JP2007083132A - Method for reducing elution of organic material from anion exchange resin - Google Patents

Method for reducing elution of organic material from anion exchange resin Download PDF

Info

Publication number
JP2007083132A
JP2007083132A JP2005273102A JP2005273102A JP2007083132A JP 2007083132 A JP2007083132 A JP 2007083132A JP 2005273102 A JP2005273102 A JP 2005273102A JP 2005273102 A JP2005273102 A JP 2005273102A JP 2007083132 A JP2007083132 A JP 2007083132A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
ultrapure water
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273102A
Other languages
Japanese (ja)
Inventor
Naoki Bessho
直樹 別所
M Johnson Aaron
アーロン・エム・ジョンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to JP2005273102A priority Critical patent/JP2007083132A/en
Publication of JP2007083132A publication Critical patent/JP2007083132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing an amount of an organic material eluted in an anion exchange resin which needs no additional unit operation or device for reducing the organic material eluted from the anion exchange resin and which certainly controls the amount of the organic material eluted to the predetermined amount or less. <P>SOLUTION: In the method for reducing the amount of the organic material eluted in the anion exchange resin, the anion exchange resin is aged by holding in an air-tight state, and the anion exchange resin after aging is cleaned by ultrapure water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、陰イオン交換樹脂における有機物溶出量を低減させる方法、有機物溶出量の少ない陰イオン交換樹脂、及びかかる陰イオン交換樹脂を用いた超純水の製造方法に関する。   The present invention relates to a method for reducing an organic substance elution amount in an anion exchange resin, an anion exchange resin having a small organic substance elution amount, and a method for producing ultrapure water using such an anion exchange resin.

現在、半導体・液晶等に代表される電子産業においては、イオン、有機物、微粒子等のような不純物の量を極限まで低減させた超純水が、製造工程中における洗浄等に使用されている。このように超純水に含まれる不純物量を出来るだけ少なくしているのは、かかる不純物が得られる最終製品の欠陥原因となる場合があるためである。特に、超純水に含まれる有機物は半導体製造物等の性能に大きな影響を及ぼすため、全有機炭素(TOC)として、超純水の製造から使用にかけて連続的に測定・管理されている。   At present, in the electronic industry represented by semiconductors and liquid crystals, ultrapure water in which the amount of impurities such as ions, organic substances, and fine particles is reduced to the limit is used for cleaning in the manufacturing process. The reason why the amount of impurities contained in ultrapure water is reduced as much as possible is that such impurities may cause defects in the final product from which the impurities are obtained. In particular, since organic substances contained in ultrapure water have a great influence on the performance of semiconductor products and the like, they are continuously measured and managed as total organic carbon (TOC) from production to use of ultrapure water.

超純水の製造に利用される代表的水処理システムにおいては、一般的に、イオン交換樹脂による不純物の除去工程が含まれる。ここで、かかる水処理システムを用いて超純水を製造する場合、超純水に含まれる有機物には、そもそも被処理水そのものに存在していたものに加えて、水処理システムを構成する材料自体から溶出される不純物も含まれる。   A typical water treatment system used for the production of ultrapure water generally includes a step of removing impurities with an ion exchange resin. Here, in the case of producing ultrapure water using such a water treatment system, the organic matter contained in the ultrapure water is the material that constitutes the water treatment system in addition to what was originally present in the treated water itself. It also includes impurities that are eluted from itself.

イオン交換樹脂も有機材料であるため、通水することにより一定量の有機物がイオン交換樹脂から溶出してくることが知られている。よって、何の前処理も施されていないイオン交換樹脂を超純水製造における水処理システムに直接使用した場合には、得られる水のTOC量が急激に増加してしまう。つまり、被処理水をイオン交換樹脂に通した場合、水中の不純物がイオン交換樹脂に吸着されて除去される一方、イオン交換樹脂からも有機物が溶出してくるので、得られる水のTOC量を一定レベル以下にすることができない。   Since the ion exchange resin is also an organic material, it is known that a certain amount of organic substance is eluted from the ion exchange resin by passing water. Therefore, when an ion exchange resin that has not been subjected to any pretreatment is directly used in a water treatment system in the production of ultrapure water, the amount of TOC of the water obtained increases rapidly. That is, when the water to be treated is passed through the ion exchange resin, impurities in the water are adsorbed and removed by the ion exchange resin, while organic substances are eluted from the ion exchange resin. Cannot be below a certain level.

このため、超純水の製造に用いられるイオン交換樹脂としては、有機物溶出量の少ないものが求められており、イオン交換樹脂からの有機物溶出量を低減させる前処理方法について、様々な検討・開発がなされてきている。   For this reason, ion exchange resins used in the production of ultrapure water are required to have a small amount of organic matter elution, and various studies and developments have been made on pretreatment methods to reduce the amount of organic matter eluted from ion exchange resins. Has been made.

例えば、超純水等の高度に処理された清浄な水により洗浄する方法や、超純水による洗浄前に水溶性の有機溶媒で処理・洗浄する方法(例えば、特許文献1、2参照)が知られている。また、陰イオン交換樹脂をアルカリ溶液中で加熱処理した後、水溶性有機溶媒で洗浄することで、全有機炭素の溶出を低減させる方法(例えば、特許文献3参照)も提案されている。   For example, there are a method of washing with highly treated clean water such as ultrapure water, and a method of treating and washing with a water-soluble organic solvent before washing with ultrapure water (for example, see Patent Documents 1 and 2). Are known. In addition, a method of reducing the elution of total organic carbon by heating an anion exchange resin in an alkaline solution and then washing with a water-soluble organic solvent has been proposed (for example, see Patent Document 3).

更に、これまで、イオン交換樹脂は、製造後一定時間保存すると、接触雰囲気中の酸化剤や温度の影響によって溶出する有機物の量が増加すると考えられていた。よって、上記のようなイオン交換樹脂の前処理は、イオン交換樹脂の製造直後に行われ、かかる前処理後、速やかに水処理システムに用いられるのが一般的である(例えば、非特許文献1参照)。
特開平5−4051号公報 特開平5−15789号公報 特開2004−41915号公報 オルガノ株式会社編,「イオン交換樹脂 その技術と応用」,1985年7月,p.93
Furthermore, until now, it has been thought that when ion exchange resins are stored for a certain period of time after production, the amount of organic substances to be eluted increases due to the influence of the oxidizing agent and temperature in the contact atmosphere. Therefore, the pretreatment of the ion exchange resin as described above is performed immediately after the production of the ion exchange resin, and is generally used promptly in a water treatment system after the pretreatment (for example, Non-Patent Document 1). reference).
JP-A-5-4051 Japanese Patent Laid-Open No. 5-15789 JP 2004-41915 A Organo Co., Ltd., “Ion exchange resin, its technology and application”, July 1985, p. 93

確かに、上記文献に記載される前処理方法は優れた方法であるが、有機物溶出量を低減させるためには、水溶性有機溶媒での洗浄のような追加の単位操作や、アルカリ溶液中での加熱処理を行うための追加の装置が必要となる。このような単位操作や追加装置は、製造コストの点において不利である。   Certainly, the pretreatment method described in the above document is an excellent method, but in order to reduce the amount of organic matter elution, additional unit operations such as washing with a water-soluble organic solvent, or in an alkaline solution. An additional device for performing the heat treatment is required. Such unit operations and additional devices are disadvantageous in terms of manufacturing costs.

また、本発明者による検討の結果、従来の前処理方法を用いたとしても、製造直後又は製造後30日程度までの陰イオン交換樹脂を用いた場合には、有機物溶出量の低減効果に限界があることが明らかとなってきた。すなわち、製造直後から30日程度経過した、あるいは30日経過以前の陰イオン交換樹脂に対して、上記文献に記載される前処理方法を用いて有機物溶出量低減させたとしても、必ずしも目的とする充分なレベルまで有機物溶出量を低減できない場合があることが判明した。   In addition, as a result of the study by the present inventor, even if the conventional pretreatment method is used, when an anion exchange resin is used immediately after production or up to about 30 days after production, the effect of reducing the organic substance elution amount is limited. It has become clear that there is. That is, even if the amount of organic matter elution is reduced by using the pretreatment method described in the above document for an anion exchange resin that has passed about 30 days after the production or before the passage of 30 days, it is not necessarily intended. It has been found that the organic elution amount may not be reduced to a sufficient level.

そこで、上記知見に基づき更なる検討を重ねた結果、意外にも、製造後の陰イオン交換樹脂を密閉状態にて一定時間保存することでエージングした後に、超純水で洗浄するという簡便な処理を行うだけで、確実に有機物溶出量を一定レベルまで低減できること、及びこの低減効果は、特に陰イオン交換樹脂において顕著であることを見出し、本発明を完成するに到った。   Therefore, as a result of further investigation based on the above findings, surprisingly, a simple process of washing with ultrapure water after aging by storing the anion exchange resin after production in a sealed state for a certain period of time. It has been found that the amount of organic substance elution can be reliably reduced to a certain level simply by carrying out the above, and that this reduction effect is particularly remarkable in anion exchange resins, and the present invention has been completed.

すなわち、本発明は、陰イオン交換樹脂を密閉状態で保存することによりエージングし、該エージング後の陰イオン交換樹脂を超純水で洗浄することを含む、陰イオン交換樹脂における有機物溶出量の低減方法に関する。   That is, the present invention includes aging by storing the anion exchange resin in a sealed state, and washing the anion exchange resin after the aging with ultrapure water, thereby reducing the amount of organic matter eluted in the anion exchange resin. Regarding the method.

また、本発明は、陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄した際のΔTOCが20ppb以下となる、陰イオン交換樹脂に関する。 In the present invention, the anion exchange resin is immersed in ultrapure water twice as much as the anion exchange resin for 3 days, and then the empty column is used using ultrapure water that is 10 times the amount of the anion exchange resin. The present invention relates to an anion exchange resin having a ΔTOC of 20 ppb or less when washed at a speed of 20 h −1 .

更に、本発明は、有機物溶出量が一定レベルまで低減した陰イオン交換樹脂を用いた超純水の製造方法に関する。   Furthermore, the present invention relates to a method for producing ultrapure water using an anion exchange resin having an organic substance elution amount reduced to a certain level.

本発明の陰イオン交換樹脂における有機物溶出量の低減方法は、陰イオン交換樹脂を製造した後、まず、密閉状態で保存することによりエージングし、次いで超純水を用いて洗浄するだけでよいので、追加の装置・単位操作を必要とせず、生産効率の点において極めて優れた方法である。   The method for reducing the amount of organic matter elution in the anion exchange resin of the present invention is that after the anion exchange resin is produced, it is first aged by storing it in a sealed state and then washed with ultrapure water. It is an extremely superior method in terms of production efficiency without requiring additional equipment and unit operations.

また、かかる有機物溶出量の低減方法により処理された陰イオン交換樹脂は、有機物の溶出量が確実に一定量以下になっている。このように、本発明によれば、優れた性能を有し、且つ均質である陰イオン交換樹脂を確実に製造することが可能となり、陰イオン交換樹脂におけるロット間のばらつき等の問題を解消することができる。更にまた、この有機物溶出量が少なく、且つ均質な陰イオン交換樹脂を水処理システムに用いることで、得られる超純水の水質も高純度且つ均質となる。   In addition, in the anion exchange resin treated by the method for reducing the organic substance elution amount, the organic substance elution amount is surely below a certain amount. As described above, according to the present invention, it is possible to reliably produce an anion exchange resin that has excellent performance and is homogeneous, and solves problems such as lot-to-lot variations in the anion exchange resin. be able to. Furthermore, the quality of the ultrapure water obtained is high-purity and homogeneous by using a homogeneous anion exchange resin with a small organic substance elution amount in the water treatment system.

上記のとおり、本発明における陰イオン交換樹脂から溶出する有機物の量を低減させる方法は、(1)陰イオン交換樹脂を密閉状態で保存することによりエージングする工程、及び(2)該エージング後の陰イオン交換樹脂を超純水で洗浄する工程を含んでいる。   As described above, the method for reducing the amount of the organic substance eluted from the anion exchange resin in the present invention includes (1) a step of aging by storing the anion exchange resin in a sealed state, and (2) after the aging. A step of washing the anion exchange resin with ultrapure water.

陰イオン交換樹脂のエージングは、密閉状態にて、陰イオン交換樹脂を一定時間保存することにより行われる。ここで、密閉状態とは、製造後の陰イオン交換樹脂と外部空気との接触を防止できる状態であればよく、特定の環境・雰囲気(例えば、窒素雰囲気)下で陰イオン交換樹脂を正確に管理し保存できるような厳密な密閉状態にする必要はない。また、エージングのために、陰イオン交換樹脂を密閉状態で保存する方法についても、特に制限はない。例えば、製造後の陰イオン交換樹脂を袋又は容器内に収容して保存すればよく、より具体的には、陰イオン交換樹脂をポリエチレン又はポリプロピレン等のプラスチック製袋に封入し、その袋口をゴム紐等で閉じ、紙製ドラム等の内部に入れて保管する等の方法が挙げられる。   The aging of the anion exchange resin is performed by storing the anion exchange resin for a certain time in a sealed state. Here, the sealed state may be any state that can prevent contact between the anion exchange resin after production and external air, and the anion exchange resin can be accurately used under a specific environment / atmosphere (for example, nitrogen atmosphere). There is no need for a tight seal that can be managed and stored. Moreover, there is no restriction | limiting in particular also about the method of preserve | saving an anion exchange resin in a sealed state for aging. For example, the manufactured anion exchange resin may be stored in a bag or container, and more specifically, the anion exchange resin is sealed in a plastic bag such as polyethylene or polypropylene, and the bag mouth is opened. For example, it may be closed with a rubber string and stored in a paper drum or the like.

ここで、製造後の陰イオン交換樹脂を袋や容器に入れ、更にドラムなどの各種形態に梱包し、これを次工程である前処理工程(有機物溶出量の低減工程)で使用するという一連の操作は、従来から行われている。一方、本発明においても、製造後の陰イオン交換樹脂を袋又は容器内に収容して保管するのであるが、上述の通り、本発明においては、かかる密閉状態にした陰イオン交換樹脂を所定時間保存することで、陰イオン交換樹脂のエージングを行い、有機物の溶出量が確実に一定量以下となるようにしている。したがって、本発明においては、かかるエージングの後に、従来技術において記載されるような前処理工程(有機物溶出量の低減工程)を経る必要がなく、水溶性有機溶媒での洗浄のような追加の単位操作や、アルカリ溶液中での加熱処理を行うための追加の装置が不要となる。   Here, the anion exchange resin after production is put in a bag or a container, and further packed in various forms such as a drum, and used in a pretreatment process (reduction process of organic matter elution amount) which is the next process. The operation has been performed conventionally. On the other hand, also in the present invention, the manufactured anion exchange resin is accommodated and stored in a bag or a container. As described above, in the present invention, the sealed anion exchange resin is kept for a predetermined time. By storing it, the anion exchange resin is aged to ensure that the amount of organic matter eluted is below a certain level. Therefore, in the present invention, after such aging, it is not necessary to go through a pretreatment step (step of reducing the amount of organic matter elution) as described in the prior art, and an additional unit such as washing with a water-soluble organic solvent. There is no need for additional equipment for operation or heat treatment in an alkaline solution.

また、本発明においては、空気中に存在する炭酸ガス(CO2)の吸収防止、及び製造効率の観点から、陰イオン交換樹脂を製造後、直ちに袋又は容器内に収容し密閉状態にて保存することが好ましい。具体的には、陰イオン交換樹脂製造装置における陰イオン交換樹脂の製造工程が完了し、該装置からベルトコンベア等で搬出された製造直後の陰イオン交換樹脂を、袋又は容器内に収容して保存することが好ましい。 Further, in the present invention, from the viewpoint of preventing absorption of carbon dioxide (CO 2 ) present in the air and manufacturing efficiency, the anion exchange resin is immediately stored in a bag or container after being manufactured and stored in a sealed state. It is preferable to do. Specifically, the anion exchange resin production process in the anion exchange resin production apparatus is completed, and the anion exchange resin immediately after production carried out from the apparatus by a belt conveyor or the like is contained in a bag or a container. It is preferable to preserve.

本発明の有機物溶出量低減方法においては、陰イオン交換樹脂のエージングのために、陰イオン交換樹脂を一定時間保存する必要がある。ここで、陰イオン交換樹脂の保存時間を長くすることで有機物溶出量をより低減させることが可能となるため、この陰イオン交換樹脂の保存時間は、目的とする有機物溶出量の低減レベルに応じて適宜設定すればよい。   In the organic matter elution amount reduction method of the present invention, it is necessary to store the anion exchange resin for a certain period of time in order to age the anion exchange resin. Here, since it becomes possible to further reduce the organic substance elution amount by extending the storage time of the anion exchange resin, the storage time of this anion exchange resin depends on the reduction level of the target organic substance elution amount. May be set as appropriate.

また、陰イオン交換樹脂のエージングによる効果は、保存時における陰イオン交換樹脂の温度を変化させることでも制御できる。すなわち、保存時における陰イオン交換樹脂の温度が高い場合には、陰イオン交換樹脂の保存時間が短くても有機物溶出量の低減効果は大きくなる。   The effect of aging of the anion exchange resin can also be controlled by changing the temperature of the anion exchange resin during storage. That is, when the temperature of the anion exchange resin at the time of storage is high, the effect of reducing the organic substance elution amount is increased even if the storage time of the anion exchange resin is short.

このように、陰イオン交換樹脂のエージング時間(保存時間)を一概に定めることはできず、また、エージングの際の条件である保存時間及び保存温度範囲の関係も有機物溶出量の低減レベルによって変化する。ただし、一般的には、エージング後の陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄した際のΔTOCが20ppb以下となるように、陰イオン交換樹脂の保存時間及び保存温度を設定し、陰イオン交換樹脂のエージングを行うことが好ましい。 As described above, the aging time (storage time) of the anion exchange resin cannot be determined in general, and the relationship between the storage time and the storage temperature range, which are the aging conditions, also changes depending on the reduction level of the organic matter elution amount. To do. However, in general, the anion exchange resin after aging is immersed in ultrapure water twice as much as the anion exchange resin for 3 days, and then ultrapure water that is 10 times the amount of the anion exchange resin. It is preferable to set the storage time and storage temperature of the anion exchange resin and perform aging of the anion exchange resin so that ΔTOC when washed at a superficial velocity of 20 h −1 is 20 ppb or less.

ここで、「ΔTOC」とは、陰イオン交換樹脂における有機物溶出量低減レベルを評価するために測定される値であり、イオン交換樹脂に被処理水を通水することによって、イオン交換樹脂から溶出し処理水へ加味されるTOCの量を表している。すなわち、イオン交換樹脂を充填したカラムに被処理水を通水した場合、カラム出口から得られる処理後の水のTOCから、カラムに導入される前の被処理水のTOCを差し引くことで、ΔTOCを測定することができる。なお、被処理水及び処理水のTOCを同時刻に測定することは困難であり、また重要ではないため、事前に測定したカラムに導入前の被処理水のTOCを、カラム出口から得られる処理水のTOCから差し引いても差し支えない。   Here, “ΔTOC” is a value measured in order to evaluate the organic substance elution amount reduction level in the anion exchange resin, and is eluted from the ion exchange resin by passing water to be treated through the ion exchange resin. This represents the amount of TOC added to the treated water. That is, when water to be treated is passed through a column filled with an ion exchange resin, ΔTOC is obtained by subtracting the TOC of water to be treated before being introduced into the column from the TOC of water after treatment obtained from the column outlet. Can be measured. In addition, since it is difficult and unimportant to measure the to-be-treated water and the TOC of the treated water at the same time, the TOC of the to-be-treated water before introduction into the column measured in advance is obtained from the column outlet. It can be subtracted from the water TOC.

被処理水及び処理水のTOCは、当業界において既知であり入手可能な装置により求めることが可能であり、例えば、IONICS社製SIEVERS810やANATEL社製A1000等のTOC計により測定することができる。具体的には、被処理水及び処理水を適宜、回分式又は連続式にサンプリングし、TOC計で測定を行う。連続式の場合には、カラムの前後の配管から導管を分岐し、被処理水及び処理水をTOC計へ導入し、TOCの測定を行う。測定原理についてはTOC計により異なり、同一の被処理水または処理水を測定して得られるTOC値は、異なるTOC計間で必ずしも一致しないという場合もある。従って、ΔTOCの測定は、同一のTOC計を用いて測定した被処理水及び処理水のTOC値から求めることが好ましい。 The to-be-treated water and the TOC of the treated water can be determined by an apparatus known and available in the art, and can be measured by a TOC meter such as SIEVERS810 manufactured by IONICS or A1000 manufactured by ANATEL. Specifically, the water to be treated and the treated water are appropriately sampled batchwise or continuously, and measured with a TOC meter. In the case of the continuous type, the pipe is branched from the pipes before and after the column, the water to be treated and the treated water are introduced into the TOC meter, and the TOC is measured. The measurement principle differs depending on the TOC meter, and the TOC value obtained by measuring the same treated water or treated water may not always match between different TOC meters. Therefore, it is preferable to obtain ΔTOC from the TOC values of the water to be treated and the treated water measured using the same TOC meter.

また、上記した「陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄する」という陰イオン交換樹脂の処理条件は、本発明におけるΔTOC測定の際に使用する共通の条件とする。その理由は、ΔTOC測定における陰イオン交換樹脂の処理条件は、得られるΔTOC値と密接に関係するからである。すなわち、陰イオン交換樹脂の浸漬時に接触させる超純水の量及び接触させる時間、並びに陰イオン交換樹脂の洗浄時に接触させる超純水の量及び空塔速度によって、得られるΔTOCは変化する。一般的には、陰イオン交換樹脂の浸漬時に接触させる超純水の量及び接触させる時間を増加させると、ΔTOC値は減少する。また、陰イオン交換樹脂の洗浄時に接触させる超純水の量及び空塔速度を増加させる場合も、ΔTOC値は減少する。したがって、上記した陰イオン交換樹脂の処理条件がΔTOC測定のための唯一の条件でなく、異なる条件で陰イオン交換樹脂の処理を行ってΔTOCを測定してもよいが、陰イオン交換樹脂間における有機物溶出低減効果を判別するためには、同一の陰イオン交換樹脂の処理条件下でΔTOCを測定し、得られたΔTOC値を直接比較する必要がある。なお、上記処理条件において使用される超純水としては、比抵抗が1MΩ・cm以上、及びTOCが20ppb以下のものであれば差し支えないが、比抵抗が18MΩ・cm以上、及びTOCが4ppb以下の超純水が好ましい。 In addition, the above-described “anion exchange resin is immersed in ultrapure water twice as much as the anion exchange resin for 3 days, and then the superficial water is used 10 times the amount of the anion exchange resin. The treatment condition of the anion exchange resin “wash with 20 h −1 ” is a common condition used in the ΔTOC measurement in the present invention. The reason is that the processing conditions of the anion exchange resin in the ΔTOC measurement are closely related to the obtained ΔTOC value. That is, the obtained ΔTOC varies depending on the amount and time of ultrapure water that is contacted when the anion exchange resin is immersed, and the amount and superficial speed of the ultrapure water that is contacted when the anion exchange resin is washed. In general, when the amount of ultrapure water to be contacted at the time of immersion of the anion exchange resin and the contact time are increased, the ΔTOC value decreases. Also, the ΔTOC value decreases when the amount of ultrapure water and the superficial velocity brought into contact with each other during washing of the anion exchange resin are increased. Therefore, the above-described anion exchange resin treatment conditions are not the only conditions for ΔTOC measurement, and the anion exchange resin may be treated under different conditions to measure ΔTOC. In order to determine the organic substance elution reduction effect, it is necessary to measure ΔTOC under the same anion exchange resin processing conditions and directly compare the obtained ΔTOC values. The ultrapure water used in the above treatment conditions is not limited as long as the specific resistance is 1 MΩ · cm or more and the TOC is 20 ppb or less, but the specific resistance is 18 MΩ · cm or more and the TOC is 4 ppb or less. Of these, ultrapure water is preferred.

なお、以下の保存温度範囲及び保存時間に限定される訳ではないが、上記処理条件下、つまり、陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄した場合において、ΔTOCを20ppb以下とするには、陰イオン交換樹脂の温度を10〜30℃とした場合、一般的に、陰イオン交換樹脂を60日以上保存することが好ましい。また、ΔTOCを15ppb以下とするためには、陰イオン交換樹脂の保存温度を10〜30℃とした場合、陰イオン交換樹脂を90日以上保存することが好ましい。 Although not limited to the following storage temperature range and storage time, the anion exchange resin is immersed in ultrapure water twice as much as the anion exchange resin for 3 days under the above treatment conditions. Then, in the case of washing at a superficial velocity of 20 h −1 using ultrapure water that is 10 times the amount of anion exchange resin, in order to make ΔTOC 20 ppb or less, the temperature of the anion exchange resin is set to 10 to 30 ° C. In general, it is preferable to store the anion exchange resin for 60 days or longer. Moreover, in order to make (DELTA) TOC 15ppb or less, when the storage temperature of an anion exchange resin shall be 10-30 degreeC, it is preferable to preserve | save an anion exchange resin for 90 days or more.

上述の通り、保存時間を長くすることで有機物溶出量をより低減させることが可能となるが、陰イオン交換樹脂の保存温度を10〜30℃とした場合、90日以上保存しても低減効果に大きな差は見られない。また、空気中の酸素を起因とする陰イオン交換樹脂の酸化劣化の促進や、陰イオン交換樹脂の空気中の炭酸ガスの吸収等の悪影響も生じるため、陰イオン交換樹脂の保存時間は2年以下とすることが好ましく、より好ましくは1年、最も好ましくは6ヶ月である。   As described above, it is possible to further reduce the elution amount of organic matter by increasing the storage time. However, when the storage temperature of the anion exchange resin is set to 10 to 30 ° C., the effect of reducing even if stored for 90 days or more There is no big difference. In addition, the anion exchange resin has a storage time of 2 years because it causes adverse effects such as oxidative degradation of the anion exchange resin due to oxygen in the air and absorption of carbon dioxide in the air of the anion exchange resin. Preferably, it is 1 year, most preferably 6 months.

また、保存時における陰イオン交換樹脂の温度を40℃以上にした場合には、陰イオン交換樹脂を10日以上保存することで、20ppb以下のΔTOCにすることができる。ただし、保存時における陰イオン交換樹脂の温度が高くなりすぎると、陰イオン交換樹脂の熱分解が促進される場合がある。陰イオン交換樹脂の種類及びイオン形により、好ましい上限温度は異なるが、例えば、後述する陰イオン交換樹脂の中で、スチレンモノマーとジビニルベンゼンモノマーとから構成される架橋共重合体に、クロロメチルメチルエーテル等を反応させて得られるハロアルキル基を有する架橋共重合体に、トリメチルアミンを反応させて得られる、トリメチルアンモニウム基を有する陰イオン交換樹脂(イオン形が水酸化物イオン形)を用いた場合には、60℃以下で保存することが好ましい。なお、陰イオン交換樹脂の温度を40℃以上にした場合における保存時間の上限については、保存温度を10〜30℃とした場合と同様であり、陰イオン交換樹脂の酸化劣化の促進及び空気中の炭酸ガス吸収の観点から、好ましくは2年以下、より好ましくは1年、最も好ましくは6ヶ月である。   Moreover, when the temperature of the anion exchange resin at the time of preservation | save is 40 degreeC or more, it can be set as (DELTA) TOC of 20 ppb or less by storing an anion exchange resin for 10 days or more. However, if the temperature of the anion exchange resin during storage becomes too high, thermal decomposition of the anion exchange resin may be promoted. The preferred maximum temperature varies depending on the type and ion form of the anion exchange resin. For example, among the anion exchange resins described later, a crosslinked copolymer composed of a styrene monomer and a divinylbenzene monomer is added to chloromethylmethyl. When an anion exchange resin having a trimethylammonium group (ion form is hydroxide ion form) obtained by reacting trimethylamine with a crosslinked copolymer having a haloalkyl group obtained by reacting ether or the like is used. Is preferably stored at 60 ° C. or lower. The upper limit of the storage time when the temperature of the anion exchange resin is 40 ° C. or higher is the same as that when the storage temperature is 10 to 30 ° C., and promotes oxidative deterioration of the anion exchange resin and in the air. From the viewpoint of absorption of carbon dioxide gas, it is preferably 2 years or less, more preferably 1 year, and most preferably 6 months.

次に、本発明の方法において陰イオン交換樹脂の洗浄に使用される超純水について説明する。本発明で使用可能な「超純水」については、「純水」と明確に区別する必要はない。上述のΔTOC測定における陰イオン交換樹脂の処理と同じく、比抵抗が1MΩ・cm以上、及びTOCが20ppb以下のものであれば使用可能であり、好ましくは、比抵抗が18MΩ・cm以上、及びTOCが4ppb以下の超純水を用いて、エージング後の陰イオン交換樹脂の洗浄を行う。   Next, ultrapure water used for cleaning an anion exchange resin in the method of the present invention will be described. “Ultra pure water” usable in the present invention does not need to be clearly distinguished from “pure water”. Similar to the treatment of the anion exchange resin in the above ΔTOC measurement, it can be used if the specific resistance is 1 MΩ · cm or more and the TOC is 20 ppb or less, preferably the specific resistance is 18 MΩ · cm or more, and the TOC. The anion exchange resin after aging is washed using ultrapure water of 4 ppb or less.

また、超純水による洗浄方法としては、特に制限はなく、超純水の流量、温度等についても通常の条件に従い適宜選択することができる。具体的には、上述のΔTOC測定の際における陰イオン交換樹脂の処理条件と同様に、まず陰イオン交換樹脂を超純水に浸漬し、次いで超純水で洗浄する方法が挙げられる。   Moreover, there is no restriction | limiting in particular as a washing | cleaning method by an ultrapure water, According to normal conditions, it can select suitably also about the flow volume, temperature, etc. of an ultrapure water. Specifically, a method of first immersing the anion exchange resin in ultrapure water and then washing with ultrapure water is the same as the treatment conditions of the anion exchange resin in the above-described ΔTOC measurement.

上述のように、従来は、イオン交換樹脂を一定時間保存すると有機物溶出量は増加し、ΔTOCの小さいイオン交換樹脂は得られ難くなると考えられており、また、イオン交換樹脂を単に超純水を用いて洗浄するだけでは、有機物の溶出量を充分に低減できないという理解が一般的であった。   As described above, conventionally, it has been considered that when an ion exchange resin is stored for a certain period of time, the amount of organic substance elution increases, and it becomes difficult to obtain an ion exchange resin having a small ΔTOC. It has been generally understood that the amount of organic substances eluted cannot be reduced sufficiently by simply washing with the use.

これに対して本発明は、陰イオン交換樹脂をまず密閉状態にて一定時間保存することで陰イオン交換樹脂のエージングを行うことが、陰イオン交換樹脂からの有機物溶出量を確実に低減させる上で有効であるとの知見に基づいている。そして、陰イオン交換樹脂を所定条件でエージングした後であれば、その後、超純水による洗浄という処理だけでも、ΔTOCが非常に小さい陰イオン交換樹脂が得られることを見出した。   In contrast, in the present invention, the aging of the anion exchange resin is performed by first storing the anion exchange resin in a sealed state for a certain period of time, thereby reliably reducing the amount of organic matter eluted from the anion exchange resin. It is based on the knowledge that it is effective. Then, after aging the anion exchange resin under a predetermined condition, it was found that an anion exchange resin having a very small ΔTOC can be obtained only by a process of washing with ultrapure water.

すなわち、本発明においては、かかるエージングによる効果により、陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄するという処理を行うだけでも、ΔTOCが20ppb以下、好ましくは15ppb以下である陰イオン交換樹脂を製造することが可能となる。かかる超純水による浸漬・洗浄という処理のみにより、ΔTOCが20ppb以下、好ましくは15ppb以下となる陰イオン交換樹脂は、これまで存在しなかった。 That is, in the present invention, due to the effect of aging, the anion exchange resin is immersed in ultrapure water twice as much as the anion exchange resin for 3 days, and then 10 times the amount of the anion exchange resin. It is possible to produce an anion exchange resin having a ΔTOC of 20 ppb or less, preferably 15 ppb or less simply by performing a process of washing at a superficial velocity of 20 h −1 using ultrapure water. Until now, there has been no anion exchange resin having a ΔTOC of 20 ppb or less, preferably 15 ppb or less, only by such treatment of immersion and washing with ultrapure water.

続いて、本発明において使用可能な陰イオン交換樹脂について説明する。陰イオン交換樹脂としては、特に制限はなく、例えば(1)モノビニル芳香族モノマーとポリビニル芳香族モノマーとから構成される架橋共重合体に、クロロメチルメチルエーテル等を反応させて得られるハロアルキル基を有する架橋共重合体、又は(2)ハロアルキルスチレンとポリビニル芳香族モノマーとから構成される架橋共重合体に、アミン等の求核性物質を反応させて得られる、トリメチルアンモニウム基、ジメチルエタノールアンモニウム基等の四級アンモニウム基、若しくはジメチルアミン基等の三級アミン基などの官能基を有するイオン交換樹脂を挙げることができる。また、架橋共重合体に含まれるポリビニル芳香族モノマーの含有量、及び架橋共重合体に反応させる官能基の量についても、特に制限はない。更に、陰イオン交換樹脂のイオン形についても、塩化物イオン形、炭酸イオン形、水酸化物イオン形の何れでもよく、これらに限定される訳でもない。また、陰イオン交換樹脂の大きさについても、特に制限はなく、具体的には、平均粒径(体積基準中央値)(Volume Median Diameter)が590±50μmであって、均一係数(Uniformity Coefficient)が1.1以下であるものが例示できる。   Next, anion exchange resins that can be used in the present invention will be described. The anion exchange resin is not particularly limited. For example, (1) a haloalkyl group obtained by reacting a crosslinked copolymer composed of a monovinyl aromatic monomer and a polyvinyl aromatic monomer with chloromethyl methyl ether or the like is used. Or (2) a trimethylammonium group or a dimethylethanolammonium group obtained by reacting a nucleophilic substance such as an amine with a crosslinked copolymer composed of a haloalkylstyrene and a polyvinyl aromatic monomer. An ion exchange resin having a functional group such as a quaternary ammonium group such as dimethylamine group or a tertiary amine group such as dimethylamine group. Moreover, there is no restriction | limiting in particular also about the content of the polyvinyl aromatic monomer contained in a crosslinked copolymer, and the quantity of the functional group made to react with a crosslinked copolymer. Further, the ion form of the anion exchange resin may be any of chloride ion form, carbonate ion form and hydroxide ion form, and is not limited thereto. Further, the size of the anion exchange resin is not particularly limited, and specifically, the average particle diameter (volume median value) (Volume Median Diameter) is 590 ± 50 μm, and the uniformity coefficient (Uniformity Coefficient). Is 1.1 or less.

具体的な陰イオン交換樹脂の例としては、ザ・ダウ・ケミカル・カンパニー製、ダウエックス(ザ・ダウ・ケミカル・カンパニー商標)モノスフィアー(ザ・ダウ・ケミカル・カンパニー商標)550A UPW(OH)が挙げられる。   As an example of a specific anion exchange resin, manufactured by The Dow Chemical Company, Dowex (Trademark of The Dow Chemical Company) Monosphere (Trademark of The Dow Chemical Company) 550A UPW (OH) Is mentioned.

本発明の有機物溶出量低減方法を用いて得られる陰イオン交換樹脂は、単床、弱塩基性及び強塩基性陰イオン交換樹脂との組合せによる複層床、又は陽イオン交換樹脂との混床などの形態で、樹脂塔(通常は円筒状容器)に充填され、限外ろ過膜・逆浸透膜・紫外線照射装置等その他の水処理システム構成部材と共に組み合わせて、超純水の製造に使用される。具体的水処理システム構成、及び樹脂塔の大きさは様々であり、従来より知られている方法に従えばよい。また、ユースポイントに近いイオン交換樹脂は非再生運用されるのが通常であるが、本発明における陰イオン交換樹脂についても、再生運用、非再生運用のいずれも可能である。更に、陰イオン交換樹脂の再生方式についても特に制限はない。   The anion exchange resin obtained by using the organic matter elution amount reducing method of the present invention is a single bed, a multi-layer bed in combination with weakly basic and strong basic anion exchange resins, or a mixed bed with cation exchange resins. In such a form, it is packed in a resin tower (usually a cylindrical container) and combined with other water treatment system components such as ultrafiltration membranes, reverse osmosis membranes, ultraviolet irradiation devices, etc., and used for the production of ultrapure water. The The specific water treatment system configuration and the size of the resin tower are various, and a conventionally known method may be followed. In addition, the ion exchange resin close to the use point is normally non-regenerated, but the anion exchange resin in the present invention can be either regenerated or not regenerated. Furthermore, there are no particular restrictions on the method for regenerating the anion exchange resin.

本発明の有機物溶出量低減方法を用いて得られる陰イオン交換樹脂によって製造された超純水は、主に半導体・液晶などに代表される電子産業にて使用されるが、食品産業など不純物を更に低減することが求められる用途にも使用できる。   The ultrapure water produced by the anion exchange resin obtained by using the organic matter elution reduction method of the present invention is mainly used in the electronics industry represented by semiconductors and liquid crystals, but it does not remove impurities in the food industry. It can also be used for applications that require further reduction.

2種類(サンプル1、サンプル2)の製造直後の陰イオン交換樹脂(ザ・ダウ・ケミカル・カンパニー製、ダウエックス(ザ・ダウ・ケミカル・カンパニー商標)モノスフィアー(ザ・ダウ・ケミカル・カンパニー商標)550A UPW(OH))をポリエチレン製ボトルに封入し、ボトル口を専用蓋で閉じ、それぞれ表1に示す日数、温度(20−25℃)条件の下、密閉状態にて保存することでエージングした。上述の陰イオン交換樹脂処理条件に従い、エージング後のサンプル1及び2各330mLを、まず、テフロン容器中の660mLの超純水(比抵抗:18.0MΩ・cm、TOC:4.0ppb)中に、3日間浸漬した。なお、テフロン容器中の超純水は毎日取り替えた。次いで、3日間浸漬後の陰イオン交換樹脂を、カラム(内径:3cm、高さ:50cm)内に充填し、3300mLの超純水(比抵抗:18.0MΩ・cm、TOC:4.0ppb)を用い空塔速度20h−1で洗浄した。そして、処理後の陰イオン交換樹脂の有機物溶出量の低減レベルを、TOC計(IONICS社製SIEVERS 810)を用い、ΔTOCを測定することで評価した。TOC計はカラム出口から得られる処理水のTOCを連続的に測定可能なように設置されており、ΔTOCは事前に測定したカラムに導入前の被処理水のTOCを、カラム出口から得られる処理水のTOCから差し引いて求めた。得られたΔTOCの値を表1に示す。 Anion-exchange resin (manufactured by The Dow Chemical Company, Dowex (Trademark of The Dow Chemical Company) Monosphere (Trademark of The Dow Chemical Company) ) 550A UPW (OH)) is sealed in a polyethylene bottle, the bottle mouth is closed with a dedicated lid, and each is stored in a sealed state under the conditions shown in Table 1 for days and temperatures (20-25 ° C). did. In accordance with the above-described anion exchange resin treatment conditions, 330 mL of each of samples 1 and 2 after aging were first placed in 660 mL of ultrapure water (specific resistance: 18.0 MΩ · cm, TOC: 4.0 ppb) in a Teflon container. Soaked for 3 days. The ultrapure water in the Teflon container was replaced every day. Next, the anion exchange resin after immersion for 3 days was packed in a column (inner diameter: 3 cm, height: 50 cm), and 3300 mL of ultrapure water (specific resistance: 18.0 MΩ · cm, TOC: 4.0 ppb) Was washed at a superficial velocity of 20 h −1 . And the reduction level of the organic matter elution amount of the anion exchange resin after a process was evaluated by measuring (DELTA) TOC using the TOC meter (SIEVERS 810 by IONICS). The TOC meter is installed so that the TOC of the treated water obtained from the column outlet can be continuously measured, and ΔTOC is the treatment obtained from the column outlet of the TOC of the treated water before introduction into the column measured in advance. Obtained by subtracting from the TOC of water. The obtained ΔTOC values are shown in Table 1.

本発明の方法によれば、製造直後の陰イオン交換樹脂を、まず密閉状態で保存することによりエージングするため、その後に、従来では効果が充分でないとされていた超純水による洗浄という処理を行うだけでも、陰イオン交換樹脂からの有機物溶出量を確実に一定量以下にすることが可能となる。また、陰イオン交換樹脂からの有機物溶出量を確実に一定量以下にすることができるため、陰イオン交換樹脂におけるロット間のバラツキに伴う問題を回避できる。したがって、本発明の方法により得られる、有機物溶出量が少なく且つ均質な陰イオン交換樹脂を水処理システムに用いることで、高純度且つ均質な超純水を安定して得ることができ、電子産業等の分野において広く使用することが可能となる。   According to the method of the present invention, the anion exchange resin immediately after production is aged by first storing it in a hermetically sealed state, and thereafter, a process of washing with ultrapure water, which has been conventionally considered to be insufficient in effect, is performed. It is possible to reliably reduce the amount of organic matter eluted from the anion exchange resin to a certain amount or less simply by carrying out. In addition, since the amount of organic matter eluted from the anion exchange resin can be surely kept below a certain level, problems associated with lot-to-lot variations in the anion exchange resin can be avoided. Therefore, by using a homogeneous anion exchange resin with a small amount of organic matter elution obtained by the method of the present invention in a water treatment system, highly pure and homogeneous ultrapure water can be stably obtained, and the electronic industry Can be widely used in such fields.

更に、本発明の方法によれば、有機物溶出量を低減させるために、水溶性有機溶媒での洗浄のような単位操作や、アルカリ溶液中での加熱処理を行うための追加の装置を設ける必要がないので、製造効率・コストの点において非常に有利となる。
Furthermore, according to the method of the present invention, it is necessary to provide an additional apparatus for performing unit operations such as washing with a water-soluble organic solvent and heat treatment in an alkaline solution in order to reduce the amount of organic matter eluted. This is very advantageous in terms of manufacturing efficiency and cost.

Claims (5)

陰イオン交換樹脂を密閉状態で保存することによりエージングし、該エージング後の陰イオン交換樹脂を超純水で洗浄することを含む、陰イオン交換樹脂における有機物溶出量の低減方法。   A method for reducing an organic substance elution amount in an anion exchange resin, comprising aging the anion exchange resin by storing it in a sealed state and washing the anion exchange resin after the aging with ultrapure water. 請求項1に記載の方法により処理された、陰イオン交換樹脂。   An anion exchange resin treated by the method according to claim 1. 陰イオン交換樹脂を、陰イオン交換樹脂の2倍量の超純水中に3日間浸漬し、次いで、陰イオン交換樹脂量の10倍量の超純水を用い空塔速度20h−1で洗浄した際のΔTOCが20ppb以下となる、陰イオン交換樹脂。 The anion exchange resin is immersed in ultrapure water twice as much as the anion exchange resin for 3 days, and then washed with ultrapure water that is 10 times the amount of the anion exchange resin at a superficial velocity of 20 h −1 . An anion exchange resin having a ΔTOC of 20 ppb or less. 請求項2記載の陰イオン交換樹脂に被処理水を接触させることを含む、超純水の製造方法。   A method for producing ultrapure water, comprising bringing treated water into contact with the anion exchange resin according to claim 2. 請求項3記載の陰イオン交換樹脂を用いる、超純水の製造方法。   The manufacturing method of ultrapure water using the anion exchange resin of Claim 3.
JP2005273102A 2005-09-21 2005-09-21 Method for reducing elution of organic material from anion exchange resin Pending JP2007083132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273102A JP2007083132A (en) 2005-09-21 2005-09-21 Method for reducing elution of organic material from anion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273102A JP2007083132A (en) 2005-09-21 2005-09-21 Method for reducing elution of organic material from anion exchange resin

Publications (1)

Publication Number Publication Date
JP2007083132A true JP2007083132A (en) 2007-04-05

Family

ID=37970655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273102A Pending JP2007083132A (en) 2005-09-21 2005-09-21 Method for reducing elution of organic material from anion exchange resin

Country Status (1)

Country Link
JP (1) JP2007083132A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060827A1 (en) * 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
JP2011200814A (en) * 2010-03-26 2011-10-13 Kurita Water Ind Ltd Method for replacing ion-exchange device
KR20120039524A (en) * 2009-06-30 2012-04-25 쿠리타 고교 가부시키가이샤 Ion-exchange device, process and equipment for producing same, and method and device for forming ion-exchange resin layer
JP2017159212A (en) * 2016-03-08 2017-09-14 栗田工業株式会社 Method for producing pure water for boiler feed water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007261A (en) * 2003-06-18 2005-01-13 Renesas Technology Corp Ion exchange method and ion exchange system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007261A (en) * 2003-06-18 2005-01-13 Renesas Technology Corp Ion exchange method and ion exchange system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060827A1 (en) * 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
KR20120039524A (en) * 2009-06-30 2012-04-25 쿠리타 고교 가부시키가이샤 Ion-exchange device, process and equipment for producing same, and method and device for forming ion-exchange resin layer
KR101682874B1 (en) * 2009-06-30 2016-12-06 쿠리타 고교 가부시키가이샤 Ion-exchange device, process and equipment for producing same, and method and device for forming ion-exchange resin layer
JP2011200814A (en) * 2010-03-26 2011-10-13 Kurita Water Ind Ltd Method for replacing ion-exchange device
JP2017159212A (en) * 2016-03-08 2017-09-14 栗田工業株式会社 Method for producing pure water for boiler feed water

Similar Documents

Publication Publication Date Title
JP2007083132A (en) Method for reducing elution of organic material from anion exchange resin
US9044747B2 (en) Method of regenerating ion exchange resins
US5554295A (en) Method for producing pure water
JPH0884986A (en) Method and device for production of pure water or ultrapure water
JP6298275B2 (en) Water treatment especially to obtain ultrapure water
Gönder et al. Capacity loss in an organically fouled anion exchanger
JP2007000699A (en) Production method of nitrogen gas-dissolved water
BRPI1103237A2 (en) Method of treating a fluid, particularly a drink
JPS63104696A (en) Device and method for conditioning water
JP2018096879A (en) Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measuring device for processing target material
US20210245149A1 (en) Ion Exchange resin transportation and storage
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP2019060731A5 (en)
CN111699037B (en) Method for stabilizing ion exchange resins
JP4081503B2 (en) Mixed bed type ion exchange resin
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus
JPH05138196A (en) Equipment for producing high-purity ultra pure water and method for controlling water quality
JP3867944B2 (en) Pure water production method and ultrapure water production apparatus with reduced oxidizing substances
KR100689693B1 (en) Manufacturing method of ultrapure water
TW201217275A (en) using carbon-containing substance and liquid-phase ozone as the reaction material to speed up redox reaction in waste water
JPH10111283A (en) Method for deciding capacity of ion-exchange resin, manufacture of ultrapure water using the ion-exchange resin and, manufacture of the ultrapure water
JP4406912B2 (en) Method for producing ultrapure water and ion exchange resin for producing ultrapure water used therefor
JP2954629B2 (en) Removal method of gas or low boiling volatile organic matter
Motomura Hot Ultrapure Water System
TW202026634A (en) Systems and methods for measuring composition of water

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080925

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206