JPH0634238A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH0634238A
JPH0634238A JP19175192A JP19175192A JPH0634238A JP H0634238 A JPH0634238 A JP H0634238A JP 19175192 A JP19175192 A JP 19175192A JP 19175192 A JP19175192 A JP 19175192A JP H0634238 A JPH0634238 A JP H0634238A
Authority
JP
Japan
Prior art keywords
liquid
solution
absorption
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19175192A
Other languages
Japanese (ja)
Inventor
Tomihisa Ouchi
富久 大内
Akira Nishiguchi
章 西口
Hiroshi Kushima
大資 久島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19175192A priority Critical patent/JPH0634238A/en
Publication of JPH0634238A publication Critical patent/JPH0634238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To obtain an absorption type refrigerator having a compact thermal substance moving unit in which splash of liquid is reduced. CONSTITUTION:The absorption type refrigerator comprises, for example, a thermal substance exchanging unit having an absorption chamber 16 and a regenerating chamber 15 are provided between a high temperature regenerator or a low temperature regenerator and an air-cooled absorber in an air-cooled room cooler/heater, wherein both the chambers 16 and 15 each has a scattering duct 21 having a plurality of liquid distributing orifices 22, and a plurality of net members 23A perpendicular to the duct 21. An outside of the duct 21 is surrounded by an enlarged surfaces of the plurality of the members 23A, the end of the member 23A is suspended down to form a fin part 25A, the end of the part 25A is suspended in a trough 27 for receiving solution to constitute a thermal substance exchanging unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は、水を冷媒とし、例えば
臭化リチウムなどの塩類溶液を吸収剤とする吸収式冷凍
機に係り、特に蒸発器や冷却分離形吸収器、自己蒸発吸
収形溶液熱物質交換器等の、自己顕熱による蒸発形ある
いは自己顕熱による吸収形の熱物質交換器を備えた吸収
冷暖房機に好適な吸収式冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine using water as a refrigerant and a salt solution such as lithium bromide as an absorbent, and more particularly to an evaporator, a cooling separation type absorber and a self-evaporative absorption type. The present invention relates to an absorption refrigerating machine suitable for an absorption cooling / heating machine provided with an evaporation type heat exchanger by self-sensible heat or an absorption type heat exchanger by self-sensible heat, such as a solution heat substance exchanger.

【0002】[0002]

【従来の技術】例えば、吸収冷暖房機の蒸発器、吸収
器、自己蒸発吸収熱交換器などの自己顕熱による蒸発形
あるいは自己顕熱による吸収形の熱物質交換器は、液を
細かくするスプレー部と液を蒸気に接触する面積を広げ
る充填物部とに分かれているもの、また吸収塔や蒸発塔
のように棚段式のものが一般的である。例えば、特開昭
54−124359号公報には、空冷熱交換器と吸収部
が分離された冷却分離形吸収器の案が開示されている
が、該冷却分離形吸収器はスプレー部とトレー部とから
構成されている。
2. Description of the Related Art For example, a heat-mass exchanger of an evaporation type by self-sensible heat or an absorption type by self-sensible heat such as an evaporator, an absorber and a self-evaporative absorption heat exchanger of an absorption cooling and heating machine is a spray for making a liquid fine. It is generally divided into a part and a packing part that widens the area where the liquid comes into contact with steam, and a plate type such as an absorption tower or an evaporation tower. For example, Japanese Laid-Open Patent Publication No. 54-124359 discloses a cooling separation type absorber in which an air-cooled heat exchanger and an absorption part are separated. The cooling separation type absorber has a spray part and a tray part. It consists of and.

【0003】また、特開昭63−176962号公報に
は、液冷媒を直接的に室内に送って熱交換させて、再度
蒸発器に戻して自己蒸発させる冷媒直接循環方式の吸収
冷暖房機が開示されている。この場合、平成元年度日本
冷凍協会学術講演会(平成1年11月24,25日開
催)論文集p121〜124には自己蒸発形蒸発器に関
する構造は、棚皿式やスプレー式が開示され、スプレー
式がよいと報告されている。
Further, Japanese Patent Application Laid-Open No. 63-176962 discloses a refrigerant direct circulation type absorption cooling / heating machine in which a liquid refrigerant is directly sent to a room for heat exchange and then returned to an evaporator and self-evaporated. Has been done. In this case, the structure of the self-evaporating evaporator is disclosed as a tray plate type or a spray type in the collection of papers p121 to 124 of the Academic Lecture Meeting of the Japan Refrigeration Society (held on November 24 and 25, 1991) in 1989. The spray type is reported to be good.

【0004】さらに、特開平4−116353号公報に
は、希溶液と濃溶液の熱物質交換器として、自己蒸発形
熱交換器と顕熱吸収形熱交換器とを組み合わせた熱交換
器が開示され、それらの構造としては、パンチングプレ
ート方式やスプレーの下部に充填物を配置した方式の空
冷吸収冷暖房機が開示されている。
Further, Japanese Patent Laid-Open No. 4-116353 discloses a heat exchanger in which a self-evaporation type heat exchanger and a sensible heat absorption type heat exchanger are combined as a heat substance exchanger for a dilute solution and a concentrated solution. As such structures, there are disclosed an air-cooled absorption cooling / heating machine of a punching plate system or a system in which a filler is arranged under a spray.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の吸収冷
温水機、吸収冷暖房機の熱物質移動装置は、スプレー時
の液飛沫の飛散や、フラッシュ時の液飛沫の飛散を防止
するために別途エリミネータを必要としていた。そのた
めに、物質移動時の圧力損失が大きく、熱物質移動性能
が低いという問題があった。また、機器が大きくなって
占有スペースを広く必要とするという問題があった。
SUMMARY OF THE INVENTION The above-described conventional heat and mass transfer device for absorption chiller-heater and absorption chiller-heater is separately provided in order to prevent splashes of liquid droplets during spraying and splashes of liquid droplets during flashing. I needed an eliminator. Therefore, there is a problem that the pressure loss during mass transfer is large and the heat mass transfer performance is low. There is also a problem that the device becomes large and requires a large occupied space.

【0006】本発明は、上記従来技術の問題点を解決す
るためになされたもので、液の飛沫生成が少ない、コン
パクトな熱物質移動装置を備えた吸収式冷凍機を提供す
ることを、その目的とするものである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide an absorption refrigerator having a compact heat-mass transfer device which produces less liquid droplets. It is intended.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の吸収式冷凍機に係る第一の発明の構成は、
少なくとも、再生器、凝縮器、蒸発器、吸収器、溶液熱
交換器、冷媒ポンプ、溶液ポンプ、およびこれら機器を
作動的に接続する配管系からなる吸収式冷凍機におい
て、高温液冷媒を気液接触により低温液冷媒とする蒸発
器は、複数の液分配オリフィスを有する散布ダクトと、
この散布ダクトの外側を包むようにして固定した複数枚
の網部材とを設け、この網部材の端部を下方に垂れ下げ
てヒレ部を形成し、このヒレ部先端を、低温液冷媒を受
ける樋部材内に垂下させて熱物質移動手段を構成したも
のである。
In order to achieve the above object, the constitution of the first invention relating to the absorption refrigerator according to the present invention is as follows:
At least in an absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant pump, a solution pump, and a piping system operatively connecting these devices, a high-temperature liquid refrigerant is vapor-liquid. The evaporator, which uses the low-temperature liquid refrigerant by contact, has a spray duct having a plurality of liquid distribution orifices,
A plurality of mesh members fixed so as to wrap around the outside of the spray duct are provided, and an end portion of the mesh member is hung downward to form a fin portion, and the tip of the fin portion receives a low temperature liquid refrigerant gutter member. The heat and mass transfer means is configured by being hung inside.

【0008】また、上記目的を達成するために、本発明
の吸収式冷凍機に係る第二の発明の構成は、少なくと
も、再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、
冷媒ポンプ、溶液ポンプ、およびこれら機器を作動的に
接続する配管系からなる吸収式冷凍機において、高温液
冷媒を気液接触により低温液冷媒とする蒸発器は、複数
の液分配オリフィスを有する散布ダクトと、この散布ダ
クトに直交させた複数枚の網部材とを設け、散布ダクト
の外側を前記複数枚の網部材の拡大面で包み、この網部
材の端部を下方に垂れ下げてヒレ部を形成し、このヒレ
部先端を、低温液冷媒を受ける樋部材内に垂下させて熱
物質移動手段を構成したものである。
In order to achieve the above object, the structure of the second invention relating to the absorption refrigerator is at least a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger,
In an absorption refrigerator comprising a refrigerant pump, a solution pump, and a piping system that operatively connects these devices, an evaporator that converts a high-temperature liquid refrigerant into a low-temperature liquid refrigerant by gas-liquid contact is a sprayer having a plurality of liquid distribution orifices. A duct and a plurality of mesh members orthogonal to the distribution duct are provided, the outside of the distribution duct is wrapped with an enlarged surface of the plurality of mesh members, and the end of the mesh member hangs downward to form a fin portion. Is formed, and the tip of the fin portion is hung down into the gutter member that receives the low-temperature liquid refrigerant to form the heat and mass transfer means.

【0009】さらに、上記目的を達成するために、本発
明の吸収式冷凍機に係る第三の発明の構成は、少なくと
も、再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、
冷媒ポンプ、溶液ポンプ、およびこれら機器を作動的に
接続する配管系からなる吸収式冷凍機において、濃溶液
に冷媒蒸気を吸収させて希溶液とする吸収器は、複数の
液分配オリフィスを有する散布ダクトと、この散布ダク
トに直交させた複数枚の網部材とを設け、散布ダクトの
外側を前記複数枚の網部材の拡大面で包み、この網部材
の端部を下方に垂れ下げてヒレ部を形成し、このヒレ部
先端を、希溶液を受ける樋部材内に垂下させて熱物質移
動手段を構成したものである。
Further, in order to achieve the above object, the structure of the third invention relating to the absorption refrigerator is at least a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger,
In an absorption refrigerator comprising a refrigerant pump, a solution pump, and a piping system for operatively connecting these devices, an absorber that absorbs refrigerant vapor into a concentrated solution to form a dilute solution has a plurality of liquid distribution orifices. A duct and a plurality of mesh members orthogonal to the distribution duct are provided, the outside of the distribution duct is wrapped with an enlarged surface of the plurality of mesh members, and the end of the mesh member hangs downward to form a fin portion. Is formed, and the tip of the fin portion is hung down in the gutter member for receiving the dilute solution to form the heat and mass transfer means.

【0010】さらに、上記目的を達成するために、本発
明の吸収式冷凍機に係る第四の発明の構成は、高温再生
器、低温再生器、凝縮器、蒸発器、吸収器、高温溶液熱
交換器、低温溶液熱交換器、冷媒ポンプ、溶液ポンプ、
およびこれら機器を作動的に接続する配管系からなる吸
収式冷凍機において、上記高温再生器または低温再生器
と吸収器との間に、吸収室および再生室を併設してなる
熱物質交換装置を備え、この吸収室および再生室のいず
れもが、複数の液分配オリフィスを有する散布ダクト
と、この散布ダクトに直交させた複数枚の網部材とを設
け、散布ダクトの外側を前記複数枚の網部材の拡大面で
包み、この網部材の端部を下方に垂れ下げてヒレ部を形
成し、このヒレ部先端を、溶液を受ける樋部材内に垂下
させて熱物質交換装置を構成したものである。
Further, in order to achieve the above object, the structure of the fourth invention relating to the absorption refrigerator is the high temperature regenerator, the low temperature regenerator, the condenser, the evaporator, the absorber, the high temperature solution heat. Exchanger, low temperature solution heat exchanger, refrigerant pump, solution pump,
And in an absorption refrigerator comprising a piping system for operatively connecting these devices, a heat-mass exchange device having an absorption chamber and a regeneration chamber is provided between the high temperature regenerator or the low temperature regenerator and the absorber. Both the absorption chamber and the regeneration chamber are provided with a distribution duct having a plurality of liquid distribution orifices and a plurality of mesh members orthogonal to the distribution duct, and the outside of the distribution duct is provided with the plurality of meshes. Wrapped with an enlarged surface of the member, the end of this net member is hung downward to form a fin portion, and the tip of the fin portion is hung in the gutter member for receiving the solution to form a heat-mass exchange device. is there.

【0011】[0011]

【作用】上記の蒸発器、吸収器、熱物質交換装置の吸収
室および再生室における熱物質移動手段の構成によれ
ば、下記の働きがある。冷媒ポンプまたは溶液ポンプで
昇圧された液冷媒または溶液は、液導入管から散布ヘッ
ダを経て散布ダクトに導入され、この散布ダクトに設け
た複数個の液分配オリフィスから噴出する。この液分配
オリフィスの圧損により散布ダクトの軸方向の液分配の
均一性を高く維持できるとともに、圧力をかけて液を送
ることができるためにコンパクトにできる。
The above-mentioned structure of the evaporator, the absorber, the heat-mass transfer means in the absorption chamber and the regeneration chamber of the heat-mass exchange device has the following functions. The liquid refrigerant or solution whose pressure is increased by the refrigerant pump or the solution pump is introduced from the liquid introduction pipe through the spray header into the spray duct, and is jetted from the plurality of liquid distribution orifices provided in the spray duct. Due to the pressure loss of the liquid distribution orifice, the uniformity of the liquid distribution in the axial direction of the spray duct can be maintained high, and the liquid can be sent under pressure to make the liquid distribution compact.

【0012】前記液分配オリフィスから噴出した液は、
網部材(金網)に衝突して該網部材の毛細管作用により
管軸方向に広げられ網部材の下部の針金により形成され
たヒレ部を伝わって流下する間に気液接触して物質交換
を行う。液滴が自由落下する個所が無いために、液滴の
飛沫生成が起こらない。
The liquid ejected from the liquid distribution orifice is
While colliding with a mesh member (wire mesh), it is expanded in the tube axial direction by the capillary action of the mesh member and flows through the fin portion formed by the wire under the mesh member to flow down the gas and liquid to carry out substance exchange. . Since there is no place where the droplets fall freely, droplets do not form.

【0013】[0013]

【実施例】以下、本発明の各実施例を図1ないし図7を
参照して説明する。 〔実施例 1〕まず、第一の発明の一実施例を図1およ
び図2を参照して説明する。図1は、本発明の一実施例
に係る吸収式冷凍機の蒸発器の横断面図、図2は、図1
の蒸発器の縦断面図である。図1,2に示す蒸発器は、
熱物質移動装置に係るフラッシュ蒸発器(以下単に蒸発
器という)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Each embodiment of the present invention will be described below with reference to FIGS. [Embodiment 1] First, an embodiment of the first invention will be described with reference to FIGS. 1 is a cross-sectional view of an evaporator of an absorption chiller according to an embodiment of the present invention, and FIG.
It is a longitudinal cross-sectional view of the evaporator. The evaporator shown in FIGS.
It is a flash evaporator (hereinafter simply referred to as an evaporator) related to the heat and mass transfer device.

【0014】図1,2において、21は、高温液冷媒が
流通する散布ダクト、22は、散布ダクト21に複数個
形成されている液分配オリフィス、23は、散布ダクト
21の外側を包むようにした複数枚の網部材に係る金
網、24は金網23を固定するステープラーである針
金、25は、金網23の下方に垂れ下がったヒレ部、2
6は、液分配オリフィス22の周囲を凹ませた凹み部、
27は、低温液冷媒を受ける樋である。
In FIGS. 1 and 2, 21 is a distribution duct through which a high-temperature liquid refrigerant flows, 22 is a liquid distribution orifice formed in plural numbers in the distribution duct 21, and 23 is so arranged as to cover the outside of the distribution duct 21. Wire meshes relating to a plurality of mesh members, 24 is a wire which is a stapler for fixing the wire mesh 23, 25 is a fin portion that hangs below the wire mesh 23,
6 is a recessed part that is recessed around the liquid distribution orifice 22,
A gutter 27 receives the low temperature liquid refrigerant.

【0015】すなわち、散布ダクト21は、その上部に
凹み部26を有して分配オリフィス22が複数個穿孔さ
れ、散布ダクト21の外側に金網23が巻きつけられて
いる。その金網23の端部23a,23bは巻き付けの
内側にあって金網23がほどけないようにしている。金
網23の下方部分はヒレ部25が形成され、針金24で
固定されている。そして、ヒレ部25の下端部は垂下し
て樋27に差し込まれている。
That is, the distribution duct 21 has a plurality of distribution orifices 22 having a recess 26 in the upper portion thereof, and a wire mesh 23 is wound around the distribution duct 21. The ends 23a and 23b of the wire net 23 are inside the winding so that the wire net 23 cannot be unwound. A fin portion 25 is formed at a lower portion of the wire net 23 and is fixed by a wire 24. Then, the lower end of the fin 25 is drooped and inserted into the gutter 27.

【0016】次に動作を説明する。散布ダクト21内を
流れる高温液冷媒は分配オリフィス22から噴出して金
網23に衝突し該金網23のヒレ部25に沿って流下す
る。その間に自己蒸発、すなわち冷媒の一部が顕熱を奪
って蒸発気化して、前記液冷媒は低温に冷却される。こ
の低温液冷媒は樋27に集められて流出する。このよう
に、冷媒液は金網23の表面に付着しながら流下するた
め、液滴を発生することがない。また、自己蒸発も金網
23の内側にて発生した細かい飛沫も金網23自身が捕
捉するため、外側に噴出しない。したがって、自由落下
の液滴がないため、金網23表面の蒸気流速を高速にし
ても飛沫同伴できる液滴は極めて少なく、よって特に飛
沫を捕捉するエリミネータを必要としない利点がある。
Next, the operation will be described. The high-temperature liquid refrigerant flowing in the spray duct 21 is ejected from the distribution orifice 22, collides with the wire net 23, and flows down along the fin portion 25 of the wire net 23. Meanwhile, self-evaporation, that is, a part of the refrigerant takes sensible heat to evaporate and vaporize, and the liquid refrigerant is cooled to a low temperature. This low-temperature liquid refrigerant is collected in the gutter 27 and flows out. In this way, the coolant liquid flows down while adhering to the surface of the wire net 23, so that no droplet is generated. In addition, self-evaporation and fine droplets generated inside the wire netting 23 are also captured by the wire netting 23 itself, so that they do not spout to the outside. Therefore, since there are no free-falling droplets, even if the vapor flow velocity on the surface of the wire net 23 is high, the number of droplets that can be entrained is extremely small, and therefore there is an advantage that an eliminator for trapping droplets is not required.

【0017】本実施例の蒸発器によれば、複数個の液分
配オリフィス22を配置した散布ダクト21の外側に複
数枚の金網23を巻き付け、金網23の端部を下方に垂
れ下げてヒレ部25を形成し、このヒレ部25を樋27
に差し入れるようにしたので、金網23の毛細管作用に
より高温液冷媒の散布液の液滴を生じることが無く、金
網23上に均一に液膜を形成でき、高い熱物質伝達を達
成する効果が得られる。また、液分配オリフィス22の
周囲に凹み部26を設けたので、金網23と液分配オリ
フィス22との距離を大きくして液分配の精度を高くす
るとともに、散布液の管軸方向への広がりを大きくし、
より均一な液膜を金網23上に形成できる効果がある。
According to the evaporator of this embodiment, a plurality of wire nets 23 are wound around the outer side of the distribution duct 21 in which a plurality of liquid distribution orifices 22 are arranged, and the end portions of the wire nets 23 are hung downward to form fins. 25 is formed, and this fin 25 is gutter 27
Since the wire mesh 23 is inserted into the wire mesh 23, the capillary action of the wire netting 23 does not generate droplets of the sprayed liquid of the high-temperature liquid refrigerant, and a liquid film can be uniformly formed on the wire netting 23, which has the effect of achieving high heat and mass transfer. can get. Further, since the concave portion 26 is provided around the liquid distribution orifice 22, the distance between the wire net 23 and the liquid distribution orifice 22 is increased to improve the accuracy of the liquid distribution and to spread the spray liquid in the pipe axis direction. Make it bigger,
There is an effect that a more uniform liquid film can be formed on the metal net 23.

【0018】〔実施例 2〕次に、第三の発明の一実施
例を図3および図4を参照して説明する。図3は、本発
明の他の実施例に係る吸収式冷凍機の吸収器の横断面
図、図4は、図3の吸収器の縦断面図である。図中、図
1,2と同一符号のものは先の実施例と同等部分である
から、その説明を省略する。図3,4に示す実施例で
は、複数枚の金網23Aが散布ダクト21に直交して配
置されたものであり、散布ダクト21の外側を前記複数
枚の金網23Aの拡大面の集積によって包むようにした
ものである。また、金網23Aのヒレ部25Aに凹凸の
模様が型押しされている。さらに、金網23Aの上端部
が曲げられて、分配オリフィス22からの液噴出を適正
にするよう2重3重にプロックされている。
[Embodiment 2] Next, an embodiment of the third invention will be described with reference to FIGS. FIG. 3 is a horizontal sectional view of an absorber of an absorption refrigerator according to another embodiment of the present invention, and FIG. 4 is a vertical sectional view of the absorber of FIG. In the figure, those having the same reference numerals as those in FIGS. In the embodiment shown in FIGS. 3 and 4, a plurality of wire nets 23A are arranged orthogonally to the spray duct 21, and the outer side of the spray duct 21 is wrapped by accumulating the enlarged surfaces of the plurality of wire nets 23A. It was done. In addition, an uneven pattern is embossed on the fin 25A of the wire net 23A. Further, the upper end of the wire net 23A is bent and doubled and tripled so as to properly eject the liquid from the distribution orifice 22.

【0019】再生器側の濃溶液導入管から散布ダクト2
1内に導入された濃溶液は、分配オリフィス22から噴
出して金網23Aに衝突し該金網23Aのヒレ部25A
に沿って流下する。その間に、蒸発器から供給される冷
媒蒸気を吸収して希溶液となり樋27に集められて流出
する。このように、溶液は金網23Aの表面に付着しな
がら流下するため、液滴を発生することがない。また、
金網23Aの内側にて発生した細かい飛沫も金網23A
自身が捕捉するため、外側に噴出しない。したがって、
自由落下の液滴がないため、特に飛沫を捕捉するエリミ
ネータを必要としない利点がある。
From the concentrated solution introducing pipe on the regenerator side to the spray duct 2
The concentrated solution introduced into the nozzle 1 is ejected from the distribution orifice 22 and collides with the wire net 23A, and the fin portion 25A of the wire net 23A.
Run down along. In the meantime, the refrigerant vapor supplied from the evaporator is absorbed to form a dilute solution, which is collected in the gutter 27 and flows out. In this way, since the solution flows down while adhering to the surface of the wire netting 23A, droplets are not generated. Also,
Fine splashes generated inside the wire net 23A
Since it catches itself, it does not squirt outside. Therefore,
Since there are no free-falling droplets, there is the advantage that an eliminator for capturing the droplets is not required.

【0020】図3,4の実施例によれば、金網23Aの
毛細管作用により濃溶液の散布液の液滴を生じることが
無く、金網23A上に均一に液膜を形成でき、高い熱物
質伝達を達成する効果が得られる。また、液分配オリフ
ィス22の周囲に凹み部26を設けたので、金網23A
と液分配オリフィス22との距離を大きくして液分配の
精度を高くするとともに、散布液の管軸方向への広がり
を大きくでき、より均一な液膜を金網23A上に形成で
きる効果がある。
According to the embodiments shown in FIGS. 3 and 4, the capillary action of the wire netting 23A does not generate droplets of the concentrated solution spraying liquid, a uniform liquid film can be formed on the wire netting 23A, and high heat mass transfer is achieved. The effect of achieving is obtained. Further, since the concave portion 26 is provided around the liquid distribution orifice 22, the wire mesh 23A
The liquid distribution orifice 22 and the liquid distribution orifice 22 are increased in distance to enhance the accuracy of the liquid distribution, and the spread of the sprayed liquid in the pipe axis direction can be increased, so that a more uniform liquid film can be formed on the wire net 23A.

【0021】図3,4の実施例では、散布ダクト21の
単位長さ当りに、図1,2の実施例よりも多くの金網2
3Aの面積を詰め込むことができ、物質移動性能の低い
吸収を表面積増加でカバーできる利点がある。なお、冷
媒蒸気は複数枚に重ねられた各金網23A間の隙間から
流入する。本実施例では、金網23Aに型押しをしてヒ
レ部25Aを形成した例を示したが、型押しをしない場
合は前記冷媒蒸気の流れをさらにスムーズにできる利点
がある。
In the embodiment of FIGS. 3 and 4, more wire nets 2 per unit length of the distribution duct 21 than in the embodiment of FIGS.
The area of 3 A can be packed, and there is an advantage that absorption with low mass transfer performance can be covered by increasing the surface area. In addition, the refrigerant vapor flows in from a gap between the wire nets 23A stacked on each other. In this embodiment, an example in which the fin 25A is formed by stamping the wire net 23A is shown. However, when the stamp is not stamped, there is an advantage that the flow of the refrigerant vapor can be made smoother.

【0022】〔実施例 3〕次に、第二の発明の一実施
例を図5を参照して説明する。図5は、本発明のさらに
他の実施例に係る空冷吸収冷凍機の蒸発器と空冷吸収器
との組み合わせ部を示す斜視図である。図中、図3と同
一符号のものは先の実施例と同等部分であるから、その
説明を省略する。図5に示す多パス直交形空冷吸収器5
(以下単に吸収器という)は、冷却空気の流れと向流に
濃溶液を溶液ポンプ9で順次垂直吸収管31内に流下さ
せるもので、その管内にフラッシュ蒸発器(単に蒸発器
という)4で発生した冷媒蒸気を導くものである。32
は、垂直吸収管31に具備された空冷フィンである。蒸
発器4の構成は、前記図3,4に示した吸収器の例と同
等構成のものである。
[Embodiment 3] Next, an embodiment of the second invention will be described with reference to FIG. FIG. 5 is a perspective view showing a combined portion of an evaporator and an air-cooled absorber of an air-cooled absorption refrigerator according to still another embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. 3 are the same parts as those in the previous embodiment, and therefore their explanations are omitted. Multi-pass orthogonal air-cooled absorber 5 shown in FIG.
(Hereinafter referred to simply as "absorber") causes the concentrated solution to flow down countercurrently to the flow of cooling air by means of the solution pump 9 into the vertical absorption pipe 31, and the flash evaporator (simply referred to as "evaporator") 4 inside the pipe. It is for guiding the generated refrigerant vapor. 32
Is an air cooling fin provided in the vertical absorption tube 31. The structure of the evaporator 4 is the same as that of the example of the absorber shown in FIGS.

【0023】本実施例では、先の各実施例と同様の効果
が得られるほか、垂直吸収管31の上部にコンパクトに
蒸発器4を配置できる利点があるとともに、エリミネー
タが不要であるために樋27の下方に、垂直吸収管31
への溶液散布装置を配置できる利点がある。
In this embodiment, the same effects as those of the previous embodiments can be obtained, and in addition to the advantage that the evaporator 4 can be compactly arranged above the vertical absorption pipe 31, the eliminator is not necessary, so that the gutter is not required. Below 27, a vertical absorption tube 31
There is an advantage that a solution spraying device can be arranged.

【0024】〔実施例 4〕次に、第四の発明の一実施
例として、熱物質移動熱交換器を有する空冷吸収冷暖房
機の一例を図6および図7を参照して説明する。図6
は、本発明のさらに他の実施例に係る熱物質交換装置を
有する空冷吸収冷暖房機のサイクル系統図、図7は、図
6の熱物質交換器ユニットを示す横断面図である。図
中、図1,3と同一符号のものは、先の実施例と同等部
分を示す。
[Embodiment 4] Next, as an embodiment of the fourth invention, an example of an air-cooled absorption air conditioner having a heat and mass transfer heat exchanger will be described with reference to FIGS. 6 and 7. Figure 6
[Fig. 7] is a cycle system diagram of an air-cooled absorption cooling / heating machine having a heat-mass exchange device according to still another embodiment of the present invention, and Fig. 7 is a transverse cross-sectional view showing the heat-mass exchanger unit of Fig. 6. In the figure, the same reference numerals as those in FIGS. 1 and 3 indicate the same parts as those in the previous embodiment.

【0025】図6において、1は高温再生器、2は低温
再生器、3は空冷凝縮器、4は蒸発器(フラッシュ蒸発
器)、5は空冷吸収器、6は低温熱交換器、7は高温熱
交換器、8(8a,8bの総称)は送風機、9(9a,
9bの総称)は溶液ポンプ、10は冷媒ポンプ、11
は、高温再生器1の外部熱源、12は温水熱交換器であ
る。
In FIG. 6, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is an air cooled condenser, 4 is an evaporator (flash evaporator), 5 is an air cooled absorber, 6 is a low temperature heat exchanger, and 7 is High temperature heat exchanger, 8 (collective name of 8a, 8b) is a blower, 9 (9a,
9b is a generic name) is a solution pump, 10 is a refrigerant pump, 11
Is an external heat source of the high temperature regenerator 1, and 12 is a hot water heat exchanger.

【0026】14は、熱物質交換装置を構成する複数
(図6では3組)の熱物質交換器ユニットで、この熱物
質交換器ユニット14は再生室15(15a,15b,
15cの総称)および吸収室16(16a,16b,1
6cの総称)を併設している。熱物質交換器ユニット1
4は、図7に示すごとく、真空容器29内に納められた
再生室15と吸収室16とは相似である。すなわち、散
布ダクト21と複数個の液分オリフィス22と該液分オ
リフィス22に直交した金網23Aと樋27とから構成
されている。28は、不凝縮ガスを抽出するための抽気
管の存在を示したものである。
Reference numeral 14 is a plurality (three sets in FIG. 6) of the heat and mass exchanger units which constitute the heat and mass exchange apparatus. The heat and mass exchanger units 14 are the regeneration chambers 15 (15a, 15b,
15c) and absorption chamber 16 (16a, 16b, 1)
6c (generic name) is attached. Heat and mass exchanger unit 1
As shown in FIG. 7, 4 is similar to the regeneration chamber 15 and the absorption chamber 16 housed in the vacuum container 29. That is, it is composed of a spray duct 21, a plurality of liquid distribution orifices 22, a wire mesh 23A orthogonal to the liquid distribution orifices 22 and a gutter 27. 28 shows the existence of the extraction pipe for extracting the non-condensable gas.

【0027】このように構成した空冷吸収冷暖房機の動
作について説明する。高温再生器1は、器内の吸収溶液
を外部熱源11により加熱して冷媒蒸気51を発生させ
て濃縮する。発生した冷媒蒸気51は、蒸気ダクト41
を介して低温再生器2内の熱交換器42内に導入され、
低温再生器2内の溶液を加熱して冷媒自身は凝縮液化
し、導管43および減圧手段44を経由して空冷凝縮器
3に導入される。
The operation of the air-cooled absorption air conditioner thus constructed will be described. The high temperature regenerator 1 heats the absorbing solution in the container by the external heat source 11 to generate the refrigerant vapor 51 and concentrate it. The generated refrigerant vapor 51 is transferred to the vapor duct 41.
Is introduced into the heat exchanger 42 in the low temperature regenerator 2 via
The refrigerant itself is condensed and liquefied by heating the solution in the low temperature regenerator 2, and is introduced into the air-cooled condenser 3 via the conduit 43 and the pressure reducing means 44.

【0028】高温熱交換器7は、高温再生器1で生成さ
れた濃溶液61と高温再生器1に流入する希溶液67と
を熱交換させる。低温熱交換器6は、低温再生機2で生
成された濃溶液62と低温再生器2に流入する希溶液6
7とを熱交換させる。低温再生器2は、高温再生器1で
発生した冷媒蒸気51の凝縮潜熱を加熱源として器内の
吸収溶液を加熱して冷媒蒸気52を発生させて濃溶液6
2を生成する。空冷凝縮器3は、低温再生器2で発生し
た冷媒蒸気52を器内に導いて伝熱管を通過する冷却空
気33で冷却して凝縮液化させるとともに、高温再生器
1で発生した冷媒蒸気51が低温再生器2の熱交換器4
2内で凝縮液化した冷媒55を減圧手段44を介して空
冷凝縮器3内に導いて、伝熱管を通過する冷却空気33
でさらに冷却する。
The high temperature heat exchanger 7 exchanges heat between the concentrated solution 61 produced in the high temperature regenerator 1 and the dilute solution 67 flowing into the high temperature regenerator 1. The low temperature heat exchanger 6 includes a concentrated solution 62 produced by the low temperature regenerator 2 and a dilute solution 6 flowing into the low temperature regenerator 2.
Heat exchange with 7. The low temperature regenerator 2 uses the latent heat of condensation of the refrigerant vapor 51 generated in the high temperature regenerator 1 as a heating source to heat the absorbing solution in the vessel to generate the refrigerant vapor 52 and generate the concentrated solution 6
Generates 2. The air-cooled condenser 3 guides the refrigerant vapor 52 generated in the low temperature regenerator 2 into the chamber and cools it with the cooling air 33 passing through the heat transfer tube to condense and liquefy the refrigerant vapor 52. Heat exchanger 4 of low temperature regenerator 2
Refrigerant 55 condensed and liquefied in 2 is introduced into the air-cooled condenser 3 via the pressure reducing means 44, and the cooling air 33 passing through the heat transfer tube
Cool further with.

【0029】空冷凝縮器3で生成された液冷媒53は位
置のヘッド差または液輸送手段45(冷媒ポンプ10)
により導管46および減圧手段47を経由して蒸発器4
に導入される。蒸発器4では室内で熱交換した高温液冷
媒が導入されて自己蒸発し、冷媒蒸気を発生して低温液
冷媒を生成し再びポンプにより室内に送られる。蒸発器
4で蒸発気化した冷媒蒸気54は空冷吸収器5に導かれ
る。
The liquid refrigerant 53 produced in the air-cooled condenser 3 is located at the head position or the liquid transport means 45 (refrigerant pump 10).
Via the conduit 46 and the pressure reducing means 47 by means of the evaporator 4
Will be introduced to. In the evaporator 4, the high-temperature liquid refrigerant that has undergone heat exchange in the room is introduced and self-evaporates to generate a refrigerant vapor to generate a low-temperature liquid refrigerant, which is again pumped into the room. The refrigerant vapor 54 evaporated and vaporized by the evaporator 4 is guided to the air-cooled absorber 5.

【0030】空冷吸収器5では、濃溶液65が溶液ポン
プ18,9によって空冷吸収器5の垂直吸収管31a,
31bに散布され、濃溶液65は冷却空気34で冷却さ
れるとともに蒸発器4からの冷媒蒸気54を吸収して稀
釈され希溶液66を生成する。空冷吸収器5で生成され
た希溶液66は溶液ポンプ9a,9bによって熱物質交
換器ユニット14の吸収室16に送られる。
In the air-cooled absorber 5, the concentrated solution 65 is supplied to the vertical absorption pipes 31a, 31a of the air-cooled absorber 5 by the solution pumps 18, 9.
31b, the concentrated solution 65 is cooled by the cooling air 34, absorbs the refrigerant vapor 54 from the evaporator 4, and is diluted to produce a diluted solution 66. The dilute solution 66 generated in the air-cooled absorber 5 is sent to the absorption chamber 16 of the heat and mass exchanger unit 14 by the solution pumps 9a and 9b.

【0031】吸収室16内に送られた希溶液66は、熱
物質交換器ユニット14の再生室15で発生した冷媒蒸
気56を吸収して、温度上昇するとともにさらに吸収剤
濃度の薄い希溶液67となる。一方、再生室15では、
高温の濃溶液64が散布ダクト21から液分配オリフィ
ス22を介して金網23Aを流下して冷媒蒸気を発生し
て低温高濃度の溶液65を生成する。
The dilute solution 66 sent into the absorption chamber 16 absorbs the refrigerant vapor 56 generated in the regeneration chamber 15 of the heat and mass exchanger unit 14, raises the temperature, and dilutes the dilute solution 67 with a lower concentration of the absorbent. Becomes On the other hand, in the reproduction room 15,
The high-temperature concentrated solution 64 flows down from the sprinkling duct 21 through the liquid distribution orifice 22 and down the wire net 23A to generate a refrigerant vapor to generate a low-temperature high-concentration solution 65.

【0032】また、吸収室16で生成された熱い希溶液
67は、溶液ポンプ19(19a,19b,19cの総
称)により一部は低温熱交換器6を経由して低温再生器
2へ、また残りは高温熱交換器7を経由して高温再生器
1へ送られる。高温再生器1で生成された濃溶液61は
高温熱交換器7を経由して低温再生器2で生成された濃
溶液62と混合され、濃溶液64となって低温熱交換器
6を経由して再生室15に導かれ、冷媒蒸気56を発生
させて濃縮し濃溶液65を生成する。再生室15で生成
された濃溶液65は溶液ポンプ18(18a,18b,
18cの総称)により空冷吸収器5に供給される。以上
のように冷房サイクルが構成され動作している。
The hot dilute solution 67 produced in the absorption chamber 16 is partially transferred to the low temperature regenerator 2 via the low temperature heat exchanger 6 by the solution pump 19 (general term for 19a, 19b, 19c), and The rest is sent to the high temperature regenerator 1 via the high temperature heat exchanger 7. The concentrated solution 61 generated in the high temperature regenerator 1 is mixed with the concentrated solution 62 generated in the low temperature regenerator 2 via the high temperature heat exchanger 7, and becomes a concentrated solution 64 via the low temperature heat exchanger 6. And is guided to the regeneration chamber 15 to generate a refrigerant vapor 56 and concentrate it to form a concentrated solution 65. The concentrated solution 65 generated in the regeneration chamber 15 is supplied to the solution pump 18 (18a, 18b,
18c) (generic name of 18c). The cooling cycle is configured and operates as described above.

【0033】次に暖房サイクルについて説明する。暖房
時は、高温再生器1で発生した高温冷媒蒸気51を温水
熱交換器12に導いて凝縮させ、伝熱管群内を流れる温
水13を加熱し、これによって暖房能力を得る。温水熱
交換器12で凝縮液化した液冷媒57は重力の作用によ
って高温再生器1内に戻る。以上のように暖房サイクル
が構成され動作している。
Next, the heating cycle will be described. During heating, the high-temperature refrigerant vapor 51 generated in the high-temperature regenerator 1 is guided to the hot-water heat exchanger 12 to be condensed, and the hot water 13 flowing in the heat transfer tube group is heated, thereby obtaining the heating capacity. The liquid refrigerant 57 condensed and liquefied in the hot water heat exchanger 12 returns to the inside of the high temperature regenerator 1 by the action of gravity. The heating cycle is configured and operating as described above.

【0034】なお、本実施例では、吸収室16で生成さ
れた希溶液67が高温再生器1および低温再生器2に並
列的に供給され、並列的に空冷吸収器5に戻される、い
わゆるパラレルフローで冷房サイクルを構成したので、
高温熱交換器7、低温熱交換器6、低温再生器2、高温
再生器1のそれぞれの溶液循環量が小さく、配管などを
小形化できるとともにサイクルの作動圧力を低くできる
利点がある。
In this embodiment, the dilute solution 67 produced in the absorption chamber 16 is supplied to the high temperature regenerator 1 and the low temperature regenerator 2 in parallel and returned to the air-cooled absorber 5 in parallel, that is, so-called parallel. Since the cooling cycle was configured with the flow,
The amount of solution circulation in each of the high temperature heat exchanger 7, the low temperature heat exchanger 6, the low temperature regenerator 2, and the high temperature regenerator 1 is small, and there is an advantage that the piping and the like can be downsized and the operating pressure of the cycle can be lowered.

【0035】本実施例によれば、高温再生器1および低
温再生器2に送られる溶液は、吸収室16で生成された
薄い希溶液67であり、空冷吸収器5で生成された希溶
液66より薄い濃度である。そのため、サイクルは低濃
度側にシフトでき、高温再生器1および低温再生器2に
おける濃縮幅を従来よりも大きく、すなわち濃溶液と希
溶液との濃度差を大きくとれるため、溶液循環量が少な
くても必要な冷媒を生成できるので冷房サイクル効率を
高くでき、省エネルギーを実現できるという効果があ
る。
According to this embodiment, the solution sent to the high temperature regenerator 1 and the low temperature regenerator 2 is the dilute dilute solution 67 produced in the absorption chamber 16 and the dilute solution 66 produced in the air-cooled absorber 5. It is a thinner concentration. Therefore, the cycle can be shifted to the low concentration side, and the concentration width in the high temperature regenerator 1 and the low temperature regenerator 2 can be made larger than before, that is, the concentration difference between the concentrated solution and the dilute solution can be made larger, and the solution circulation amount can be reduced. Since the required refrigerant can be generated, the cooling cycle efficiency can be increased and energy saving can be realized.

【0036】また、高温再生器1および低温再生器2に
おける、濃溶液と希溶液との温度差を従来と同じ程度に
して運転した場合は、空冷吸収器5で生成すべき希溶液
66の濃度が濃いサイクルが実現できる。すなわち、空
冷吸収器5の垂直吸収管31a,31bの出口の溶液濃
度を濃くでき、吸収溶液の圧力平衡温度が高くできるた
め、冷却媒体である冷却空気34との熱交換温度差を大
きくできる。よって、空冷吸収器5の伝熱面積を小形化
できる効果が得られ、コンパクトな空冷吸収冷暖房機を
提供することができる。
When the high temperature regenerator 1 and the low temperature regenerator 2 are operated with the same temperature difference between the concentrated solution and the dilute solution as in the conventional case, the concentration of the dilute solution 66 to be produced in the air-cooled absorber 5 is reduced. A deep cycle can be realized. That is, since the solution concentration at the outlets of the vertical absorption tubes 31a and 31b of the air-cooled absorber 5 can be increased and the pressure equilibrium temperature of the absorption solution can be increased, the difference in heat exchange temperature with the cooling air 34 as a cooling medium can be increased. Therefore, the effect of reducing the heat transfer area of the air-cooling absorber 5 is obtained, and a compact air-cooling absorption cooling / heating machine can be provided.

【0037】また、上記の各実施例において、ここでは
図示しないが、分配オリフィスの上部の金網の内側、す
なわち液噴出部に液分散板を設けても良いことは言うま
でもない。液分散板を付加することによって、液量が大
きい場合も金網からの液の飛び出しが無くなり、より均
一な液膜を金網上に形成できる効果がある。したがっ
て、高効率でコンパクトな蒸発器、吸収器、熱物質交換
器ユニットを提供できるという効果がある。また、上記
の各実施例では、金網を使用していたが、耐久性のある
プラスチック材料など他の網部材でも代用できることは
いうまでもない。
In each of the above embodiments, although not shown here, it goes without saying that a liquid dispersion plate may be provided inside the wire mesh above the distribution orifice, that is, in the liquid ejection portion. The addition of the liquid dispersion plate has the effect of preventing the liquid from jumping out of the wire net even when the amount of liquid is large, and forming a more uniform liquid film on the wire net. Therefore, it is possible to provide a highly efficient and compact evaporator, absorber, and heat-mass exchanger unit. In addition, although the wire mesh is used in each of the above-mentioned embodiments, it goes without saying that another mesh member such as a durable plastic material can be used instead.

【0038】なお、上記の各実施例は、空冷吸収冷暖房
機の例について説明したが、本発明は空冷式に限らず、
他の吸収式冷凍機にも適用できるものである。
In each of the above embodiments, an example of the air-cooled absorption cooling / heating machine has been described, but the present invention is not limited to the air-cooling type.
It can also be applied to other absorption refrigerators.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明によ
れば、液の飛沫生成が少ない、コンパクトな熱物質移動
装置を備えた吸収式冷凍機を提供することができる。
As described in detail above, according to the present invention, it is possible to provide an absorption refrigerator having a compact heat and mass transfer device in which liquid droplets are less likely to be generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る吸収式冷凍機の蒸発器
の横断面図である。
FIG. 1 is a cross-sectional view of an evaporator of an absorption refrigerator according to an embodiment of the present invention.

【図2】図1の蒸発器の縦断面図である。FIG. 2 is a vertical cross-sectional view of the evaporator of FIG.

【図3】本発明の他の実施例に係る吸収式冷凍機の吸収
器の横断面図である。
FIG. 3 is a cross-sectional view of an absorber of an absorption refrigerator according to another embodiment of the present invention.

【図4】図3の吸収器の縦断面図である。4 is a vertical cross-sectional view of the absorber of FIG.

【図5】本発明のさらに他の実施例に係る空冷吸収冷凍
機の蒸発器と空冷吸収器との組み合わせ部を示す斜視図
である。
FIG. 5 is a perspective view showing a combined portion of an evaporator and an air-cooled absorber of an air-cooled absorption refrigerator according to still another embodiment of the present invention.

【図6】本発明のさらに他の実施例に係る熱物質交換装
置を有する空冷吸収冷暖房機のサイクル系統図である。
FIG. 6 is a cycle system diagram of an air-cooled absorption cooling / heating machine having a heat-mass exchange device according to still another embodiment of the present invention.

【図7】図6の熱物質交換器ユニットを示す横断面図で
ある。
7 is a cross-sectional view showing the heat and mass exchanger unit of FIG.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 空冷凝縮器 4 蒸発器 5 空冷吸収器 6 低温熱交換器 7 高温熱交換器 9,9a,9b,18,18a,18b,18c,1
9,19a,19b,19c 溶液ポンプ 10 冷媒ポンプ 14 熱物質交換器ユニット 15,15a,15b,15c 再生室 16,16a,16b,16c 吸収室 21 散布ダクト 22 液分配オリフィス 23,23A 金網 25 ヒレ部 26 凹み部 27 樋
1 High Temperature Regenerator 2 Low Temperature Regenerator 3 Air Cooling Condenser 4 Evaporator 5 Air Cooling Absorber 6 Low Temperature Heat Exchanger 7 High Temperature Heat Exchanger 9, 9a, 9b, 18, 18a, 18b, 18c, 1
9, 19a, 19b, 19c Solution pump 10 Refrigerant pump 14 Heat and mass exchanger unit 15, 15a, 15b, 15c Regeneration chamber 16, 16a, 16b, 16c Absorption chamber 21 Spreading duct 22 Liquid distribution orifice 23, 23A Wire mesh 25 Fins 26 recessed part 27 gutter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、再生器、凝縮器、蒸発器、
吸収器、溶液熱交換器、冷媒ポンプ、溶液ポンプ、およ
びこれら機器を作動的に接続する配管系からなる吸収式
冷凍機において、 高温液冷媒を気液接触により低温液冷媒とする蒸発器
は、 複数の液分配オリフィスを有する散布ダクトと、この散
布ダクトの外側を包むようにして固定した複数枚の網部
材とを設け、この網部材の端部を下方に垂れ下げてヒレ
部を形成し、 このヒレ部先端を、低温液冷媒を受ける樋部材内に垂下
させて熱物質移動手段を構成したものであることを特徴
とする吸収式冷凍機。
1. At least a regenerator, a condenser, an evaporator,
In an absorption refrigerator comprising an absorber, a solution heat exchanger, a refrigerant pump, a solution pump, and a piping system that operatively connects these devices, an evaporator that converts a high-temperature liquid refrigerant into a low-temperature liquid refrigerant by gas-liquid contact is A distribution duct having a plurality of liquid distribution orifices and a plurality of mesh members fixed so as to wrap the outside of the distribution duct are provided, and the end of the mesh member is hung downward to form a fin portion. An absorption chiller, characterized in that the mass mass transfer means is configured by suspending the tip of the part into a gutter member for receiving a low temperature liquid refrigerant.
【請求項2】 少なくとも、再生器、凝縮器、蒸発器、
吸収器、溶液熱交換器、冷媒ポンプ、溶液ポンプ、およ
びこれら機器を作動的に接続する配管系からなる吸収式
冷凍機において、 高温液冷媒を気液接触により低温液冷媒とする蒸発器
は、 複数の液分配オリフィスを有する散布ダクトと、この散
布ダクトに直交させた複数枚の網部材とを設け、散布ダ
クトの外側を前記複数枚の網部材の拡大面で包み、この
網部材の端部を下方に垂れ下げてヒレ部を形成し、 このヒレ部先端を、低温液冷媒を受ける樋部材内に垂下
させて熱物質移動手段を構成したものであることを特徴
とする吸収式冷凍機。
2. At least a regenerator, a condenser, an evaporator,
In an absorption refrigerator comprising an absorber, a solution heat exchanger, a refrigerant pump, a solution pump, and a piping system that operatively connects these devices, an evaporator that converts a high-temperature liquid refrigerant into a low-temperature liquid refrigerant by gas-liquid contact is A distribution duct having a plurality of liquid distribution orifices and a plurality of mesh members orthogonal to the distribution duct are provided, and the outside of the distribution duct is wrapped with an enlarged surface of the plurality of mesh members, and the end of the mesh member is provided. To form a fin portion, and the tip of the fin portion is hung into a trough member for receiving a low temperature liquid refrigerant to constitute a heat / mass transfer means.
【請求項3】 少なくとも、再生器、凝縮器、蒸発器、
吸収器、溶液熱交換器、冷媒ポンプ、溶液ポンプ、およ
びこれら機器を作動的に接続する配管系からなる吸収式
冷凍機において、 濃溶液に冷媒蒸気を吸収させて希溶液とする吸収器は、 複数の液分配オリフィスを有する散布ダクトと、この散
布ダクトに直交させた複数枚の網部材とを設け、散布ダ
クトの外側を前記複数枚の網部材の拡大面で包み、この
網部材の端部を下方に垂れ下げてヒレ部を形成し、 このヒレ部先端を、希溶液を受ける樋部材内に垂下させ
て熱物質移動手段を構成したものであることを特徴とす
る吸収式冷凍機。
3. At least a regenerator, a condenser, an evaporator,
In an absorption refrigerator comprising an absorber, a solution heat exchanger, a refrigerant pump, a solution pump, and a piping system operatively connecting these devices, an absorber that absorbs refrigerant vapor in a concentrated solution to form a dilute solution is A distribution duct having a plurality of liquid distribution orifices and a plurality of mesh members orthogonal to the distribution duct are provided, and the outside of the distribution duct is wrapped with an enlarged surface of the plurality of mesh members, and the end of the mesh member is provided. To form a fin portion, and the tip of the fin portion is hung down into a trough member for receiving a dilute solution to constitute a heat mass transfer means.
【請求項4】 高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温溶液熱交換器、低温溶液熱交換器、冷
媒ポンプ、溶液ポンプ、およびこれら機器を作動的に接
続する配管系からなる吸収式冷凍機において、 上記高温再生器または低温再生器と吸収器との間に、吸
収室および再生室を併設してなる熱物質交換装置を備
え、この吸収室および再生室のいずれもが、 複数の液分配オリフィスを有する散布ダクトと、この散
布ダクトに直交させた複数枚の網部材とを設け、散布ダ
クトの外側を前記複数枚の網部材の拡大面で包み、この
網部材の端部を下方に垂れ下げてヒレ部を形成し、 このヒレ部先端を、溶液を受ける樋部材内に垂下させて
熱物質交換装置を構成したものであることを特徴とする
吸収式冷凍機。
4. A high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a refrigerant pump, a solution pump, and piping for operatively connecting these devices. An absorption refrigerating machine comprising a system is provided with a heat-mass exchange device in which an absorption chamber and a regeneration chamber are provided between the high-temperature regenerator or the low-temperature regenerator and the absorber. Momo is provided with a distribution duct having a plurality of liquid distribution orifices and a plurality of mesh members orthogonal to the distribution duct, and the outside of the distribution duct is wrapped with an enlarged surface of the plurality of mesh members. The absorption type refrigerator is characterized in that the end portion of the fin is drooped downward to form a fin portion, and the tip of the fin portion is drooped into a trough member for receiving a solution to constitute a heat-mass exchange device. .
【請求項5】 液分配オリフィスの周囲を凹ませたこと
を特徴とする請求項1ないし4記載のいずれかの吸収式
冷凍機。
5. The absorption refrigerator according to claim 1, wherein a periphery of the liquid distribution orifice is recessed.
【請求項6】 液分配オリフィスの上部に液分散板を設
けたことを特徴とする請求項1ないし5記載のいずれか
の吸収式冷凍機。
6. The absorption refrigerator according to claim 1, wherein a liquid dispersion plate is provided above the liquid distribution orifice.
JP19175192A 1992-07-20 1992-07-20 Absorption type refrigerator Pending JPH0634238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19175192A JPH0634238A (en) 1992-07-20 1992-07-20 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19175192A JPH0634238A (en) 1992-07-20 1992-07-20 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH0634238A true JPH0634238A (en) 1994-02-08

Family

ID=16279901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19175192A Pending JPH0634238A (en) 1992-07-20 1992-07-20 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH0634238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528864A (en) * 2013-08-13 2016-09-15 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Permanent magnet motor, refrigeration compressor and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528864A (en) * 2013-08-13 2016-09-15 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Permanent magnet motor, refrigeration compressor and air conditioner

Similar Documents

Publication Publication Date Title
US8650905B2 (en) Falling film evaporator
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
JPS6342291Y2 (en)
JPH0634238A (en) Absorption type refrigerator
KR890004392B1 (en) Air cooled absorption refrigeration system
JP2568769B2 (en) Absorption refrigerator
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JP2007085592A (en) Regenerative condenser
JP3027646B2 (en) Absorption chiller / heater
EP0082018B1 (en) Absorption refrigeration system
JP2973653B2 (en) Absorption refrigerator
JP2558033Y2 (en) Absorption chiller / heater
JP3836930B2 (en) Evaporator
JP2945972B1 (en) Absorption chiller / heater
JP2877420B2 (en) Absorption refrigerator
JP2003202166A (en) Absorbing refrigerating machine
JP3038525B2 (en) Air-cooled radiator for refrigerator
JP2787178B2 (en) Absorption evaporator for absorption refrigerator
JP2022128910A (en) Shell-and-tube type heat exchanger, refrigeration cycle device, and heat exchange method
JP2500528Y2 (en) Absorption refrigerator absorber
JP2000018754A (en) Absorption heat pump device and its operation method
JPH062989A (en) Absorption type cold/warm water machine
KR100307395B1 (en) aqua-ammonia solution distributor in a rectifier
JP3017051B2 (en) Heat exchanger of absorption refrigeration system