JP2007080697A - Photoelectric transfer element and electron beam generator using it - Google Patents

Photoelectric transfer element and electron beam generator using it Download PDF

Info

Publication number
JP2007080697A
JP2007080697A JP2005267593A JP2005267593A JP2007080697A JP 2007080697 A JP2007080697 A JP 2007080697A JP 2005267593 A JP2005267593 A JP 2005267593A JP 2005267593 A JP2005267593 A JP 2005267593A JP 2007080697 A JP2007080697 A JP 2007080697A
Authority
JP
Japan
Prior art keywords
photocathode
electron beam
base substrate
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005267593A
Other languages
Japanese (ja)
Other versions
JP5007034B2 (en
Inventor
Hirobumi Hanaki
博文 花木
Jun Sasabe
順 佐々部
Shigeji Suzuki
重司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Japan Atomic Energy Agency
Original Assignee
Hamamatsu Photonics KK
Japan Atomic Energy Research Institute
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Japan Atomic Energy Research Institute, Japan Atomic Energy Agency filed Critical Hamamatsu Photonics KK
Priority to JP2005267593A priority Critical patent/JP5007034B2/en
Publication of JP2007080697A publication Critical patent/JP2007080697A/en
Application granted granted Critical
Publication of JP5007034B2 publication Critical patent/JP5007034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Microwave Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric element in which damage on a photoelectric face is reduced and acceleration of electron beams is facilitated, and an electron beam generator. <P>SOLUTION: The transmission type cathode plug is a photoelectric transfer element of transmission type which generates electron beams in irradiation direction of laser beams by being irradiated with laser beams, and comprises a photoelectric face base substrate 302 provided with a plurality of through holes 306 along the irradiation direction and a photoelectric face 31 which is formed along the end face on the irradiation direction side of the photoelectric face base substrate 302 so as to cover the plurality of the through holes 306. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光を電子線に変換する光電変換素子及びそれを用いた電子線発生装置に関するものである。   The present invention relates to a photoelectric conversion element that converts light into an electron beam, and an electron beam generator using the photoelectric conversion element.

従来の光電変換素子を加速器に用いた電子線発生装置では、光電面にレーザ光を照射することで高輝度な電子ビームが得られているが、この光電面は、ほとんどの場合は反射型カソード(光電面)が使用されている。このような反射型光電面を用いた電子線発生装置においては、光電面においてレーザ光の入射側の面と電子ビームの発生側の面とは同一になっている。そのため、レーザ光の光軸と電子ビームの光軸とを分離させるために、レーザ光は光電面に対して斜めに照射される。これにより、レーザ光の光電面上におけるビームパターンが楕円形になると共に、レーザ光源から光電面に到達するレーザ光の光電面上の波面に位相差が生じるため、ビームの強度及び位相の均一性が場所によって劣化する。   In an electron beam generator using a conventional photoelectric conversion element as an accelerator, a high-brightness electron beam is obtained by irradiating the photocathode with laser light. In most cases, this photocathode is a reflective cathode. (Photocathode) is used. In such an electron beam generator using a reflective photocathode, the laser beam incident side surface and the electron beam generating side surface are the same on the photocathode surface. Therefore, in order to separate the optical axis of the laser beam and the optical axis of the electron beam, the laser beam is irradiated obliquely with respect to the photocathode. As a result, the beam pattern on the photocathode of laser light becomes elliptical, and a phase difference occurs in the wavefront on the photocathode of laser light that reaches the photocathode from the laser light source. Deteriorates depending on the location.

これに対して、レーザ光の入射側の面と電子ビームの発生側の面とが反対側になっている透過型光電面を用いた電子線発生装置においては、電子ビームを光電面に対して垂直に照射することが可能となる。その結果、反射型光電面よりもレーザ光を所定範囲に照射しやすく、光電面上のビームパターンが円形になるためビームの強度及び位相の均一性を図るのが容易である。   On the other hand, in an electron beam generator using a transmission type photocathode in which the surface on the laser beam incident side and the surface on the electron beam generation side are opposite, the electron beam is directed to the photocathode. It becomes possible to irradiate vertically. As a result, it is easier to irradiate a predetermined range of laser light than the reflective photocathode, and since the beam pattern on the photocathode becomes circular, it is easy to achieve uniformity of beam intensity and phase.

このような透過型光電面に関する技術としては、下記非特許文献1記載の透過型GaAs−NEA(Negative Electron Affinity)光電面が挙げられる。この技術では、光電面の下地基板としてサファイア基板を有するものを使用し、光電面から発生する電子ビームをDC加速電界で加速するとともに液体窒素を用いて冷却することで、5〜8meVという単色性が高く、かつ数mAという電流量の大きい電子ビームを連続的に得ようと試みられている。   As a technique regarding such a transmission type photocathode, a transmission type GaAs-NEA (Negative Electron Affinity) photocathode described in Non-Patent Document 1 below can be cited. This technology uses a substrate with a sapphire substrate as the underlying substrate of the photocathode, and accelerates the electron beam generated from the photocathode with a DC acceleration electric field and cools it with liquid nitrogen, thereby allowing monochromaticity of 5-8 meV An attempt has been made to continuously obtain an electron beam having a high current amount of several mA.

図17(a)〜(c)には、上述した透過型GaAs−NEA光電面を含むカソードの構造を示す。同図に示すように、光電変換素子であるカソード902は、光電面の下地用ガラス基板であるサファイア基板903の上に透過型GaAs光電面904が製膜されており、光電面904の反対側のサファイア基板903の端面から光電面904に向かう方向Eに、レーザ光が照射される。また、この光電面904の外周側には光電面での導通性を確保するための金属層905が製膜され、この金属層905から光電面へ電荷を供給する構成となっている。図18には、上述したカソード902を用いた電子銃の構造を示す。同図の電子銃901においては、カソード902が液体窒素で冷却されるとともに、方向Eに向けてレーザ光が照射されることにより、カソード902の光電面から出射した電子ビームが引出電極906によって形成された直流電界によって加速される。
D. A. Orlov etal.、“Ultra-cold electronsource with a GaAs Photocathode”、Volume 532, Issues 1-2、11 October 2004、Pages 418-421
17A to 17C show the structure of the cathode including the above-described transmission type GaAs-NEA photocathode. As shown in the figure, a cathode 902 which is a photoelectric conversion element has a transmissive GaAs photocathode 904 formed on a sapphire substrate 903 which is a glass substrate for the photocathode, and is opposite to the photocathode 904. The laser beam is irradiated in a direction E from the end face of the sapphire substrate 903 toward the photocathode 904. In addition, a metal layer 905 for securing conductivity on the photocathode is formed on the outer peripheral side of the photocathode 904, and charges are supplied from the metal layer 905 to the photocathode. FIG. 18 shows the structure of an electron gun using the cathode 902 described above. In the electron gun 901 shown in the figure, the cathode 902 is cooled with liquid nitrogen and irradiated with laser light in the direction E, whereby an electron beam emitted from the photocathode of the cathode 902 is formed by the extraction electrode 906. Accelerated by the generated DC electric field.
DA Orlov etal., “Ultra-cold electronsource with a GaAs Photocathode”, Volume 532, Issues 1-2, 11 October 2004, Pages 418-421

ここで、より高い加速電界(例えば、100MV/m)で短パルスの電子ビームを生成する電子銃として、マイクロ波加速空洞(RF空洞)を有するRF電子銃が用いられる。しかしながら、上述したような透過型光電面をRF電子銃に使用する場合は以下のような問題があったため、これまではRF電子銃には反射型光電面のみが使用されていた。   Here, an RF electron gun having a microwave acceleration cavity (RF cavity) is used as an electron gun for generating a short pulse electron beam with a higher acceleration electric field (for example, 100 MV / m). However, when the transmission type photocathode as described above is used for the RF electron gun, there are the following problems, and so far, only the reflection type photocathode has been used for the RF electron gun.

すなわち、高い加速電界では、光電面薄膜を通じて基板に入射する逆位相電子、逆位相イオンが存在し、これらの電荷により光電面下地用ガラス基板が帯電する結果、カソードプラグ表面に誘起された電荷により、光電面表面における沿面放電や、カソードプラグ挿入孔との間における真空放電を引き起こす。特に、光電面下地用ガラス基板としてサファイア基板を用いた場合は、サファイアが二次電子放出係数が高く帯電しやすい材料であるために、この傾向が顕著である。これにより、光電面薄膜がダメージを受けやすくなるとともに、RF空洞に入力されたマイクロ波が反射するために、加速電界が十分に形成されず、電子ビームが加速できなくなるという問題がある。   That is, at a high acceleration electric field, there are anti-phase electrons and anti-phase ions incident on the substrate through the photocathode thin film. As a result of charging the glass substrate for the photocathode base by these charges, the charge induced on the cathode plug surface Causes creeping discharge on the photocathode surface and vacuum discharge between the cathode plug insertion holes. In particular, when a sapphire substrate is used as the photocathode substrate glass substrate, this tendency is remarkable because sapphire has a high secondary electron emission coefficient and is easily charged. As a result, the photocathode thin film is liable to be damaged, and the microwave input to the RF cavity is reflected, so that an accelerating electric field is not sufficiently formed and the electron beam cannot be accelerated.

そこで、本発明は、かかる課題に鑑みて為されたものであり、光電面におけるダメージを低減するとともに、電子ビームの加速を容易にする光電変換素子、及びこれを用いた電子線発生装置を提供することを目的とする。   Accordingly, the present invention has been made in view of such problems, and provides a photoelectric conversion element that reduces damage on the photocathode and facilitates acceleration of an electron beam, and an electron beam generator using the photoelectric conversion element. The purpose is to do.

上記課題を解決するため、本発明の光電変換素子は、レーザ光を照射されてレーザ光の照射方向に電子ビームを発生させる透過型の光電変換素子であって、照射方向に沿って複数の貫通孔が設けられたキャピラリー基板と、キャピラリー基板の照射方向側の端面に沿って、複数の貫通孔を覆うように形成された光電面とを備える。   In order to solve the above problems, a photoelectric conversion element of the present invention is a transmissive photoelectric conversion element that emits an electron beam in the irradiation direction of laser light when irradiated with laser light, and has a plurality of penetrations along the irradiation direction. A capillary substrate provided with holes, and a photocathode formed so as to cover the plurality of through holes along the end surface of the capillary substrate on the irradiation direction side.

このような光電変換素子によれば、キャピラリー基板の貫通孔を通過してレーザ光が光電面に照射され、光電面からキャピラリー基板の反対側に電子ビームを発生させる。このとき、逆位相電子、逆位相イオン等の荷電粒子が光電面に戻ってきても、光電面及び貫通孔を通過することで、光電面及び基板を帯電させにくくなるので、帯電に起因する光電面におけるダメージを低減し、加速電界を形成しやすくして電子ビームを容易に加速させることができる。   According to such a photoelectric conversion element, the photocathode is irradiated with laser light through the through hole of the capillary substrate, and an electron beam is generated from the photocathode to the opposite side of the capillary substrate. At this time, even if charged particles such as antiphase electrons and antiphase ions return to the photocathode, they pass through the photocathode and the through-hole, so that it becomes difficult to charge the photocathode and the substrate. The electron beam can be easily accelerated by reducing the damage on the surface and facilitating the formation of an accelerating electric field.

また、複数の貫通孔は、端面に沿って2次元的に配列されていることが好ましい。かかる貫通孔を備えれば、光電面の全面において帯電を効果的に防止することができる。   The plurality of through holes are preferably arranged two-dimensionally along the end surface. If such a through hole is provided, charging can be effectively prevented over the entire surface of the photocathode.

また、キャピラリー基板と光電面との間において、複数の貫通孔を覆うように光電面に沿って形成された金属膜を更に備えることも好ましい。この場合、金属膜から光電面に対して短い距離で電荷を供給することができる。その結果、光電面から短パルスの電子ビームを発生させる場合であっても、光電面の面抵抗による応答性の劣化を防止すると共に、放射できる電子数を十分確保することができる。   It is also preferable to further include a metal film formed along the photocathode so as to cover the plurality of through holes between the capillary substrate and the photocathode. In this case, charges can be supplied from the metal film at a short distance from the photocathode. As a result, even when a short-pulse electron beam is generated from the photocathode, it is possible to prevent deterioration of responsiveness due to the surface resistance of the photocathode and to secure a sufficient number of electrons that can be emitted.

また、金属膜の膜厚は、電子ビームの加速電界の周波数に対応する表皮厚さ以上であることも好ましい。こうすれば、加速電界が金属膜によりシールドされるので、光電面と下地基板との間で流れる電流が低減され、光電面及び基板の帯電を一層防止できる。また、光電面上の電界を垂直にすることで、電子ビームのエミッタンスの劣化を防ぐことができる。   The film thickness of the metal film is preferably equal to or greater than the skin thickness corresponding to the frequency of the accelerating electric field of the electron beam. In this way, since the acceleration electric field is shielded by the metal film, the current flowing between the photocathode and the base substrate is reduced, and charging of the photocathode and the substrate can be further prevented. Further, by making the electric field on the photocathode vertical, deterioration of the emittance of the electron beam can be prevented.

本発明の電子線発生装置は、上述した光電変換素子と、光電変換素子に向けてレーザ光を照射するレーザ光照射手段とを備える。このような電子線発生装置においては、光電変換素子における光電面及び基板を帯電させにくくなるので、帯電に起因する光電面におけるダメージを低減し、加速電界を形成しやすくして電子ビームを容易に加速させる電子線発生装置を実現できる。   The electron beam generator of the present invention includes the above-described photoelectric conversion element and laser light irradiation means for irradiating the photoelectric conversion element with laser light. In such an electron beam generator, the photocathode and the substrate in the photoelectric conversion element are difficult to be charged. Therefore, damage to the photocathode due to charging is reduced, and an accelerating electric field is easily formed to facilitate the electron beam. An electron beam generator for acceleration can be realized.

本発明による光電変換素子によれば、光電面におけるダメージを低減するとともに、電子ビームの加速を容易にすることができる。   According to the photoelectric conversion element of the present invention, it is possible to reduce damage on the photocathode and facilitate the acceleration of the electron beam.

以下、図面を参照しつつ本発明に係る電子線発生装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an electron beam generator according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の実施形態に係る電子線発生装置1の断面図、図2は、図1の電子線発生装置をA−A線に沿って切断した断面図である。図1及び図2に示すように、電子線発生装置1は、4本の光電面収容カートリッジ3が入れられるカートリッジボックス5と、光電面にレーザ光を照射する部屋であるレーザ光照射室73及びカートリッジボックス5が配置される待機室71から構成されるチャンバ7と、レーザ光照射室73に配置され、光電面収容カートリッジ3の蓋である金属膜を破るための膜破り器9と、待機室71に挿入可能であり、光電面収容カートリッジ3の光電面31を移動させるための移動用パイプ11と、待機室71に挿入可能であり、かつ移動用パイプ11と同軸でその外周に配置され、膜破り器9の位置まで光電面収容カートリッジ3を押し出す押出用パイプ13とを備える。   FIG. 1 is a cross-sectional view of an electron beam generator 1 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the electron beam generator of FIG. 1 cut along line AA. As shown in FIGS. 1 and 2, the electron beam generator 1 includes a cartridge box 5 in which four photocathode accommodating cartridges 3 are placed, a laser light irradiation chamber 73 that is a room for irradiating the photocathode with laser light, and A chamber 7 composed of a standby chamber 71 in which the cartridge box 5 is disposed; a membrane breaker 9 which is disposed in the laser beam irradiation chamber 73 and breaks the metal film which is the lid of the photocathode accommodating cartridge 3; 71, can be inserted into the standby chamber 71, and can be inserted into the waiting chamber 71 and coaxially arranged on the outer periphery thereof. And an extrusion pipe 13 for extruding the photocathode accommodating cartridge 3 to the position of the film breaker 9.

カートリッジボックス5は、待機室71の円筒部711と同軸の円筒形状を有し、回転導入機51により、カートリッジボックス5の円周方向であるB方向に回転自在に配置されている。さらに、カートリッジボックス5は、スライダ55が取り付けられることにより、膜破り器9の位置まで進退可能に支持されている。また、待機室71の円筒部711には、パイプ77を介して排気/分析系25が接続されるとともに、レーザ導入口721を通じてレーザ光源21からレーザ光LBが導入される。   The cartridge box 5 has a cylindrical shape that is coaxial with the cylindrical portion 711 of the standby chamber 71, and is arranged so as to be rotatable in the direction B, which is the circumferential direction of the cartridge box 5, by the rotation introducing device 51. Further, the cartridge box 5 is supported so as to be able to advance and retract to the position of the membrane breaker 9 by attaching a slider 55. Further, the exhaust / analysis system 25 is connected to the cylindrical portion 711 of the standby chamber 71 through a pipe 77, and the laser light LB is introduced from the laser light source 21 through the laser introduction port 721.

押出用パイプ13の一方の端部133は、制御系17により矢印C方向及び矢印D方向に移動可能な移動板19に固定され、移動板19が矢印C方向に移動したとき、押出用パイプ13の他方の端部135がスライダ55に矢印C方向の力を加える。これにより、光電面収容カートリッジ3はスライダ55と一体の状態でレーザ光照射室73に押し出される。図3は、光電面収容カートリッジ3がレーザ光照射室73に移動された状態を示す断面図である。移動用パイプ11は、制御系17により矢印C、D方向及び回転の制御がなされる。このような構成により、押出用パイプ13の端部135をスライダ55の底面部に当接させた状態で、移動用パイプ11をスライダ55、光電面収容カートリッジ3、及びベローズ36を貫通して矢印C方向に移動させることにより、移動用パイプ11を光電面31の台座部37の位置に到達させて、移動用パイプ11と台座部37とをネジの作用により一体化させる。この状態で、押出用パイプ13をレーザ光照射室73に向けて押し出すことにより、光電面収容カートリッジ3の金属膜33に膜破り器9によって穴があけられ、台座部37がレーザ光照射室73の端面側の出口部155の縁に当接することにより、光電面31の位置決めがなされる。   One end 133 of the extruding pipe 13 is fixed to a moving plate 19 that can be moved in the directions of arrows C and D by the control system 17, and when the moving plate 19 moves in the direction of the arrow C, the extruding pipe 13 The other end portion 135 applies a force in the direction of arrow C to the slider 55. As a result, the photocathode accommodating cartridge 3 is pushed into the laser beam irradiation chamber 73 in a state of being integrated with the slider 55. FIG. 3 is a cross-sectional view showing a state where the photocathode accommodating cartridge 3 has been moved to the laser beam irradiation chamber 73. The movement pipe 11 is controlled by the control system 17 in the directions of arrows C and D and rotation. With this configuration, the moving pipe 11 passes through the slider 55, the photocathode accommodating cartridge 3, and the bellows 36 while the end 135 of the extrusion pipe 13 is in contact with the bottom surface of the slider 55. By moving in the C direction, the moving pipe 11 reaches the position of the pedestal portion 37 of the photocathode 31, and the moving pipe 11 and the pedestal portion 37 are integrated by the action of a screw. In this state, the extrusion pipe 13 is pushed out toward the laser beam irradiation chamber 73, whereby a hole is made in the metal film 33 of the photocathode accommodating cartridge 3 by the film breaker 9, and the pedestal portion 37 is formed in the laser beam irradiation chamber 73. The photocathode 31 is positioned by coming into contact with the edge of the outlet portion 155 on the end face side.

レーザ光源21で発生したレーザ光LBは、レーザ導入口721を通過して待機室71に入った後、押出用パイプ13の貫通孔131及び移動用パイプ11の貫通孔111を通り、移動用パイプ11内に配置された反射ミラー(図示せず)により光電面31に向けて反射される。そして、レーザ光LBが光電面31に入射することにより光電面31から電子線が発生する。   The laser beam LB generated by the laser light source 21 passes through the laser introduction port 721 and enters the standby chamber 71, and then passes through the through hole 131 of the extrusion pipe 13 and the through hole 111 of the movement pipe 11 to move the movement pipe. The light is reflected toward the photocathode 31 by a reflecting mirror (not shown) disposed in 11. Then, when the laser beam LB is incident on the photocathode 31, an electron beam is generated from the photocathode 31.

以下、光電面収容カートリッジ3の構成について詳細に説明する。   Hereinafter, the configuration of the photocathode accommodating cartridge 3 will be described in detail.

図4は、光電面収容カートリッジ3の構成を示す斜視図である。同図に示すように光電面収容カートリッジ3は、光電面31を真空封止したものであり、両端側にコバール製のフランジ部が形成されたガラス製の円筒容器32を有し、円筒容器32の片方の端面には、容器の開口を塞ぐようにコバール製の金属膜33が形成されている。容器32の内部には、中心軸に沿ってベローズ36が収容され、ベローズ36の金属膜33側の端部には、光電面31及び台座部37を含む透過型カソードプラグ(光電変換素子)30が、光電面31と金属膜33が対面するように溶接により固定されている。この光電面31は、円筒容器32内で製膜されるものである。また、透過型カソードプラグ30の側面には、リング状の電極38が取り付けられ、電極38を用いてRF空洞表面を流れる電流がカソードプラグ30に供給され、同時に光電面31から発生した電子ビームに高周波の加速電界が印加される。   FIG. 4 is a perspective view showing the configuration of the photocathode accommodating cartridge 3. As shown in the figure, the photocathode containing cartridge 3 is obtained by vacuum-sealing the photocathode 31. The photocathode containing cartridge 3 has a glass cylindrical container 32 having Kovar flanges formed on both ends. A metal film 33 made of Kovar is formed on one of the end faces so as to close the opening of the container. A bellows 36 is accommodated inside the container 32 along the central axis, and a transmissive cathode plug (photoelectric conversion element) 30 including a photocathode 31 and a pedestal 37 at the end of the bellows 36 on the metal film 33 side. However, the photocathode 31 and the metal film 33 are fixed by welding so as to face each other. The photocathode 31 is formed in a cylindrical container 32. A ring-shaped electrode 38 is attached to the side surface of the transmissive cathode plug 30, and a current flowing through the RF cavity surface is supplied to the cathode plug 30 using the electrode 38, and at the same time, an electron beam generated from the photocathode 31 is applied to the electron beam. A high frequency accelerating electric field is applied.

図5は、透過型カソードプラグ30の中心軸に沿った方向に切断した断面図、図6は、透過型カソードプラグ30の分解断面図である。図5及び図6に示すように、透過型カソードプラグ30は、略円筒状の台座部37及び蓋部39を有し、台座部37と蓋部39とが、台座部37の内周面に形成されたネジ部37a及び蓋部39の外周面に形成されたネジ部39aによって、互いに接続及び分離が可能な構造を有している。台座部37の先端側の端面301の中央には、円盤状に形成された光電面下地基板(キャピラリー基板)302が埋め込まれており、光電面下地基板302の外側表面には、光電面31が製膜されている。また、台座部37と蓋部39とが接続された状態で光電面31を真空に保つために、石英ガラス製の窓部303が、蓋部39の光電面31側の開口部304を塞ぐように設けられている。ここで、窓部303は、蓋部39の内周面に対してアルミニウムを用いて高温及び高圧でシールされている。台座部37の開口部304に対して反対側の縁部には鍔部305が形成され、蓋部39は、鍔部305とベローズ36とを溶接することにより、ベローズ36に接続される。このような透過型カソードプラグ30の構成により、中心軸に沿った方向に照射されたレーザ光LBは、窓部303を透過して光電面下地基板302の裏面から光電面31に入射し、光電面31において電子ビームEBに変換される。   5 is a cross-sectional view taken along the central axis of the transmissive cathode plug 30, and FIG. 6 is an exploded cross-sectional view of the transmissive cathode plug 30. As shown in FIGS. 5 and 6, the transmissive cathode plug 30 has a substantially cylindrical pedestal portion 37 and a lid portion 39, and the pedestal portion 37 and the lid portion 39 are formed on the inner peripheral surface of the pedestal portion 37. The screw portion 37 a formed and the screw portion 39 a formed on the outer peripheral surface of the lid portion 39 have a structure that can be connected and separated from each other. A disc-shaped photocathode base substrate (capillary substrate) 302 is embedded in the center of the end surface 301 on the front end side of the pedestal portion 37, and the photocathode 31 is formed on the outer surface of the photocathode base substrate 302. A film is formed. Further, in order to keep the photocathode 31 in a vacuum state with the pedestal 37 and the lid 39 connected, the quartz glass window 303 blocks the opening 304 on the photocathode 31 side of the lid 39. Is provided. Here, the window portion 303 is sealed with aluminum at a high temperature and a high pressure with respect to the inner peripheral surface of the lid portion 39. A flange 305 is formed at the edge of the pedestal 37 opposite to the opening 304, and the lid 39 is connected to the bellows 36 by welding the flange 305 and the bellows 36. With such a configuration of the transmissive cathode plug 30, the laser light LB irradiated in the direction along the central axis passes through the window portion 303 and enters the photocathode 31 from the back surface of the photocathode base substrate 302. It is converted into an electron beam EB at the surface 31.

次に、図7を参照して、光電面31を含む光電面下地基板302の構成について説明する。同図に示すように、直径が1μmから数百μmの貫通孔306が2次元的に等間隔で格子状に設けられた円板状の光電面下地基板302には、金属膜307が、光電面下地基板302の表面の貫通孔306の開口以外の部分に製膜され、金属製の自立膜308が、金属膜307上から光電面下地基板302の表面全体を覆うように製膜されるとともに、自立膜308上には、光電面31が形成されている。   Next, the configuration of the photocathode base substrate 302 including the photocathode 31 will be described with reference to FIG. As shown in the figure, a metal film 307 is formed on a disk-shaped photocathode base substrate 302 in which through holes 306 having a diameter of 1 μm to several hundreds of μm are provided in a two-dimensional grid at equal intervals. A film is formed on a surface of the surface substrate 302 other than the opening of the through-hole 306, and a metal free-standing film 308 is formed on the metal film 307 so as to cover the entire surface of the photocathode substrate 302. The photocathode 31 is formed on the self-supporting film 308.

光電面下地基板302としては、開孔比が30〜70%となるように貫通孔306が形成され、例えば、二次電子放出係数の小さい厚さ0.3mmの円板状の鉛ガラスに直径20μmの貫通孔306を2次元的に配列したものが用いられる。また、光電面下地基板302の貫通孔306の開口を除く表面には、電子ビームの加速電界の周波数で決まる表皮厚さ(例えば、Sバンド加速周波数2,856MHzでのクロムの表皮厚さ3.4μm)以上の膜厚を有するクロム製の金属膜307が、蒸着により形成されている。また、この金属膜307の表面には、光電面下地基板302の表面全体を覆うように、例えば、110Åの膜厚でアルミニウム製の自立膜308が形成されている。さらに、自立膜308上には、例えば、CsTeから成る透過型光電面31が製膜されている。なお、この光電面31は、上述した光電面収容カートリッジ3内で製膜される。 As the photocathode base substrate 302, a through-hole 306 is formed so that the aperture ratio is 30 to 70%. For example, a diameter of a disc-shaped lead glass having a small secondary electron emission coefficient and a thickness of 0.3 mm is formed. A 20-μm through-hole 306 is two-dimensionally arranged. Further, on the surface excluding the opening of the through hole 306 of the photocathode base substrate 302, the skin thickness determined by the frequency of the acceleration electric field of the electron beam (for example, the chromium skin thickness at an S band acceleration frequency of 2,856 MHz is 3.4 μm). A chromium metal film 307 having the above thickness is formed by vapor deposition. Further, on the surface of the metal film 307, a self-supporting film 308 made of aluminum is formed with a film thickness of, for example, 110 mm so as to cover the entire surface of the photocathode base substrate 302. Further, a transmissive photocathode 31 made of, for example, Cs 2 Te is formed on the self-supporting film 308. The photocathode 31 is formed in the photocathode containing cartridge 3 described above.

この場合、金属膜307としては、クロム製の金属膜を用いたが、アルミニウム膜の上にクロムを製膜したものを用いてもよい。Sバンド加速周波数2,856MHzでのアルミニウムの表皮厚さは1.5μmであるので、膜厚1.5μmのアルミニウム薄膜の上に、放電に対するダメージの小さいクロムが0.1μmの膜厚で製膜されたものを用いる。また、光電面31の主成分としては、CsTe以外に、RbTe、Cs-K-Te、K-Te、CsK2Sb、Na2KSb、Ag-O-Sb、Cs3Sb、ダイヤモンド、GaAs、GaAsP、GaN、AlGaN、InGaN、及びMg等の様々なものが代用可能である。 In this case, a metal film made of chromium is used as the metal film 307, but a film made of chromium on an aluminum film may be used. Since the skin thickness of aluminum at an S-band acceleration frequency of 2,856 MHz is 1.5 μm, a chromium film with a thickness of 0.1 μm is deposited on an aluminum thin film with a thickness of 1.5 μm on the aluminum thin film with a thickness of 0.1 μm. Use. The main components of the photocathode 31 include RbTe, Cs—K—Te, K—Te, CsK 2 Sb, Na 2 KSb, Ag—O—Sb, Cs 3 Sb, diamond, GaAs, in addition to Cs 2 Te. Various materials such as GaAsP, GaN, AlGaN, InGaN, and Mg can be substituted.

図5に戻って、このような光電面下地基板302の透過型カソードプラグ30の端面301への固定方法としては、フリットガラスによる接着や、アルミニウムを光電面下地基板302と端面301との間の中間層として高温及び高圧でシール(アルミニウムシール)する方法が用いられる。RF電子銃内では、カソードプラグ表面に強い加速電界が印加されるので、放電の防止及び暗電流の低減のため、光電面下地基板302と端面301とを一体的に研磨し、カソードプラグ表面の粗さ及び段差をできるだけ少なくすることが好ましい。また、カソードプラグ表面の粗さをより少なくするために、フリットガラスによる接着の場合は、光電面下地基板302と端面301との隙間にクロム蒸着されたフリットガラスが埋め込まれ、アルミニウムシールの場合は、光電面下地基板302と端面301との隙間にアルミニウムを埋め込むことが行われる。   Returning to FIG. 5, as a method for fixing the photocathode base substrate 302 to the end face 301 of the transmissive cathode plug 30, bonding with frit glass or aluminum between the photocathode base substrate 302 and the end face 301 is used. As the intermediate layer, a method of sealing at high temperature and high pressure (aluminum sealing) is used. In the RF electron gun, a strong accelerating electric field is applied to the surface of the cathode plug. Therefore, in order to prevent discharge and reduce dark current, the photocathode base substrate 302 and the end surface 301 are polished together to form the surface of the cathode plug. It is preferable to reduce the roughness and level difference as much as possible. In order to reduce the roughness of the surface of the cathode plug, in the case of bonding with frit glass, frit glass vapor-deposited with chromium is embedded in the gap between the photocathode base substrate 302 and the end surface 301. Then, aluminum is embedded in the gap between the photocathode base substrate 302 and the end face 301.

以下、上記のような構成の光電面下地基板302から光電面31にかけての光透過率を示す。   The light transmittance from the photocathode base substrate 302 to the photocathode 31 having the above configuration will be shown below.

図8は、金属膜307としてクロム製薄膜、光電面31としてCsTeを主成分とするものを用いた場合の、光電面下地基板302の裏面から光電面31の表面にかけての量子効率(QE)を示す。同図に示すように、光電面31を製膜前の光電面下地基板302のみの波長260nmの光に対する透過率は、17%であり、光電面製膜後の光電面下地基板302の裏面から光電面31の表面にかけての波長260nmの光に対する量子効率は、1.9%であった。 FIG. 8 shows the quantum efficiency (QE) from the back surface of the photocathode base substrate 302 to the surface of the photocathode 31 when a chromium thin film is used as the metal film 307 and the photocathode 31 is composed mainly of Cs 2 Te. ). As shown in the figure, the transmittance with respect to light having a wavelength of 260 nm of only the photocathode base substrate 302 before forming the photocathode 31 is 17%, and from the back surface of the photocathode base substrate 302 after photocathode film formation. The quantum efficiency for light having a wavelength of 260 nm over the surface of the photocathode 31 was 1.9%.

以上説明した透過型カソードプラグ30及び電子線発生装置1によれば、光電面下地基板302の貫通孔306及び自立膜308を通過してレーザ光LBが光電面31に照射され、光電面31から光電面下地基板302の反対側に電子ビームを発生させる。このとき、電子ビームを励起するためのレーザ光LBを光電面下地基板302の裏面から垂直に照射することができるので、発生する電子ビームの位相又は強度における均質性を保つことができる。また、逆位相電子、逆位相イオン等の荷電粒子が光電面31に戻ってきても、光電面31、貫通孔306、及び自立膜308を通過することで、光電面31及び基板302を帯電させにくくするので、帯電に起因する光電面31におけるダメージを低減し、カソードプラグ先端部における加速電界を形成しやすくして電子ビームを容易に加速させることができる。   According to the transmissive cathode plug 30 and the electron beam generator 1 described above, the laser beam LB is irradiated to the photocathode 31 through the through-hole 306 and the self-standing film 308 of the photocathode base substrate 302, and An electron beam is generated on the opposite side of the photocathode base substrate 302. At this time, since the laser beam LB for exciting the electron beam can be irradiated vertically from the back surface of the photocathode base substrate 302, the homogeneity in the phase or intensity of the generated electron beam can be maintained. Even when charged particles such as reverse phase electrons and reverse phase ions return to the photocathode 31, the photocathode 31 and the substrate 302 are charged by passing through the photocathode 31, the through hole 306, and the self-supporting film 308. Therefore, the damage on the photocathode 31 caused by charging can be reduced, and an acceleration electric field can be easily formed at the tip of the cathode plug, so that the electron beam can be easily accelerated.

また、従来は、カソードプラグ前面に印加されるマイクロ波の電界が光電面を透過してしまい、RF電子銃等に使用されるRF空洞内壁の表面電流が、光電面と光電面下地基板との間に流れ込み、光電面及び光電面下地基板が帯電しやすいという問題があった。これに対して、光電面下地基板として帯電しやすいサファイアの代わりに二次電子放出係数の低い鉛ガラスを用い、その表面に表皮厚さ以上の金属膜307及び自立膜308を設けることで上記問題を回避することができる。また、図19には、光電面下地基板の材料としてサファイアを用いた従来のカソード902の先端部における等電位線を示す。同図に示すように、光電面下地基板としてサファイアを用いた場合は、マイクロ波に対して透明であるため、カソード902内部の電界分布は、中心部が空洞の金属電極と同等になる。従って、カソード902の先端部の電界が、カソード902の中心軸線に平行とならず、光電面904に平行な方向に電界成分を持つことになり、電子線の密度等の質の劣化を引き起こす。これに対して、透過型カソードプラグ30では、上述したような帯電しにくく、電界を遮蔽し易い構成により、光電面31に対して垂直に電界を生じさせることができる。   Conventionally, the electric field of the microwave applied to the front surface of the cathode plug is transmitted through the photocathode, and the surface current of the RF cavity inner wall used for the RF electron gun or the like is generated between the photocathode and the photocathode base substrate. There was a problem that the photocathode and the photocathode base substrate were easily charged. On the other hand, instead of sapphire which is easily charged as a photocathode base substrate, lead glass having a low secondary electron emission coefficient is used, and a metal film 307 having a skin thickness or more and a free-standing film 308 are provided on the surface thereof. Can be avoided. FIG. 19 shows equipotential lines at the tip of a conventional cathode 902 using sapphire as the material for the photocathode base substrate. As shown in the figure, when sapphire is used as the photocathode base substrate, since it is transparent to microwaves, the electric field distribution inside the cathode 902 is equivalent to a metal electrode having a hollow center. Therefore, the electric field at the tip of the cathode 902 does not become parallel to the central axis of the cathode 902 but has an electric field component in a direction parallel to the photocathode 904, causing deterioration in quality such as electron beam density. In contrast, the transmissive cathode plug 30 can generate an electric field perpendicular to the photocathode 31 with a configuration that is difficult to be charged and easily shields the electric field as described above.

また、光電面下地基板302の複数の貫通孔306は、端面301に沿って2次元的に配列されているので、光電面31の全面において帯電を効果的に防止することができる。   In addition, since the plurality of through holes 306 of the photocathode base substrate 302 are two-dimensionally arranged along the end surface 301, charging can be effectively prevented over the entire surface of the photocathode 31.

また、光電面下地基板302と光電面31との間において、金属膜307及び複数の貫通孔306を覆うように光電面に沿って形成された自立膜308を備えるので、金属膜307及び自立膜308から光電面31に対して短い距離で電荷を供給することができる。その結果、光電面から短パルスの電子ビームを発生させる場合であっても、光電面の面抵抗による応答性の劣化を防止すると共に、放射できる電子数を十分確保することができる。   Further, since the self-supporting film 308 formed along the photocathode so as to cover the metal film 307 and the plurality of through holes 306 is provided between the photocathode base substrate 302 and the photocathode 31, the metal film 307 and the self-supporting film are provided. Charges can be supplied from 308 to the photocathode 31 at a short distance. As a result, even when a short-pulse electron beam is generated from the photocathode, it is possible to prevent deterioration of responsiveness due to the surface resistance of the photocathode and to secure a sufficient number of electrons that can be emitted.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、透過型カソードプラグ30に埋め込む光電面下地基板としては、金属製の光電面下地基板312を用いてもよい。図9には、光電面31を含む光電面下地基板312の構成を示す。同図に示すように、光電面下地基板312として、ニッケル製の円板状基板に、電鋳法を用いて直径50μmの貫通孔314を開孔比40%で形成したものを用いる。この光電面下地基板312の表面に、表皮厚さ以上のアルミニウム製の自立膜313を製膜する。この自立膜313上に光電面31が形成される。この光電面31を含む光電面下地基板312の透過型カソードプラグ30の台座部37への固定方法としては、まず、キャップ状の光電面下地基板312を台座部37の端部に外側から嵌め合わせた後、リング状のホルダー部315を光電面下地基板312の外周部をネジにより押さえ付けるように締め込む(図10、ネジ部分については図示を省略)。このような金属材料からなる光電面下地基板を用いることで、光電面における帯電の問題を確実に回避することができる。   In addition, this invention is not limited to embodiment mentioned above. For example, as the photocathode base substrate embedded in the transmissive cathode plug 30, a metal photocathode base substrate 312 may be used. FIG. 9 shows the configuration of the photocathode base substrate 312 including the photocathode 31. As shown in the figure, as the photocathode base substrate 312, a nickel disk-shaped substrate in which through holes 314 having a diameter of 50 μm are formed at an opening ratio of 40% by electroforming is used. On the surface of the photocathode base substrate 312, a self-supporting film 313 made of aluminum having a skin thickness or more is formed. A photocathode 31 is formed on the free-standing film 313. As a method for fixing the photocathode base substrate 312 including the photocathode 31 to the pedestal portion 37 of the transmissive cathode plug 30, first, the cap-shaped photocathode base substrate 312 is fitted to the end of the pedestal portion 37 from the outside. After that, the ring-shaped holder portion 315 is tightened so that the outer peripheral portion of the photocathode base substrate 312 is pressed with a screw (FIG. 10, illustration of the screw portion is omitted). By using the photocathode base substrate made of such a metal material, it is possible to reliably avoid the problem of charging on the photocathode.

本発明においては、自立膜を使わない透過型カソードプラグ30の構造も可能である。図11には、自立膜を有さない場合の変形例である透過型カソードプラグの構成を示す。この透過型カソードプラグは、光電面31を石英面板326上に製膜し、その上に金属製の電極322を載せた構造を有している。ここでは、金属製の電極322としてニッケル製の円板状基板に、電鋳法を用いて直径50μmの貫通孔を開孔比40%で形成したものを用いる。電極322の膜厚は10μm〜40μmである。同図に示すように、この電極322は、光電面に戻ってくる逆位相電子、逆位相イオン等の荷電粒子の量を減らすと共に、荷電粒子により帯電した石英面板326の電荷を逃がす効果がある。   In the present invention, a structure of the transmissive cathode plug 30 that does not use a self-supporting membrane is also possible. FIG. 11 shows a configuration of a transmissive cathode plug which is a modified example in the case where the self-supporting film is not provided. This transmissive cathode plug has a structure in which a photocathode 31 is formed on a quartz face plate 326 and a metal electrode 322 is placed thereon. Here, as the metal electrode 322, a nickel disk-shaped substrate is used in which through holes having a diameter of 50 μm are formed at an opening ratio of 40% by electroforming. The film thickness of the electrode 322 is 10 μm to 40 μm. As shown in the figure, this electrode 322 has the effect of reducing the amount of charged particles such as reverse phase electrons and reverse phase ions returning to the photocathode and also releasing the charge of the quartz face plate 326 charged by the charged particles. .

また、上記の変形例において石英面板326を使用せず、光電面31を金属製の電極332の貫通孔324の内面に製膜することも可能である。図12は、このような場合の透過型カソードプラグの構成、及び図13には、図12の金属製の電極の一部拡大断面図を示す。この透過型カソードプラグ30に励起用レーザ光LBを照射する場合は、照射効率を稼ぐために、拡散板327を用いる。これにより励起用レーザ光LBの方向がランダムに曲げられ、効率よくかつ均一に貫通孔324の内面を照射することができる(図14)。この構造では電極332に戻ってくる逆位相電子、逆位相イオン等の荷電粒子が直接、光電面31にぶつからない。また、石英面板326を用いないため、帯電の問題がない。   In the above modification, the photocathode 31 can be formed on the inner surface of the through hole 324 of the metal electrode 332 without using the quartz face plate 326. FIG. 12 shows a configuration of the transmission type cathode plug in such a case, and FIG. 13 shows a partially enlarged sectional view of the metal electrode of FIG. When irradiating the transmissive cathode plug 30 with the excitation laser beam LB, the diffusion plate 327 is used to increase the irradiation efficiency. Thereby, the direction of the excitation laser beam LB is randomly bent, and the inner surface of the through-hole 324 can be irradiated efficiently and uniformly (FIG. 14). In this structure, charged particles such as antiphase electrons and antiphase ions returning to the electrode 332 do not directly hit the photocathode 31. Further, since the quartz face plate 326 is not used, there is no problem of charging.

次に、本発明にかかる電子線発生装置1の変形例について説明する。   Next, a modification of the electron beam generator 1 according to the present invention will be described.

図15及び図16は、電子線発生装置1の変形例を示す一部拡大断面図である。図15に示す電子線発生装置では、ベローズ36の中心軸に沿って光電面31の反対側から窓部303の直前まで、光ファイバ316が挿入されている。このような構成を採れば、窓部303を透過させて光電面下地基板302の裏面から光電面31に向けて、効率的に励起用のレーザ光LBを照射することができ、光ファイバ316の中心軸線と、透過型カソードプラグ30の中心軸線を合わせることで、レーザ光LBの照射中心を光電面31の中心に正確に合わせることができる。これにより、発生する電子ビームEBのエミッタンスを低減することができる。   15 and 16 are partially enlarged cross-sectional views showing modifications of the electron beam generator 1. In the electron beam generator shown in FIG. 15, an optical fiber 316 is inserted from the opposite side of the photocathode 31 to just before the window portion 303 along the central axis of the bellows 36. By adopting such a configuration, it is possible to efficiently irradiate the excitation laser beam LB from the back surface of the photocathode base substrate 302 toward the photocathode 31 through the window 303. By matching the central axis with the central axis of the transmissive cathode plug 30, the irradiation center of the laser beam LB can be accurately aligned with the center of the photocathode 31. Thereby, the emittance of the generated electron beam EB can be reduced.

また、図16に示す電子線発生装置では、光電面下地基板302の裏面側に中心に円形の穴が空けられた金属製のアパーチャー317が固定されている。このアパーチャー317により、光ファイバ316から照射されるレーザ光LBの中心部のみを光電面31に照射させることができ、発生する電子線EBの分布を真円に近くすることができると共に、電子線EBの強度分布を均一にし、正確に光電面31の中心に位置させることができる。これにより、発生する電子ビームEBのエミッタンスを低減することができる。   In the electron beam generator shown in FIG. 16, a metal aperture 317 having a circular hole in the center is fixed on the back surface side of the photocathode base substrate 302. With this aperture 317, only the central portion of the laser beam LB irradiated from the optical fiber 316 can be irradiated onto the photocathode 31. The distribution of the generated electron beam EB can be made close to a perfect circle, and the electron beam The EB intensity distribution can be made uniform and accurately positioned at the center of the photocathode 31. Thereby, the emittance of the generated electron beam EB can be reduced.

本発明の実施形態に係る電子線発生装置の断面図である。It is sectional drawing of the electron beam generator which concerns on embodiment of this invention. 図1の電子線発生装置をA−A線に沿って切断した断面図である。It is sectional drawing which cut | disconnected the electron beam generator of FIG. 1 along the AA line. 図1の光電面収容カートリッジがレーザ光照射室に移動された状態を示す断面図である。It is sectional drawing which shows the state by which the photocathode accommodation cartridge of FIG. 1 was moved to the laser beam irradiation chamber. 図1の光電面収容カートリッジの構成を示す斜視図である。It is a perspective view which shows the structure of the photocathode accommodation cartridge of FIG. 図4の透過型カソードプラグの中心軸に沿った方向に切断した断面図である。FIG. 5 is a cross-sectional view taken along a central axis of the transmission type cathode plug of FIG. 4. 図4の透過型カソードプラグの分解断面図である。FIG. 5 is an exploded sectional view of the transmissive cathode plug of FIG. 4. 図5の光電面を含む光電面下地基板の構成を示す図である。It is a figure which shows the structure of the photocathode base substrate containing the photocathode of FIG. 図5の透過型カソードプラグにおいて光電面下地基板の裏面から光電面の表面にかけての量子効率(QE)を示すグラフである。6 is a graph showing quantum efficiency (QE) from the back surface of the photocathode base substrate to the surface of the photocathode in the transmissive cathode plug of FIG. 5. 光電面を含む光電面下地基板の別の構成例を示す図である。It is a figure which shows another structural example of the photocathode base substrate containing a photocathode. 透過型カソードプラグの中心軸に沿った方向に切断した断面図である。It is sectional drawing cut | disconnected in the direction along the center axis | shaft of a transmissive | pervious cathode plug. 自立膜を有さない場合の変形例である透過型カソードプラグの断面図である。It is sectional drawing of the transmissive | pervious cathode plug which is a modification in case it does not have a self-supporting film | membrane. 本発明の別の変形例である透過型カソードプラグの断面図である。It is sectional drawing of the transmissive | pervious cathode plug which is another modification of this invention. 図12の電極の一部拡大断面図である。It is a partially expanded sectional view of the electrode of FIG. 図12の電極におけるレーザ光の入射状態を示す一部拡大断面図である。It is a partially expanded sectional view which shows the incident state of the laser beam in the electrode of FIG. 本発明の電子線発生装置の変形例を示す一部拡大断面図である。It is a partially expanded sectional view which shows the modification of the electron beam generator of this invention. 本発明の電子線発生装置の別の変形例を示す一部拡大断面図である。It is a partially expanded sectional view which shows another modification of the electron beam generator of this invention. 従来の透過型光電面を含むカソードの構造を示す図であり、(a)は、カソードの構造を示す斜視図、(b)は、(a)のI−I線に沿って切断した斜視断面図、(c)は、カソードにおける光電面周辺の構造を示す拡大断面図である。It is a figure which shows the structure of the cathode containing the conventional transmissive photocathode, (a) is a perspective view which shows the structure of a cathode, (b) is the perspective cross section cut | disconnected along the II line | wire of (a) FIG. 4C is an enlarged cross-sectional view showing the structure around the photocathode in the cathode. カソード902を用いた電子銃の構造を示す斜視断面図である。It is a perspective sectional view showing the structure of an electron gun using a cathode 902. 従来のカソードの先端部における等電位線を示す図である。It is a figure which shows the equipotential line in the front-end | tip part of the conventional cathode.

符号の説明Explanation of symbols

1…電子線発生装置、21…レーザ光源(レーザ光照射手段)、30…透過型カソードプラグ(光電変換素子)、31…光電面、111,131…貫通孔(レーザ光照射手段)、302,312…光電面下地基板(キャピラリー基板)、306,314…貫通孔、307…金属膜、307,313…自立膜(金属膜)、721…レーザ導入口(レーザ光照射手段)、316…光ファイバ(レーザ光照射手段)。
DESCRIPTION OF SYMBOLS 1 ... Electron beam generator, 21 ... Laser light source (laser beam irradiation means), 30 ... Transmission-type cathode plug (photoelectric conversion element), 31 ... Photocathode, 111, 131 ... Through-hole (laser beam irradiation means), 302, 312 ... Photocathode base substrate (capillary substrate), 306, 314 ... Through hole, 307 ... Metal film, 307, 313 ... Self-supporting film (metal film), 721 ... Laser inlet (laser light irradiation means), 316 ... Optical fiber (Laser light irradiation means).

Claims (5)

レーザ光を照射されて前記レーザ光の照射方向に電子ビームを発生させる透過型の光電変換素子であって、
前記照射方向に沿って複数の貫通孔が設けられたキャピラリー基板と、
前記キャピラリー基板の前記照射方向側の端面に沿って、前記複数の貫通孔を覆うように形成された光電面と、
を備えることを特徴とする光電変換素子。
A transmissive photoelectric conversion element that emits an electron beam in the laser beam irradiation direction when irradiated with a laser beam,
A capillary substrate provided with a plurality of through holes along the irradiation direction;
A photocathode formed so as to cover the plurality of through holes along the end surface of the capillary substrate on the irradiation direction side;
A photoelectric conversion element comprising:
前記複数の貫通孔は、前記端面に沿って2次元的に配列されている、
ことを特徴とする請求項1記載の光電変換素子。
The plurality of through holes are two-dimensionally arranged along the end surface.
The photoelectric conversion element according to claim 1.
前記キャピラリー基板と前記光電面との間において、前記複数の貫通孔を覆うように前記光電面に沿って形成された金属膜を更に備える、
ことを特徴とする請求項1又は2記載の光電変換素子。
Further comprising a metal film formed along the photocathode so as to cover the plurality of through holes between the capillary substrate and the photocathode,
The photoelectric conversion element according to claim 1 or 2, wherein
前記金属膜の膜厚は、前記電子ビームの加速電界の周波数に対応する表皮厚さ以上であることを特徴とする請求項1〜3のいずれか一項に記載の光電変換素子。   4. The photoelectric conversion element according to claim 1, wherein a thickness of the metal film is equal to or greater than a skin thickness corresponding to a frequency of an acceleration electric field of the electron beam. 請求項1〜4のいずれか一項に記載の光電変換素子と、
前記光電変換素子に向けてレーザ光を照射するレーザ光照射手段と、
を備えることを特徴とする電子線発生装置。
The photoelectric conversion element according to any one of claims 1 to 4,
Laser light irradiation means for irradiating the photoelectric conversion element with laser light;
An electron beam generator comprising:
JP2005267593A 2005-09-14 2005-09-14 Photoelectric conversion element and electron beam generator using the same Expired - Fee Related JP5007034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267593A JP5007034B2 (en) 2005-09-14 2005-09-14 Photoelectric conversion element and electron beam generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267593A JP5007034B2 (en) 2005-09-14 2005-09-14 Photoelectric conversion element and electron beam generator using the same

Publications (2)

Publication Number Publication Date
JP2007080697A true JP2007080697A (en) 2007-03-29
JP5007034B2 JP5007034B2 (en) 2012-08-22

Family

ID=37940766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267593A Expired - Fee Related JP5007034B2 (en) 2005-09-14 2005-09-14 Photoelectric conversion element and electron beam generator using the same

Country Status (1)

Country Link
JP (1) JP5007034B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150882A (en) * 2010-01-21 2011-08-04 Hamamatsu Photonics Kk Electron beam generating apparatus, and photoelectric surface housing cartridge used therefor
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2018155543A1 (en) * 2017-02-24 2018-08-30 株式会社ニコン Electronic beam apparatus and device production method
WO2018155539A1 (en) * 2017-02-24 2018-08-30 株式会社ニコン Electron beam apparatus and device production method, and photoelectric element holding container
WO2019146027A1 (en) * 2018-01-25 2019-08-01 株式会社ニコン Electron beam device, device production method, and photoelectric element unit
US11657997B2 (en) 2019-11-12 2023-05-23 Kabushiki Kaisha Toshiba Electron-emitting element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085669A (en) * 1983-10-17 1985-05-15 Toppan Printing Co Ltd Contact type image sensor
JPS62254338A (en) * 1986-01-25 1987-11-06 Toshiba Corp Microchannel plate and manufacture thereof
JPS63150829A (en) * 1986-12-16 1988-06-23 Canon Inc Electron emitting element
JPH06275215A (en) * 1993-03-19 1994-09-30 Hamamatsu Photonics Kk Two-dimensional x-ray tube
JPH06302286A (en) * 1993-04-13 1994-10-28 Hamamatsu Photonics Kk Image pickup tube
JPH0765707A (en) * 1993-08-24 1995-03-10 Hitachi Ltd Photocathode and electron gun using this and accelerator
JPH11225986A (en) * 1998-02-17 1999-08-24 Toshiba Corp Mri endoscope and rf coil for mri
JPH11246300A (en) * 1997-10-30 1999-09-14 Canon Inc Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
JP2000116615A (en) * 1998-10-09 2000-04-25 Toshiba Corp Mr endoscope
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
JP2004241298A (en) * 2003-02-07 2004-08-26 Japan Science & Technology Agency Capillary plate, its manufacturing method, gas proportional counter tube, and imaging system
JP2005100911A (en) * 2003-09-22 2005-04-14 Koji Eto Rapid successive shooting electron microscope

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085669A (en) * 1983-10-17 1985-05-15 Toppan Printing Co Ltd Contact type image sensor
JPS62254338A (en) * 1986-01-25 1987-11-06 Toshiba Corp Microchannel plate and manufacture thereof
JPS63150829A (en) * 1986-12-16 1988-06-23 Canon Inc Electron emitting element
JPH06275215A (en) * 1993-03-19 1994-09-30 Hamamatsu Photonics Kk Two-dimensional x-ray tube
JPH06302286A (en) * 1993-04-13 1994-10-28 Hamamatsu Photonics Kk Image pickup tube
JPH0765707A (en) * 1993-08-24 1995-03-10 Hitachi Ltd Photocathode and electron gun using this and accelerator
JPH11246300A (en) * 1997-10-30 1999-09-14 Canon Inc Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
JPH11225986A (en) * 1998-02-17 1999-08-24 Toshiba Corp Mri endoscope and rf coil for mri
JP2000116615A (en) * 1998-10-09 2000-04-25 Toshiba Corp Mr endoscope
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
JP2004241298A (en) * 2003-02-07 2004-08-26 Japan Science & Technology Agency Capillary plate, its manufacturing method, gas proportional counter tube, and imaging system
JP2005100911A (en) * 2003-09-22 2005-04-14 Koji Eto Rapid successive shooting electron microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150882A (en) * 2010-01-21 2011-08-04 Hamamatsu Photonics Kk Electron beam generating apparatus, and photoelectric surface housing cartridge used therefor
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2016030004A3 (en) * 2014-08-25 2016-04-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
US10366861B2 (en) 2014-08-25 2019-07-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
WO2018155543A1 (en) * 2017-02-24 2018-08-30 株式会社ニコン Electronic beam apparatus and device production method
WO2018155539A1 (en) * 2017-02-24 2018-08-30 株式会社ニコン Electron beam apparatus and device production method, and photoelectric element holding container
WO2019146027A1 (en) * 2018-01-25 2019-08-01 株式会社ニコン Electron beam device, device production method, and photoelectric element unit
US11657997B2 (en) 2019-11-12 2023-05-23 Kabushiki Kaisha Toshiba Electron-emitting element

Also Published As

Publication number Publication date
JP5007034B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007034B2 (en) Photoelectric conversion element and electron beam generator using the same
JP6224580B2 (en) X-ray generator and X-ray generation method
US20160189909A1 (en) Target for x-ray generation and x-ray generation device
JP6462805B2 (en) Cathode assembly, electron gun, and lithography system having such an electron gun
KR102419456B1 (en) Plasma generating device and thermoelectron emitter
JP2011077027A (en) Target for x-ray generation, x-ray generator, and manufacturing method of target for x-ray generation
JP4514998B2 (en) Electron beam generator and photocathode containing cartridge
WO2023276243A1 (en) X-ray generation device
JP3119285B2 (en) Photocathode, electron gun and accelerator using the same
CN110890256A (en) Non-magnetic femtosecond electron source device with adjustable convergence angle
KR101104484B1 (en) Apparatus for generating femtosecond electron beam
WO2023276246A1 (en) X-ray generation device
CN109473329B (en) Spatially coherent X-ray source with surface-emitting transmission type array structure
EP0300932B1 (en) Electron source
JPS6047355A (en) X-ray generation tube
KR20230141433A (en) Light source device
JPH0836978A (en) X-ray generating device
JP2001099995A (en) Laser beam containment method, laser beam containment device using this method, and charge conversion device for and ionization device for tandem accelerator using this device
KR20230141415A (en) Light source device
JP2002208367A (en) X-ray tube
CN109473329A (en) A kind of spatial coherence x-ray source of surface launching transmission-type array structure
JPH03286581A (en) X-ray preionized laser device
JPH05264763A (en) Target for laser plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees