JP2007085592A - Regenerative condenser - Google Patents

Regenerative condenser Download PDF

Info

Publication number
JP2007085592A
JP2007085592A JP2005272468A JP2005272468A JP2007085592A JP 2007085592 A JP2007085592 A JP 2007085592A JP 2005272468 A JP2005272468 A JP 2005272468A JP 2005272468 A JP2005272468 A JP 2005272468A JP 2007085592 A JP2007085592 A JP 2007085592A
Authority
JP
Japan
Prior art keywords
heat transfer
absorbent
liquid
regeneration
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272468A
Other languages
Japanese (ja)
Other versions
JP4318679B2 (en
Inventor
Neiwa Ou
寧和 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005272468A priority Critical patent/JP4318679B2/en
Publication of JP2007085592A publication Critical patent/JP2007085592A/en
Application granted granted Critical
Publication of JP4318679B2 publication Critical patent/JP4318679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the overall heat exchanging coefficient by increasing local heat transfer coefficients of a falling absorbent film side and a heat source fluid side of a vertical heat transfer tube, reduce a volume of a device and improve regenerating performance. <P>SOLUTION: This regenerative condenser is provided with the plurality of heat transfer tubes 1 between upper and lower partitioning plates 7, 8 of a vertical body 1A, an absorbent pool 2 and an absorbent storing chamber 13 are formed on an upper portion and a lower portion of the heat transfer tubes 1, and the condensable heat source fluid 41 is supplied to a heating chamber 6 formed by the heat transfer tubes 1 and the body 1A, so that the falling liquid film-shaped absorbent 40a requiring regeneration is heated to be regenerated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸収冷凍機及び吸収冷温水機用の再生凝縮装置(以下、再生凝縮装置と称す)に関し、特に、縦型の伝熱管の内壁側と外壁側に流下する流下吸収液膜側と凝縮性熱源流体側の局部熱伝達係数が共に高いことにより総括熱交換係数を高くし、装置の容積を低減し、吸収液再生能力の向上を得るための新規な改良に関する。   The present invention relates to a regenerative condensing device (hereinafter referred to as a regenerative condensing device) for an absorption refrigerator and an absorption chiller / heater, and in particular, a falling absorption liquid film side flowing down to an inner wall side and an outer wall side of a vertical heat transfer tube; The present invention relates to a novel improvement for increasing the overall heat exchange coefficient due to the high local heat transfer coefficient on the side of the condensable heat source fluid, reducing the volume of the apparatus, and improving the absorption liquid regeneration capability.

従来の二重、三重効用吸収式冷凍機及び吸収式冷温水機に関し、低、中温再生器には、より高温の再生温度段からの冷媒蒸気の加熱により吸収液の再生が行われる技術と、高温再生器にはボイラからの高温水蒸気の加熱により吸収液の再生が行われる技術がある。この様な再生器部では吸収液の再生に一般にプール加熱方式が採用されている。
図14には従来の再生器部プール加熱方式を示す。すなわち、図示のようにプール加熱方式の特徴としては、再生器用伝熱管1を再生器部胴体1Aの吸収液プール2の中に浸して設置し、前記伝熱管1内に高温水蒸気または冷媒蒸気3を流して管外の吸収液プール2内の吸収液を加熱して再生する構成である。
Regarding conventional double- and triple-effect absorption refrigerators and absorption chiller / heaters, low and medium temperature regenerators have a technology in which the absorbent is regenerated by heating the refrigerant vapor from a higher temperature regeneration temperature stage, and The high temperature regenerator has a technique in which the absorbent is regenerated by heating high temperature steam from a boiler. In such a regenerator section, a pool heating method is generally adopted for regeneration of the absorbing liquid.
FIG. 14 shows a conventional regenerator pool heating system. That is, as shown in the figure, the pool heating method is characterized in that the regenerator heat transfer tube 1 is immersed in the absorption liquid pool 2 of the regenerator body 1A, and the high-temperature steam or refrigerant vapor 3 is placed in the heat transfer tube 1. The absorption liquid in the absorption liquid pool 2 outside the tube is heated and regenerated.

従来の吸収冷凍機用再生凝縮装置は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、吸収式冷凍機は、熱交換器の集合体であり、再生器部の熱交換方式が、その熱エネルギー利用効率に影響を大きく及ぼしている。
特に、プール加熱方式の再生器は、以下のような欠点を抱えている。
(1) プール内の液側局部熱伝達係数が比較的小さい。
(2) 汎用吸収液系の臭化リチウム溶液は比重が比較的高く、粘度も比較的高い。そのため、管外伝熱に対する液位差の影響は大きい。つまり、液位差が大きいほど吸収液に対する加熱能力が低下する。
(3) 横型伝熱管が採用されるため、管内凝縮液流れにより、そこの局部熱伝達係数が劣っている場合が多い。
(4) 従って再生器部熱交換器の構成に所要伝熱面積が大きく、所要材料が多くなっていた。
Since the conventional regenerative condensing device for absorption refrigerators is configured as described above, the following problems exist.
In other words, the absorption refrigerator is an aggregate of heat exchangers, and the heat exchange system of the regenerator part greatly affects the heat energy utilization efficiency.
In particular, the pool heating type regenerator has the following drawbacks.
(1) The liquid side local heat transfer coefficient in the pool is relatively small.
(2) General-purpose absorbent lithium bromide solution has a relatively high specific gravity and a relatively high viscosity. Therefore, the influence of the liquid level difference on the heat transfer outside the tube is large. That is, the larger the liquid level difference, the lower the heating capacity for the absorbing liquid.
(3) Since a horizontal heat transfer tube is used, the local heat transfer coefficient is often inferior due to the flow of condensate in the tube.
(4) Therefore, the heat transfer area required for the regenerator part heat exchanger is large, and the required materials are large.

本発明による再生凝縮装置は、縦型配置の胴体の上部と下部に離間して設けられた上仕切板と下仕切板とにより支持された複数の伝熱管と、前記上仕切板の上部に形成され前記各伝熱管に要再生吸収液を供給するための吸収液プールと、前記上仕切板と下仕切板との間に形成され凝縮性熱源流体を導入して導出するための熱源流体導入部と凝縮液導出部を有する加熱室と、前記下仕切板の下方に形成された気液分離室及び吸収液貯室と、前記気液分離室の前記胴体の内側に設けられたエントレ防止装置とを備え、前記各伝熱管の内壁側を流下する吸収液膜を前記各伝熱管の外壁側に供給される凝縮性熱源流体の加熱によって再生するようにした構成であり、また、前記伝熱管は、銅系材またはキュプロニッケル材でなる構成であり、また、前記吸収液プールの上方に配設され輪状に形成された散液器と、前記散液器の下面に形成された複数の液孔とを備え、前記要再生吸収液は前記液孔を介して前記吸収液プールに供給される構成であり、また、前記伝熱管の上部には、流下液分配器が設けられ、前記流下液分配器の筒部には、鍔部と、前記鍔部の下部に設けられた支持部と、前記鍔部の下方に設けられた配合部と、前記配合部の下方に設けられた間隙流路とが形成されている構成であり、また、前記胴体の外面に設けられた発生冷媒蒸気導出部には、第1エリミネータを有する前記エントレ防止装置が設けられている構成であり、また、前記胴体の上部の吸収液分配室の中央には、衝突型飛沫分離装置が設けられ、前記衝突型飛沫分離装置には流れ案内板及び第2エリミネータが設けられ、前記流れ案内板は前記散液器の下方に位置すると共にその周縁と前記胴体との間に環状間隙流路が形成され、前記各エリミネータは前記散液器の上方に位置し、前記環状間隙流路には前記要再生吸収液が流下するようにした構成であり、また、前記各伝熱管は前記上仕切板と下仕切板を貫通し、各伝熱管と前記各仕切板とは密閉固定されている構成であり、また、前記胴体の外面に形成された凝縮液通路に連通して凝縮液貯室が設けられ、前記凝縮液貯室には、前記凝縮液導出部が設けられている構成である。   A regenerative condensing apparatus according to the present invention includes a plurality of heat transfer tubes supported by an upper partition plate and a lower partition plate that are spaced apart from each other at an upper portion and a lower portion of a vertically arranged body, and formed on the upper portion of the upper partition plate. And an absorption liquid pool for supplying the regenerative absorption liquid to each of the heat transfer tubes, and a heat source fluid introduction section formed between the upper partition plate and the lower partition plate for introducing and deriving a condensable heat source fluid And a heating chamber having a condensate outlet, a gas-liquid separation chamber and an absorption liquid storage chamber formed below the lower partition plate, and an entry prevention device provided inside the body of the gas-liquid separation chamber; The absorption liquid film flowing down the inner wall side of each heat transfer tube is regenerated by heating the condensable heat source fluid supplied to the outer wall side of each heat transfer tube, and the heat transfer tube , Composed of copper-based material or cupro-nickel material, and before A sprayer disposed above the absorption liquid pool and formed in a ring shape; and a plurality of liquid holes formed in a lower surface of the sprayer; The cooling liquid is supplied to the absorption liquid pool, and a falling liquid distributor is provided at the upper part of the heat transfer tube. The cylindrical part of the falling liquid distributor has a collar part and a lower part of the collar part. A support portion provided; a blending portion provided below the flange; and a gap channel provided below the blending portion; and provided on the outer surface of the body. The generated refrigerant vapor outlet section is provided with the anti-entrance device having a first eliminator, and a collision type splash separation device is provided at the center of the absorbing liquid distribution chamber at the upper portion of the fuselage. A flow guide plate and a second eliminator are provided in the collision type splash separation device. The flow guide plate is positioned below the sprayer and an annular gap channel is formed between the periphery of the flow guide plate and the body, and each eliminator is positioned above the sprayer, In the annular gap channel, the regeneration-requiring absorbent is allowed to flow down, and each heat transfer tube passes through the upper partition plate and the lower partition plate, and each heat transfer tube and each partition plate is The condensate storage chamber is provided in communication with a condensate passage formed on the outer surface of the body, and the condensate storage chamber is provided with the condensate outlet. It is the composition which is.

本発明による再生凝縮装置は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、本発明は従来にない吸収冷熱発生用再生装置の機能を有し、吸収液の加熱に液位の影響を受けないことだけでなく、流下吸収液膜側と凝縮性熱源流体側の局部熱伝達係数が共に高いことにより総括熱交換係数を高くすることによって、吸収式冷熱発生所要装置の容積低減、再生能力の向上を得ることができる。
Since the regeneration condensing apparatus according to the present invention is configured as described above, the following effects can be obtained.
That is, the present invention has a function of an unprecedented absorption cold heat generating regenerator, and is not only affected by the liquid level in the absorption liquid heating, but also locally on the falling absorption liquid film side and the condensable heat source fluid side. By increasing the overall heat exchange coefficient due to the high heat transfer coefficient, it is possible to reduce the volume and improve the regeneration capacity of the absorption-type cold heat generation required apparatus.

本発明は、縦型の伝熱管における流下吸収液膜側と凝縮性熱源流体側の局部熱伝達係数が共に高いことにより総括熱交換係数を高くし、装置の容積を低減し、再生能力の向上を得るようにした再生凝縮装置を提供することを目的とする。   The present invention increases the overall heat exchange coefficient by reducing both the local heat transfer coefficient on the falling absorption liquid film side and the condensable heat source fluid side in the vertical heat transfer tube, thereby reducing the volume of the apparatus and improving the regeneration capacity. An object of the present invention is to provide a regenerative condensing apparatus that can obtain the above.

以下、図面と共に本発明による再生凝縮装置の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には、同一符号を付して説明する。
図1〜図3には、それぞれ伝熱管1の管内壁面に吸収液が流下する吸収液膜40として膜状に分布され、伝熱管1の外側流路に凝縮性熱源流体41、例えば高温水蒸気や冷媒蒸気を流して前記吸収液膜40に対する加熱の様子と、吸収液膜40と前記凝縮性熱源流体41の温度分布を示している。図示の様に、吸収液膜40は加熱されつつ、その中から冷媒成分は蒸発していく。この様な吸収液膜40の温度は冷媒蒸発による吸収液膜40中の濃度変化により、ある程度変わる。また、凝縮性熱源流体41は管外壁面に放熱して凝縮し、その凝縮液41aが前記伝熱管1の外壁面に液滴または膜状になって流下する。またその凝縮放熱は等温で行われている。従って、前記吸収液膜40からの冷媒成分の蒸発と凝縮性熱源流体41の凝縮による熱交換は比較的小温度差、例えば数℃の温度差下で行うことができる。
Hereinafter, preferred embodiments of a regeneration condensing apparatus according to the present invention will be described with reference to the drawings.
In addition, the same code | symbol is attached | subjected and demonstrated to a part the same as that of a prior art example, or an equivalent part.
1 to 3, each of them is distributed in a film form as an absorbing liquid film 40 in which the absorbing liquid flows down on the inner wall surface of the heat transfer tube 1, and a condensable heat source fluid 41 such as high-temperature steam or A state of heating the absorption liquid film 40 by flowing a refrigerant vapor and the temperature distribution of the absorption liquid film 40 and the condensable heat source fluid 41 are shown. As shown in the figure, the absorption liquid film 40 is heated, and the refrigerant component evaporates from the absorption liquid film 40. Such a temperature of the absorbing liquid film 40 changes to some extent due to a concentration change in the absorbing liquid film 40 due to refrigerant evaporation. Further, the condensable heat source fluid 41 condenses by radiating heat to the outer wall surface of the tube, and the condensate 41a flows down to the outer wall surface of the heat transfer tube 1 in the form of droplets or films. Moreover, the condensation heat dissipation is performed isothermally. Therefore, heat exchange by evaporation of the refrigerant component from the absorbing liquid film 40 and condensation of the condensable heat source fluid 41 can be performed under a relatively small temperature difference, for example, a temperature difference of several degrees Celsius.

図4〜図8は、加熱過程にわたって凝縮性熱源流体41、例えば高温水蒸気や冷媒蒸気の加熱に適用する再生凝縮方法と装置の構成、散液器3の構成と流下液分配器4の構成について説明するものである。
図4に示した様に、本発明の再生凝縮装置100は、要再生吸収液(または希吸収液)を図1のように伝熱管1の片側壁面に分布させて膜状に流下させながら、伝熱管1のもう一方の壁側流路から凝縮性熱源流体41を提供して伝熱管1の壁を通じて加熱し、この様な吸収液膜40中の冷媒を液位差の影響を受けない条件下で蒸発させ、前記吸収液膜40を再生後吸収液40bに再生し、基本的に、縦型筒状の胴体1Aを上仕切板7、下仕切板8により区切って形成される吸収液分配室20、加熱室6及び気液分離室12を有するものである。
FIGS. 4 to 8 show the condensing heat source fluid 41, for example, the configuration of the regeneration condensing method and apparatus applied to the heating of the high-temperature water vapor or the refrigerant vapor over the heating process, the structure of the sprayer 3, and the structure of the falling liquid distributor 4. Explain.
As shown in FIG. 4, the regeneration condensing apparatus 100 of the present invention distributes the regeneration-requiring absorbent (or dilute absorbent) on one side wall surface of the heat transfer tube 1 as shown in FIG. A condition in which the condensable heat source fluid 41 is provided from the other wall side flow path of the heat transfer tube 1 and heated through the wall of the heat transfer tube 1 so that the refrigerant in the absorbing liquid film 40 is not affected by the liquid level difference. Evaporating below, the absorbent liquid film 40 is regenerated to regenerate the absorbent liquid 40b, and basically the absorbent liquid distribution formed by dividing the vertical cylindrical body 1A by the upper partition plate 7 and the lower partition plate 8 The chamber 20 has a heating chamber 6 and a gas-liquid separation chamber 12.

また、前記吸収液分配室20が、胴体1Aの上部と上仕切板7との間の空間より形成され、吸収液導入部21、前記要再生吸収液40aを各伝熱管1の管束の周辺に散液するための散液器3、吸収液プール2、前記要再生吸収液40aを各伝熱管1の各管内に均等の流量で分配すると共に前記各伝熱管1の各管内壁面に膜状に分布する機能を有する流下液分配器4を備えている。また、散液器3は吸収液プール2上方の胴体1A内に設置され、その吸収液導入部21は胴体1Aを貫通して設けられている。   The absorbing liquid distribution chamber 20 is formed by a space between the upper part of the body 1A and the upper partition plate 7, and the absorbing liquid introducing portion 21 and the regeneration-requiring absorbing liquid 40a are placed around the tube bundle of each heat transfer tube 1. The sprayer 3 for spraying, the absorption liquid pool 2, and the regeneration-required absorption liquid 40a are distributed at an equal flow rate in each tube of each heat transfer tube 1 and are formed in a film shape on the inner wall surface of each heat transfer tube 1. A falling liquid distributor 4 having a function of distributing is provided. The sprayer 3 is installed in the body 1A above the absorbent pool 2, and the absorbent introduction part 21 is provided through the body 1A.

また、前記胴体1Aの中央位置の加熱室6は、前記上仕切板7、下仕切板8の間で胴体1Aで囲まれる空間により形成され、加熱用の凝縮性熱源流体41と前記吸収液膜40との熱交換部を形成する伝熱管1の管束、凝縮性の熱源流体導入部10と凝縮液導出部11a付き凝縮液貯室11を備えている。また、前記熱源流体導入部10と凝縮液貯室11はそれぞれ前記加熱室6の胴体1Aの上端部側と下端部に設けられている。   The heating chamber 6 at the center position of the body 1A is formed by a space surrounded by the body 1A between the upper partition plate 7 and the lower partition plate 8, and the condensable heat source fluid 41 for heating and the absorbing liquid film 40, a heat exchanger tube 1 bundle forming a heat exchanging unit 40, a condensable heat source fluid introduction unit 10 and a condensate storage chamber 11 with a condensate outlet 11a are provided. The heat source fluid introduction part 10 and the condensate storage chamber 11 are provided at the upper end side and the lower end part of the body 1A of the heating chamber 6, respectively.

また、前記下仕切板8の下方には気液分離室12が形成され、この気液分離室12の側部には、第1エリミネータ16a付きエントレ防止装置16と発生冷媒蒸気導出部15とが設けられている。尚、前記発生冷媒蒸気導出部15は吸収液貯室13上方の胴体1Aの内壁面に設けられ、吸収液導出部14は前記吸収液貯室13の底部に設けられている。   Further, a gas-liquid separation chamber 12 is formed below the lower partition plate 8, and an entrance prevention device 16 with a first eliminator 16 a and a generated refrigerant vapor deriving portion 15 are provided at the side of the gas-liquid separation chamber 12. Is provided. The generated refrigerant vapor outlet 15 is provided on the inner wall surface of the body 1 </ b> A above the absorbing liquid storage chamber 13, and the absorbing liquid outlet 14 is provided at the bottom of the absorbing liquid storage chamber 13.

従って、要再生吸収液40aは前記吸収液分配室20部の散液器3より前記吸収液分配室20内の吸収液プール2に散布された後、流下液分配器4により各伝熱管1の管内壁面に膜状に分布されて流下し、その際加熱室6に導入される加熱用の凝縮性熱源流体41により加熱され、その中から冷媒成分が蒸発していく。また伝熱管1の底部を出た再生後吸収液40bは下方の吸収液貯室13に入っていったん溜まる。また、前記伝熱管1の底部を出た冷媒蒸気は、前記エントレ防止装置16に入り、その持っている飛沫が第1エリミネータ16aにより捕獲されて発生冷媒蒸気導出部15より下流側の図示しない低温再生器部または凝縮器部に導入される。
また、伝熱管1の構成材料としては、銅系材またはキュプロニッケル材が好適である。
図5は前記散液器3の構成を示すものであり、図示のように散液器3は、環状シリンダ3aで構成され、その底部に液孔3bが設けられ、前記環状シリンダ3aの側面に前記吸収液導入部21が接合して構成されている。この様にして前記吸収液導入部21に導入される要再生吸収液40aは散液器3内に入る際、その底部の液孔から下方の吸収液プール2内に散布される。
Accordingly, the regeneration-requiring absorbent 40a is sprayed from the sprayer 3 in the absorbent distribution chamber 20 to the absorbent pool 2 in the absorbent distribution chamber 20, and then flows down to the heat transfer tubes 1 by the falling liquid distributor 4. It flows down in the form of a film distributed on the inner wall surface of the tube, and is heated by the condensable heat source fluid 41 for heating introduced into the heating chamber 6 at that time, and the refrigerant component evaporates therefrom. Further, the regenerated absorbent 40b after exiting the bottom of the heat transfer tube 1 enters the lower absorbent reservoir 13 and temporarily accumulates. Further, the refrigerant vapor that has exited the bottom of the heat transfer tube 1 enters the entrainment prevention device 16, and the droplets held by the refrigerant vapor are captured by the first eliminator 16 a, and a low temperature (not shown) downstream from the generated refrigerant vapor deriving unit 15. It is introduced into the regenerator part or the condenser part.
Moreover, as a constituent material of the heat exchanger tube 1, a copper-type material or a cupronickel material is suitable.
FIG. 5 shows the configuration of the sprayer 3, and as shown in the figure, the sprayer 3 is composed of an annular cylinder 3a, and a liquid hole 3b is provided at the bottom thereof, and the side surface of the annular cylinder 3a is provided. The absorption liquid introduction part 21 is joined and configured. In this way, the regeneration-requiring absorbent 40a introduced into the absorbent introduction section 21 is sprayed into the absorbent pool 2 below from the bottom liquid hole when entering the sprayer 3.

また、図6〜図8には、前記流下液分配器4の具体的構成が示されている。図示のように流下液分配器4は、筒部4Aの下部の鍔部4eに支持部4a、配合部4b、間隙流路4cと冷媒蒸気流路4dを有するものである。すなわち、前記鍔部4eの下部に支持部4aが設けられ、鍔部4eの下方に配合部4bが設けられ、配合部4bの下方に間隙流路4cが設けられ、この筒部4A内の冷媒蒸気流路4dに発生冷媒蒸気が要再生吸収液40aと共に気液分離室12へ流れるように構成されている。
尚、前記間隙流路4cは流下液分配器4の機能部外壁面と伝熱管1の内壁面間の間隙により形成される。また、前記支持部4aと前記配合部4bは前記間隙流路4cを保持するためのものであり、流下液分配器4中心の冷媒蒸気流路4dは、吸収液分配室20内とその下方の前記気液分離室12を、伝熱管1を通じて蒸気圧力下に置くためのものである。
従って、前記流下液分配器4に導入される要再生吸収液40aは、その間隙流路4cにより容易に伝熱管1の管内壁面に膜状に分布されて流下する。また各々の伝熱管1に設置される流下液分配器4が同じ形状のため、同じ液位差により各伝熱管1に分配される要再生吸収液40aの流量は同一となる。
6 to 8 show a specific configuration of the falling liquid distributor 4. As shown in the figure, the falling liquid distributor 4 has a support part 4a, a blending part 4b, a gap channel 4c, and a refrigerant vapor channel 4d in the flange 4e at the bottom of the cylindrical part 4A. That is, a support portion 4a is provided below the flange portion 4e, a blending portion 4b is provided below the flange portion 4e, and a gap channel 4c is provided below the blending portion 4b. The refrigerant in the cylinder portion 4A The generated refrigerant vapor flows in the vapor passage 4d to the gas-liquid separation chamber 12 together with the regeneration-requiring absorbent 40a.
The gap channel 4 c is formed by a gap between the outer wall surface of the functional part of the falling liquid distributor 4 and the inner wall surface of the heat transfer tube 1. Further, the support part 4a and the blending part 4b are for holding the gap flow path 4c, and the refrigerant vapor flow path 4d at the center of the falling liquid distributor 4 is provided in the absorption liquid distribution chamber 20 and below it. The gas-liquid separation chamber 12 is placed under steam pressure through the heat transfer tube 1.
Therefore, the regeneration-requiring absorbent 40a introduced into the falling liquid distributor 4 is easily distributed in the form of a film on the inner wall surface of the heat transfer tube 1 by the gap flow path 4c and flows down. Further, since the falling liquid distributor 4 installed in each heat transfer tube 1 has the same shape, the flow rate of the regeneration-absorbing liquid 40a required to be distributed to each heat transfer tube 1 is the same due to the same liquid level difference.

図9には前記エントレ防止装置16の構成が示されている。図示のように前記エントレ防止装置16は発生冷媒蒸気導出部15に装着され、その中には第1エリミネータ16aを重ねて設置し、第1エリミネータ16aの間に発生冷媒蒸気流路16aAが形成されるものである。従って、前記気液分離室12内の発生冷媒蒸気は、発生冷媒蒸気導出部15を出る前には、その持っている飛沫が前記第1エリミネータ16aに衝突して捕獲される。これにより前記飛沫が発生冷媒蒸気の凝縮液に入るのを防ぐことができる。
尚、図4と同一部分には同一符号を用いて、その説明を省略している。
FIG. 9 shows the configuration of the entry prevention device 16. As shown in the figure, the entrainment prevention device 16 is mounted on the generated refrigerant vapor deriving section 15, in which a first eliminator 16a is placed in an overlapping manner, and a generated refrigerant vapor channel 16aA is formed between the first eliminators 16a. Is. Accordingly, the generated refrigerant vapor in the gas-liquid separation chamber 12 collides with the first eliminator 16a and is captured before leaving the generated refrigerant vapor deriving unit 15. This prevents the splash from entering the condensate of the generated refrigerant vapor.
The same parts as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.

また、前記吸収液分配室20には、要再生吸収液40aを導入する際、再生フローにより要再生吸収液40aの過熱度によるフラッシュ現象が現われる場合も、エントレ(飛沫同伴現象)が伴って発生しやすい。これについては上述のように気液分離室12における発生冷媒蒸発導出部15にエントレ防止装置16を設けるのは対策の一つであるがさらなる対策としては後述のように吸収液分配室20には図示しない飛沫分離器を内接して設けるのである。
図10及び図11には、本発明の衝突型飛沫分離装置18Aの構成例が示されている。図示のように、前記衝突型飛沫分離装置18Aは、吸収液分離室20の上方の胴体1A内において、その底部の流れ案内板18aを胴体1Aの内壁に固定し、流れ案内板18aの縁部と近隣の胴体1Aの内壁面との間が環状間隙流路18cを形成し、流れ案内板18aの外周と近隣の胴体1A内側に第2エリミネータ18bが上下に重ねて設けられることにより構成される。
従って、要再生吸収液40aが散液器3により吸収液分配室20内に導入される際の発生冷媒蒸気は散液器3の上方に重ねて設けられる第2エリミネータ18bの間の広い流路を通りやすく、その中の同伴飛沫が重なる第2エリミネータ18bにより容易に捕獲される。これにより、発生飛沫が伝熱管1の流下液分配器4の冷媒蒸気流路4dを通じて下方の気液分離室12に入るのを防ぐことができる。また、胴体1Aと流れ案内板18aは複数の固定部18Abで固定されている。
尚、図4と同一部分には、同一符号を用い、その説明を省略している。
In addition, when the regeneration-requiring absorbent 40a is introduced into the absorbing liquid distribution chamber 20, a flash phenomenon due to the degree of superheat of the regeneration-requiring absorbent 40a appears due to the regeneration flow, accompanied by an entrainment (a droplet entrainment phenomenon). It's easy to do. Regarding this, it is one of the measures to provide the entrainment prevention device 16 in the generated refrigerant evaporation deriving portion 15 in the gas-liquid separation chamber 12 as described above, but as a further measure, the absorption liquid distribution chamber 20 is provided as described later. A splash separator (not shown) is provided inscribed.
10 and 11 show a configuration example of the collision type droplet separation device 18A of the present invention. As shown in the figure, the collision type droplet separation device 18A has a flow guide plate 18a at the bottom thereof fixed to the inner wall of the fuselage 1A in the fuselage 1A above the absorbent separation chamber 20, and an edge of the flow guide plate 18a. And an inner wall surface of the adjacent fuselage 1A form an annular gap channel 18c, and a second eliminator 18b is provided on the outer periphery of the flow guide plate 18a and the inner side of the adjacent fuselage 1A. .
Therefore, the generated refrigerant vapor when the regeneration-requiring absorbent 40a is introduced into the absorbent distribution chamber 20 by the sprayer 3 is a wide flow path between the second eliminators 18b provided above the sprayer 3. It is easily captured by the second eliminator 18b in which the entrained droplets overlap. Thereby, it is possible to prevent the generated splashes from entering the lower gas-liquid separation chamber 12 through the refrigerant vapor flow path 4d of the falling liquid distributor 4 of the heat transfer tube 1. The body 1A and the flow guide plate 18a are fixed by a plurality of fixing portions 18Ab.
In addition, the same code | symbol is used for the same part as FIG. 4, and the description is abbreviate | omitted.

図12は、前記加熱室6の形態を示すもので、各伝熱管1の上仕切板7との間は溶接等で密閉固定され、各伝熱管1の下部と下仕切板8との間は溶接部7a,8a等で密閉固定されている。
尚、図4と同一部分には同一符号を付し、その説明を省略している。
FIG. 12 shows the form of the heating chamber 6. The space between the upper partition plate 7 of each heat transfer tube 1 is hermetically fixed by welding or the like, and the space between the lower portion of each heat transfer tube 1 and the lower partition plate 8. It is hermetically fixed by welding parts 7a, 8a and the like.
In addition, the same code | symbol is attached | subjected to the same part as FIG. 4, and the description is abbreviate | omitted.

図13は、図4の凝縮液貯室11を具体的に示すもので、この凝縮液貯室11は前記胴体1Aの外面にこの胴体1Aに形成された凝縮液通路11Aに連通した状態で設けられており、前記凝縮液貯室11の底部11bに前記凝縮液導出部11aが下方に垂下する状態で設けられている。
前記各伝熱管1の底部の凝縮液は前記凝縮液通路11Aを経て前記凝縮液貯室11内に導入され、前記凝縮液導出部11aを介して外部に導出される。
FIG. 13 specifically shows the condensate storage chamber 11 of FIG. 4, and this condensate storage chamber 11 is provided on the outer surface of the body 1A in communication with a condensate passage 11A formed in the body 1A. The condensate outlet 11a is provided at the bottom 11b of the condensate reservoir 11 so as to hang downward.
The condensate at the bottom of each heat transfer tube 1 is introduced into the condensate storage chamber 11 through the condensate passage 11A, and is led out to the outside through the condensate outlet 11a.

次に、以上の構成において動作させる場合について説明する。
本発明による再生凝縮装置は、初めて臭化リチウム溶液系吸収冷凍機又は吸収冷温水機に関する凝縮装置を発明したものであり、要再生吸収液40aを各伝熱管1の内壁面に膜状に分布して流下させつつ、前記各伝熱管1の外壁面に凝縮性熱源流体41を供給して加熱させることにより再生後吸収液40bに再生することができる。
Next, the case where it operates in the above structure is demonstrated.
The regeneration condensing device according to the present invention is the first inventor of a condensing device relating to a lithium bromide solution absorption refrigerator or an absorption chiller / heater, and the regeneration absorbing liquid 40a required is distributed in the form of a film on the inner wall surface of each heat transfer tube 1. Then, by supplying the condensable heat source fluid 41 to the outer wall surface of each heat transfer tube 1 and heating it, it can be regenerated into the absorption liquid 40b after regeneration.

図4において、散液器3から供給された要再生吸収液40aは、各液孔3bを経て吸収液プール2に供給され、この吸収液プール2に供給された要再生吸収液40aは流下液分配器4の間隙流路4cから各伝熱管1の内壁面に流れ込んで、図6に示されるように、吸収液膜40として流下する。   In FIG. 4, the regeneration-requiring absorbent 40a supplied from the sprayer 3 is supplied to the absorbent pool 2 through each liquid hole 3b, and the regeneration-requiring absorbent 40a supplied to the absorbent pool 2 is the falling liquid. It flows into the inner wall surface of each heat transfer tube 1 from the gap flow path 4c of the distributor 4, and flows down as an absorbing liquid film 40 as shown in FIG.

前述のように各伝熱管1の内壁面に要再生吸収液40aが流下する時に、前記熱源流体導入部10から凝縮性熱源流体41が導入されていることにより、この凝縮性熱源流体41との熱交換によって要再生吸収液40aが再生され胴体1A下部の吸収液貯室13に貯められる。   As described above, when the regeneration-requiring absorbent 40a flows down to the inner wall surface of each heat transfer tube 1, the condensable heat source fluid 41 is introduced from the heat source fluid introduction section 10, so that The regeneration-requiring absorbent 40a is regenerated by heat exchange and stored in the absorbent storage chamber 13 below the body 1A.

前述の場合、吸収液貯室13内の再生後吸収液40bの蒸気成分は発生冷媒蒸気導出部15を介して外部へ導出され、前記凝縮性熱源流体41の凝縮液41aは、下仕切板8を経て凝縮液貯室11に入っていったん溜まってから凝縮液導出部11aから外部へ導出される。   In the above-described case, the vapor component of the regenerated absorption liquid 40b in the absorption liquid storage chamber 13 is led out to the outside through the generated refrigerant vapor deriving unit 15, and the condensate 41a of the condensable heat source fluid 41 is transferred to the lower partition plate 8. Then, after entering the condensate storage chamber 11 and temporarily accumulating, it is led out from the condensate outlet 11a.

従って、本発明の前述の構成により、次の作用を達成することができる。
(1) 被加熱吸収液側の伝熱が液位差の影響を受けない。
(2) 管内流下液膜側の局部熱伝達係数が高い。
(3) 管外局部凝縮熱伝達係数が高い。
(4) 一定の吸収液再生能力に所要伝熱面積が顕著に低減できる。
Therefore, the following operations can be achieved by the above-described configuration of the present invention.
(1) Heat transfer on the heated absorbent side is not affected by the liquid level difference.
(2) The local heat transfer coefficient on the falling film side in the pipe is high.
(3) High local condensation heat transfer coefficient.
(4) The required heat transfer area can be remarkably reduced for a certain absorption liquid regeneration capacity.

本発明は、吸収冷凍機や吸収冷温水機における吸収液の再生と凝縮性熱源流体の加熱による吸収液の再生に適用可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to the regeneration of absorption liquid in an absorption refrigerator or absorption cold / hot water machine and the regeneration of absorption liquid by heating a condensable heat source fluid.

本発明による吸収冷凍機用凝縮装置の伝熱管の熱交換動作を示す原理説明図である。It is principle explanatory drawing which shows the heat exchange operation | movement of the heat exchanger tube of the condensation apparatus for absorption refrigerators by this invention. 図1の断面図である。It is sectional drawing of FIG. 図1の伝熱管の軸方向における管内流下吸収液膜と管外の熱源流体の温度分布図である。FIG. 2 is a temperature distribution diagram of a downstream flowing absorption liquid film and a heat source fluid outside the tube in the axial direction of the heat transfer tube of FIG. 1. 本発明による再生凝縮装置の全体構成図である。1 is an overall configuration diagram of a regeneration condenser according to the present invention. 図4の散液器3の拡大裏面図である。FIG. 5 is an enlarged back view of the sprayer 3 of FIG. 4. 図4の符号Bで示される部分の拡大断面図である。It is an expanded sectional view of the part shown with the code | symbol B of FIG. 図6の要部を示す断面図である。It is sectional drawing which shows the principal part of FIG. 図7の底面図である。FIG. 8 is a bottom view of FIG. 7. 図4のエントレ防止装置を具体的に示す拡大斜視図である。FIG. 5 is an enlarged perspective view specifically showing the entry prevention device of FIG. 4. 図4の飛沫分離装置を装着した吸収液分配室20の形態を示す断面図である。It is sectional drawing which shows the form of the absorption liquid distribution chamber 20 equipped with the droplet separation apparatus of FIG. 図10のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図4の加熱室の他の形態を示す拡大断面図である。It is an expanded sectional view which shows the other form of the heating chamber of FIG. 図4の凝縮液貯室を具体的に示す拡大斜視図である。It is an expansion perspective view which shows the condensate storage chamber of FIG. 4 concretely. 従来の再生器を示す構成図である。It is a block diagram which shows the conventional regenerator.

符号の説明Explanation of symbols

1 伝熱管
1A 胴体
2 吸収液プール
3 散液器
3a 環状シリンダ
3b 液孔
4 流下液分配器
4A 筒部
4a 支持部
4b 配合部
4c 間隙流路
4d 冷媒蒸気流路
4e 鍔部
6 加熱室
7 上仕切板
8 下仕切板
10 熱源流体導入部
11 凝縮液貯室
11A 凝縮液通路
11a 凝縮液導出部
12 気液分離室
13 吸収液貯室
14 吸収液導出部
15 発生冷媒蒸気導出部
16 エントレ防止装置
16a 第1エリミネータ
18A 衝突型飛沫分離装置
18a 流れ案内板
18b 第2エリミネータ
18c 環状間隙流路
20 吸収液分配室
21 吸収液導入部
40 吸収液膜
40a 要再生吸収液
40b 再生後吸収液
41 凝縮性熱源流体
41a 凝縮性熱源流体の凝縮液
DESCRIPTION OF SYMBOLS 1 Heat exchanger tube 1A Fuselage 2 Absorbing liquid pool 3 Sprinkler 3a Annular cylinder 3b Liquid hole 4 Falling liquid distributor 4A Cylindrical part 4a Support part 4b Mixing part 4c Gap channel 4d Refrigerant vapor channel 4e Eave part 6 Partition plate 8 Lower partition plate 10 Heat source fluid introduction section 11 Condensate storage chamber 11A Condensate passage 11a Condensate discharge section 12 Gas-liquid separation chamber 13 Absorbed liquid storage chamber 14 Absorbed liquid discharge section 15 Generated refrigerant vapor discharge section 16 Entreprevention device 16a 1st eliminator 18A Collision type droplet separation device 18a Flow guide plate 18b 2nd eliminator 18c Annular gap channel 20 Absorbing liquid distribution chamber 21 Absorbing liquid introducing part 40 Absorbing liquid film 40a Regenerating absorbing liquid 40b Regenerated absorbing liquid 41 Condensable Heat source fluid 41a Condensate of condensable heat source fluid

Claims (8)

縦型配置の胴体(1A)の上部と下部に離間して設けられた上仕切板(7)と下仕切板(8)とにより支持された複数の伝熱管(1)と、
前記上仕切板(7)の上部に形成され前記各伝熱管(1)に要再生吸収液(40a)を供給するための吸収液プール(2)と、前記上仕切板(7)と下仕切板(8)との間に形成され凝縮性熱源流体(41)を導入して導出するための熱源流体導入部(10)と凝縮液導出部(11a)を有する加熱室(6)と、前記下仕切板(8)の下方に形成された気液分離室(12)及び吸収液貯室(13)と、前記気液分離室(12)の前記胴体(1A)の内側に設けられたエントレ防止装置(16)とを備え、
前記各伝熱管(1)の内壁側を流下する吸収液膜(40)を前記各伝熱管(1)の外壁側に供給される凝縮性熱源流体(41)の加熱によって再生するように構成したことを特徴とする再生凝縮装置。
A plurality of heat transfer tubes (1) supported by an upper partition plate (7) and a lower partition plate (8) that are spaced apart from each other at the upper and lower portions of the vertically arranged body (1A);
Absorbent liquid pool (2) formed on the upper partition plate (7) for supplying the regenerative absorbent (40a) to each heat transfer tube (1), the upper partition plate (7) and the lower partition A heating chamber (6) formed between the plate (8) and having a heat source fluid introduction part (10) for introducing and deriving a condensable heat source fluid (41) and a condensate outlet part (11a), A gas-liquid separation chamber (12) and an absorption liquid storage chamber (13) formed below the lower partition plate (8), and an entry provided inside the body (1A) of the gas-liquid separation chamber (12). A prevention device (16),
The absorbing liquid film (40) flowing down the inner wall side of each heat transfer tube (1) is configured to be regenerated by heating the condensable heat source fluid (41) supplied to the outer wall side of each heat transfer tube (1). A regenerative condensing device.
前記伝熱管(1)は、銅系材またはキュプロニッケル材で構成されていることを特徴とする請求項1記載の再生凝縮装置。   The regenerative condensing device according to claim 1, wherein the heat transfer tube (1) is made of a copper-based material or a cupronickel material. 前記吸収液プール(2)の上方に配設され輪状に形成された散液器(3)と、前記散液器(3)の下面に形成された複数の液孔(3b)とを備え、前記要再生吸収液(40a)は前記液孔(3b)を介して前記吸収液プール(2)に供給されることを特徴とする請求項1又は2に記載の再生凝縮装置。   A sprayer (3) disposed above the absorbent pool (2) and formed in a ring shape, and a plurality of liquid holes (3b) formed on the lower surface of the sprayer (3), The regeneration condensing apparatus according to claim 1 or 2, wherein the regeneration-required absorbent (40a) is supplied to the absorbent pool (2) through the liquid hole (3b). 前記伝熱管(1)の上部には、流下液分配器(4)が設けられ、前記流下液分配器(4)の筒部(4A)には、鍔部(4e)と、前記鍔部(4e)の下部に設けられた支持部(4a)と、前記鍔部(4e)の下方に設けられた配合部(4b)と、前記配合部(4b)の下方に設けられた間隙流路(4c)とが形成されていることを特徴とする請求項1ないし3の何れかに記載の再生凝縮装置。   In the upper part of the heat transfer tube (1), a falling liquid distributor (4) is provided, and the cylindrical part (4A) of the falling liquid distributor (4) has a flange part (4e) and the flange part ( 4e) a support part (4a) provided at the bottom, a blending part (4b) provided below the collar part (4e), and a gap channel (below the blending part (4b)) ( The regenerative condensing device according to any one of claims 1 to 3, wherein 4c) is formed. 前記胴体(1A)の外面に設けられた発生冷媒蒸気導出部(15)には、第1エリミネータ(16a)を有する前記エントレ防止装置(16)が設けられていることを特徴とする請求項1ないし4の何れかに記載の再生凝縮装置。   2. The entrainment prevention device (16) having a first eliminator (16 a) is provided in a generated refrigerant vapor outlet portion (15) provided on an outer surface of the body (1 A). Thru | or 4, the reproduction | regeneration condensation apparatus in any one. 前記胴体(1A)の上部の吸収液分配室(20)内の中央には、衝突型飛沫分離装置(18A)が設けられ、前記衝突型飛沫分離装置(18A)には流れ案内板(18a)及び第2エリミネータ(18b)が設けられ、前記流れ案内板(18a)は前記散液器(3)の下方に位置すると共にその周縁と前記胴体(1A)との間に環状間隙流路(18c)が形成され、前記第2エリミネータ(18b)は前記散液器(3)の上方に位置し、前記環状間隙流路(18c)には前記要再生吸収液(40a)が流下するように構成されていることを特徴とする請求項1ないし5の何れかに記載の再生凝縮装置。   A collision type droplet separation device (18A) is provided in the center of the absorption liquid distribution chamber (20) at the upper part of the body (1A), and the collision type droplet separation device (18A) has a flow guide plate (18a). And a second eliminator (18b), the flow guide plate (18a) is positioned below the sprayer (3) and an annular gap channel (18c) between the periphery thereof and the body (1A). ), The second eliminator (18b) is positioned above the sprayer (3), and the regeneration-required absorbent (40a) flows down into the annular gap channel (18c). The regenerative condensing device according to any one of claims 1 to 5, wherein 前記各伝熱管(1)は前記上仕切板(7)と下仕切板(8)を貫通し、各伝熱管(1)と前記各仕切板(7,8)とは密閉固定されていることを特徴とする請求項1ないし6の何れかに記載の再生凝縮装置。   The heat transfer tubes (1) pass through the upper partition plate (7) and the lower partition plate (8), and the heat transfer tubes (1) and the partition plates (7, 8) are hermetically fixed. The regeneration condensing device according to any one of claims 1 to 6. 前記胴体(1A)の外面に形成された凝縮液通路(11A)に連通して凝縮液貯室(11)が設けられ、前記凝縮液貯室(11)には、前記凝縮液導出部(11a)が設けられていることを特徴とする請求項1ないし7の何れかに記載の再生凝縮装置。   A condensate reservoir (11) is provided in communication with a condensate passage (11A) formed on the outer surface of the body (1A), and the condensate reservoir (11) includes the condensate outlet (11a). The regenerative condensing device according to any one of claims 1 to 7, further comprising:
JP2005272468A 2005-09-20 2005-09-20 Regenerative condenser Expired - Fee Related JP4318679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272468A JP4318679B2 (en) 2005-09-20 2005-09-20 Regenerative condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272468A JP4318679B2 (en) 2005-09-20 2005-09-20 Regenerative condenser

Publications (2)

Publication Number Publication Date
JP2007085592A true JP2007085592A (en) 2007-04-05
JP4318679B2 JP4318679B2 (en) 2009-08-26

Family

ID=37972736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272468A Expired - Fee Related JP4318679B2 (en) 2005-09-20 2005-09-20 Regenerative condenser

Country Status (1)

Country Link
JP (1) JP4318679B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014535B1 (en) 2008-10-24 2011-02-14 기아자동차주식회사 Heat exchanger with cap having fuel cooling pipe
CN105042326A (en) * 2015-07-09 2015-11-11 江苏中圣高科技产业有限公司 Compact intermediate fluid type gasifier
CN108562066A (en) * 2018-01-29 2018-09-21 东莞理工学院 A kind of membrane type contact device and absorption system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014535B1 (en) 2008-10-24 2011-02-14 기아자동차주식회사 Heat exchanger with cap having fuel cooling pipe
CN105042326A (en) * 2015-07-09 2015-11-11 江苏中圣高科技产业有限公司 Compact intermediate fluid type gasifier
CN108562066A (en) * 2018-01-29 2018-09-21 东莞理工学院 A kind of membrane type contact device and absorption system

Also Published As

Publication number Publication date
JP4318679B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4396986B2 (en) Falling liquid film regenerator
JP2008095976A (en) Two-stage absorption refrigerating machine
JP4318679B2 (en) Regenerative condenser
JP2006200852A (en) Absorber in absorption type refrigerator
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
JPH08105669A (en) Regenerator for absorption refrigerator
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
JP6429550B2 (en) Absorption heat pump
WO2022224554A1 (en) Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JP4903743B2 (en) Absorption refrigerator
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
KR101213265B1 (en) Absorption Chiller and Heater with Solution Plate
EP0082018B1 (en) Absorption refrigeration system
JPS6133483Y2 (en)
JP4566919B2 (en) Double-effect absorption chill generation / output device
JP2993454B2 (en) Air-cooled absorption refrigeration system
JP2007298240A (en) Triple effect absorption cold generation/output device
JPS61211673A (en) Cryogenic absorption type refrigerator
JP2973653B2 (en) Absorption refrigerator
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
JP3944043B2 (en) Air-cooled absorber
JP2001165528A (en) Absorbing type freezer
JP2558033Y2 (en) Absorption chiller / heater
JP2974005B2 (en) Absorption refrigerator
JPH10246533A (en) Air-cooled absorption freezing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees