JP2007083573A - Clay thin-film board, clay thin-film board equipped with electrode and display device using them - Google Patents

Clay thin-film board, clay thin-film board equipped with electrode and display device using them Download PDF

Info

Publication number
JP2007083573A
JP2007083573A JP2005275534A JP2005275534A JP2007083573A JP 2007083573 A JP2007083573 A JP 2007083573A JP 2005275534 A JP2005275534 A JP 2005275534A JP 2005275534 A JP2005275534 A JP 2005275534A JP 2007083573 A JP2007083573 A JP 2007083573A
Authority
JP
Japan
Prior art keywords
thin film
clay thin
clay
layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275534A
Other languages
Japanese (ja)
Other versions
JP4763400B2 (en
Inventor
Tomohito Inoue
智仁 井上
Osamu Tsuda
統 津田
Katsumi Mogi
克己 茂木
Takeo Ebina
武雄 蛯名
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tomoegawa Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005275534A priority Critical patent/JP4763400B2/en
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tomoegawa Paper Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to PCT/JP2006/318496 priority patent/WO2007034775A1/en
Priority to KR1020087009418A priority patent/KR101018273B1/en
Priority to CN2006800344421A priority patent/CN101267940B/en
Priority to US12/067,666 priority patent/US7898636B2/en
Priority to EP06798107A priority patent/EP1938965A4/en
Priority to TW095134813A priority patent/TWI347887B/en
Publication of JP2007083573A publication Critical patent/JP2007083573A/en
Application granted granted Critical
Publication of JP4763400B2 publication Critical patent/JP4763400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clay thin-film board having improved surface flatness and water vapor barrier properties and a display device using the substrate. <P>SOLUTION: The clay thin-film board has a gas barrier inorganic layer 12 laminated on one or both sides of a clay thin-film 11 having a structure composed of oriented and laminated clay particles. In the other clay thin-film board, a flattened inorganic layer is laminated on one or both sides of a clay thin-film having a structure composed of oriented and laminated clay particles, and a gas barrier inorganic layer is laminated on the flattened inorganic layer. The gas barrier inorganic layer is composed of a film of a silicon oxide, and the flattened inorganic layer is composed of a carbon-containing film of a silicon oxide. The clay thin-film boards are useful as boards for electro-luminescence and liquid crystal display devices. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粘土薄膜に無機層を積層した構造の粘土薄膜基板、表示素子用の電極付き粘土薄膜基板、及びそれらを用いた表示素子に関するものである。   The present invention relates to a clay thin film substrate having a structure in which an inorganic layer is laminated on a clay thin film, a clay thin film substrate with electrodes for display elements, and a display element using them.

ディスプレイは、モバイル性や省スペースの面より、従来のブラウン管方式から液晶方式(LCD)に急激に変わりつつある。更に次世代ディスプレイとして、自発光デバイスであり、明るさ、鮮やかさ、消費電力の点でも優れた有機EL方式のものが生産され始めている。これらは従来のブラウン管方式のものと比べればモバイル性や省スペースの面で格段に優れているが、基板としてガラスが使用されているために、比較的重量があり、また、割れるという欠点も有している。   The display is rapidly changing from a conventional cathode ray tube system to a liquid crystal system (LCD) in terms of mobility and space saving. Furthermore, as a next-generation display, a self-luminous device that is excellent in terms of brightness, vividness, and power consumption is being produced. These are far superior in terms of mobility and space-saving compared to conventional CRT type, but because of the use of glass as a substrate, they are relatively heavy and have the disadvantage of cracking. is doing.

これらの問題点を解決するため、一部の液晶方式のものではフィルム基板(プラセルと呼ばれている)が使用されている。しかしながら、現在主流となっている動画対応可能なTFT駆動方式のものについては、使用できるフィルム基板は未だ存在していない。その理由は、TFT回路を形成する温度に耐えることができ、且つ高透明なフィルム基板が存在しないためである。また、次世代ディスプレイとして脚光を浴びている有機ELディスプレイの場合、有機EL素子を守るために、上記特性に加え、非常に高度な酸素バリア性能も必要とされている。これらの要求を満たし得る材料としては粘土薄膜が注目されている。   In order to solve these problems, a film substrate (referred to as a “placel”) is used in some liquid crystal type devices. However, there is no film substrate that can be used for the current mainstream TFT drive system that can handle moving images. This is because there is no highly transparent film substrate that can withstand the temperature at which the TFT circuit is formed. In addition, in the case of an organic EL display that is in the spotlight as a next-generation display, in addition to the above characteristics, an extremely high oxygen barrier performance is also required in order to protect the organic EL element. As a material that can satisfy these requirements, a clay thin film has attracted attention.

粘土薄膜は、優れたフレキシビリティーを有し、粘土粒子が層状に緻密に配向している構造を有しているので、気体バリア性に優れ、かつ、耐熱性や難燃性にも優れた材料である(特許文献1参照)。しかしながら、液晶や有機ELディスプレイ用のフィルム基板として使用する場合、いくつかの問題が存在する。その一つは、表面平坦性の問題である。有機ELディスプレイを例にとると、基板表面が平坦でない場合は、透明導電膜が均一に製膜できず、欠点部分で導電性の低下をもたらす。更には有機EL素子へダメージを与える場合もある。この問題を防ぐためには、透明導電膜や有機EL素子が数十nm〜数百nmと極めて薄い薄膜層であるため、その基材には、数nmから数十nmの低い表面粗さが要求されている。しかしながら、従来の粘土薄膜はこの要求を満たすことができない。その原因は粘土薄膜の製造方法にある。従来から、粘土薄膜は、水を主成分とする分散媒に分散させた粘土の分散液を水平に静置し、粘土粒子をゆっくりと沈積させるとともに、分散媒を蒸発させることによって作製されている。その場合、膜表面はいわば自然に形成されるために、現状では表面粗さRaをサブミクロン以下に抑えるのが難しい。   The clay thin film has excellent flexibility and has a structure in which clay particles are densely oriented in layers, so it has excellent gas barrier properties, and excellent heat resistance and flame resistance. It is a material (see Patent Document 1). However, there are some problems when used as a film substrate for liquid crystal or organic EL displays. One of them is the problem of surface flatness. Taking an organic EL display as an example, if the substrate surface is not flat, the transparent conductive film cannot be formed uniformly, and the conductivity is lowered at the defective portion. Furthermore, the organic EL element may be damaged. In order to prevent this problem, the transparent conductive film and the organic EL element are very thin thin film layers of several tens to several hundreds of nanometers. Therefore, the substrate requires a low surface roughness of several nanometers to several tens of nanometers. Has been. However, conventional clay thin films cannot meet this requirement. The cause lies in the method for producing the clay thin film. Conventionally, a clay thin film has been produced by allowing a clay dispersion liquid dispersed in a dispersion medium containing water as a main component to stand horizontally, slowly depositing clay particles, and evaporating the dispersion medium. . In that case, since the film surface is naturally formed, it is difficult to suppress the surface roughness Ra to submicron or less at present.

他の一つの問題点は、水蒸気バリア性の問題である。粘土は親水性の材料であるため、吸湿性であり、水蒸気を透過させ易い性質をもつ。粘土薄膜が水蒸気を多く含むと、粘土薄膜が有する粘土粒子の緻密な層状配向構造が壊れるため、粘土薄膜が有しているガスバリア性が低下するとともに、耐熱性や機械的強度も低下する。これは、粘土が有する性質そのものに起因しているので、改良するのが難しい。
特開2005−104133号公報
Another problem is a water vapor barrier property. Since clay is a hydrophilic material, it is hygroscopic and has the property of allowing water vapor to pass therethrough. When the clay thin film contains a lot of water vapor, the dense lamellar orientation structure of the clay particles of the clay thin film is broken, so that the gas barrier property of the clay thin film is lowered and the heat resistance and mechanical strength are also lowered. This is due to the nature of clay itself and is difficult to improve.
JP 2005-104133 A

上記したように、優れたガスバリア性、耐熱性、難燃性、透明性、フレキシブル性を有する粘土薄膜を、液晶や有機ELディスプレイ用のフィルム基板として利用するためには、表面平坦性と水蒸気バリア性を格段に向上させる必要がある。したがって、本発明の目的は、粘土薄膜にこれらの特性を付与し、ELディスプレイ用のフィルム基板としての利用が可能な粘土薄膜基板を提供することにある。本発明の他の目的は、そのような粘土薄膜基板を用いた表示素子を提供することにある。   As described above, in order to use a clay thin film having excellent gas barrier properties, heat resistance, flame retardancy, transparency and flexibility as a film substrate for liquid crystal and organic EL displays, surface flatness and water vapor barrier It is necessary to improve the sex dramatically. Accordingly, an object of the present invention is to provide a clay thin film substrate that imparts these characteristics to a clay thin film and can be used as a film substrate for an EL display. Another object of the present invention is to provide a display device using such a clay thin film substrate.

本発明の粘土薄膜基板の第1の態様は、粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、ガスバリア無機質層が積層されてなることを特徴とする。本発明の粘土薄膜基板の第2の態様は、粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、平坦化無機質層が積層され、該平坦化無機質層の上に、ガスバリア無機質層が積層されてなることを特徴とする。本発明の粘土薄膜基板の第3の態様は、粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、複数のガスバリア無機質層と複数の平坦化無機質層が交互に積層されてなることを特徴とする。   A first aspect of the clay thin film substrate of the present invention is characterized in that a gas barrier inorganic layer is laminated on at least one side of a clay thin film having a structure in which clay particles are oriented and laminated. According to a second aspect of the clay thin film substrate of the present invention, a flattened inorganic layer is laminated on at least one surface of a clay thin film having a structure in which clay particles are oriented and laminated, and a gas barrier mineral is formed on the flattened inorganic layer. It is characterized in that layers are laminated. According to a third aspect of the clay thin film substrate of the present invention, a plurality of gas barrier inorganic layers and a plurality of planarized inorganic layers are alternately laminated on at least one surface of a clay thin film having a structure in which clay particles are oriented and laminated. It is characterized by that.

本発明の上記第1乃至第3の態様の粘土薄膜基板におけるガスバリア無機質層は、窒素を含む酸化珪素膜または珪素の窒化膜からなり、その膜厚は10〜200nmであることが好ましい。また、ガスバリア無機質層は、スパッタリング法によって形成することができる。   The gas barrier inorganic layer in the clay thin film substrate of the first to third aspects of the present invention is made of a silicon oxide film containing nitrogen or a silicon nitride film, and the film thickness is preferably 10 to 200 nm. The gas barrier inorganic layer can be formed by a sputtering method.

本発明の上記第2および第3の態様の粘土薄膜基板における平坦化無機質層は、炭素を含む酸化珪素膜からなり、その膜厚は100〜5000nmであることが好ましい。また、平坦化無機質層はCVD法によって形成することができる。   The planarized inorganic layer in the clay thin film substrate of the second and third aspects of the present invention is composed of a silicon oxide film containing carbon, and the film thickness is preferably 100 to 5000 nm. Further, the planarized inorganic layer can be formed by a CVD method.

本発明の電極付き粘土薄膜基板は、上記第1乃至第3の態様の粘土薄膜基板の片面に、透明導電層が積層されてなることを特徴とする。電極付き粘土薄膜基板において、透明導電層が積層されている面とは反対側の面に、防眩層が設けられていてもよい。また、透明導電層が積層されている面とは反対側の面に、反射防止層が設けられていてもよい。さらにまた、透明導電層が積層されている面とは反対側の面に、ハードコート層が設けられていてもよい。   The clay thin film substrate with an electrode of the present invention is characterized in that a transparent conductive layer is laminated on one side of the clay thin film substrate of the first to third aspects. In the clay thin film substrate with electrodes, an antiglare layer may be provided on the surface opposite to the surface on which the transparent conductive layer is laminated. Further, an antireflection layer may be provided on the surface opposite to the surface on which the transparent conductive layer is laminated. Furthermore, a hard coat layer may be provided on the surface opposite to the surface on which the transparent conductive layer is laminated.

本発明の表示素子の第1の態様のものは、基板上に、少なくとも透明電極層、発光層、および陰極層が順次積層された積層体を有するエレクトロルミネッセンス表示素子であって、基板として、上記第1乃至第3の態様の粘土薄膜基板が用いられたことを特徴とする。また、第2の態様のものは、少なくとも電極層が積層された2枚の基板の間に液晶が挟持された液晶表示素子であって、基板として、上記第1乃至第3の態様の粘土薄膜基板が用いられたことを特徴とする。   According to a first aspect of the display element of the present invention, there is provided an electroluminescence display element having a laminate in which at least a transparent electrode layer, a light emitting layer, and a cathode layer are sequentially laminated on a substrate. The clay thin film substrate of the first to third aspects is used. The second aspect is a liquid crystal display element in which liquid crystal is sandwiched between at least two substrates on which electrode layers are laminated, and the clay thin film according to the first to third aspects is used as the substrate. A substrate is used.

(粘土薄膜基板)
まず、本発明の粘土薄膜基板について詳細に説明する。図1ないし図3は、本発明の粘土薄膜基板の模式的断面図である。図1は、粘土薄膜11の片面にガスバリア無機質層12が設けられた本発明の第1の態様の粘土薄膜基板を示し、図2は、粘土薄膜11の片面に平坦化無機質層13およびガスバリア無機質層12が積層された本発明の第2の態様の粘土薄膜基板を示している。また、図3は、粘土薄膜11の片面に複数(図では2つ)の平坦化無機質層13a、13bおよび複数(図では2つ)のガスバリア無機質層12a、12bが交互に積層された本発明の第3の態様の粘土薄膜基板を示している。
(Clay thin film substrate)
First, the clay thin film substrate of the present invention will be described in detail. 1 to 3 are schematic cross-sectional views of the clay thin film substrate of the present invention. FIG. 1 shows a clay thin film substrate according to the first embodiment of the present invention in which a gas barrier inorganic layer 12 is provided on one side of a clay thin film 11, and FIG. 2 shows a planarized inorganic layer 13 and a gas barrier inorganic on one side of the clay thin film 11. The clay thin film board | substrate of the 2nd aspect of this invention with which the layer 12 was laminated | stacked is shown. FIG. 3 shows the present invention in which a plurality (two in the figure) of flattened inorganic layers 13a and 13b and a plurality (two in the figure) of gas barrier inorganic layers 12a and 12b are alternately laminated on one side of the clay thin film 11. The clay thin film board | substrate of 3rd aspect of this is shown.

本発明でいう粘土薄膜とは、粘土粒子が配向して積層した構造を有する膜厚10〜2000μmの膜状物であって、主成分の粘土の割合が全体の70〜100重量%である耐熱性に優れた、フレキシブル性を持ち合わせたものであり、公知の方法によって作製することができる。例えば、次のような方法によって得ることができる。(1)粘土または粘土と添加剤を、水、有機溶剤、又は水と有機溶剤との混合溶媒よりなる分散媒に分散させ、均一な粘土分散液を調製する、(2)この分散液を静置し、粘土粒子を沈積させるとともに、分散媒である液体成分を固液分離手段で分離して粘土薄膜を形成する、(3)更に、任意に、110から300℃ の温度条件下で乾燥し、自立膜として得る。   The clay thin film referred to in the present invention is a film-like material having a film thickness of 10 to 2000 μm having a structure in which clay particles are oriented and laminated, and the ratio of the main component clay is 70 to 100% by weight of the whole. It has excellent flexibility and flexibility, and can be produced by a known method. For example, it can be obtained by the following method. (1) Disperse clay or clay and additives in a dispersion medium comprising water, an organic solvent, or a mixed solvent of water and an organic solvent to prepare a uniform clay dispersion. (2) And depositing clay particles, and separating the liquid component as a dispersion medium by solid-liquid separation means to form a clay thin film. (3) Further, optionally drying under a temperature condition of 110 to 300 ° C. Get as a self-supporting membrane.

粘土としては、天然あるいは合成物、好適には、例えば、雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト及びノントロナイトのうちの1種以上、更に好適には、天然スメクタイト及び合成スメクタイトの何れか、又はそれらの混合物が例示される。また、添加剤としては、特に限定されるものではないが、好適には、例えば、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸、ポリアミノ酸、多価フェノール、安息香酸類などがあげられる。   The clay may be natural or synthetic, preferably one or more of mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite and nontronite, more preferably natural. Any of smectite and synthetic smectite, or a mixture thereof is exemplified. Further, the additive is not particularly limited, but preferably, for example, epsilon caprolactam, dextrin, starch, cellulose resin, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, Fluorine resin, acrylic resin, methacrylic resin, phenol resin, polyamide resin, polyester resin, polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide, polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid, polyamino acid, polyhydric phenol And benzoic acids.

上記粘土分散液は、水性分散液でもよいが、粘土を有機化して疎水性にし、その有機化された粘土を有機溶剤に分散した有機溶剤系粘土分散液としても好適に用いることができる。粘土を有機化する方法としては、イオン交換により、粘土鉱物の層間に有機化剤を導入する方法があげられる。例えば、有機化剤として、ジメリルジステアリルアンモニウム塩やトリメチルステアリルアンモニウム塩などの第4級アンモニウム塩や、ベンジル基やポリオキシエチレン基を有するアンモニウム塩を用いたり、フォスフォニウム塩やイミダゾリウム塩を用い、粘土のイオン交換性、例えば、モンモリロナイトの陽イオン交換性を利用して有機化することができる。この有機化により、粘土の有機溶剤への分散が容易になる。   The clay dispersion may be an aqueous dispersion, but can also be suitably used as an organic solvent-based clay dispersion in which clay is made hydrophobic by making it organic and the organic clay is dispersed in an organic solvent. As a method for organicizing clay, an organic agent is introduced between layers of clay minerals by ion exchange. For example, as an organic agent, a quaternary ammonium salt such as dimethylyl distearyl ammonium salt or trimethyl stearyl ammonium salt, an ammonium salt having a benzyl group or a polyoxyethylene group, a phosphonium salt or an imidazolium salt is used. Can be used to make organic using the ion exchange property of clay, for example, the cation exchange property of montmorillonite. This organicization facilitates dispersion of clay in an organic solvent.

粘土薄膜の厚さは、粘土分散液の固液比や粘土粒子を沈積させる条件等によって、任意の厚さに制御できるが、本発明の粘土薄膜基板に用いる粘土薄膜は、膜厚10〜2000μmの範囲のものである。10μmより薄いと膜の強度が弱くなり、安定した自立膜を得ることが困難となる。また2000μmを超えると膜が曲がりにくくなり十分なフレキシブル性を発揮できなる。特に好ましい膜厚の範囲は25〜200μmである。   The thickness of the clay thin film can be controlled to an arbitrary thickness depending on the solid-liquid ratio of the clay dispersion and the conditions for depositing the clay particles, but the clay thin film used in the clay thin film substrate of the present invention has a thickness of 10 to 2000 μm. Of the range. When the thickness is less than 10 μm, the strength of the film becomes weak, and it becomes difficult to obtain a stable free-standing film. On the other hand, when the thickness exceeds 2000 μm, the film is difficult to bend and sufficient flexibility can be exhibited. A particularly preferable film thickness range is 25 to 200 μm.

本発明の粘土薄膜基板は、上記粘土薄膜の少なくとも片面に、ガスバリア無機質層又はガスバリア無機質層と平坦化無機質層とが1層または2層以上積層されてなることを特徴とする。粘土は、耐熱性、ガスバリア性に優れた物質であるものの、膨潤性を有するため高湿度雰囲気下では急激にバリア性能が悪化する。しかしながら、粘土薄膜上にガスバリア無機質層を設けると、膨潤性を抑制し、高湿度下においても高いガスバリア性を保った粘土薄膜基板となる。   The clay thin film substrate of the present invention is characterized in that one or more gas barrier inorganic layers or gas barrier inorganic layers and planarized inorganic layers are laminated on at least one surface of the clay thin film. Although clay is a material excellent in heat resistance and gas barrier properties, it has swelling properties, so that barrier performance deteriorates rapidly in a high humidity atmosphere. However, when the gas barrier inorganic layer is provided on the clay thin film, the clay thin film substrate that suppresses the swelling property and maintains the high gas barrier property even under high humidity is obtained.

プラスチック基板を用いた場合、平坦性の向上、応力を緩和し、ガスバリア無機質層の破壊を回避することを目的として、ガスバリア無機質層と基板の間に樹脂アンカーコート層(熱架橋性樹脂)を設ける方法が報告されている。しかしながら粘土膜に樹脂アンカーコート層を形成すると、粘土の持つ耐熱性を十分に発揮させることができない。そこで、本発明の第2の態様の粘土薄膜基板においては、ガスバリア性の向上を目的とするガスバリア無機質層と粘土薄膜の間に、表面平坦化、応力の緩和を目的としたガスバリア無機質層とは機能の異なる平坦化無機質層を設ける。これにより熱に弱い有機物質を用いることなく高性能のフレキシブル粘土薄膜基板を提供することができる。樹脂と酸化珪素とは密着力が劣るが、酸化珪素同士の密着性は非常に高い。本発明においては、ガスバリア無機質層と平坦化無機質層は共に酸化珪素が主体となっているため、両者の密着性は非常に高いという利点があり、これもガスバリア性の向上に寄与している。また従来技術においては、樹脂アンカーコート層の形成は大気中で、ガスバリア無機質層の形成は真空中で行われるため、製造工程が複雑となるのに対し、本発明ではガスバリア無機質層と平坦化無機質層は真空中で連続的に形成して積層されるために、製造を効率的に行うことができ、安価に粘土薄膜基板を得ることができる。   When a plastic substrate is used, a resin anchor coat layer (thermally crosslinkable resin) is provided between the gas barrier inorganic layer and the substrate in order to improve flatness, relieve stress, and avoid destruction of the gas barrier inorganic layer. A method has been reported. However, when the resin anchor coat layer is formed on the clay film, the heat resistance of the clay cannot be exhibited sufficiently. Therefore, in the clay thin film substrate of the second aspect of the present invention, the gas barrier inorganic layer for the purpose of surface flattening and stress relaxation is provided between the gas barrier inorganic layer for the purpose of improving gas barrier properties and the clay thin film. A planarized inorganic layer having a different function is provided. Thereby, a high-performance flexible clay thin film substrate can be provided without using an organic substance that is weak against heat. The adhesion between the resin and silicon oxide is poor, but the adhesion between the silicon oxides is very high. In the present invention, since both the gas barrier inorganic layer and the planarized inorganic layer are mainly composed of silicon oxide, there is an advantage that the adhesion between them is very high, which also contributes to the improvement of the gas barrier property. In the prior art, since the formation of the resin anchor coat layer is performed in the atmosphere and the formation of the gas barrier inorganic layer is performed in a vacuum, the manufacturing process is complicated, whereas in the present invention, the gas barrier inorganic layer and the planarized inorganic layer are Since the layers are continuously formed and laminated in a vacuum, the production can be performed efficiently, and a clay thin film substrate can be obtained at a low cost.

ガスバリア性の向上を目的とするガスバリア無機質層は、緻密性の高いものが望まれる。したがって、製膜方法としては、スパッタリング法、例えば、マグネトロンスパッタリング法を用い、構成物質としては、窒素を含む酸化珪素またはケイ素の窒化物よりなる、膜厚10から200nmの範囲のものとすることが好ましい。製膜法として、CVDや蒸着法を用いると、緻密性に劣り十分なガスバリア性を得ることが難しくなる。また膜厚を10nm以下とすると、十分なガスバリア性が得られず、200nmを超えるとクラック等を発生し、ガスバリア性能が低下する。   As the gas barrier inorganic layer for the purpose of improving the gas barrier property, a highly dense layer is desired. Therefore, a sputtering method, for example, a magnetron sputtering method is used as the film forming method, and the constituent material is made of silicon oxide containing silicon or a nitride of silicon and having a film thickness in the range of 10 to 200 nm. preferable. When CVD or vapor deposition is used as a film forming method, it is difficult to obtain sufficient gas barrier properties due to poor denseness. On the other hand, if the film thickness is 10 nm or less, sufficient gas barrier properties cannot be obtained, and if it exceeds 200 nm, cracks and the like are generated, and the gas barrier performance deteriorates.

また、表面平坦化・応力緩和を目的とする平坦化無機質層は、CVD法を用い、炭素を含む酸化珪素膜よりなる膜厚100から5000nmの範囲のものとすることが好ましい。スパッタリング法を用いると、クラックのない厚い膜を形成するのが難しく、応力の緩和層としての機能を果たす膜にはなり難い。また平坦化無機質層の構成成分として、炭素を含む酸化珪素を用いることにより、膜に柔軟性が備わり、応力緩和に適した膜を得ることができる。   The planarized inorganic layer for the purpose of surface planarization and stress relaxation is preferably in the range of a film thickness of 100 to 5000 nm made of a silicon oxide film containing carbon using a CVD method. When the sputtering method is used, it is difficult to form a thick film without cracks, and it is difficult to form a film that functions as a stress relaxation layer. Further, by using silicon oxide containing carbon as a constituent component of the planarized inorganic layer, a film having flexibility and suitable for stress relaxation can be obtained.

ガスバリア性の向上を目的とするガスバリア無機質層は粘土膜の片面に設けるだけでもガスバリア性の効力を発揮するが、両面に設けることにより、高湿度下でのより高いガスバリア性を発揮させることができる。また、表面平坦化・応力緩和を目的とする平坦化無機質層と、ガスバリア無機質層とを交互に複数層、積層することにより、更なる特性向上をはかることができる。   The gas barrier inorganic layer for the purpose of improving the gas barrier property exerts the effect of the gas barrier property only by providing it on one side of the clay film, but by providing it on both sides, it is possible to exhibit the higher gas barrier property under high humidity. . Further, by further laminating a plurality of planarized inorganic layers and gas barrier inorganic layers for the purpose of surface planarization and stress relaxation, further improvement in characteristics can be achieved.

粘土薄膜基板をディスプレイに用いるためには、透明性も重要な特性の一つである。粘土薄膜は比較的表面が粗いため、光の乱反射等により本来粘土鉱物のもつ透明性を発揮することができない。したがって、粘土薄膜は、ガラスや樹脂フィルムと比較して、ディスプレイ用途として不可欠な透明性に劣るという欠点がある。しかしながら、本発明の粘土薄膜基板においては、ガスバリア無機質層又はガスバリア無機質層と平坦化無機質層の形成が表面を平坦化する作用も有するため、より高透明な粘土基板を提供することができるという利点も持ち合わせている。またより透明性を向上させるためには、不純物の少ない合成粘土鉱物を用いて粘土薄膜を形成することが望ましい。   In order to use a clay thin film substrate for a display, transparency is one of the important characteristics. Since the clay thin film has a relatively rough surface, the transparency inherent in clay minerals cannot be exhibited due to irregular reflection of light or the like. Therefore, the clay thin film has a defect that it is inferior in transparency, which is indispensable for display applications, as compared with glass and resin films. However, in the clay thin film substrate of the present invention, the formation of the gas barrier inorganic layer or the gas barrier inorganic layer and the flattened inorganic layer also has the effect of flattening the surface, so that it is possible to provide a more transparent clay substrate. I also have. In order to improve transparency, it is desirable to form a clay thin film using a synthetic clay mineral with few impurities.

(電極付き粘土薄膜基板)
本発明の上記粘土薄膜基板の片面に、更に透明導電層を積層して表示素子用の電極付き粘土薄膜基板を作製することができる。具体的には、上記した粘土薄膜基板上に、インジウム、スズ、亜鉛のうち少なくとも一つを含む酸化物を主成分とする透明導電性物質をCVD、PVD、ゾルゲル法などを用いて製膜することにより、透明導電層を形成して、フレキシブル性、高い透明性、ハイガスバリア性、平坦性、耐熱性、難燃性を有する有機ELやLCDに代表されるディスプレイ用の電極付き粘土薄膜基板を提供することができる。
(Clay thin film substrate with electrodes)
A transparent conductive layer can be further laminated on one side of the clay thin film substrate of the present invention to produce a clay thin film substrate with electrodes for display elements. Specifically, a transparent conductive material whose main component is an oxide containing at least one of indium, tin, and zinc is formed on the above-described clay thin film substrate by CVD, PVD, sol-gel method, or the like. By forming a transparent conductive layer, a clay thin film substrate with electrodes for displays represented by organic EL and LCD having flexibility, high transparency, high gas barrier properties, flatness, heat resistance, and flame resistance is obtained. Can be provided.

また、本発明の電極付き粘土薄膜基板をディスプレイに用いるために、粘土薄膜基板の透明導電層とは反対の面に、防眩層、反射防止層、ハードコート層を形成することができる。これらの層は単独で設けてもよく、また、複数の層を積層して設けてもよい。   Moreover, in order to use the clay thin film substrate with an electrode of the present invention for a display, an antiglare layer, an antireflection layer, and a hard coat layer can be formed on the surface of the clay thin film substrate opposite to the transparent conductive layer. These layers may be provided alone, or a plurality of layers may be stacked.

防眩層は、通常結着剤として使用される樹脂、好ましくは、下記ハードコート層を構成する樹脂に、フィラーを含有させて形成されるものであって、層表面を粗面化することにより、光を散乱もしくは拡散させて防眩性を付与するものである。フィラーとしては、無機フィラー、例えば、シリカ、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、二酸化チタン等の無機系白色顔料、および有機フィラー、例えば、アクリル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂等の有機系の透明または白色ビーズ等を挙げることができる。特に、球状で吸油性を示さない有機フィラーが好ましい。球状のフィラーを用いることによって、防眩層の表面から突出する部分がなだらかになり、油分等の汚れが付着し難くなるとともに付着した汚れを拭い易くなる。   The antiglare layer is formed by adding a filler to a resin that is usually used as a binder, preferably a resin that constitutes the following hard coat layer, and by roughening the surface of the layer In addition, the anti-glare property is imparted by scattering or diffusing light. As the filler, inorganic fillers such as silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, clay, talc, titanium dioxide and other inorganic white pigments, and organic fillers such as acrylic resin, polystyrene resin, polyethylene resin, Examples thereof include organic transparent or white beads such as epoxy resin and silicone resin. In particular, organic fillers that are spherical and do not exhibit oil absorption are preferred. By using the spherical filler, the portion protruding from the surface of the antiglare layer becomes smooth, and it becomes difficult for dirt such as oil to adhere and to wipe off the adhered dirt.

また、フィラーの粒子径D(JIS B9921)は、0.5μm≦D≦50μmの範囲が好ましい。フィラーの配合量については、防眩層の全固形分に対して、0.5〜30重量%の範囲が好ましい。配合量が0.5重量%以下の場合は、反射防止効果が不充分となり、30重量%以上の場合は、透明性、画像のコントラストが劣るばかりでなく、耐摩耗性や耐環境性等の耐久性が悪くなる。   Further, the particle diameter D (JIS B9921) of the filler is preferably in the range of 0.5 μm ≦ D ≦ 50 μm. About the compounding quantity of a filler, the range of 0.5-30 weight% is preferable with respect to the total solid of a glare-proof layer. When the blending amount is 0.5% by weight or less, the antireflection effect becomes insufficient. When the blending amount is 30% by weight or more, not only the transparency and the contrast of the image are inferior, but also the wear resistance and the environment resistance. Durability deteriorates.

反射防止層は、透明電極付き粘土薄膜基板上に、その基体の屈折率よりも低い屈折率を有する材料からなる低屈折率層を一層設けるか、または高屈折率層上に、その高屈折率層よりも低い屈折率の低屈折率層を設けて二層構成にするか、或いは、この二層構成を二組以上積層して設ければよく、それによって、反射防止効果を得ることができる。なお、本発明でいう高屈折率および低屈折率とは、互いに隣接する層の間の相対的な屈折率の高低をいう。   The antireflection layer is formed by providing a low refractive index layer made of a material having a refractive index lower than the refractive index of the base on the clay thin film substrate with a transparent electrode or a high refractive index on the high refractive index layer. A low refractive index layer having a lower refractive index than that of the layer may be provided to form a two-layer structure, or two or more sets of the two-layer structure may be stacked to provide an antireflection effect. . In addition, the high refractive index and the low refractive index referred to in the present invention refer to the relative refractive index between adjacent layers.

高屈折率層は、通常、結着剤として使用される、例えばアクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、ウレタン系樹脂等の樹脂、または、これらの樹脂に、高屈折率材料として、芳香環やBr、I、Cl等のハロゲン化元素を含む樹脂、またはTiO、CeO、ZrO、等の無機化合物微粒子を含ませて形成することができる。 The high refractive index layer is usually used as a binder, for example, an acrylic resin, vinyl chloride resin, vinyl acetate resin, styrene resin, epoxy resin, polyester resin, urethane resin, Alternatively, these resins are formed by including, as a high refractive index material, an aromatic ring, a resin containing a halogenated element such as Br, I, or Cl, or inorganic compound fine particles such as TiO 2 , CeO 2 , or ZrO 2 . can do.

また、低屈折率層は、例えばSiO、LiF、MgF等の無機材料を微粒子化し、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低屈折率材料、フッ素系およびシリコーン系の有機化合物、熱可塑性樹脂、熱硬化型樹脂、放射線硬化型樹脂等の有機低屈折率材料から形成することができ、その屈折率は1.45以下であることが好ましい。これらの材料の中で、特に含フッ素材料が汚れ防止の点において好ましい。なお、反射防止層としては、有機材料以外にも、無機材料の蒸着膜やスパッタリング膜を用いることができる。 The low-refractive index layer is made of inorganic low-refractive index materials such as SiO 2 , LiF, MgF 2, and the like, and is contained in acrylic resin, epoxy resin, etc., fluorine-based and silicone-based organic materials. It can be formed from organic low refractive index materials, such as a compound, a thermoplastic resin, a thermosetting resin, and a radiation curable resin, and the refractive index is preferably 1.45 or less. Among these materials, fluorine-containing materials are particularly preferable in terms of preventing contamination. In addition to the organic material, a vapor deposition film or a sputtering film of an inorganic material can be used as the antireflection layer.

低屈折率層が良好な反射防止機能を発揮するための厚さについては、公知の計算式で算出することができる。公知の文献(サイエンスライブラリ、物理学9「光学」70〜72頁)によれば、入射光が低屈折率層に垂直に入射する場合に、低屈折率層が光を反射せず、かつ100%透過するための条件は次の関係式(1)および(2)を満たせばよいとされている。なお、式中、Nは低屈折率層の屈折率、Nsは高屈折率層の屈折率、hは低屈折率層の厚さ、λは光の波長を示す。実際は、この数式を完全に満たす材料は見出し難く、限りなく近い材料と膜厚を選択することになる。
N=Ns1/2 ・・・・・(1)
Nh=λ/4 ・・・・・(2)
The thickness for the low refractive index layer to exhibit a good antireflection function can be calculated by a known calculation formula. According to known literature (Science Library, Physics 9 “Optics”, pages 70-72), when the incident light is perpendicularly incident on the low refractive index layer, the low refractive index layer does not reflect light, and 100 It is said that the condition for transmitting the% may satisfy the following relational expressions (1) and (2). In the formula, N is the refractive index of the low refractive index layer, Ns is the refractive index of the high refractive index layer, h is the thickness of the low refractive index layer, and λ is the wavelength of light. Actually, it is difficult to find a material that completely satisfies this mathematical formula, and a material and film thickness that are as close as possible are selected.
N = Ns 1/2 (1)
Nh = λ / 4 (2)

ハードコート層は、鉛筆硬度がH以上の層を意味する。ハードコート層を構成する樹脂としては、光、熱の何れか、またはその組み合わせにより硬化する樹脂をあげることができる。光硬化型樹脂としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等重合性不飽和結合を有するモノマー、オリゴマー、プレポリマーを適宜混合した組成物、または、紫外線により硬化するエポキシ系化合物等が用いられる。熱硬化型樹脂としては、フェノール樹脂、フラン樹脂、キシレン・ホルムアルデヒド樹脂、ケトン・ホルムアルデヒド樹脂、ユリア樹脂、メラミン樹脂、アニリン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等を挙げることができる。これらは単独もしくは複数混合して使用してもよい。   The hard coat layer means a layer having a pencil hardness of H or more. Examples of the resin constituting the hard coat layer include resins that are cured by light, heat, or a combination thereof. As a photocurable resin, a composition in which monomers, oligomers, prepolymers having a polymerizable unsaturated bond such as acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, or the like are appropriately mixed, or an epoxy compound that is cured by ultraviolet rays Etc. are used. Examples of thermosetting resins include phenolic resins, furan resins, xylene / formaldehyde resins, ketone / formaldehyde resins, urea resins, melamine resins, aniline resins, alkyd resins, unsaturated polyester resins, and epoxy resins. These may be used alone or in combination.

ハードコート層に用いられる硬化型樹脂は、透明性が高いほど好ましく、光線透過率としては、80%以上、特に90%以上のものが好ましい。ハードコート層の厚さは、0.5〜10μmの範囲、好ましくは1〜5μmの範囲に設定される。ハードコート層が0.5μmよりも薄い場合は、ハードコート層の耐摩耗性が劣化する。一方、10μmより厚い場合は、樹脂の硬化収縮によりカールが発生したり、ハードコート層にマイクロクラックが発生する場合がある。   The curable resin used for the hard coat layer is preferably higher in transparency, and the light transmittance is preferably 80% or more, particularly 90% or more. The thickness of the hard coat layer is set in the range of 0.5 to 10 μm, preferably in the range of 1 to 5 μm. When the hard coat layer is thinner than 0.5 μm, the wear resistance of the hard coat layer is deteriorated. On the other hand, when it is thicker than 10 μm, curling may occur due to curing shrinkage of the resin, or micro cracks may occur in the hard coat layer.

(表示素子)
本発明の表示素子は、上記粘土薄膜基板または上記電極付き薄膜基板を用いて作製することができる。すなわち、上記粘土薄膜基板の上に電圧または電流の変化によって光学的な特性が変化する素子を形成して、表示素子を作製することができる。また、上記粘土薄膜基板の上に、透明電極層、発光層、および陰極層を順次積層して、エレクトロルミネッセンス表示素子を作製することができる。更にまた、2枚の上記電極付き粘土薄膜基板の2つの透明導電膜の間に、液晶を挟持して液晶表示素子を作製してもよい。
(Display element)
The display element of the present invention can be produced using the clay thin film substrate or the electrode-attached thin film substrate. That is, a display element can be manufactured by forming an element whose optical characteristics are changed by a change in voltage or current on the clay thin film substrate. Moreover, a transparent electrode layer, a light emitting layer, and a cathode layer can be laminated | stacked in order on the said clay thin film board | substrate, and an electroluminescent display element can be produced. Furthermore, a liquid crystal display element may be manufactured by sandwiching liquid crystal between two transparent conductive films of the two clay thin film substrates with electrodes.

(エレクトロルミネッセンス表示素子)
次に、本発明のエレクトロルミネッセンス表示素子の構造と作製法について説明する。
図4および図5は、それぞれ本発明のエレクトロルミネッセンス素子の一例の模式的断面図である。図4において、エレクトロルミネッセンス素子は、粘土薄膜基板21上に、透明電極層22、発光層23、陰極層24が順次積層され、その積層体が金属材料、プラスチック等で形成された封止材25aによって密閉された空間に封止された構造を有している。また、図5においては、図4に示したものと同一の構成を有する積層体がガスバリアフィルム等の樹脂材料よりなる封止材25bによって封止されている。
(Electroluminescence display element)
Next, the structure and manufacturing method of the electroluminescence display element of the present invention will be described.
4 and 5 are schematic cross-sectional views of examples of the electroluminescence element of the present invention. In FIG. 4, the electroluminescent element includes a sealing material 25a in which a transparent electrode layer 22, a light emitting layer 23, and a cathode layer 24 are sequentially laminated on a clay thin film substrate 21, and the laminated body is formed of a metal material, plastic, or the like. It has the structure sealed in the space sealed by. Further, in FIG. 5, a laminate having the same configuration as that shown in FIG. 4 is sealed with a sealing material 25b made of a resin material such as a gas barrier film.

本発明のエレクトロルミネッセンス表示素子において、粘土薄膜基板21としては、上記した本発明の粘土薄膜基板が使用される。
透明電極層は、発光層に正孔を供給する陽極としての機能を有するものであって、例えば、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物や金、銀、アルミニウム等の金属を用いることができ、その形状、構造、大きさ等についても特に制限されるものではない。透明電極層の作製法は、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、プラズマCVD法等の中から前記材料との適性を考慮して適宜選択すればよい。透明電極層のパターニングは、フォトリソグラフィーによる化学的エッチング法、レーザー等による物理的エッチング法、マスクを用いる真空蒸着法やスパッタリング法、又はリフトオフ法や印刷法等により行うことができる。厚さは、10nm〜5μmの範囲が適当である。
In the electroluminescence display element of the present invention, as the clay thin film substrate 21, the above-described clay thin film substrate of the present invention is used.
The transparent electrode layer has a function as an anode for supplying holes to the light emitting layer. For example, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc. Metals such as conductive metal oxides, gold, silver, and aluminum can be used, and the shape, structure, size, and the like are not particularly limited. The method for producing the transparent electrode layer may be appropriately selected from the vacuum deposition method, the sputtering method, the ion plating method, the CVD method, the plasma CVD method and the like in consideration of suitability with the material. The patterning of the transparent electrode layer can be performed by a chemical etching method using photolithography, a physical etching method using a laser, a vacuum evaporation method using a mask, a sputtering method, a lift-off method, a printing method, or the like. The thickness is suitably in the range of 10 nm to 5 μm.

発光層は、少なくとも1種の発光材を含有するものであり、必要に応じて、正孔や電子の発生や移動を容易にする正孔注入材、正孔輸送材、電子注入材、電子輸送材等を含有させてもよい。また、正孔注入材、正孔輸送材、電子注入材、電子輸送材等は、発光層とは別の層に含有させて、発光層に積層された状態であっても構わない。   The light-emitting layer contains at least one light-emitting material, and if necessary, a hole injection material, a hole transport material, an electron injection material, and an electron transport that facilitate the generation and movement of holes and electrons. Materials and the like may be included. Further, the hole injecting material, the hole transporting material, the electron injecting material, the electron transporting material, and the like may be contained in a layer different from the light emitting layer and stacked on the light emitting layer.

発光材としては、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、ペリレン誘導体、ペリノン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、芳香族ジメチリデン誘導体、8−キノリール誘導体の金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体などの高分子化合物があげられる。これらは一種又は二種以上を混合して用いることができる。   Examples of luminescent materials include benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, perylene derivatives, perinone derivatives, oxadiazoles. Derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, styrylamine derivatives, aromatic dimethylidene derivatives, 8-quinolyl derivatives metal complexes and rare earth complexes Various representative metal complexes, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, etc. Of the polymer compound and the like. These can be used alone or in combination of two or more.

正孔注入材および正孔輸送材としては、低分子正孔輸送材および高分子正孔輸送材のいずれも使用可能であり、陽極から正孔を注入する機能、正孔を輸送する機能、及び陰極から注入された電子を障壁する機能のいずれかを有していれば特に限定されるものではない。正孔輸送材としては、例えば、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等があげられる。これらは一種または二種以上を併用してもよい。   As the hole injecting material and the hole transporting material, both a low molecular hole transporting material and a polymer hole transporting material can be used, a function of injecting holes from the anode, a function of transporting holes, and There is no particular limitation as long as it has any function of blocking electrons injected from the cathode. Examples of hole transport materials include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, Conductive polymer oligomer such as aniline copolymer, thiophene oligomer, polythiophene, polythiophene derivative, polyphenylene derivative, polyphenylene Vinylene derivatives, polymer compounds such as polyfluorene derivatives, and the like. These may be used alone or in combination of two or more.

電子注入材および電子輸送材としては、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれかを有しているものであれば制限されることはなく、例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールおよびベンゾジアゾールを配位子とする金属錯体に代表される各種金属錯体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物があげられる。これらは一種または二種以上を併用してもよい。   The electron injecting material and the electron transporting material are not limited as long as they have either a function of transporting electrons or a function of blocking holes injected from the anode. For example, triazole derivatives , Oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthaleneperylene, etc. Various metal complexes represented by ring tetracarboxylic acid anhydrides, metal complexes of phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanine, benzoxazole and benzodiazole ligands, aniline copolymers, thiophene Goma, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polymer compounds such as polyfluorene derivatives. These may be used alone or in combination of two or more.

発光層の製膜は、蒸着やスパッタリング等の乾式法、ディッピング、スピンコーティング、ディップコーティング、キャスティング、ダイコーティング、ロールコーティングト、バーコーティング、グラビアコーティング等の湿式法等のいずれかによって好適に行うことができる。これらの製膜法は、発光層の材料に応じて適宜選択することができる。発光層の膜厚は、一般に1nm〜10μm、好ましくは10nm〜1μmの範囲に設定される。正孔注入層、正孔輸送層、電子注入層、電子輸送層も発光層の場合と同様の方法で作製することができる。   The light emitting layer is preferably formed by any one of dry methods such as vapor deposition and sputtering, wet methods such as dipping, spin coating, dip coating, casting, die coating, roll coating, bar coating, and gravure coating. Can do. These film forming methods can be appropriately selected according to the material of the light emitting layer. The thickness of the light emitting layer is generally set in the range of 1 nm to 10 μm, preferably 10 nm to 1 μm. A hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer can also be produced in the same manner as in the case of the light emitting layer.

陰極層は、形状、構造、大きさ等に特に制限はなく、発光層に電子を注入する電極として機能すればよい。その形状、構造、大きさ等も特に制限はないが、厚さは、10nm〜5μmの範囲が適当である。陰極層用の材料としては、アルカリ金属(例えばLi、Na、K、Cs等)、アルカリ土類金属(例えばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属等が挙げられる。これらのなかから、二種以上併用しても構わない。   The cathode layer is not particularly limited in shape, structure, size and the like, and may function as an electrode for injecting electrons into the light emitting layer. The shape, structure, size, etc. are not particularly limited, but the thickness is suitably in the range of 10 nm to 5 μm. Materials for the cathode layer include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloy, lithium-aluminum. Examples include alloys, magnesium-silver alloys, rare earth metals such as indium and ytterbium. Among these, two or more kinds may be used in combination.

陰極層の形成には、真空蒸着、スパッタリング、イオンプレーティング、CVD、プラズマCVD等の手段を用いることができ、陰極の材料との適性を考慮して適宜選択すればよい。陰極のパターニングは、フォトリソグラフィー、レーザー等による物理的エッチング、マスクを用いる真空蒸着法やスパッタリング法、又はリフトオフ法や印刷法等を採用することができる。   For the formation of the cathode layer, means such as vacuum vapor deposition, sputtering, ion plating, CVD, and plasma CVD can be used, and may be selected as appropriate in consideration of suitability with the material of the cathode. For the patterning of the cathode, physical etching using photolithography, laser, etc., vacuum deposition method using a mask, sputtering method, lift-off method, printing method, or the like can be employed.

封止材としては、金属材料、プラスチック等で形成された封止材、例えばアルミニウム管など、公知のものが使用されるが、本発明における上記粘土薄膜基板を封止材として使用してもよい。   As the sealing material, a known material such as a sealing material formed of a metal material, plastic, or the like, for example, an aluminum tube is used, but the clay thin film substrate in the present invention may be used as the sealing material. .

(液晶表示素子)
次に本発明の液晶表示素子について説明する。
液晶ディスプレイには、TN液晶を使用して薄膜トランジスター(TFT:Thin Film Transistor)で駆動するタイプの他に、強誘電性液晶(FLC:Ferroelectric Liquid Crystal)あるいは反強誘電性液晶(AFLC:Anti-Ferroelectric Liquid Crystal)を用いるタイプがある。これらは表示の原理や駆動方式は異なるが、いずれの液晶ディスプレイでも一対の電極を有する基板間に液晶を狭持するという構造は変わらない。これら従来公知の液晶ディスプレイにおける基板として、本発明においては上記の粘土薄膜基板が使用される。
(Liquid crystal display element)
Next, the liquid crystal display element of the present invention will be described.
In addition to the type driven by a thin film transistor (TFT) using TN liquid crystal, the liquid crystal display includes a ferroelectric liquid crystal (FLC) or an anti-ferroelectric liquid crystal (AFLC). There is a type using Ferroelectric Liquid Crystal). These have different display principles and driving methods, but the structure in which the liquid crystal is sandwiched between the substrates having a pair of electrodes remains the same in any liquid crystal display. In the present invention, the above-mentioned clay thin film substrate is used as a substrate in these conventionally known liquid crystal displays.

図6は、TN液晶を用いた液晶表示素子の一例の模式的断面図である。このTN液晶表示素子においては、粘土薄膜31a、32a上にそれぞれ所望のパターンからなる透明電極層33、34を有する2枚の透明電極付き粘土薄膜基板31及び32を用い、その上に、ポリイミドの溶液を塗布して液晶配向膜(図示していない)を形成し、これにラビング操作を施した後、これらの粘土薄膜基板の間にネマチック液晶35を注入し、粘土薄膜基板周辺部を樹脂等で封着する。注入されたネマチック液晶35は、配向膜の作用により90゜捻れ配向する。一方の粘土薄膜基板31の透明電極層とは反対側に、表面層および防眩層を有する反射防止層38が設けられた偏光フィルム36を積層する。また、他方の粘土薄膜基板32の透明電極層とは反対側には、反射防止層のない偏光フィルム37を、偏光フィルム36に対して偏光角度が互いに90゜捻れるように積層して、液晶表示パネルが構成される。なお、透明電極層の電極材料としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物が用いられる。   FIG. 6 is a schematic cross-sectional view of an example of a liquid crystal display element using TN liquid crystal. In this TN liquid crystal display element, two clay thin film substrates 31 and 32 with transparent electrodes having transparent electrode layers 33 and 34 each having a desired pattern on the clay thin films 31a and 32a are used. After applying a solution to form a liquid crystal alignment film (not shown) and rubbing it, nematic liquid crystal 35 is injected between these clay thin film substrates, and the periphery of the clay thin film substrate is resin or the like. Seal with. The injected nematic liquid crystal 35 is twisted by 90 ° by the action of the alignment film. On one side of the clay thin film substrate 31 opposite to the transparent electrode layer, a polarizing film 36 provided with an antireflection layer 38 having a surface layer and an antiglare layer is laminated. Further, on the opposite side of the other clay thin film substrate 32 to the transparent electrode layer, a polarizing film 37 without an antireflection layer is laminated so that the polarizing angles of the polarizing film 36 are twisted by 90 ° to form a liquid crystal. A display panel is constructed. As an electrode material for the transparent electrode layer, conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO) are used.

本発明の粘土薄膜基板は、配向した粘土粒子が積層した構造を有する粘土薄膜の少なくとも片面にガスバリア無機質層が設けられているので、ガスバリア性が向上し、水蒸気透過性を抑えることが可能になる。また、表面平坦化・応力緩和を目的とする平坦化無機質層を設けた場合には、ガスバリア性が向上すると共に、粘土薄膜の表面平坦性が改善される。また、本発明の粘土薄膜基板は、ディスプレイ用のフィルム基板として用いられるプラスチック基板と同等の光学特性を有し、またプラスチック基板と比較して、難燃性や耐熱性にも優れている。したがって、本発明の粘土薄膜は、液晶や有機ELディスプレイ用のフィルム基板として好適に使用することができる。   In the clay thin film substrate of the present invention, the gas barrier inorganic layer is provided on at least one surface of the clay thin film having a structure in which oriented clay particles are laminated. Therefore, the gas barrier property is improved and the water vapor permeability can be suppressed. . In addition, when a flattened inorganic layer for the purpose of surface flattening and stress relaxation is provided, the gas barrier property is improved and the surface flatness of the clay thin film is improved. Moreover, the clay thin film substrate of the present invention has optical characteristics equivalent to those of a plastic substrate used as a film substrate for display, and is excellent in flame retardancy and heat resistance as compared with a plastic substrate. Therefore, the clay thin film of the present invention can be suitably used as a film substrate for liquid crystal or organic EL display.

更に、本発明の粘土薄膜基板は、それがもつ諸特性により、多くの製品に利用することができる。例えば電子ペーパー用基板、電子デバイス用封止フィルム、レンズフィルム、導光版用フィルム、プリズムフィルム、位相差版・偏光版用フィルム、視野角補正フィルム、PDP用フィルム、LED用フィルム、光通信用部材、タッチパネル用フィルム、各種機能性フィルムの基板、内部が透けて見える構造の電子機器用フィルム、ビデオディスク・CD/CD−R/CD−RW/DVD/MO/MD・相変化ディスク・光カードを含む光記録メディア用フィルム、燃料電池用封止フィルム、太陽電池用フィルム等に使用することができる。   Furthermore, the clay thin film substrate of the present invention can be used for many products due to various properties. For example, electronic paper substrate, electronic device sealing film, lens film, light guide plate film, prism film, retardation plate / polarizing plate film, viewing angle correction film, PDP film, LED film, optical communication Materials, touch panel films, substrates for various functional films, films for electronic devices with a transparent structure, video discs, CD / CD-R / CD-RW / DVD / MO / MD, phase change discs, optical cards Can be used for films for optical recording media, sealing films for fuel cells, films for solar cells, and the like.

以下、本発明を実施するための最良の形態を実施例に基づいて説明するが、本願発明はこれら実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described based on examples, but the present invention is not limited to these examples.

(1)粘土薄膜の製造
ベースとなる粘土薄膜を既知の方法で製造した。すなわち、合成スメクタイトを蒸留水に加え、プラスチック製密封容器に回転子とともに入れ、激しく振とうし、均一な粘土分散液を得た。その後、底面が平坦である真鍮製トレイに注ぎ、粘土分散液を水平に静置し、粘土粒子をゆっくり沈積させるとともに、トレイの水平を保った状態で、強制送風式オーブン中で乾燥した。それによって膜厚100μmの粘土薄膜が得られた。
(1) Production of clay thin film A clay thin film as a base was produced by a known method. That is, synthetic smectite was added to distilled water, placed in a plastic sealed container together with a rotor, and shaken vigorously to obtain a uniform clay dispersion. Thereafter, the mixture was poured into a brass tray having a flat bottom surface, and the clay dispersion was allowed to stand horizontally to slowly deposit clay particles, and dried in a forced air oven while maintaining the level of the tray. As a result, a clay thin film having a thickness of 100 μm was obtained.

(2)粘土薄膜基板の製造
上記の粘土薄膜の両面にマグネトロンスパッタ装置を用いて酸化珪素を主体とするガスバリア無機質層を形成した。すなわち、真空チャンバー内で粘土薄膜を80℃に加熱し、残留水分を除去した後、Siターゲット近傍で酸素と窒素の混合ガスによるプラズマを発生させる反応性スパッタ法を用いることにより、粘土薄膜上に膜厚90nmのガスバリア無機質層を形成した。形成されたガスバリア無機質層をX線光電子分光法(ESCA)により組成の分析を行った。その結果、ガスバリア無機質層の組成は、珪素36.5at%、酸素43.2at%、窒素19.3at%であり、窒素を含有する酸化珪素膜であることが確認された。更に同様の方法を用いて粘土薄膜の反対面にも膜厚90nm、珪素36.3at%、酸素42.9at%、窒素19.8at%の窒素を含む酸化珪素膜を形成して、両面にガスバリア無機質層を有する粘土薄膜基板を得た。
(2) Production of Clay Thin Film Substrate Gas barrier inorganic layers mainly composed of silicon oxide were formed on both sides of the clay thin film using a magnetron sputtering apparatus. That is, the clay thin film is heated to 80 ° C. in a vacuum chamber to remove residual moisture, and then a reactive sputtering method is used to generate plasma by a mixed gas of oxygen and nitrogen in the vicinity of the Si target. A gas barrier inorganic layer having a thickness of 90 nm was formed. The composition of the formed gas barrier inorganic layer was analyzed by X-ray photoelectron spectroscopy (ESCA). As a result, the composition of the gas barrier inorganic layer was 36.5 at% silicon, 43.2 at% oxygen, and 19.3 at% nitrogen, and was confirmed to be a silicon oxide film containing nitrogen. Further, a silicon oxide film containing 90 nm-thickness, 36.3 at% silicon, 42.9 at% oxygen, and 19.8 at% nitrogen is formed on the opposite surface of the clay thin film using the same method, and gas barriers are formed on both sides. A clay thin film substrate having an inorganic layer was obtained.

(3)粘土薄膜基板の特性評価
上記方法によって得られ粘土薄膜基板について、諸特性を測定した。ガスバリア性能については、JIS K 7126 A法(差圧法)に準じた差圧式のガスクロ法により、ガス・蒸気等の透過率・透湿度の測定が可能なGTRテック株式会社製ガス・蒸気透過率測定装置を用いて、水蒸気透過率および酸素透過率の測定を行った。温度40℃湿度90%の環境下での水蒸気透過率は0.003g/m・day、酸素透過率は0.2cc/m・day・atmであった。
(3) Characteristic evaluation of clay thin film substrate Various characteristics of the clay thin film substrate obtained by the above method were measured. For gas barrier performance, gas / vapor permeability measurement by GTR Tech Co., Ltd., which can measure the permeability / moisture permeability of gas / vapor, etc., by the differential pressure type gas chromatography method according to JIS K 7126 A method (differential pressure method) Using the apparatus, the water vapor transmission rate and the oxygen transmission rate were measured. The water vapor transmission rate in an environment of a temperature of 40 ° C. and a humidity of 90% was 0.003 g / m 2 · day, and the oxygen transmission rate was 0.2 cc / m 2 · day · atm.

上記の粘土薄膜基板の表面をAFM(原子間力顕微鏡)にて観察し、平均表面粗さ(Ra)の測定を行った。酸化珪素膜形成前の平均表面粗さRa=25nmに対して形成後は10nmとなり、表面が平坦化されたことが確認された。これに伴いヘーズメーター(Haze Meter NDH2000、日本電色社製)で測定されたヘイズは6.5%から3.0%へと低減し、透明性が向上したことが確認された。   The surface of the clay thin film substrate was observed with an AFM (atomic force microscope), and the average surface roughness (Ra) was measured. The average surface roughness Ra before the formation of the silicon oxide film was 10 nm after the formation relative to Ra = 25 nm, and it was confirmed that the surface was flattened. Accordingly, the haze measured with a haze meter (Haze Meter NDH2000, manufactured by Nippon Denshoku) was reduced from 6.5% to 3.0%, and it was confirmed that the transparency was improved.

実施例1におけると同様にして粘土薄膜を製造した後、プラズマCVD装置を用いて酸化珪素膜(平坦化無機質層)の形成を行った。すなわち、ヘキサメチルジシロキサン([(CH)Si]O)をモノマーガスとして酸素プラズマ中で重合を行い、粘土薄膜の両面に、膜厚200μmの炭素を含有する酸化珪素膜を形成した。酸化珪素膜形成前の平均表面粗さRa=25nmに対して形成後は4nmとなり、表面が平坦化されたことが確認された。その後、その上に実施例1に示したガスバリア無機質層の製膜方法を用いて膜厚90nmの窒素を含有する酸化珪素膜(ガスバリア無機質層)を形成し、粘土薄膜基板を得た。 After a clay thin film was produced in the same manner as in Example 1, a silicon oxide film (flattened inorganic layer) was formed using a plasma CVD apparatus. That is, polymerization was performed in oxygen plasma using hexamethyldisiloxane ([(CH 3 ) 3 Si] 2 O) as a monomer gas, and silicon oxide films containing 200 μm thick carbon were formed on both sides of the clay thin film. . The average surface roughness Ra before the silicon oxide film was formed was 4 nm after the formation, and it was confirmed that the surface was flattened. Thereafter, a silicon oxide film (gas barrier inorganic layer) containing nitrogen having a thickness of 90 nm was formed thereon using the gas barrier inorganic layer forming method shown in Example 1 to obtain a clay thin film substrate.

上記方法によって得られた粘土薄膜基板の温度40℃、湿度90%の環境下での水蒸気透過率は、測定限界である1×10-5g/m・day以下の値を示した。酸素透過率は0.1cc/m・day・atm以下であった。またRaは2nm、ヘイズは1.6%であり、平坦性及び透明性が向上したことが確認された。 The water vapor permeability of the clay thin film substrate obtained by the above method in an environment of a temperature of 40 ° C. and a humidity of 90% showed a value of 1 × 10 −5 g / m 2 · day or less, which is a measurement limit. The oxygen transmission rate was 0.1 cc / m 2 · day · atm or less. Moreover, Ra was 2 nm and haze was 1.6%, and it was confirmed that flatness and transparency were improved.

以下の表1に実施例1及び2の本発明の粘土薄膜基板と、比較例として、粘土薄膜単独、すなわちガスバリア無機質層を設けていない粘土薄膜とについて、ガス透過率、平均表面粗さ、全光線透過率およびヘイズの値をまとめて示す。   In Table 1 below, the clay thin film substrate of the present invention of Examples 1 and 2 and, as a comparative example, a clay thin film alone, that is, a clay thin film not provided with a gas barrier inorganic layer, gas permeability, average surface roughness, total The light transmittance and haze value are shown together.

Figure 2007083573
Figure 2007083573

表1に示す通り、粘土薄膜基板表面に酸化珪素を主体とするガスバリア無機質層を形成することにより、高湿度下でのガスバリア性能が向上することが分かる。実施例2においてはガスバリア層と粘土膜の間の中間層として、酸化珪素を主体とする平坦化無機質層を設けたことにより、更にバリア性能が向上している。これは平坦化無機質層が粘土薄膜表面の凹凸を平坦化し、平坦化無機質層の上に欠陥の少ないガスバリア無機質層が形成されたことによるものと推測される。   As shown in Table 1, it can be seen that the gas barrier performance under high humidity is improved by forming a gas barrier inorganic layer mainly composed of silicon oxide on the surface of the clay thin film substrate. In Example 2, the barrier performance is further improved by providing a planarized inorganic layer mainly composed of silicon oxide as an intermediate layer between the gas barrier layer and the clay film. This is presumably because the flattened inorganic layer flattened the irregularities on the surface of the clay thin film, and a gas barrier inorganic layer with few defects was formed on the flattened inorganic layer.

(耐燃性試験)
熱容量約38MJ/mのメタンガスを燃料とする口径9.5mm、管の長さ100mmのブンセバーナでバーナの炎を高さ19mmの青色炎に調整し、長さ125mm、幅13mmの大きさの試料下端とバーナ先端との間隔が9.5mmとなるように、つかみ具で試料の長さ方向を垂直に保持し、試料の下端中央部に10秒間接炎することにより耐燃性試験を行った。ポリエチレンテレフタレートフィルムにガスバリア無機質層を設けたフィルム基板は、接炎後発火したが、実施例1及び2の本発明の粘土薄膜基板では発火は認められなかった。したがって、本発明の粘土薄膜基板は難燃性に優れていることが確認された。
(Flame resistance test)
Sample with a 9.5 mm diameter methane gas fueled with a heat capacity of about 38 MJ / m 3 and a Bunse burner with a tube length of 100 mm and a burner flame adjusted to a blue flame with a height of 19 mm, a length of 125 mm and a width of 13 mm A flame resistance test was performed by holding the sample in the vertical direction with a gripping tool so that the distance between the lower end and the burner tip was 9.5 mm and indirect flame at the lower end center of the sample for 10 seconds. The film substrate in which the gas barrier inorganic layer was provided on the polyethylene terephthalate film ignited after flame contact, but no ignition was observed in the clay thin film substrates of the present invention of Examples 1 and 2. Therefore, it was confirmed that the clay thin film substrate of the present invention is excellent in flame retardancy.

本発明の第1の態様の粘土薄膜基板の模式的断面図である。It is a typical sectional view of the clay thin film substrate of the 1st mode of the present invention. 本発明の第2の態様の粘土薄膜基板の模式的断面図である。It is a typical sectional view of the clay thin film substrate of the 2nd mode of the present invention. 本発明の第3の態様の粘土薄膜基板の模式的断面図である。It is a typical sectional view of the clay thin film substrate of the 3rd mode of the present invention. 本発明のエレクトロルミネッセンス素子の一例の模式的断面図である。It is typical sectional drawing of an example of the electroluminescent element of this invention. 本発明のエレクトロルミネッセンス素子の一例の模式的断面図である。It is typical sectional drawing of an example of the electroluminescent element of this invention. TN液晶を用いた本発明の液晶表示素子の一例の模式的断面図である。It is typical sectional drawing of an example of the liquid crystal display element of this invention using TN liquid crystal.

符号の説明Explanation of symbols

11…粘土薄膜、12…ガスバリア無機質層、13…平坦化無機質層、21…粘土薄膜基板、22…透明電極層、23…発光層、24…陰極層、25a…封止材、25b…封止材、31,32…電極付き粘土薄膜基板、31a,32a…粘土薄膜、33,34…透明電極層、35…ネマチック液晶、36…偏光フィルム、37…偏光フィルム、38…反射防止層。 DESCRIPTION OF SYMBOLS 11 ... Clay thin film, 12 ... Gas barrier inorganic layer, 13 ... Planarization inorganic layer, 21 ... Clay thin film substrate, 22 ... Transparent electrode layer, 23 ... Light emitting layer, 24 ... Cathode layer, 25a ... Sealing material, 25b ... Sealing Material: 31, 32 ... Clay thin film substrate with electrode, 31a, 32a ... Clay thin film, 33, 34 ... Transparent electrode layer, 35 ... Nematic liquid crystal, 36 ... Polarizing film, 37 ... Polarizing film, 38 ... Antireflection layer.

Claims (15)

粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、ガスバリア無機質層が積層されてなることを特徴とする粘土薄膜基板。   A clay thin film substrate comprising a gas barrier inorganic layer laminated on at least one surface of a clay thin film having a structure in which clay particles are oriented and laminated. 前記ガスバリア無機質層が、窒素を含む酸化珪素膜または珪素の窒化膜からなることを特徴とする請求項1に記載の粘土薄膜基板。   2. The clay thin film substrate according to claim 1, wherein the gas barrier inorganic layer is made of a silicon oxide film containing nitrogen or a silicon nitride film. 前記ガスバリア無機質層の厚さが10〜200nmであることを特徴とする請求項1又は請求項2に記載の粘土薄膜基板。   The clay thin film substrate according to claim 1 or 2, wherein the gas barrier inorganic layer has a thickness of 10 to 200 nm. 前記ガスバリア無機質層がスパッタリング法によって形成されてなることを特徴とする請求項1乃至請求項3のいずれか1項に記載の粘土薄膜基板。   The clay thin film substrate according to any one of claims 1 to 3, wherein the gas barrier inorganic layer is formed by a sputtering method. 粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、平坦化無機質層が積層され、該平坦化無機質層の上に、ガスバリア無機質層が積層されてなることを特徴とする粘土薄膜基板。   A clay thin film comprising a flattened inorganic layer laminated on at least one surface of a clay thin film having a structure in which clay particles are oriented and laminated, and a gas barrier inorganic layer is laminated on the flattened inorganic layer. substrate. 粘土粒子が配向して積層した構造を有する粘土薄膜の少なくとも片面に、複数のガスバリア無機質層と複数の平坦化無機質層が交互に積層されてなることを特徴とする粘土薄膜基板。   A clay thin film substrate comprising a plurality of gas barrier inorganic layers and a plurality of planarized inorganic layers alternately laminated on at least one surface of a clay thin film having a structure in which clay particles are oriented and laminated. 前記ガスバリア無機質層が、窒素を含む酸化珪素膜または珪素の窒化膜からなり、前記平坦化無機質層が、炭素を含む酸化珪素膜らなることを特徴とする請求項5または請求項6に記載の粘土薄膜基板。   7. The gas barrier inorganic layer according to claim 5 or 6, wherein the gas barrier inorganic layer is made of a silicon oxide film containing nitrogen or a silicon nitride film, and the planarized inorganic layer is made of a silicon oxide film containing carbon. Clay thin film substrate. 前記ガスバリア無機質層の厚さが10〜200nmであり、前記平坦化無機質層の厚さが100〜5000nmであることを特徴とする請求項5乃至請求項7のいずれか1項に記載の粘土薄膜基板。   The clay thin film according to any one of claims 5 to 7, wherein the gas barrier inorganic layer has a thickness of 10 to 200 nm, and the planarized inorganic layer has a thickness of 100 to 5000 nm. substrate. 前記ガスバリア無機質層がスパッタリング法によって形成されてなり、前記平坦化無機質層がCVD法によって形成されてなることを特徴とする請求項5乃至請求項8のいずれか1項に記載の粘土薄膜基板。   The clay thin film substrate according to any one of claims 5 to 8, wherein the gas barrier inorganic layer is formed by a sputtering method, and the planarized inorganic layer is formed by a CVD method. 請求項1、請求項5および請求項6の何れか1項に記載の粘土薄膜基板の片面に、更に透明導電層が積層されてなることを特徴とする電極付き粘土薄膜基板。   A clay thin film substrate with an electrode, wherein a transparent conductive layer is further laminated on one side of the clay thin film substrate according to any one of claims 1, 5, and 6. 前記粘土薄膜基板の、透明導電膜が積層されている面とは反対側の面に、防眩層が設けられたことを特徴とする請求項10に記載の電極付き粘土薄膜基板。   11. The clay thin film substrate with electrodes according to claim 10, wherein an antiglare layer is provided on a surface of the clay thin film substrate opposite to a surface on which the transparent conductive film is laminated. 前記粘土薄膜基板の、透明導電膜が積層されている面とは反対側の面に、反射防止層が設けられたことを特徴とする請求項10に記載の電極付き粘土薄膜基板。   The clay thin film substrate with electrodes according to claim 10, wherein an antireflection layer is provided on a surface of the clay thin film substrate opposite to a surface on which the transparent conductive film is laminated. 前記粘土薄膜基板の、透明導電膜が積層されている面とは反対側の面に、ハードコート層が設けられたことを特徴とする請求項10に記載の電極付き粘土薄膜基板。   The clay thin film substrate with electrodes according to claim 10, wherein a hard coat layer is provided on a surface of the clay thin film substrate opposite to a surface on which the transparent conductive film is laminated. 基板上に、少なくとも透明電極層、発光層、および陰極層が順次積層された積層体を有するエレクトロルミネッセンス表示素子において、該基板が、請求項1、請求項5および請求項6のいずれか1項に記載の粘土薄膜基板からなることを特徴とするエレクトロルミネッセンス表示素子。   The electroluminescent display element which has the laminated body on which the transparent electrode layer, the light emitting layer, and the cathode layer were laminated | stacked in order on the board | substrate, This board | substrate is any one of Claim 1, Claim 5, and Claim 6. An electroluminescence display element comprising the clay thin film substrate described in 1. 少なくとも電極層が積層された2枚の基板の間に液晶が挟持された液晶表示素子において、該基板が、請求項1、請求項5および請求項6のいずれか1項に記載の粘土薄膜基板からなることを特徴とする液晶表示素子。   7. The clay thin film substrate according to claim 1, wherein the substrate is a liquid crystal display element in which liquid crystal is sandwiched between at least two substrates on which electrode layers are laminated. A liquid crystal display element comprising:
JP2005275534A 2005-09-22 2005-09-22 Clay thin film substrate, clay thin film substrate with electrode, and display element using them Expired - Fee Related JP4763400B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005275534A JP4763400B2 (en) 2005-09-22 2005-09-22 Clay thin film substrate, clay thin film substrate with electrode, and display element using them
KR1020087009418A KR101018273B1 (en) 2005-09-22 2006-09-19 Clay thin film substrate, clay thin film substrate with electrode, and display using those
CN2006800344421A CN101267940B (en) 2005-09-22 2006-09-19 Clay thin-film board, clay thin-film board equipped with electrode and display device using them
US12/067,666 US7898636B2 (en) 2005-09-22 2006-09-19 Clay thin film substrate, clay thin film substrate with electrode, and display device using the same
PCT/JP2006/318496 WO2007034775A1 (en) 2005-09-22 2006-09-19 Clay thin film substrate, clay thin film substrate with electrode, and display using those
EP06798107A EP1938965A4 (en) 2005-09-22 2006-09-19 Clay thin film substrate, clay thin film substrate with electrode, and display using those
TW095134813A TWI347887B (en) 2005-09-22 2006-09-20 Clay membrane base sheet, clay membrane base sheet with electrode, and display element using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275534A JP4763400B2 (en) 2005-09-22 2005-09-22 Clay thin film substrate, clay thin film substrate with electrode, and display element using them

Publications (2)

Publication Number Publication Date
JP2007083573A true JP2007083573A (en) 2007-04-05
JP4763400B2 JP4763400B2 (en) 2011-08-31

Family

ID=37971056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275534A Expired - Fee Related JP4763400B2 (en) 2005-09-22 2005-09-22 Clay thin film substrate, clay thin film substrate with electrode, and display element using them

Country Status (2)

Country Link
JP (1) JP4763400B2 (en)
CN (1) CN101267940B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2152786A1 (en) * 2007-06-01 2010-02-17 LG Chem, Ltd. Multiple-layer film and method for manufacturing the same
JP2011052159A (en) * 2009-09-03 2011-03-17 National Institute Of Advanced Industrial Science & Technology Perovskite type oxide phosphor thin film body
WO2011077741A1 (en) * 2009-12-24 2011-06-30 株式会社巴川製紙所 Clay film composite
JP2012216452A (en) * 2011-04-01 2012-11-08 Hitachi High-Technologies Corp Optical semiconductor device and method of manufacturing the same
US9228113B2 (en) 2010-06-03 2016-01-05 National Institute Of Advanced Industrial Science And Technology Water vapor barrier film and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198316B1 (en) * 2012-06-19 2021-01-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Display device, method for manufacturing same, polyimide film for display device supporting bases, and method for producing polyimide film for display device supporting bases
JP6353828B2 (en) * 2013-03-29 2018-07-04 リンテック株式会社 GAS BARRIER LAMINATE, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
CN104600092B (en) * 2014-12-17 2018-06-01 深圳市华星光电技术有限公司 OLED touch control display apparatus and its manufacturing method
CN107681057B (en) * 2016-08-01 2019-07-26 上海和辉光电有限公司 Flexible organic luminescent device and its manufacturing method
CN107689264B (en) * 2017-08-11 2023-05-09 宁波大学 Transparent conductive film and preparation method thereof, and preparation method of polymer dispersed liquid crystal component
CN108490679A (en) * 2018-03-28 2018-09-04 京东方科技集团股份有限公司 Display device and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255188A (en) * 2001-02-28 2002-09-11 Yoshino Kogyosho Co Ltd Labelled vessel
JP2003191371A (en) * 2001-12-27 2003-07-08 Teijin Ltd Gas barrier transparent film
JP2003291251A (en) * 2002-04-05 2003-10-14 Matsushita Electric Ind Co Ltd Composite material and method for manufacturing the material
JP2004230625A (en) * 2003-01-29 2004-08-19 Toppan Printing Co Ltd Ceramic vapor deposition film and its production method
WO2005023714A1 (en) * 2003-09-08 2005-03-17 National Institute Of Advanced Industrial Science And Technology Clay film
JP2005096322A (en) * 2003-09-26 2005-04-14 Dainippon Printing Co Ltd Functional layer transfer film, antifouling layer, and functional layer transfer body
WO2005073427A2 (en) * 2004-02-02 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for the production of an ultra barrier layer system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2617571Y (en) * 2003-05-08 2004-05-26 安徽省宁国市耐火建筑材料有限公司 Composite silicon carbide board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255188A (en) * 2001-02-28 2002-09-11 Yoshino Kogyosho Co Ltd Labelled vessel
JP2003191371A (en) * 2001-12-27 2003-07-08 Teijin Ltd Gas barrier transparent film
JP2003291251A (en) * 2002-04-05 2003-10-14 Matsushita Electric Ind Co Ltd Composite material and method for manufacturing the material
JP2004230625A (en) * 2003-01-29 2004-08-19 Toppan Printing Co Ltd Ceramic vapor deposition film and its production method
WO2005023714A1 (en) * 2003-09-08 2005-03-17 National Institute Of Advanced Industrial Science And Technology Clay film
JP2005096322A (en) * 2003-09-26 2005-04-14 Dainippon Printing Co Ltd Functional layer transfer film, antifouling layer, and functional layer transfer body
WO2005073427A2 (en) * 2004-02-02 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for the production of an ultra barrier layer system
JP2007522343A (en) * 2004-02-02 2007-08-09 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for producing ultra barrier film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2152786A1 (en) * 2007-06-01 2010-02-17 LG Chem, Ltd. Multiple-layer film and method for manufacturing the same
EP2152786A4 (en) * 2007-06-01 2012-03-07 Lg Chemical Ltd Multiple-layer film and method for manufacturing the same
JP2011052159A (en) * 2009-09-03 2011-03-17 National Institute Of Advanced Industrial Science & Technology Perovskite type oxide phosphor thin film body
WO2011077741A1 (en) * 2009-12-24 2011-06-30 株式会社巴川製紙所 Clay film composite
JP2011131450A (en) * 2009-12-24 2011-07-07 Tomoegawa Paper Co Ltd Clay film composite
US9228113B2 (en) 2010-06-03 2016-01-05 National Institute Of Advanced Industrial Science And Technology Water vapor barrier film and method for producing same
JP2012216452A (en) * 2011-04-01 2012-11-08 Hitachi High-Technologies Corp Optical semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
CN101267940B (en) 2012-09-12
JP4763400B2 (en) 2011-08-31
CN101267940A (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4763400B2 (en) Clay thin film substrate, clay thin film substrate with electrode, and display element using them
KR101018273B1 (en) Clay thin film substrate, clay thin film substrate with electrode, and display using those
JP2007216435A (en) Gas barrier film substrate, gas barrier film substrate with electrode and display element using them
US8355204B2 (en) Light-extraction layer of light-emitting device and organic electroluminescence element employing the same
TWI292491B (en) Method for manufacturing microlens and method for manufacturing organic electroluminescence element
JP5656176B2 (en) Organic electronic device and method for producing organic electronic device
US8687145B2 (en) Organic electroluminescent device and method for fabricating the same
WO2013073434A1 (en) Organic el element
WO2011021556A1 (en) Manufacturing method for substrate with electrode attached
TWI535088B (en) Substrate for organic electronic device
JP2008066027A (en) Substrate having concavo-convex front surface, and organic el element using it
JP2009094050A (en) Light-emitting element or display element, and manufacturing method of them
TW202133470A (en) Organic light-emitting diode light extraction layer having graded index of refraction
US10483489B2 (en) Integrated circular polarizer and permeation barrier for flexible OLEDs
JP4763483B2 (en) Clay thin film substrate, clay thin film substrate with electrode, and display element using them
JP5244378B2 (en) Organic light emitting display
JP2005212229A (en) Transparent gas barrier film and electroluminescence element
JP2006269338A (en) Flexible transparent electrode substrate and organic el display device
JP2004220907A (en) Organic el display and transparent electrode substrate for display
JP4088471B2 (en) Organic light emitting device and method for manufacturing the same
JP2006024535A (en) Manufacturing method for organic thin-film element, manufacturing method for electro-optic device, and manufacturing method for electronic apparatus
Kim et al. P‐212: Late‐News Poster: Influence of Index Matching Epoxy Filler at the Encapsulation Part for the Performance of TEOLED with Internal Wrinkle Structure
JP2005212230A (en) Transparent gas barrier film and electroluminescence element
JP4382388B2 (en) SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
Saxena et al. Effect of oblique angle deposition of α-naphthylphenylbiphenyl diamine on the performance of organic light-emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees