μmのステンレス焼結フィルターを用いてろ過し、粗大粒子物類を除去してカーボンブラック分散液を得た。
<Comparative Example 1-2>
Low-viscosity varnish (NMP solution of polyamic acid containing equimolar amounts of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, solid fraction after imide conversion is 18% by mass, viscosity is 35 Pa · s) 100 11.2 parts by mass of carbon black (Degussa Special Black 4, pH: 3, volatile content: 14% by mass) is added to parts by mass, and the collision type disperser “Geanus PY”, the minimum cross-sectional area of the collision part. 0.032 mm < 2 >", the pressure was 200 MPa, the solution was divided into two and then collided, and then again passed through the path divided into two and dispersed five times. The time required for dispersion was 35 hours. Subsequently, it filtered using the stainless sintered filter with an opening of 25 micrometers, the coarse particle thing was removed, and the carbon black dispersion liquid was obtained.

上記カーボンブラック分散液100質量部に、高粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを等モル含むポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が35Pa・s)を100質量部添加し、プラネタリー型ミキサーを使用して減圧状態で30分間攪拌した。攪拌後2時間真空脱泡して、粘度が46Pa・sの半導電性塗料を得た。   An NMP solution of polyamic acid containing equimolar amounts of high-viscosity varnish (biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether) in 100 parts by mass of the carbon black dispersion, and the solid fraction after imide conversion is 18 100 parts by mass of a mass% and a viscosity of 35 Pa · s) were added, and the mixture was stirred for 30 minutes under reduced pressure using a planetary mixer. After stirring, vacuum degassing was performed for 2 hours to obtain a semiconductive paint having a viscosity of 46 Pa · s.

この半導電性塗料を使用して実施例1と同じ方法で無端ベルトを作製し、同様の評価を行った。
半導電性塗料の特性、無端ベルトの初期抵抗値、表面抵抗率変化量をまとめて表1に示す。
Using this semiconductive paint, an endless belt was produced in the same manner as in Example 1, and the same evaluation was performed.
Table 1 summarizes the characteristics of the semiconductive paint, the initial resistance value of the endless belt, and the amount of change in surface resistivity.

<実施例1−3>
実施例1において使用したものと同一の低粘度ワニス及びカーボンブラックを用い、低粘度ワニス100質量部にカーボンブラックを14質量部添加したものを、横型サンドミル(Dyno社製、Dynomill KDL)に直径2mmのジルコニアビーズを内容積の約60体積%充填し、直径90mmの攪拌羽を回転数1592rpmで回転させたところへ5回通して分散を行った。分散時間は12時間であった。次いで、目開き25μmのステンレス焼結フィルターを用いてろ過し、粗大粒子物類を除去し、カーボンブラック分散液を得た。分散液の収率は78%であった。
<Example 1-3>
Using the same low-viscosity varnish and carbon black as used in Example 1, 100 parts by mass of low-viscosity varnish and 14 parts by mass of carbon black were added to a horizontal sand mill (Dynomill, Dynomill KDL) with a diameter of 2 mm. The zirconia beads were filled with about 60% by volume of the inner volume, and dispersion was carried out by passing the stirring blade having a diameter of 90 mm at a rotation speed of 1592 rpm five times. The dispersion time was 12 hours. Next, the mixture was filtered using a stainless sintered filter having an opening of 25 μm to remove coarse particles, and a carbon black dispersion was obtained. The yield of the dispersion was 78%.

上記カーボンブラック分散液100質量部に、高粘度ワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを等モル含むポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が140Pa・s)を150質量部添加し、プラネタリー型ミキサーを使用して減圧状態で30分間攪拌した。攪拌後2時間真空脱泡して、粘度が47Pa・sの半導電性塗料を得た。   An NMP solution of polyamic acid containing equimolar amounts of high-viscosity varnish (biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether) in 100 parts by mass of the carbon black dispersion, and the solid fraction after imide conversion is 18 150 parts by mass of a mass% and a viscosity of 140 Pa · s) were added, and the mixture was stirred for 30 minutes under reduced pressure using a planetary mixer. After stirring, vacuum degassing was performed for 2 hours to obtain a semiconductive paint having a viscosity of 47 Pa · s.

この半導電性塗料を使用して実施例1と同じ方法で無端ベルトを作製し、同様の評価を行った。
半導電性塗料の特性、無端ベルトの初期抵抗値、表面抵抗率変化量(常用対数値)をまとめて表1に示す。なお、表1において「分散時間」とは最終的な塗料100質量部あたりの分散時間として換算したものである。また、CBとはカーボンブラックの略である。
Using this semiconductive paint, an endless belt was produced in the same manner as in Example 1, and the same evaluation was performed.
Table 1 summarizes the characteristics of the semiconductive paint, the initial resistance value of the endless belt, and the amount of change in surface resistivity (common logarithm). In Table 1, “dispersion time” is calculated as the dispersion time per 100 parts by mass of the final coating material. CB is an abbreviation for carbon black.

Figure 2007086492
Figure 2007086492

表1に示すように、実施例で作製した半導電性塗料はカーボンブラックの分散性が良好であり、使用前後の表面抵抗率の変化量も少なかった。一方、比較例では、カーボンブラックの分散性がやや悪く、その結果表面抵抗率の安定性も悪化した。   As shown in Table 1, the semiconductive paint produced in the examples had good dispersibility of carbon black, and the amount of change in surface resistivity before and after use was small. On the other hand, in the comparative example, the dispersibility of the carbon black was slightly poor, and as a result, the stability of the surface resistivity was also deteriorated.

〔第2の本発明に関する試験例〕
<実施例2−1>
まず、実施例1−1と同様にして、カーボンブラック分散液を作製した。このカーボンブラック分散液100質量部に、抵抗調整液としてカーボンブラックを含まないワニス(ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを等モル含むポリアミド酸のNMP溶液で、イミド転化後の固形分率が18質量%、粘度が140Pa・s)を各々141.9質量部、156.2質量部の混合比で混合し、脱泡して、試験塗料を2種作製した。
[Test Example for Second Invention]
<Example 2-1>
First, a carbon black dispersion was prepared in the same manner as in Example 1-1. In 100 parts by mass of this carbon black dispersion, varnish containing no carbon black as a resistance adjusting liquid (an NMP solution of polyamic acid containing equimolar amounts of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether) Thereafter, the solid content ratio was 18% by mass and the viscosity was 140 Pa · s) at a mixing ratio of 141.9 parts by mass and 156.2 parts by mass, respectively, and defoamed to prepare two types of test paints.

厚さ10mm、大きさ150mm×150mmのアルミ板上の周囲に、図6に示すように厚みが約500μmの粘着テープ12を張り、直径8mmのSUS304製掻き取り棒14を端部に配置した。次いで、掻き取り棒14の近くに前記試験塗料16の液溜りをつくり、掻き取り棒14を矢印方向にゆっくりスライドさせることにより、濡れ膜厚が約500μmの塗膜を各塗料ごと各々2枚ずつ形成した。これらを165℃の連続式乾燥機内で22分間乾燥させ、次いで、加熱装置に入れて320℃で30分加熱反応させ、PI樹脂の抵抗確認部材を作製した。   As shown in FIG. 6, an adhesive tape 12 having a thickness of about 500 μm was stretched around an aluminum plate having a thickness of 10 mm and a size of 150 mm × 150 mm, and a scraper bar 14 made of SUS304 having a diameter of 8 mm was disposed at the end. Next, a liquid pool of the test paint 16 is formed near the scraping bar 14, and the scraping bar 14 is slowly slid in the direction of the arrow, so that two coating films each having a wet film thickness of about 500 μm are provided for each paint. Formed. These were dried in a continuous dryer at 165 ° C. for 22 minutes, and then placed in a heating device and reacted by heating at 320 ° C. for 30 minutes to produce a PI resin resistance confirmation member.

このPI樹脂皮膜を板から剥がし、表面抵抗率を測定したところ、抵抗調整液を141.9質量部混合した部材が2.14×1010Ω/□、2.51×1010Ω/□であり、156.2質量部混合した部材が2.24×1011Ω/□、2.75×1011logΩ/□であった。これらの結果から、最小二乗法により所望の抵抗値である6.31×1010Ω/□となる抵抗調整液の混合比を算出すると、147.7質量部となった。 When this PI resin film was peeled off from the plate and the surface resistivity was measured, the members mixed with 141.9 parts by mass of the resistance adjusting liquid were 2.14 × 10 10 Ω / □ and 2.51 × 10 10 Ω / □. Yes, 156.2 parts by mass of the mixed member was 2.24 × 10 11 Ω / □, 2.75 × 10 11 logΩ / □. From these results, when the mixing ratio of the resistance adjusting solution at which the desired resistance value was 6.31 × 10 10 Ω / □ was calculated by the least square method, it was 147.7 parts by mass.

上記の結果から、前記カーボンブラック分散液100質量部に対し、前記抵抗調整液を147.7質量部添加し、プラネタリー型ミキサーを使用して減圧状態で30分間攪拌し、その後2時間真空脱泡して半導電性塗料を得た。
この半導電性塗料を用いて、実施例1−1と同様にして円筒状の半導電性部材を作製し、室温に冷えた後、皮膜を円筒状芯体から抜き取り、無端ベルトを得た。この方法で同じ塗布液から20本の無端ベルトを作製して、表面抵抗率の平均を求めた。
Based on the above results, 147.7 parts by mass of the resistance adjusting liquid was added to 100 parts by mass of the carbon black dispersion, and the mixture was stirred for 30 minutes under reduced pressure using a planetary mixer, and then vacuum-released for 2 hours. Foamed to obtain a semiconductive paint.
Using this semiconductive paint, a cylindrical semiconductive member was prepared in the same manner as in Example 1-1, and after cooling to room temperature, the coating was extracted from the cylindrical core to obtain an endless belt. Twenty endless belts were produced from the same coating solution by this method, and the average surface resistivity was determined.

以上のカーボンブラック分散液調製から抵抗調整液の混合比決定、無端ベルトの作製及びそれらの表面抵抗率測定までを計5回繰返した。
それらの各々の決定された混合比、半導電性部材の表面抵抗率の平均値の結果をまとめて表2に示した。
The above-described preparation of the carbon black dispersion, determination of the mixing ratio of the resistance adjusting liquid, preparation of endless belts, and measurement of their surface resistivity were repeated a total of 5 times.
Table 2 summarizes the results of the determined mixing ratio and the average value of the surface resistivity of the semiconductive member.

Figure 2007086492
Figure 2007086492

<比較例2−1>
実施例2−1において、半導電性塗料の作製を抵抗確認部材の作製を行わずに、カーボンブラック分散液100質量部に対して抵抗調整液を実施例2−1における5回の分散の平均混合比である144.0質量部として塗料を作製し、同様に無端ベルトを作製して表面抵抗率の測定を行った。
同様のカーボンブラック分散から無端ベルト作製及び表面抵抗率測定までを計5回繰返した。各々の半導電性部材の表面抵抗率の平均値の結果をまとめて表3に示した。
<Comparative Example 2-1>
In Example 2-1, without preparing a resistance confirmation member for producing a semiconductive paint, an average of five dispersions in Example 2-1 was applied to the resistance adjusting solution with respect to 100 parts by mass of the carbon black dispersion. A coating material was prepared at a mixing ratio of 144.0 parts by mass, and an endless belt was prepared in the same manner, and the surface resistivity was measured.
The same processes from carbon black dispersion to endless belt production and surface resistivity measurement were repeated a total of 5 times. Table 3 summarizes the results of the average values of the surface resistivity of the respective semiconductive members.

Figure 2007086492
Figure 2007086492

表2の結果のように、実施例では5回の分散液ロットの塗布液を使用したロット間のベルトの抵抗ばらつきは小さいことがわかる。一方、表3に示した比較例では、分散5回でかなり表面抵抗率がばらついてしまうことがわかる。   As shown in the results of Table 2, it can be seen that in the examples, the belt resistance variation between lots using the coating liquid of 5 dispersion lots is small. On the other hand, in the comparative example shown in Table 3, it can be seen that the surface resistivity varies considerably after five dispersions.

〔第3の本発明に関する試験例〕
<実施例3−1>
まず、半導電性塗料Aとして、実施例2−1の分散1回目の塗料を用意した。この塗料の部材としたときの表面抵抗率の平均値は、前記のように5.82×1010Ω/□である。次に、実施例2−1と同様にして抵抗調整液の配合比を147.7質量部として半導電性塗料Bを作製した。この半導電性塗料Bの部材としての抵抗値を知るため、以下の検討を行った。
[Test Example for Third Invention]
<Example 3-1>
First, as the semiconductive paint A, the first dispersion paint of Example 2-1 was prepared. As described above, the average value of the surface resistivity when this paint member is used is 5.82 × 10 10 Ω / □. Next, a semiconductive paint B was prepared in the same manner as in Example 2-1, with the blending ratio of the resistance adjusting liquid set to 147.7 parts by mass. In order to know the resistance value of the semiconductive paint B as a member, the following examination was performed.

半導電性塗料A100質量部と半導電性塗料B100質量部とを混合して混合塗料を作製し、この塗料を用いて実施例2−1と同様にして2枚の抵抗確認部材を成形した。この抵抗確認部材の表面抵抗率ρA+Bの平均値は6.07×1010Ω/□であった。このρA+Bの値から、前記式(3)を用いて半導電性塗料Bからなる部材の表面抵抗率ρBを求めると6.31×1010Ω/□となる。 100 parts by mass of the semiconductive paint A and 100 parts by mass of the semiconductive paint B were mixed to prepare a mixed paint, and two resistance confirmation members were molded using this paint in the same manner as in Example 2-1. The average value of the surface resistivity ρ A + B of this resistance confirmation member was 6.07 × 10 10 Ω / □. From the value of ρ A + B , the surface resistivity ρ B of the member made of the semiconductive paint B is obtained using the above formula (3), and is 6.31 × 10 10 Ω / □.

このρB値から、部材としての表面抵抗率が半導電性塗料Aの部材として表面抵抗率と同等となる半導電性塗料B’における混合比(カーボンブラック分散液100質量部に対する抵抗調整液の量)は、147.0質量部と見積もられた。 From this ρ B value, the mixing ratio in the semiconductive paint B ′ in which the surface resistivity as the member is equivalent to the surface resistivity as the member of the semiconductive paint A (of the resistance adjusting liquid with respect to 100 parts by mass of the carbon black dispersion liquid) Amount) was estimated to be 147.0 parts by weight.

この結果から、混合比がわかっている半導電性塗料Bについて、カーボンブラック分散液及び/または抵抗調整液を用いて混合比を147.0質量部に再調整し、実施例2−1と同様にして20本の無端ベルトを作製した。そして、それらの表面抵抗率の平均値を求めたところ、5.82×1010Ω/□であった。
このように、半導電性塗料Aを利用して、簡便な方法により半導電性塗料Bの配合比を部材の抵抗値が既知の半導電性塗料Aと同等となるように調整することができた。
From this result, for the semiconductive paint B whose mixing ratio is known, the mixing ratio was readjusted to 147.0 parts by mass using the carbon black dispersion and / or the resistance adjusting liquid, and the same as in Example 2-1. Thus, 20 endless belts were produced. Then, it was determined the average value of the surface resistivity was 10 Ω / □ 5.82 × 10.
Thus, by using the semiconductive paint A, the mixing ratio of the semiconductive paint B can be adjusted by a simple method so that the resistance value of the member is equivalent to the known semiconductive paint A. It was.

<参考例1>
芯体として、外径30mm、長さ400mmのアルミニウム管を用意し、球形アルミナ粒子によるブラスト処理により、表面をRa:0.3μmに粗面化した。その表面にシリコーン系離型剤(商品名:KS700、信越化学(株)製)を塗布して、250℃で1時間、焼き付け処理した。次いで、芯体1を図2に示すように、環状塗布槽7に通し、その下にも他の芯体1’を取り付けた。
<Reference Example 1>
An aluminum tube having an outer diameter of 30 mm and a length of 400 mm was prepared as the core, and the surface was roughened to Ra: 0.3 μm by blasting with spherical alumina particles. A silicone release agent (trade name: KS700, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the surface, and baked at 250 ° C. for 1 hour. Next, as shown in FIG. 2, the core body 1 was passed through the annular coating tank 7, and another core body 1 ′ was attached below the core body 1.

PI前駆体として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と、パラフェニレンジアミンとをN−メチル−2−ピロリドン中で等モル反応させた、固形分濃度18%、粘度約50Pa・sの溶液を用意した。これを内径80mm、高さ50mmの環状塗布槽7に入れた。環状塗布槽の中央には内径29mmの穴を設けた0.5mm厚の硬質ポリエチレン製の環状シール材8を取り付けた。   As a PI precursor, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine were reacted in an equimolar amount in N-methyl-2-pyrrolidone, a solid content concentration of 18%, A solution having a viscosity of about 50 Pa · s was prepared. This was put in an annular coating tank 7 having an inner diameter of 80 mm and a height of 50 mm. At the center of the annular coating tank, an annular sealing material 8 made of hard polyethylene having a thickness of 29 mm and having an inner diameter of 29 mm was attached.

環状体5として、高さが25mm、外径が60mmで、最も狭い部分の内径が31.2mmの孔6を設けたポリアセタール樹脂製の中空体を作製した。その内壁は傾斜面であり、鉛直線となす傾斜角は7°とした。また、孔6の真円度は13μmであった。環状体の外側面には、長さ30mm、太さ0.5mmのステンレス棒材からなるアームを3本、等間隔に取り付けた。そのアームを環状塗布槽7の上縁に載せて塗液上に設置した。   As the annular body 5, a hollow body made of polyacetal resin having a hole 6 with a height of 25 mm, an outer diameter of 60 mm, and an inner diameter of the narrowest part of 31.2 mm was prepared. The inner wall is an inclined surface, and the inclination angle formed with the vertical line is 7 °. The roundness of the hole 6 was 13 μm. Three arms made of stainless steel rods with a length of 30 mm and a thickness of 0.5 mm were attached to the outer surface of the annular body at equal intervals. The arm was placed on the upper edge of the annular coating tank 7 and placed on the coating solution.

次に、環状体5の液面からの高さを目視によって検出しながら、芯体1を0.8m/minの速度で上昇させたところ、環状体5はすぐに液面より約15mm持ち上げられ、さらに環状体5の高さは増した。そこで、速度を徐々に減じ、芯体1が約60mm上昇した時点で、環状体5の高さは20mmで安定したので、芯体の上昇速度を一定にした。その時の速度は0.6m/minであった。   Next, the core body 1 was raised at a speed of 0.8 m / min while visually detecting the height of the annular body 5 from the liquid level, and the annular body 5 was immediately lifted by about 15 mm from the liquid level. Furthermore, the height of the annular body 5 increased. Therefore, the speed was gradually decreased, and when the core body 1 was raised by about 60 mm, the height of the annular body 5 was stabilized at 20 mm, so the ascent speed of the core body was made constant. The speed at that time was 0.6 m / min.

芯体1の上昇途中で環状体5が芯体1に接触することはなく、濡れ膜厚が約600μmの塗膜4が形成された。塗布後から約1分後、芯体を取り出して水平にして、10rpmで回転させながら、120℃で30分間乾燥した。   During the rising of the core body 1, the annular body 5 did not contact the core body 1, and the coating film 4 having a wet film thickness of about 600 μm was formed. About 1 minute after coating, the core was taken out, leveled, and dried at 120 ° C. for 30 minutes while rotating at 10 rpm.

次いで芯体1を縦にして加熱炉に入れ、芯体内面に熱電対線を貼り付けて温度を測定しながら、芯体の加熱を行った。条件は図12のニに示すように、250℃まで30分で上昇させ、250℃に30分間保持し、次に380℃に20分間で上昇させ、380℃に40分間保持した後、1時間30分かけて常温に戻した。
この条件では、250℃に2時間10分、300℃以上の温度に1時間15分、置かれている。なお、380℃というのは後述するPFAが焼成できる温度である。
Next, the core body 1 was placed in a heating furnace in a vertical direction, and the core body was heated while a thermocouple wire was attached to the inner surface of the core body and the temperature was measured. As shown in FIG. 12D, the temperature was raised to 250 ° C. in 30 minutes, held at 250 ° C. for 30 minutes, then raised to 380 ° C. in 20 minutes, held at 380 ° C. for 40 minutes, and then 1 hour It returned to normal temperature over 30 minutes.
Under this condition, it is placed at 250 ° C. for 2 hours and 10 minutes and at a temperature of 300 ° C. or more for 1 hour and 15 minutes. Note that 380 ° C. is a temperature at which PFA described later can be fired.

芯体1が室温に冷えてから皮膜を取り出し、PI樹脂製の無端ベルトを得た。膜厚は80μmでほぼ均一であった。無端ベルトを切り開いて10箇所から試験片を切り取り、MIT試験機(上島製作所製FT701型)にて、破断が起こるまでの屈曲回数を測定したところ、最大値3900回、最小値3150回、平均値3540回という結果が得られた。   After the core 1 was cooled to room temperature, the film was taken out to obtain an endless belt made of PI resin. The film thickness was 80 μm and was almost uniform. The endless belt was cut open, and test specimens were cut out from 10 locations, and the number of flexing until rupture was measured with an MIT tester (FT701 model manufactured by Ueshima Seisakusho). The maximum value was 3900 times, the minimum value was 3150 times, and the average value A result of 3540 times was obtained.

別途、PI前駆体溶液を塗布して乾燥させた芯体1に対し、一端の皮膜端部に粘着テープで被覆処理をした。また、PFAの水性塗料(商品名:710CL、三井デュポンフロロケミカル社製、濃度60%、粘度400mPa・s、溶媒として水のほかに、エタノール、t−ブタノールを含む)を、内径90mm、高さ480mmの塗布槽に入れ、この中に、前記芯体1を、被覆を下側にして垂直にし、上部のPI前駆体皮膜を5mmだけ残して浸漬した。次いで0.3m/分の速度で引き上げ、PFA塗膜を形成した。   Separately, the core body 1 coated with the PI precursor solution and dried was coated with an adhesive tape at one end of the film. In addition, an aqueous paint of PFA (trade name: 710CL, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd., concentration 60%, viscosity 400 mPa · s, containing ethanol and t-butanol as a solvent in addition to water), inner diameter 90 mm, height In a 480 mm coating tank, the core 1 was immersed in a vertical state with the coating on the bottom, leaving only 5 mm of the upper PI precursor film. Subsequently, it pulled up at a speed of 0.3 m / min to form a PFA coating film.

80℃で10分間の乾燥後、被覆を除去した。その後、前記の条件で加熱してPI前駆体を反応させてPI樹脂皮膜を形成すると共に、PFA塗膜を焼成した。室温に冷えた後、芯体1から皮膜を取り外し、無端ベルトを得た。PI樹脂とPFA層の密着性は強固であった。膜厚を測定すると、PI樹脂は80μm、PFA層は30μmであった。この無端ベルトを320mmの長さに切断して、定着ベルトとした。   After drying at 80 ° C. for 10 minutes, the coating was removed. Thereafter, the PI precursor was reacted by heating under the above conditions to form a PI resin film, and the PFA coating film was baked. After cooling to room temperature, the film was removed from the core 1 to obtain an endless belt. The adhesion between the PI resin and the PFA layer was strong. When the film thickness was measured, the PI resin was 80 μm and the PFA layer was 30 μm. This endless belt was cut into a length of 320 mm to obtain a fixing belt.

この定着ベルトを特開平11−133776号公報記載にある定着装置に使用し、画像定着試験を行った。該定着装置内では、定着ベルトは変形を受けながら回転が繰り返されるが、A4用紙5万枚の耐久試験を行っても、定着ベルトは何ら支障なく使用することができた。但し、PFA層の磨耗のため、約10万枚で定着ベルトとしての寿命が尽きるものがあったが、PI樹脂層の問題はなかった。   This fixing belt was used in a fixing device described in JP-A No. 11-133776, and an image fixing test was conducted. In the fixing device, the fixing belt is repeatedly rotated while being deformed, but the fixing belt can be used without any trouble even when the durability test of 50,000 sheets of A4 paper is performed. However, due to the wear of the PFA layer, the life as a fixing belt was exhausted with about 100,000 sheets, but there was no problem with the PI resin layer.

<参考例2>
参考例1において、PI樹脂の加熱条件として、図12のホに示すように、380℃まで1時間で上昇させ、次に380℃に40分間保持した後、1時間20分かけて常温に戻した。この条件では、250℃に1時間30分、300℃以上の温度に1時間15分、置かれていることになり、250℃での時間が不足である。実施例1と同様にしてMIT試験機にて破断が起こるまでの屈曲回数を測定したところ、最大値1200回、最小値750回、平均値940回という結果であった。
<Reference Example 2>
In Reference Example 1, as shown in FIG. 12E, the heating condition of the PI resin was raised to 380 ° C. over 1 hour, then held at 380 ° C. for 40 minutes, and then returned to room temperature over 1 hour 20 minutes. It was. Under this condition, it is placed at 250 ° C. for 1 hour and 30 minutes and at a temperature of 300 ° C. or higher for 1 hour and 15 minutes, and the time at 250 ° C. is insufficient. In the same manner as in Example 1, when the number of flexing until the rupture occurred was measured with an MIT test machine, the maximum value was 1200 times, the minimum value was 750 times, and the average value was 940 times.

やはり表面にPFA層を形成して定着ベルトを作製し、同様にして評価したところ、A4用紙約4万枚にて、定着ベルトは端部からひびが入り、破断が起こった。定着ベルトは繰り返して変形を受けるため、耐屈曲性が劣るものは、寿命が短いという結果であった。   When a fixing belt was formed by forming a PFA layer on the surface and evaluated in the same manner, the fixing belt cracked from the end of about 40,000 A4 sheets, and fractured. Since the fixing belt is repeatedly deformed, the inferior bending resistance results in a short life.

<参考例3>
実施例1と同様にして、円筒状芯体に塗膜を形成した。次いで、3分以内に芯体の軸方向を水平にし、6rpmで回転させながら、140℃で30分間乾燥した。乾燥機内では、熱風が上方から約5m/sの速度で吹き降りて芯体に当たっている。
<Reference Example 3>
In the same manner as in Example 1, a coating film was formed on the cylindrical core. Next, the core was axially horizontal within 3 minutes and dried at 140 ° C. for 30 minutes while rotating at 6 rpm. In the dryer, hot air blows down from above at a speed of about 5 m / s and hits the core.

次いで芯体を縦にして、図13に示すように、芯体32の外側に、厚さ0.5mm、直径460mmのステンレス円筒からなる覆い30を取り付けて加熱炉に入れた。その中では熱風が側面から約2m/sの速度で流れていたが、覆い30があるため、芯体32に直に熱風が当たることはなかった。次いで、図11の条件イに示すように、常温から300℃まで2時間で上昇させ、300℃に1時間20分保持し、常温まで1時間40分で冷却した。この場合、250℃に2時間、300℃に1時間20分置かれたことになる。室温に冷えてから皮膜を取り出すことにより、PI樹脂製の無端ベルトを得ることができた。   Next, as shown in FIG. 13, the core body was placed vertically, and a cover 30 made of a stainless steel cylinder having a thickness of 0.5 mm and a diameter of 460 mm was attached to the outside of the core body 32 and placed in a heating furnace. Among them, hot air was flowing from the side surface at a speed of about 2 m / s. However, since the cover 30 was present, the hot air did not directly hit the core body 32. Next, as shown in condition (a) of FIG. 11, the temperature was raised from room temperature to 300 ° C. in 2 hours, held at 300 ° C. for 1 hour and 20 minutes, and cooled to room temperature in 1 hour and 40 minutes. In this case, it was placed at 250 ° C. for 2 hours and at 300 ° C. for 1 hour and 20 minutes. By removing the film after cooling to room temperature, an endless belt made of PI resin could be obtained.

膜厚を測定すると、上端部から30mmを除いて、80μmで均一であった。上端部から30mm内の膜厚は、周方向で厚い部分と薄い部分があったが、これは、環状体が水平方向に移動して、芯体との間隙が均一に合うまでに、多少の時間がかかったためと考えられる。   When the film thickness was measured, it was uniform at 80 μm except for 30 mm from the upper end. The film thickness within 30 mm from the upper end part had a thick part and a thin part in the circumferential direction, but this was a little until the annular body moved in the horizontal direction and the gap with the core body was evenly fitted. It is thought that it took time.

次に、参考例1の場合と同様に、ベルトを切り開いて10箇所から試験片を切り取り、MIT試験機にて、破断が起こるまでの屈曲回数を測定したところ、最大値1800回、最小値1100回、平均値1550回という結果が得られた。
また、無端ベルトを切り開いた後、体積抵抗を細かく測定した結果を図14に示す。図の横軸は無端ベルトの周方向の位置、縦軸は無端ベルトの軸方向の位置を示し、目盛は任意座標であり、図中の数値は体積抵抗の指数を示す。この結果によれば、体積抵抗は109.1〜109.4Ωcmの範囲であり、ばらつきは小さかった。
この無端ベルトは電子写真用転写ベルトとして使用することができ、直径20mmのロールに張架して、A4用紙5万枚の通紙耐久試験を行っても、転写ベルトは何ら支障なく使用することができた。
Next, in the same manner as in Reference Example 1, the belt was cut open and test pieces were cut out from 10 locations, and the number of flexing until rupture was measured with an MIT test machine. The maximum value was 1800 times and the minimum value was 1100. The average value was 1550 times.
In addition, FIG. 14 shows the result of measuring the volume resistance finely after cutting the endless belt. In the figure, the horizontal axis indicates the position of the endless belt in the circumferential direction, the vertical axis indicates the position of the endless belt in the axial direction, the scale is an arbitrary coordinate, and the numerical value in the figure indicates an index of volume resistance. According to this result, the volume resistance was in the range of 10 9.1 to 10 9.4 Ωcm, and the variation was small.
This endless belt can be used as an electrophotographic transfer belt. Even if the endurance test of 50,000 sheets of A4 paper is performed on a roll having a diameter of 20 mm, the transfer belt should be used without any problem. I was able to.

<参考例4>
参考例3において、イミド化の加熱条件として、常温から300℃まで2時間で上昇させ、300℃に30分間保持し、常温まで1時間40分で冷却した。この場合、250℃に1時間、300℃に30分間置かれたことになる。他は同様にして無端ベルトを作製し、実施例2と同様に破断が起こるまでの屈曲回数を測定したところ、最大値1100回、最小値700回、平均値850回という結果であった。
この無端ベルトを直径20mmのロールに張架して電子写真用転写ベルトとして使用した場合、A4用紙の通紙耐久試験を行うと、約2万枚で転写ベルトは端部から破断が生じ、耐久性は不足する結果であった。
<Reference Example 4>
In Reference Example 3, as heating conditions for imidization, the temperature was raised from room temperature to 300 ° C. in 2 hours, held at 300 ° C. for 30 minutes, and cooled to room temperature in 1 hour and 40 minutes. In this case, it was placed at 250 ° C. for 1 hour and at 300 ° C. for 30 minutes. Otherwise, an endless belt was produced in the same manner, and the number of flexing until breakage was measured in the same manner as in Example 2. The maximum value was 1100 times, the minimum value was 700 times, and the average value was 850 times.
When this endless belt is stretched around a roll with a diameter of 20 mm and used as a transfer belt for electrophotography, when the endurance test of A4 paper is performed, the transfer belt breaks from the end of about 20,000 sheets, and durability The result was insufficient.

カーボンブラックの分散方法の一例を示す説明図である。It is explanatory drawing which shows an example of the dispersion | distribution method of carbon black. 塗布装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a coating device. 表面抵抗率を測定する円形電極を示す概略平面図(a)及び概略断面図(b)である。It is the schematic plan view (a) and schematic sectional drawing (b) which show the circular electrode which measures surface resistivity. 体積抵抗率を測定する円形電極を示す概略平面図(a)及び概略断面図(b)である。It is the schematic plan view (a) and schematic sectional drawing (b) which show the circular electrode which measures volume resistivity. 所望の抵抗値とするための混合比の決定法を示す説明図である。It is explanatory drawing which shows the determination method of the mixing ratio for setting it as a desired resistance value. 抵抗確認部材を作製する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of producing a resistance confirmation member. 抵抗確認部材を作製する方法の一例を示す説明図であり、(A)は塗膜形成前の状態、(B)、(C)は塗膜形成後の状態を示す。It is explanatory drawing which shows an example of the method of producing a resistance confirmation member, (A) shows the state before coating-film formation, (B), (C) shows the state after coating-film formation. 抵抗確認部材を作製する方法の他の一例を示す説明図である。It is explanatory drawing which shows another example of the method of producing a resistance confirmation member. 抵抗確認部材を作製する方法の他の一例を示す説明図であり、(A)は塗膜形成前の状態、(B)、(C)は塗膜形成後の状態を示す。It is explanatory drawing which shows another example of the method of producing a resistance confirmation member, (A) shows the state before coating-film formation, (B), (C) shows the state after coating-film formation. 塗料ごとの表面抵抗率を示す図である。It is a figure which shows the surface resistivity for every coating material. 塗膜の加熱条件の一例を示すグラフである。It is a graph which shows an example of the heating conditions of a coating film. 塗膜の加熱条件の他の一例を示すグラフである。It is a graph which shows another example of the heating conditions of a coating film. 覆いを設けた円筒状芯体を示す模式図である。It is a schematic diagram which shows the cylindrical core body which provided the cover. 無端ベルトの体積抵抗率の分布を示す図である。It is a figure which shows distribution of the volume resistivity of an endless belt.

符号の説明Explanation of symbols

1、32…円筒状芯体、2…溶液、3…軸、4…塗膜、5…環状体、6…環状体の円孔、7…環状塗布槽、8…シール材、10…基板、12、22…粘着テープ、14…掻き取り棒、16、26…試験塗料、20…円柱基体、30…覆い、50…第1流路管、52…連結管、54…第2流路管 DESCRIPTION OF SYMBOLS 1, 32 ... Cylindrical core body, 2 ... Solution, 3 ... Axis, 4 ... Coating film, 5 ... Ring body, 6 ... Circular hole of an annular body, 7 ... Ring coating tank, 8 ... Sealing material, 10 ... Substrate, DESCRIPTION OF SYMBOLS 12, 22 ... Adhesive tape, 14 ... Scraping rod, 16, 26 ... Test paint, 20 ... Cylindrical base | substrate, 30 ... Cover, 50 ... 1st flow pipe, 52 ... Connection pipe, 54 ... 2nd flow pipe

Claims (5)

樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない粘度調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
粘度が1〜20Pa・sの範囲の樹脂溶液にカーボンブラックを分散させて前記カーボンブラック分散液を調製し、該カーボンブラック分散液と前記樹脂溶液より粘度の高い粘度調整液とを混合して前記半導電性塗料を作製することを特徴とする半導電性部材の製造方法。
A step of preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a viscosity adjusting liquid not containing carbon black, and applying the semiconductive paint to form a semiconductive member A process for producing a semiconductive member comprising the steps of:
Carbon black is dispersed in a resin solution having a viscosity in the range of 1 to 20 Pa · s to prepare the carbon black dispersion, and the carbon black dispersion is mixed with a viscosity adjusting liquid having a higher viscosity than the resin solution. A method for producing a semiconductive member, comprising producing a semiconductive paint.
前記カーボンブラックの分散を、2つ以上に分割したカーボンブラック混合液を、150MPa以上の圧力で衝突させて行うことを特徴とする請求項1に記載の半導電性部材の製造方法。   The method for producing a semiconductive member according to claim 1, wherein the carbon black dispersion is performed by colliding a mixed liquid of carbon black divided into two or more at a pressure of 150 MPa or more. 樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない抵抗調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
予め、前記カーボンブラック分散液及び前記粘度調整液の混合比の異なる2種以上の試験塗料を調製し、該試験塗料を用いて各々抵抗確認部材を成形し、該各々の抵抗確認部材の抵抗値から前記半導電性塗料におけるカーボンブラック分散液及び抵抗調整液の混合比を決定することを特徴とする半導電性部材の製造方法。
A process for preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a resistance adjusting liquid not containing carbon black, and applying the semiconductive paint to form a semiconductive member A process for producing a semiconductive member comprising the steps of:
Two or more kinds of test paints having different mixing ratios of the carbon black dispersion liquid and the viscosity adjusting liquid are prepared in advance, each of the resistance check members is molded using the test paint, and the resistance value of each of the resistance check members A method for producing a semiconductive member, comprising: determining a mixing ratio of a carbon black dispersion liquid and a resistance adjusting liquid in the semiconductive paint.
樹脂溶液にカーボンブラックを分散したカーボンブラック分散液及びカーボンブラックを含まない抵抗調整液を混合して半導電性塗料を作製する工程と、該半導電性塗料を塗布して半導電性部材を成形する工程と、を含む半導電性部材の製造方法であって、
予め、作製した半導電性塗料Bと半導電性部材としての抵抗値が既知の半導電性塗料Aとを一定混合比で混合して混合塗料を調製し、該混合塗料を用いて抵抗確認部材を成形し、該抵抗確認部材の抵抗値から前記半導電性塗料Bにおけるカーボンブラック分散液及び抵抗調整液の混合比を再調整することを特徴とする半導電性部材の製造方法。
A process for preparing a semiconductive paint by mixing a carbon black dispersion liquid in which carbon black is dispersed in a resin solution and a resistance adjusting liquid not containing carbon black, and applying the semiconductive paint to form a semiconductive member A process for producing a semiconductive member comprising the steps of:
A prepared semi-conductive paint B and a semi-conductive paint A having a known resistance value as a semi-conductive member are mixed at a constant mixing ratio to prepare a mixed paint, and the resistance confirmation member is prepared using the mixed paint The method of manufacturing a semiconductive member is characterized in that the mixing ratio of the carbon black dispersion liquid and the resistance adjusting liquid in the semiconductive paint B is readjusted from the resistance value of the resistance confirmation member.
請求項1〜4のいずれか1項に記載の半導電性部材の製造方法により得られる半導電性部材を用いたことを特徴とする無端ベルト。   An endless belt using a semiconductive member obtained by the method for producing a semiconductive member according to any one of claims 1 to 4.
JP2005276069A 2005-09-22 2005-09-22 Method for manufacturing semiconductive member Active JP5023459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276069A JP5023459B2 (en) 2005-09-22 2005-09-22 Method for manufacturing semiconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276069A JP5023459B2 (en) 2005-09-22 2005-09-22 Method for manufacturing semiconductive member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012034458A Division JP5267694B2 (en) 2012-02-20 2012-02-20 Method for manufacturing semiconductive member

Publications (2)

Publication Number Publication Date
JP2007086492A true JP2007086492A (en) 2007-04-05
JP5023459B2 JP5023459B2 (en) 2012-09-12

Family

ID=37973523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276069A Active JP5023459B2 (en) 2005-09-22 2005-09-22 Method for manufacturing semiconductive member

Country Status (1)

Country Link
JP (1) JP5023459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127825A (en) * 2005-11-04 2007-05-24 Ricoh Co Ltd Seamless belt and image forming apparatus using the same
JP2007225943A (en) * 2006-02-24 2007-09-06 Ricoh Co Ltd Seamless belt and image forming apparatus using same
US8524315B2 (en) 2010-09-17 2013-09-03 Fuji Xerox Co., Ltd. Method for manufacturing tubular body
JP2013245322A (en) * 2012-05-28 2013-12-09 Fuji Xerox Co Ltd Thermosetting solution, tubular body, method for manufacturing the same, and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254448A (en) * 2001-03-05 2002-09-11 Nitto Denko Corp Seamless belt and its production method
JP2004279531A (en) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd Transfer member, production method therefor, and image forming apparatus using it
JP2005074914A (en) * 2003-09-02 2005-03-24 Sumitomo Rubber Ind Ltd Device for manufacturing tubular material, and tubular material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254448A (en) * 2001-03-05 2002-09-11 Nitto Denko Corp Seamless belt and its production method
JP2004279531A (en) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd Transfer member, production method therefor, and image forming apparatus using it
JP2005074914A (en) * 2003-09-02 2005-03-24 Sumitomo Rubber Ind Ltd Device for manufacturing tubular material, and tubular material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127825A (en) * 2005-11-04 2007-05-24 Ricoh Co Ltd Seamless belt and image forming apparatus using the same
JP2007225943A (en) * 2006-02-24 2007-09-06 Ricoh Co Ltd Seamless belt and image forming apparatus using same
US8524315B2 (en) 2010-09-17 2013-09-03 Fuji Xerox Co., Ltd. Method for manufacturing tubular body
JP2013245322A (en) * 2012-05-28 2013-12-09 Fuji Xerox Co Ltd Thermosetting solution, tubular body, method for manufacturing the same, and image forming apparatus

Also Published As

Publication number Publication date
JP5023459B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP6798154B2 (en) Endless belt, image forming device, and endless belt unit
JP5023459B2 (en) Method for manufacturing semiconductive member
JP5624386B2 (en) Intermediate transfer member
CN103454887A (en) Intermediate transfer members containing fluorinated polyamic acids
JP2006259248A (en) Transfer fixing belt
JP4619208B2 (en) Polyimide resin belt with isotropic dielectric constant in the surface direction
US20110024024A1 (en) Method of fabricating super finished itb&#39;s via internal mandrel flow coating
US8615188B2 (en) Method of controlling gloss
JPWO2009069715A1 (en) Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt
JP2008076518A (en) Semiconductive polyimide resin belt and method for manufacturing the same
JP5267694B2 (en) Method for manufacturing semiconductive member
JP6996090B2 (en) Transfer belt for electrophotographic equipment, image forming equipment and transfer belt unit
JP5062802B2 (en) Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same
JP4900519B1 (en) Method for producing thermosetting solution and method for producing tubular body
JP2004287005A (en) Semiconductive seamless belt and its manufacturing method
JP2011209578A (en) Tubular body and method for manufacturing the same
JP2002254448A (en) Seamless belt and its production method
US20180107140A1 (en) Fuser members
JP5721642B2 (en) Endless flexible intermediate transfer member for image forming device and image forming device
JP2011070199A (en) Seamless belt and method of manufacturing the same
JP6936732B2 (en) Transfer member for image forming apparatus
JP2008074900A (en) Semiconductive polyimide resin belt and method for producing the same
JP2003177630A (en) Transferring and fixing belt
JP2005249952A (en) Semiconductive film and method for manufacturing the same
US20200326645A1 (en) Transfer belt, transfer unit, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350