JPH03286581A - X-ray preionized laser device - Google Patents

X-ray preionized laser device

Info

Publication number
JPH03286581A
JPH03286581A JP8870190A JP8870190A JPH03286581A JP H03286581 A JPH03286581 A JP H03286581A JP 8870190 A JP8870190 A JP 8870190A JP 8870190 A JP8870190 A JP 8870190A JP H03286581 A JPH03286581 A JP H03286581A
Authority
JP
Japan
Prior art keywords
cylindrical
target
ray
laser
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8870190A
Other languages
Japanese (ja)
Other versions
JP2913743B2 (en
Inventor
Yoshihiro Kajiki
善裕 梶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8870190A priority Critical patent/JP2913743B2/en
Publication of JPH03286581A publication Critical patent/JPH03286581A/en
Application granted granted Critical
Publication of JP2913743B2 publication Critical patent/JP2913743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To minimize the consumption of energy and extent the lifetime of an electron beam circuit component by allowing electron beams to enter a first cylinder-shaped electrode outside a target and carrying out discharge between the electrode and a second cylinder-shaped electrode outside, energizing laser gas and perform laser oscillation. CONSTITUTION:A cathode 2 is installed to the center of a cylinder-shaped laser tube 20 while a cylinder-shaped target 3 is installed so that it may surround the cathode, thereby forming an X-ray generation section 1. The electron beams generated in the cathode 2 in the center of the X-ray generation sectional collides with the target 3 where X-rays are generated on the rear of the target by braking radiation. There is a laser discharge space 4 which is coaxially cylinder-shaped outside the target. The X-rays diverged to the rear of the target penetrates the first electrode 5 provided coaxially and cylinder-shaped and they are introduced into the laser discharge space where a laser medium in the laser discharge span is preionized. It is possible to energize the laser medium in the discharge span and obtain laser oscillation by discharging between the first electrode 5 and the second electrode 6 laid out around the inner periphery and the outer periphery of the laser discharge space.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加工などに用いるX線予備電離ガスレーザ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray preionization gas laser device used for processing and the like.

〔従来の技術〕[Conventional technology]

従来のX線予備電離ガスレーザ装置については、文献「
デパートメント オプ エネルギ/アドバンストレーザ
 デベロ、ブメント フォー アイソトープ  セパレ
ーション/ファイナル レボ−)(DUE/ADVAN
CED−LA8ERDEVELOPMENT  FOR
15OTOPE  8EPARATION/FINAL
  REPORT)1,1983年。
Regarding the conventional X-ray pre-ionization gas laser device, please refer to the document “
Department Op Energy/Advanced Laser Development, Bument for Isotope Separation/Final Revo-) (DUE/ADVAN)
CED-LA8ERDEVELOPMENT FOR
15OTOPE 8EPARATION/FINAL
REPORT) 1, 1983.

文献番号DOE/ET/33067−−TIに詳細に記
載されているので、詳細は省略する。第7図は、上記文
献に記載された従来のX線予備電離ガスレーザ装置の横
断面図で、電極とX線発生部のみを示し、その他の部分
は省略しであるaX線発生部lの陰極2(熱陰極)にか
いて発生した電子ビームはターゲット3に衝突して制動
放射によりXMを発生する。発生したX線は、ターゲッ
ト表面からほぼ等方的に発散する。このうち一部のX線
をレーザ放電空間4に導入して、放電空間のレーザガス
を予備電離し、予備電離された空間に釦いて第1の電極
5と第2の電極60間でレーザガスを放電励起し、レー
ザ発振を得る。
Since it is described in detail in Document No. DOE/ET/33067--TI, the details will be omitted. FIG. 7 is a cross-sectional view of the conventional X-ray preionization gas laser device described in the above-mentioned document, in which only the electrodes and the X-ray generating section are shown, and other parts are omitted. The electron beam generated by the hot cathode 2 collides with the target 3 and generates XM due to bremsstrahlung radiation. The generated X-rays emanate approximately isotropically from the target surface. Some of these X-rays are introduced into the laser discharge space 4 to pre-ionize the laser gas in the discharge space, and the button is pressed in the pre-ionized space to discharge the laser gas between the first electrode 5 and the second electrode 60. Excite and obtain laser oscillation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のX線予備電離ガスレーザ装置では、ターゲ、トか
ら放射状に発散するX線の一部のみを放電空間に導き、
予備電離に用いていた。このため、X線の予備電離への
利用効率が低く、充分な予備電離を行うために大きな電
気的エネルギを注入する必要がある。この結果、電子ビ
ームの発生に用いる回路部品が損傷を受は易く、寿命が
短くなるという課題がある。
In conventional X-ray pre-ionization gas laser equipment, only a part of the X-rays radiating from the target are guided into the discharge space.
It was used for preliminary ionization. Therefore, the utilization efficiency of X-rays for pre-ionization is low, and it is necessary to inject a large amount of electrical energy to perform sufficient pre-ionization. As a result, circuit components used to generate the electron beam are easily damaged and have a shortened lifespan.

筐た、#陰極を用いた従来のX線予備電離ガスレーザi
tでは、ガスレーザの予備電離に多くのX線線量を必要
とするため、X線を発生する電子ビームは大電流が必要
となる。ここで、熱陰極に釦いて単位面積あたシの電子
ビームを取り出せる能力(以下、放出電流密度)は陰極
材料とその温度で定筐り、通常用いられるタングステン
陰極の場合1平方センチあたりlアンペア程度が限界で
ある。従って、数百アンペア程度の大電流の電子ビーム
を得ようとすると、数百平方センチ程度の大面積が必要
となり、装置が大きくなるという課題がある。一方、前
記の文献に記載されたように放出電流密度が大きい特殊
な陰極材料を用いることも可能だが、陰極材料が高価で
かつ寿命が短いという課題がある。
Conventional X-ray preionization gas laser using #cathode
At t, a large amount of X-ray radiation is required for pre-ionization of the gas laser, so the electron beam that generates the X-rays requires a large current. The ability to extract an electron beam per unit area by pressing the hot cathode (hereinafter referred to as the emission current density) is determined by the cathode material and its temperature, and in the case of the commonly used tungsten cathode, it is 1 ampere per square centimeter. The extent is the limit. Therefore, in order to obtain an electron beam with a large current of about several hundred amperes, a large area of about several hundred square centimeters is required, resulting in a large device. On the other hand, as described in the above-mentioned literature, it is possible to use a special cathode material with a high emission current density, but there are problems in that the cathode material is expensive and has a short lifespan.

本発明の目的は、上記の従来の課題を解決し、エネルギ
消費が少なく、電子ビームの発生に用いる回路部品が長
寿命なX線予備電離ガスレーザ装置釦よび、装置が小型
でかつ陰極材料が安価で長寿命でめり、エネルギ消費の
少ないX線予備電離ガスレーザ装置を提供することにあ
る。
The object of the present invention is to solve the above-mentioned conventional problems and to provide an X-ray preionization gas laser device button that consumes less energy and has a long lifespan of circuit components used for generating an electron beam, the device is small, and the cathode material is inexpensive. An object of the present invention is to provide an X-ray pre-ionization gas laser device that has a long life and consumes little energy.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、互いに対向配置した2つの電極を内部に有し
、かつ、レーザガスを満したレーザ管と、陰極とターゲ
ットを備えて前記電極間の空間(放電空間)にX線を噸
射せしめるX線発生部とを少くとも備えているX線予備
電離ガスレーザ装置に訃いて、前記ターゲットを筒状と
し、この筒状ターゲットの中心に同軸状に陰極を配置し
、前記ターゲット外周を取り囲んで、ターゲットの中心
軸に垂直な断面がドーナツ状の放電空間を同軸状に形成
したことを特徴とするX線予備電離ガスレーザ装置と、
互いに対向配置した2つの電極を内部に有し、かつ、レ
ーザガスを満したレーザ管と、陰極とターゲットを備え
て前記電極間の空間(放電空間)にX線を照射せしめる
X線発生部とを少くとも備えているX線予備電離ガスレ
ーザ装置において、前記ターゲットを筒状とし、筒状タ
ーゲットの外周を取り囲んで筒状の陰極を同軸状に配置
し、前記筒状ターゲットで囲まれた柱状の空間内に放電
空間を具備したことを特徴とするX線予備電離ガスレー
ザ装置である。
The present invention is an X The target is cylindrical, a cathode is disposed coaxially at the center of the cylindrical target, and the target is surrounded by an outer periphery of the target. An X-ray pre-ionization gas laser device characterized in that a discharge space having a donut-shaped cross section perpendicular to the central axis is coaxially formed;
A laser tube having two electrodes arranged opposite to each other inside and filled with laser gas, and an X-ray generating section having a cathode and a target and irradiating the space between the electrodes (discharge space) with X-rays. In the X-ray pre-ionization gas laser device, the target is cylindrical, a cylindrical cathode is arranged coaxially around the outer periphery of the cylindrical target, and a columnar space surrounded by the cylindrical target is provided. This is an X-ray preionization gas laser device characterized by having a discharge space inside.

これらのX線予備電離ガスレーザ装置のさらに具体的な
一例は、前者のガスレーザ装置に釦いては、筒状ターゲ
ットの外周を取り囲んで、同軸状に第1の筒状電極を備
え、さらに、前記第1の筒状電極の外側に同軸状に第2
の筒状電極を備えた構造、あるいは、筒状ターゲットの
外周を取り囲んで第1の筒状圧力壁を同軸状に備え、さ
らに、前記第1の筒状圧力壁の外側に同軸状に第2の筒
状圧力壁を備え、前記第1.第2の筒状圧力壁で囲まれ
た空間の両端部にそれぞれ電極を備え、かつ、前記空間
内にレーザガスを満し、中心軸に平行な方向に放電を起
す構造、または、後者のX線予備電離ガスレーザ装置に
かいては、筒状ターゲ、トで囲まれた柱状の空間内に筒
状の2つの電極を同軸状に配置した構造、あるいは、筒
状ターゲ、トで囲まれた空間内に筒状圧力壁を備え、こ
の筒状圧力壁で囲まれた空間内の筒状圧カ壁両端部にそ
れぞれ電!Mを備え、かつ、筒状圧力壁で囲まれた空間
内にレーザガスを満し、中心軸に平行な方向に放電を起
す構造になっている。
A more specific example of these X-ray pre-ionization gas laser devices is that the former gas laser device is provided with a first cylindrical electrode coaxially surrounding the outer periphery of the cylindrical target; A second cylindrical electrode coaxially extends outside the first cylindrical electrode.
A structure including a cylindrical electrode, or a structure including a first cylindrical pressure wall coaxially surrounding the outer periphery of the cylindrical target, and further comprising a second cylindrical pressure wall coaxially outside the first cylindrical pressure wall. a cylindrical pressure wall; A structure in which electrodes are provided at both ends of a space surrounded by a second cylindrical pressure wall, and the space is filled with laser gas to generate discharge in a direction parallel to the central axis, or the latter X-ray The pre-ionized gas laser device has a structure in which two cylindrical electrodes are arranged coaxially in a columnar space surrounded by a cylindrical target, or a cylindrical target in a space surrounded by a cylindrical target. A cylindrical pressure wall is provided in the cylindrical pressure wall, and electricity is connected to both ends of the cylindrical pressure wall in the space surrounded by the cylindrical pressure wall. M, the space surrounded by a cylindrical pressure wall is filled with laser gas, and has a structure in which discharge occurs in a direction parallel to the central axis.

〔作用〕[Effect]

本発明によるX線予備電離ガスレーザ装置は、陰極を中
心として、断面が同心円になるように筒状薄膜ターゲッ
ト(以下、ターゲット)、第1の筒状電極、第2の筒状
電極を配置している。この場合、中心の陰極から発生し
た電子ビームはターゲットに衝突し、制動放射によりX
線がターゲットの裏面へも発生し、ターゲットの裏面、
すなわち、ターゲットの外側に位置する第1の筒状電極
に入射する。この、第1の筒状電極と、その外側にある
第2の円筒状電極の間で放電を行い、レーザガスを励起
してレーザ発振を得る。ここで、ターゲットで発生する
X線は、ターゲット表面の重縁方向以外の向きにも発散
するので、従来のXi予備電離ガスレーザ装置と異なり
放電空間には円筒の半径方向だけでなく斜方向からのX
線も入射する。
The X-ray pre-ionized gas laser device according to the present invention includes a cylindrical thin film target (hereinafter referred to as target), a first cylindrical electrode, and a second cylindrical electrode arranged so that the cross sections thereof are concentric circles around the cathode. There is. In this case, the electron beam generated from the central cathode collides with the target, and due to bremsstrahlung
The line also appears on the back side of the target,
That is, the light enters the first cylindrical electrode located outside the target. A discharge is generated between the first cylindrical electrode and the second cylindrical electrode located outside the first cylindrical electrode to excite the laser gas and obtain laser oscillation. Here, the X-rays generated by the target diverge in directions other than the direction of the overlapped edges of the target surface, so unlike conventional Xi pre-ionized gas laser devices, the discharge space contains radiation not only from the radial direction of the cylinder but also from the oblique direction. X
A line is also incident.

このため、X@の予備tSへの利用効率が高く、充分な
予備電離ができるために少ない電気的エネルギしか必要
としない。さらに、電気的な入力エネルギが少ないため
に電子ビームの発生に用いる回路部品が損傷を受は難く
、寿命が長くなる。この結果、従来の課題を解決したX
I!予備電離ガスレーザ装置を提供することができる。
Therefore, the utilization efficiency of X@ into the reserve tS is high, and sufficient preliminary ionization can be performed, so that only a small amount of electrical energy is required. Furthermore, since the electrical input energy is low, the circuit components used to generate the electron beam are less susceptible to damage and have a longer lifespan. As a result, X
I! A pre-ionized gas laser device can be provided.

別の構成によるX線予備電離ガスレーザ装置は、2つの
筒状電極に囲まれた放電空間を中心として同軸状に外側
に向かいターゲットと陰極を配置している。筒状の陰極
を放電空間を取り巻くように配置したことにより、放電
空間の大きさに対して陰極を太きくすることができる。
An X-ray pre-ionization gas laser device with another configuration has a target and a cathode arranged coaxially outward from a discharge space surrounded by two cylindrical electrodes. By arranging the cylindrical cathode so as to surround the discharge space, the cathode can be made thicker than the discharge space.

従って、タングステン陰極等の安価で長寿命な熱陰極材
料を用いても熱陰極の電子放出面の面積を大きくするこ
とができる。また、陰極が筒状なために、陰極全体の体
積は小さくでき、装置の小型化が図れる。さらに、放電
空間がターゲットによって囲まれるように配置したため
、先の構成の装置と同様に、放電空間には、ターゲット
の円筒の半径方向だけでなく斜方向からのX線も入射す
るため、X線の予備電離への利用効率が高い。よって、
充分な予備電離を行うために消費する電気的エネルギは
減少する。
Therefore, even if an inexpensive and long-life hot cathode material such as a tungsten cathode is used, the area of the electron emitting surface of the hot cathode can be increased. Furthermore, since the cathode is cylindrical, the volume of the entire cathode can be reduced, and the device can be made smaller. Furthermore, since the discharge space is arranged so as to be surrounded by the target, X-rays enter the discharge space not only from the radial direction of the target cylinder but also from the oblique direction, similar to the device with the previous configuration. The efficiency of use for pre-ionization is high. Therefore,
The electrical energy consumed to achieve sufficient pre-ionization is reduced.

第3の構成によるX線予備電離ガスレーザ装置は、第1
の4F[の装置と同様にターゲットの裏面に位置する第
1の筒状圧力壁にX嶽を照射する。
The X-ray pre-ionization gas laser device according to the third configuration includes the first
4F [Similar to the device, the first cylindrical pressure wall located on the back surface of the target is irradiated with X-rays.

この、第1の筒状圧力壁と第2の筒状圧力壁の間にある
レーザガスを筒の中心軸に平行な方向の放電でレーザ励
起してレーザ発振を得る。従って第1の構成の装置と同
様に、X線の予備電離への利用効率が高く、少ない電気
的エネルギしか必要としなく、電子ビームの発生に用い
る回路部品が損傷を受は難く、寿命が長くなる。
The laser gas located between the first cylindrical pressure wall and the second cylindrical pressure wall is excited by laser discharge in a direction parallel to the central axis of the cylinder to obtain laser oscillation. Therefore, like the device of the first configuration, the efficiency of using X-rays for pre-ionization is high, only a small amount of electrical energy is required, the circuit components used to generate the electron beam are not easily damaged, and the lifespan is long. Become.

第4の構成によるX線予備電離ガスレーザ装置は、第2
の構成の装置と同様に円筒状圧力壁に囲まれた放電空間
を中心として同軸円筒上に外側に向かいターゲットと陰
極を配置している。従って第2の構成の装置と同様に、
安価で長寿命な熱陰極材料を用いることができ、陰極全
体の体積を小さくでき、装置の小型化が図れ、XHの予
備電離への利用効率が高く、電気的エネルギが少ない。
The X-ray preionization gas laser device according to the fourth configuration includes a second
Similar to the device with the above configuration, the target and cathode are arranged on a coaxial cylinder facing outward from a discharge space surrounded by a cylindrical pressure wall. Therefore, similar to the device of the second configuration,
An inexpensive and long-life hot cathode material can be used, the volume of the entire cathode can be reduced, the device can be downsized, the efficiency of use of XH for pre-ionization is high, and electrical energy is small.

以上の結果、従来の課題を解決したX線予備電離ガスレ
ーザ装置を提供することができる。
As a result of the above, it is possible to provide an X-ray pre-ionization gas laser device that solves the conventional problems.

〔実施例〕〔Example〕

次に、図面を用いて本発明を説明する。 Next, the present invention will be explained using the drawings.

第1図は、本発明の一実施例であるX線予備電離ガスレ
ーザ装置の横断面図である。図示の如く、筒状レーザ管
20の中心に陰極2、その周囲を取り囲んで筒状ターゲ
ット3を設けてX線発生部lを形成している。X線発生
部1の中心の陰極2にkいて発生した電子ビームは、タ
ーゲット3に衝突して制動放射によりターゲットの裏面
へX線を発生する。ターゲットの外側に同軸円筒状にレ
ーザ放電空間4があり、ターゲットの裏面へ発散するX
線が、ターゲットの外側に同軸円筒状に設けた第1の電
極5を貫通してレーザ放電空間に導入され、放電空間の
レーザ媒質が予備電離される。
FIG. 1 is a cross-sectional view of an X-ray pre-ionization gas laser device which is an embodiment of the present invention. As shown in the figure, a cathode 2 is provided at the center of a cylindrical laser tube 20, and a cylindrical target 3 is provided surrounding the cathode 2 to form an X-ray generating section l. The electron beam generated by the cathode 2 at the center of the X-ray generating section 1 collides with the target 3 and generates X-rays toward the back surface of the target by bremsstrahlung radiation. There is a coaxial cylindrical laser discharge space 4 on the outside of the target, and X is emitted to the back surface of the target.
A line is introduced into the laser discharge space through a first electrode 5 arranged in the form of a coaxial cylinder outside the target, and the laser medium in the discharge space is preionized.

この、レーザ放電空間の内周と外周に同軸円筒状に配置
した第1の電極5と第2の電極6の間で放電を行うこと
によシ、放電空間のレーザ媒質を励起し、レーザ発振を
得る。
By causing a discharge between the first electrode 5 and the second electrode 6, which are arranged in a coaxial cylindrical shape on the inner and outer peripheries of the laser discharge space, the laser medium in the discharge space is excited and the laser oscillation occurs. get.

発散するX綴金てを放電空間に導入し、予備電離に用い
るために、X線の予備電離への利用効率はX線の一部の
みを用いた場合に比べ立体角に比例して効率が高く、充
分な予備電離を行うために小さな電気的エネルギしか消
費しない。さらに、電気的な入力エネルギが小さいため
に電子ビームの発生に用いる回路部品が損傷を受は難く
、寿命が長い。
Since a diverging X-ray metal is introduced into the discharge space and used for pre-ionization, the efficiency of using X-rays for pre-ionization is proportional to the solid angle compared to when only a part of the X-rays are used. It consumes only a small amount of electrical energy to achieve a high and sufficient pre-ionization. Furthermore, since the electrical input energy is small, the circuit components used to generate the electron beam are less likely to be damaged and have a long life.

なか、図中、陰極は棒状のものとして描いであるが、こ
れに限らず、円筒状の陰極としてもよい。
In the figure, the cathode is drawn as a rod-shaped cathode, but the cathode is not limited to this, and may be a cylindrical cathode.

第2図は、第2の実施例であるX線予備電離ガスレーザ
装置の横断原図である。この実施例に唱いては、先の実
施例とは逆に、2つの円筒状電極5.6でaすれた円筒
状放電空間4の囲りにX線発部lが同軸円筒状に設けで
ある。X線発生部lの外周の大面積の円筒状陰極2(熱
陰極)にかいて発生した電子ビームは、薄膜で成る円筒
状ターゲット3に衝突して制動放射によりターゲットの
裏面、すなわち、ターゲットの内側へX線を発生する。
FIG. 2 is a cross-sectional original diagram of an X-ray preionization gas laser device according to a second embodiment. In this embodiment, contrary to the previous embodiment, an X-ray emitting part l is provided in a coaxial cylindrical shape around a cylindrical discharge space 4 surrounded by two cylindrical electrodes 5.6. be. The electron beam generated by the large-area cylindrical cathode 2 (thermal cathode) on the outer periphery of the X-ray generating part 1 collides with the cylindrical target 3 made of a thin film, and bremsstrahlung radiation strikes the back side of the target. Generates X-rays inward.

熱陰極には、安価で長寿命なタングステン陰極を用いた
。タングステンの形状を内径7cm。
A tungsten cathode, which is inexpensive and has a long life, was used as the hot cathode. The tungsten shape has an inner diameter of 7cm.

長さ30cInの円筒状にすると、電子ビーム放出面の
面積は約660−が得られる。よって、タングステン陰
極でもピーク電流が数百アンペアの電子ビームが得られ
、ガスレーザの予備電離に充分なX線量が得られる。
If it is made into a cylindrical shape with a length of 30 cIn, the area of the electron beam emitting surface will be approximately 660 cm. Therefore, even with a tungsten cathode, an electron beam with a peak current of several hundred amperes can be obtained, and an X-ray dose sufficient for pre-ionization of a gas laser can be obtained.

ターゲットの内側に同軸円筒状に配置した放電空間4が
あり、ターゲットの裏面(内側)へ発散するX線が放電
空間に導入され、放電空間のレーザ媒質が予備!離され
る。この、放電空間の中心と外周に配置した第1の円筒
状電極5と第2の円筒状電極6の間で放電を行うことに
より、放電空間のレーザ媒質を励起し、レーザ発振を得
る。ここで、発散するX綴金てを放電空間に導入し、予
備電離に用いるために、XWjの予備電離への利用効率
はX線の一部のみを用いた場合に比べ立体角に比例して
効率が高く、充分な予備電離を行うために小さな電気的
エネルギしか消費しない。
There is a discharge space 4 arranged in a coaxial cylindrical shape inside the target. be separated. By causing a discharge between the first cylindrical electrode 5 and the second cylindrical electrode 6 arranged at the center and outer periphery of the discharge space, the laser medium in the discharge space is excited and laser oscillation is obtained. Here, since the diverging X-ray metal is introduced into the discharge space and used for pre-ionization, the utilization efficiency of XWj for pre-ionization is proportional to the solid angle compared to when only a part of the X-rays are used. It is highly efficient and consumes little electrical energy to provide sufficient pre-ionization.

なか、この実施例の場合、円筒状のレーザ管2の中心に
設ける電極(第2図では第2の電極6)は円筒状に限ら
ず、棒状あるいは編状としてもよい。
In this embodiment, the electrode (second electrode 6 in FIG. 2) provided at the center of the cylindrical laser tube 2 is not limited to a cylindrical shape, but may be rod-shaped or knitted.

第3図は、第3の実施例であるX線予備電離ガスレーザ
装置の横断面図、第4図は、第3の実施例であるX線予
備電離ガスレーザ装置の縦断面図である。この実施例に
おいて、X線発生部lは第1図の実施例と同じもので、
X線発生部の外側に同軸円筒状に設けた第1の円筒状圧
力壁7釦よび第2の円−筒状圧力壁8で戒るレーザ管が
めり、レーザ管の両端にドーナツ状の2つの電極9,1
0を互いに対向させて配置した第1の電極9と第2の電
極lOの間で放電を行うことにより、電極間に形成され
た放電空間4のレーザ媒質を励起し、レーザ発振を得る
。従って、第1図の実施例と同様に、X線の予備電離へ
の利用効率が高く、少ない電気的エネルギしか必要とし
なく、電子ビームの発生に用いる回路部品が損傷を受は
難く、寿命が長くなる。
FIG. 3 is a cross-sectional view of the X-ray pre-ionization gas laser device according to the third embodiment, and FIG. 4 is a longitudinal cross-sectional view of the X-ray pre-ionization gas laser device according to the third embodiment. In this embodiment, the X-ray generating section l is the same as the embodiment shown in FIG.
The laser tube is bent by a first cylindrical pressure wall 7 button and a second cylindrical pressure wall 8 provided in a coaxial cylindrical shape on the outside of the X-ray generating section, and donut-shaped 2 buttons are attached at both ends of the laser tube. two electrodes 9,1
By causing a discharge between the first electrode 9 and the second electrode 1O, which are arranged to face each other, the laser medium in the discharge space 4 formed between the electrodes is excited, and laser oscillation is obtained. Therefore, like the embodiment shown in FIG. 1, the efficiency of using X-rays for pre-ionization is high, only a small amount of electrical energy is required, and the circuit components used to generate the electron beam are not easily damaged and have a long lifespan. become longer.

なか、図中、陰極は棒状のものとして描いであるが、こ
れに限らず円筒状の陰極でもよい。筐た、電極9.10
もドーナツ状に限らず環状等、他の形状でもよい。要は
、中心軸に平行な方向に放電が起せれば電極形状はどの
ようなものでもよい。
In the figure, the cathode is drawn as a rod-shaped cathode, but the cathode is not limited to this, and may be a cylindrical cathode. Housing, electrode 9.10
The shape is not limited to a donut shape, but may be other shapes such as a ring shape. In short, any shape of the electrode may be used as long as discharge can occur in a direction parallel to the central axis.

第5図は、第4の実施例であるX線予備電離ガスレーザ
装置の横断面図、第6図は、第4の実施例であるX線予
備電離ガスレーザ装置の縦断面図である。この実施例に
ろいて、X線発生部lは第2図と同一のもので、X線発
生部の内側中心部に閉管状圧力壁11で成るレーザ管が
ある。この円筒状圧力壁の内側両端部に、ドーナツ状の
電極9゜10を互いに対向させて配置し、この電極間の
放電空間4*雰零牽濶#を第3図釦よび第4図と同様に
放電励起してレーザ発振を得る。従って、第2図と同様
に、安価で長寿命な陰極材料を用いることができ、陰極
全体の体積を小さくでき、装置の小型化が図れ、X線の
予備電離への利用率が高く、電気的エネルギが少ない。
FIG. 5 is a cross-sectional view of the X-ray pre-ionization gas laser device according to the fourth embodiment, and FIG. 6 is a longitudinal cross-sectional view of the X-ray pre-ionization gas laser device according to the fourth embodiment. In this embodiment, the X-ray generating section l is the same as in FIG. 2, with a laser tube consisting of a closed tubular pressure wall 11 located centrally inside the X-ray generating section. Donut-shaped electrodes 9 and 10 are arranged at both inner ends of this cylindrical pressure wall so as to face each other, and the discharge space 4*atmosphere zero tension # between these electrodes is similar to that shown in Fig. 3 and Fig. 4. Excite the discharge to obtain laser oscillation. Therefore, as shown in Fig. 2, it is possible to use inexpensive and long-life cathode materials, the volume of the entire cathode can be reduced, the equipment can be downsized, the utilization rate of X-rays for pre-ionization is high, and the target energy is low.

この実施例ではドーナツ状の電極9.lOを用いたが、
他の形状、例えばフィラメント状等どのような形状の電
極でもよい。要は、中心軸に平行な方向に氷覧が起せれ
ば電極形状はどのようなものでもよい。
In this embodiment, the donut-shaped electrode 9. Although lO was used,
The electrode may have any other shape, such as a filament shape. In short, any shape of the electrode may be used as long as the ice can be generated in a direction parallel to the central axis.

なか、第3図から第6図の実施例にかいては電極を用い
て放電励起を行なったが、マグネトロン等のマイクロ波
発生器を用いてマイクロ波放電励起を行なってもよい。
In the embodiments shown in FIGS. 3 to 6, electrodes were used to excite the discharge, but a microwave generator such as a magnetron may be used to excite the discharge.

〔発明の効果〕〔Effect of the invention〕

以上のことから、本発明によるX線予備電離ガスレーザ
装置では、エネルギ消費が少なく、電子ビームの発生に
用いる回路部品が長寿命になる。
From the above, the X-ray preionization gas laser device according to the present invention consumes less energy and has a longer lifespan for the circuit components used to generate the electron beam.

筐た、装置が小型でかつ陰極材料が安価で長寿命であり
、エネルギ消費が少ない。
The casing and device are small, the cathode material is inexpensive and has a long life, and energy consumption is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、第1の実施例であるX線予備電離ガスレーザ
装置の横断面図、第2図は、第2の実施例であるX線予
備電離ガスレーザ装置の横断面図、第3図は、第3の実
施例であるX線予備電離ガスレーザ装置の横断面図、第
4図は、第3の実施例であるX線予備電離ガスレーザ装
置の縦断面図、第5図は、第4の実施例であるX線予備
電離ガスレーザ装置の横断面図、第6図は、第4の実施
例であるX線予備電離ガスレーザ装置の縦断面図、第7
図は、従来のX線予備電離ガスレーザ装置の横断面図で
ある。 図にかいて、1・・・・・・X線発生部、2・・・・・
・陰極、3・・・・・・ターゲット、4・・・・・・放
電空間、5・・−・・・第1の円筒状電極、6・・・・
・・第2の円筒状電極、7・・・・・・第1の円筒状圧
力壁、8・・・・−・第2の円筒状圧力壁、9・・・・
・・第1の電極、10・・・・・・第2の電極、11・
・・・・・円筒状圧力壁である。 第1図
FIG. 1 is a cross-sectional view of an X-ray pre-ionization gas laser device according to a first embodiment, FIG. 2 is a cross-sectional view of an X-ray pre-ionization gas laser device according to a second embodiment, and FIG. , FIG. 4 is a longitudinal cross-sectional view of the X-ray pre-ionization gas laser device according to the third embodiment, and FIG. 5 is a cross-sectional view of the X-ray pre-ionization gas laser device according to the third embodiment. FIG. 6 is a cross-sectional view of the X-ray pre-ionization gas laser device according to the fourth embodiment, and FIG. 7 is a longitudinal cross-sectional view of the X-ray pre-ionization gas laser device according to the fourth embodiment.
The figure is a cross-sectional view of a conventional X-ray preionization gas laser device. In the figure, 1...X-ray generation part, 2...
- Cathode, 3...Target, 4...Discharge space, 5...First cylindrical electrode, 6...
...Second cylindrical electrode, 7...First cylindrical pressure wall, 8...-Second cylindrical pressure wall, 9...
...First electrode, 10...Second electrode, 11.
...It is a cylindrical pressure wall. Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)互いに対向配置した2つの電極を内部に有し、か
つレーザガスを満したレーザ管と、陰極とターゲットを
備えて前記電極間の空間(放電空間)にX線を照射せし
めるX線発生部とを少くとも備えているX線予備電離ガ
スレーザ装置において、前記ターゲットを筒状とし、こ
の筒状ターゲットの中心に同軸状に陰極を配置し、前記
ターゲット外周を取り囲んで、ターゲットの中心軸に垂
直な断面がドーナツ状の放電空間を同軸状に形成したこ
とを特徴とするX線予備電離ガスレーザ装置。
(1) An X-ray generating unit that includes a laser tube that has two electrodes arranged facing each other inside and is filled with laser gas, a cathode, and a target, and irradiates the space between the electrodes (discharge space) with X-rays. In an X-ray pre-ionized gas laser apparatus, the target is cylindrical, and a cathode is disposed coaxially at the center of the cylindrical target, surrounding the outer periphery of the target, and perpendicular to the central axis of the target. An X-ray pre-ionization gas laser device characterized in that a discharge space having a doughnut-shaped cross section is formed coaxially.
(2)請求項1記載のX線予備電離ガスレーザ装置にお
いて、筒状ターゲットの外周を取り囲んで、同軸状に第
1の筒状電極を備え、さらに、前記第1の筒状電極の外
側に同軸状に第2の筒状電極を備えたことを特徴とする
X線予備電離ガスレーザ装置。
(2) The X-ray pre-ionized gas laser device according to claim 1, further comprising a first cylindrical electrode coaxially surrounding the outer periphery of the cylindrical target, and further provided coaxially on the outside of the first cylindrical electrode. An X-ray preionization gas laser device comprising a second cylindrical electrode.
(3)請求項1記載のX線予備電離ガスレーザ装置にお
いて、筒状ターゲットの外周を取り囲んで第1の筒状圧
力壁を同軸状に備え、さらに、前記第1の筒状圧力壁の
外側に同軸状に第2の筒状圧力壁を備え、前記第1、第
2の筒状圧力壁で囲まれた空間の両端部にそれぞれ電極
を備え、かつ、前記空間内にレーザガスを満したことを
特徴とするX線予備電離ガスレーザ装置。
(3) The X-ray pre-ionized gas laser apparatus according to claim 1, further comprising a first cylindrical pressure wall coaxially surrounding the outer periphery of the cylindrical target, and further provided on the outside of the first cylindrical pressure wall. A second cylindrical pressure wall is provided coaxially, electrodes are provided at both ends of a space surrounded by the first and second cylindrical pressure walls, and the space is filled with laser gas. Features: X-ray pre-ionization gas laser device.
(4)互いに対向配置した2つの電極を内部に有し、か
つ、レーザガスを満したレーザ管と、陰極とターゲット
を備えて前記電極間の空間(放電空間)にX線を照射せ
しめるX線発生部とを少くとも備えているX線予備電離
ガスレーザ装置において、前記ターゲットを筒状とし、
筒状ターゲットの外周を取り囲んで筒状の陰極を同軸状
に配置し、前記筒状ターゲットで囲まれた柱状の空間内
に放電空間を具備したことを特徴とするX線予備電離ガ
スレーザ装置。
(4) X-ray generation that includes a laser tube that has two electrodes arranged facing each other inside and is filled with laser gas, a cathode and a target, and irradiates the space between the electrodes (discharge space) with X-rays. In the X-ray pre-ionization gas laser device, the target is cylindrical;
An X-ray preionized gas laser device, characterized in that a cylindrical cathode is coaxially arranged surrounding the outer periphery of a cylindrical target, and a discharge space is provided in a columnar space surrounded by the cylindrical target.
(5)請求項4記載のX線予備電離ガスレーザ装置にお
いて、筒状ターゲットで囲まれた柱状の空間内に筒状の
2つの電極を同軸状に配置したことを特徴とするX線予
備電離ガスレーザ装置。
(5) The X-ray preionization gas laser device according to claim 4, characterized in that two cylindrical electrodes are disposed coaxially within a columnar space surrounded by a cylindrical target. Device.
(6)請求項4記載のX線予備電離ガスレーザ装置にお
いて、筒状ターゲットで囲まれた空間内に筒状圧力壁を
備え、この筒状圧力壁で囲まれた空間内の筒状圧力壁両
端部にそれぞれ電極を備え、かつ、筒状圧力壁で囲まれ
た空間内にレーザガスを満したことを特徴とするX線予
備電離ガスレーザ装置。
(6) The X-ray pre-ionized gas laser device according to claim 4, further comprising a cylindrical pressure wall in a space surrounded by the cylindrical target, and both ends of the cylindrical pressure wall in the space surrounded by the cylindrical pressure wall. 1. An X-ray preionization gas laser device, characterized in that each part is provided with an electrode, and a space surrounded by a cylindrical pressure wall is filled with laser gas.
JP8870190A 1990-04-03 1990-04-03 X-ray preionization gas laser device Expired - Fee Related JP2913743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8870190A JP2913743B2 (en) 1990-04-03 1990-04-03 X-ray preionization gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8870190A JP2913743B2 (en) 1990-04-03 1990-04-03 X-ray preionization gas laser device

Publications (2)

Publication Number Publication Date
JPH03286581A true JPH03286581A (en) 1991-12-17
JP2913743B2 JP2913743B2 (en) 1999-06-28

Family

ID=13950180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8870190A Expired - Fee Related JP2913743B2 (en) 1990-04-03 1990-04-03 X-ray preionization gas laser device

Country Status (1)

Country Link
JP (1) JP2913743B2 (en)

Also Published As

Publication number Publication date
JP2913743B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
Rocca et al. Discharge‐pumped soft‐x‐ray laser in neon‐like argon
EP0463815B1 (en) Vacuum ultraviolet light source
US6421421B1 (en) Extreme ultraviolet based on colliding neutral beams
JPH11288678A (en) Fluorescence x-ray source
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
JP2750348B2 (en) X-ray of gas laser, especially for plasma X-ray tube for pre-ionization and application as electron gun
JPS6324532A (en) X-ray source
JP2007080697A (en) Photoelectric transfer element and electron beam generator using it
US3887882A (en) Electric discharge laser with electromagnetic radiation induced conductivity enhancement of the gain medium
US3314021A (en) Cathodoluminescent pumped laser having a cathode surrounding the laser
JPH03286581A (en) X-ray preionized laser device
Schriever et al. Compact Z-pinch EUV source for photolithography
Shafiq et al. Soft X-ray emission optimization study with nitrogen gas in a 1.2 kJ plasma focus
CN212302211U (en) Electrode structure of capillary discharge three-beam plasma coupled light source
US20030053593A1 (en) Capillary discharge source
US4398294A (en) High power nuclear photon pumped laser
US3555451A (en) Laser cold cathode apparatus
CN112448258A (en) Laser device
JPS62224480A (en) Double beam gas ion laser
JP2592821B2 (en) Gas laser device
JPH03165584A (en) X-ray preionized gas laser device
Pert Extreme ultraviolet laser action in plasmas
JP2002313267A (en) Plasma x-ray tube
JPH0449240B2 (en)
Hinshelwood et al. Confined discharge plasma sources for Z-pinch experiments

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees