JP2007078231A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2007078231A
JP2007078231A JP2005265162A JP2005265162A JP2007078231A JP 2007078231 A JP2007078231 A JP 2007078231A JP 2005265162 A JP2005265162 A JP 2005265162A JP 2005265162 A JP2005265162 A JP 2005265162A JP 2007078231 A JP2007078231 A JP 2007078231A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
temperature
bypass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265162A
Other languages
Japanese (ja)
Other versions
JP4173883B2 (en
Inventor
Shuji Ito
修治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2005265162A priority Critical patent/JP4173883B2/en
Publication of JP2007078231A publication Critical patent/JP2007078231A/en
Application granted granted Critical
Publication of JP4173883B2 publication Critical patent/JP4173883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heater capable of preventing overshoot of hot water supply temperature to a target hot water supply temperature when in-coming water quantity is reduced. <P>SOLUTION: The water heater is equipped with a bypass ratio control means 32 which estimates waste heat quantity in a heat exchanger 4 on the basis of the difference between the first heating quantity and the second heating quantity, and controls a bypass ratio as a ratio of a flow rate of the water circulating in a bypass pipe 5 to a flow rate of the water circulating in the heat exchanger 4 by a bypass proportional valve 13 of a bypass ratio control means 32 to cancel the rise of hot water supply temperature of the heat exchanger 4 by the waste heat quantity when a flow rate detected by a flow rate sensor 12 is reduced during the execution of hot water supply operation, and heating quantity of a gas burner 20 is controlled to be reduced from a first heating quantity to a second heating quantity by a hot water supply control means 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱交換器から出湯される湯に該熱交換器をバイパスしたバイパス管から供給される水を混合して、所望温度の湯を供給する給湯装置に関し、特に、入水量の減少時における給湯温度の変動の抑制に関する。   The present invention relates to a hot water supply apparatus that mixes hot water discharged from a heat exchanger with water supplied from a bypass pipe that bypasses the heat exchanger, and supplies hot water at a desired temperature, particularly when the amount of incoming water is reduced. It relates to suppression of fluctuations in hot water supply temperature.

従来より、図4に示したように、熱交換器102の低温腐食を防止するために、熱交換器102をバイパスするバイパス管103を設けて、熱交換器102の出湯温度を高く維持するようにした給湯装置が知られている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 4, in order to prevent low-temperature corrosion of the heat exchanger 102, a bypass pipe 103 that bypasses the heat exchanger 102 is provided so as to keep the tapping temperature of the heat exchanger 102 high. A hot water supply apparatus is known (see, for example, Patent Document 1).

かかる給湯装置においては、コントローラ108により、入水温度センサ104により検出される給水管100から供給される水の温度と、流量センサ107により検出される給水管100からの入水量と、所定の目標給湯温度とに基づいて、該目標給湯温度の湯を給湯管101から供給するために必要となるバーナ111の目標燃焼量が決定される。そして、コントローラ108は、バーナ111の燃焼量を該目標燃焼量に制御して「給湯運転」を実行する。また、コントローラ108は、熱交換器102の出湯温度が低温腐食を防止するための下限温度以上となるように、バイパス比例弁106の開度を制御する。   In such a hot water supply apparatus, the controller 108 detects the temperature of the water supplied from the water supply pipe 100 detected by the incoming water temperature sensor 104, the amount of incoming water from the water supply pipe 100 detected by the flow sensor 107, and a predetermined target hot water supply. Based on the temperature, the target combustion amount of the burner 111 necessary for supplying hot water at the target hot water supply temperature from the hot water supply pipe 101 is determined. Then, the controller 108 controls the combustion amount of the burner 111 to the target combustion amount and executes the “hot water supply operation”. Moreover, the controller 108 controls the opening degree of the bypass proportional valve 106 so that the hot water temperature of the heat exchanger 102 becomes equal to or higher than the lower limit temperature for preventing low temperature corrosion.

ここで、「給湯運転」の実行中にカラン110が操作されて、給水管100から入水量が減少すると、それに応じて、コントローラ108はバーナ111の目標燃焼量を変更して、バーナ111の燃焼量を減少させる。しかし、このようにバーナ111の燃焼量を減少させても、熱交換器102の熱容量による余熱によって、熱交換器102における加熱量は直ちには減少しない。   Here, when the currant 110 is operated during execution of the “hot water supply operation” and the amount of water entering from the water supply pipe 100 decreases, the controller 108 changes the target combustion amount of the burner 111 accordingly and the combustion of the burner 111 is performed. Reduce the amount. However, even if the combustion amount of the burner 111 is reduced in this way, the heating amount in the heat exchanger 102 is not immediately reduced due to the residual heat due to the heat capacity of the heat exchanger 102.

そのため、熱交換器102の出湯温度が急激に上昇し、給湯管101からカラン110に供給される湯の温度が目標給湯温度よりも高くなる、いわゆるオーバーシュートが生じるという不都合があった。
特開平6−288637号公報
For this reason, there is a disadvantage that a so-called overshoot occurs in which the temperature of the hot water in the heat exchanger 102 rises rapidly and the temperature of the hot water supplied from the hot water supply pipe 101 to the currant 110 becomes higher than the target hot water temperature.
Japanese Patent Laid-Open No. 6-288637

本発明は上記不都合を解消し、入水量が減少したときに、目標給湯温度に対する給湯温度のオーバーシュートが生じることを抑制した給湯装置を提供することを目的とする。   An object of the present invention is to provide a hot water supply apparatus that eliminates the above inconvenience and suppresses the occurrence of overshooting of the hot water supply temperature with respect to the target hot water supply temperature when the amount of incoming water decreases.

本発明は上記目的を達成するためになされたものであり、給水管及び給湯管と接続されて、該給水管から供給される水を加熱して該給湯管に出湯する熱交換器と、該熱交換器を加熱する加熱手段と、該熱交換器をバイパスして該給水管と該給湯管とを連通するバイパス管と、該熱交換器を流通する水の流量に対する該バイパス管を流通する水の流量の比であるバイパス比を変更するバイパス比変更手段と、前記給水管から前記熱交換器に供給される水の温度を検出する入水温度検出手段と、前記給水管から前記熱交換器及び前記バイパス管に供給される水の総流量を検出する流量検出手段と、前記給湯管の前記バイパス管との接続箇所の下流側に供給される湯の温度が所定の目標給湯温度となるように、前記入水温度検出手段の検出温度と前記流量検出手段の検出流量とに基づいて、前記加熱手段の加熱量を制御する給湯運転を実行する給湯制御手段とを備えた給湯装置の改良に関する。   The present invention has been made to achieve the above object, and is connected to a water supply pipe and a hot water supply pipe, heats the water supplied from the water supply pipe, and discharges the hot water to the hot water supply pipe, Heating means for heating the heat exchanger, a bypass pipe that bypasses the heat exchanger and connects the water supply pipe and the hot water supply pipe, and the bypass pipe that circulates with respect to the flow rate of water flowing through the heat exchanger Bypass ratio changing means for changing a bypass ratio that is a ratio of water flow rate, incoming water temperature detecting means for detecting the temperature of water supplied from the water supply pipe to the heat exchanger, and from the water supply pipe to the heat exchanger And the flow rate detection means for detecting the total flow rate of the water supplied to the bypass pipe, and the temperature of hot water supplied to the downstream side of the location where the hot water pipe is connected to the bypass pipe are set to a predetermined target hot water temperature. The detected temperature of the incoming water temperature detecting means and the previous temperature Based on the detected flow rate of the flow rate detecting unit, an improvement of the water heater with a hot water supply control means for executing the hot water supply operation for controlling the heating amount of said heating means.

そして、前記給湯運転の実行中に、前記流量検出手段の検出流量が減少し、前記給湯制御手段によって、前記加熱手段の加熱量を第1の加熱量から第2の加熱量に減少する制御がなされたときに、該第1の加熱量と該第2の加熱量との差に応じて前記熱交換器における余熱量を推定し、該余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御するバイパス比制御手段を備えたことを特徴とする給湯装置。   During the hot water supply operation, the detected flow rate of the flow rate detecting means decreases, and the hot water supply control means controls the heating amount of the heating means to be reduced from the first heating amount to the second heating amount. When it is made, the amount of remaining heat in the heat exchanger is estimated according to the difference between the first amount of heating and the second amount of heating, and the rise in the tapping temperature of the heat exchanger due to the amount of remaining heat is calculated. A hot water supply apparatus comprising a bypass ratio control means for controlling the bypass ratio via the bypass ratio changing means so as to cancel.

かかる本発明においては、前記給湯運転の実行中に前記給水管への入水量が減少して、前記給湯制御手段により、前記加熱手段の加熱量を第1の加熱量から第2の加熱量に減少する制御がなされたときに、前記熱交換器の熱容量の影響により、前記熱交換器における加熱量は該第2の加熱量に該第1の加熱量による余熱分が重畳されたものとなる。そのため、該余熱により熱交換器における水の加熱が過剰なものとなる。   In the present invention, the amount of water entering the water supply pipe decreases during execution of the hot water supply operation, and the heating amount of the heating means is changed from the first heating amount to the second heating amount by the hot water supply control means. When the decrease control is performed, due to the heat capacity of the heat exchanger, the amount of heating in the heat exchanger becomes the second heating amount superimposed with the remaining heat due to the first heating amount. . Therefore, heating of water in the heat exchanger becomes excessive due to the residual heat.

そこで、前記バイパス比制御手段により、第1の加熱量と第2の加熱量との差に応じて前記熱交換器における余熱量を推定し、該余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段により前記バイパス比を制御することで、前記給湯管から供給される湯の温度を前記目標給湯温度付近に維持して、前記目標給湯温度に対するオーバーシュートが生じることを抑制することができる。   Therefore, the bypass ratio control means estimates the amount of remaining heat in the heat exchanger according to the difference between the first heating amount and the second heating amount, and increases the tapping temperature of the heat exchanger due to the remaining heat amount. By controlling the bypass ratio by the bypass ratio changing means so as to cancel out the minute, the temperature of the hot water supplied from the hot water supply pipe is maintained in the vicinity of the target hot water temperature, and an overshoot with respect to the target hot water temperature is prevented. It is possible to suppress the occurrence.

また、前記バイパス比制御手段は、前記流量検出手段の検出流量が減少した時点から、該時点において前記熱交換器内に所在していた湯水が前記熱交換器から全て出湯されるまでの間、前記余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御することを特徴とする。   Further, the bypass ratio control means, from the time when the detected flow rate of the flow rate detecting means decreases, until all the hot water located in the heat exchanger at that time is discharged from the heat exchanger, The bypass ratio is controlled via the bypass ratio changing means so as to cancel out the rise in the hot water temperature of the heat exchanger due to the residual heat amount.

かかる本発明によれば、前記流量検出手段の検出流量が減少した時点において、前記熱交換器内に所在していた湯水は、前記第1の加熱量による余熱により加熱されて、前記熱交換器から出湯される。そこで、前記流量検出手段の検出流量が減少した時点から、該時点において前記熱交換器内に所在していた湯水が前記熱交換器から全て出湯されるまでの間、前記余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比制御手段により前記バイパス比を制御することで、余熱による給湯温度のオーバーシュートをより確実に抑制することができる。   According to the present invention, when the detected flow rate of the flow rate detecting means decreases, the hot water existing in the heat exchanger is heated by the residual heat due to the first heating amount, and the heat exchanger It is made out of hot water. Therefore, from the time when the detected flow rate of the flow rate detecting means decreases until the hot water located in the heat exchanger at that time is completely discharged from the heat exchanger, the heat exchange by the residual heat amount is performed. By controlling the bypass ratio by the bypass ratio control means so as to cancel out the rise in the hot water temperature of the boiler, overshooting of the hot water supply temperature due to residual heat can be more reliably suppressed.

また、前記バイパス比制御手段は、前記バイパス比が予め定められた上限以下となる範囲で、前記余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御することを特徴とする。   Further, the bypass ratio control means, via the bypass ratio change means, in such a range that the bypass ratio is equal to or less than a predetermined upper limit so as to cancel the rise in the hot water temperature of the heat exchanger due to the remaining heat amount. And controlling the bypass ratio.

かかる本発明によれば、前記バイパス比を大きく設定し過ぎて前記熱交換器を流通する水の流量が極端に少なくなり、前記熱交換器内で沸騰が生じることを防止することができ、該沸騰により前記熱交換器の劣化等が生じることを防止することができる。   According to the present invention, the flow rate of water flowing through the heat exchanger is extremely reduced by setting the bypass ratio too large, and boiling can be prevented from occurring in the heat exchanger. It is possible to prevent the heat exchanger from deteriorating due to boiling.

本発明の実施の形態について、図1〜図3を参照して説明する。図1は本発明の給湯装置の全体構成図、図2は給湯運転のフローチャート、図3は入水量減少時におけるバイパス比の設定の説明図。   Embodiments of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a hot water supply apparatus of the present invention, FIG. 2 is a flowchart of hot water supply operation, and FIG.

図1を参照して、本実施の形態の給湯装置1には、給水管2及び給湯管3と接続された熱交換器4、熱交換器4をバイパスして給水管2と給湯管3を連通するバイパス管5、給水管2に供給される水の温度を検出する入水温度センサ10(本発明の入水温度検出手段に相当する)、給湯管3のバイパス管5との接続部の下流側に供給される湯の温度を検出する給湯温度センサ11、給水管2に供給される水の流量を検出する流量センサ12(本発明の流量検出手段に相当する)、熱交換器4を流通する水の流量とバイパス管5を流通する水の流量との比率を変更するバイパス比例弁13(本発明のバイパス比変更手段に相当する)、熱交換器4を加熱するガスバーナ20、ガスバーナ20への燃料ガスの供給量を調節するガス比例弁21、ガスバーナ20への燃料ガスの供給/遮断を切替えるガス元弁22、ガスバーナ20に点火するための点火電極23、ガスバーナ20への燃焼用空気の供給量を調節する燃焼ファン24、給湯装置1の全体的な作動を制御するコントローラ30、及び目標給湯温度の設定等を行うためのリモコン40が備えられている。   Referring to FIG. 1, a hot water supply apparatus 1 according to the present embodiment includes a heat exchanger 4 connected to a water supply pipe 2 and a hot water supply pipe 3, and bypasses the heat exchanger 4 to provide a water supply pipe 2 and a hot water supply pipe 3. Downstream side of the connection between the bypass pipe 5 that communicates, the incoming water temperature sensor 10 that detects the temperature of the water supplied to the water supply pipe 2 (corresponding to the incoming water temperature detection means of the present invention), and the bypass pipe 5 of the hot water supply pipe 3 A hot water supply temperature sensor 11 for detecting the temperature of hot water supplied to the water supply, a flow rate sensor 12 for detecting the flow rate of water supplied to the water supply pipe 2 (corresponding to the flow rate detection means of the present invention), and the heat exchanger 4 are circulated. A bypass proportional valve 13 (corresponding to the bypass ratio changing means of the present invention) for changing the ratio of the flow rate of water and the flow rate of water flowing through the bypass pipe 5, the gas burner 20 for heating the heat exchanger 4, and the gas burner 20 Gas proportional valve 21 for adjusting the supply amount of fuel gas, gas Gas source valve 22 for switching supply / cutoff of fuel gas to burner 20, ignition electrode 23 for igniting gas burner 20, combustion fan 24 for adjusting the supply amount of combustion air to gas burner 20, and hot water supply device 1 as a whole A controller 30 for controlling a typical operation and a remote controller 40 for setting a target hot water supply temperature and the like are provided.

コントローラ30には、入水温度センサ10の温度検出信号、給湯温度センサ11の温度検出信号、及び流量センサ12の流量検出信号が入力される。また、コントローラ30から出力される制御信号によって、バイパス比例弁13、ガス比例弁21、ガス元弁22、点火電極23、及び燃焼ファン24の作動が制御される。また、リモコン40はコントローラ30と通信可能に接続され、リモコン40からコントローラ30に対して各種の設定信号が送信されると共に、コントローラ30からリモコン40に対して給湯装置1の作動状況を示す信号等が送信される。   The controller 30 receives a temperature detection signal of the incoming water temperature sensor 10, a temperature detection signal of the hot water supply temperature sensor 11, and a flow rate detection signal of the flow rate sensor 12. Further, the operations of the bypass proportional valve 13, the gas proportional valve 21, the gas main valve 22, the ignition electrode 23, and the combustion fan 24 are controlled by a control signal output from the controller 30. The remote controller 40 is communicably connected to the controller 30, and various setting signals are transmitted from the remote controller 40 to the controller 30, and signals indicating the operating status of the hot water supply device 1 are transmitted from the controller 30 to the remote controller 40. Is sent.

そして、コントローラ30は、給湯管3のバイパス管5との接続箇所の下流側に供給される湯の温度(以下、給湯温度という)が、リモコン40により設定された目標給湯温度となるように、ガスバーナ20の加熱量(燃焼量)を制御する「給湯運転」を実行する給湯制御手段31と、「給湯運転」の実行中に給水管2への入水量が減少したときに、バイパス比例弁13により、熱交換器4を流通する水の流量に対するバイパス管4を流通する水の流量の比であるバイパス比を変更して、給湯温度のオーバーシュートを抑制する制御を行うバイパス比制御手段32とを備えている。   Then, the controller 30 is configured so that the temperature of hot water supplied to the downstream side of the location where the hot water supply pipe 3 is connected to the bypass pipe 5 (hereinafter referred to as hot water supply temperature) becomes the target hot water temperature set by the remote controller 40. The hot water supply control means 31 for executing the “hot water supply operation” for controlling the heating amount (combustion amount) of the gas burner 20, and the bypass proportional valve 13 when the amount of water entering the water supply pipe 2 decreases during the execution of the “hot water supply operation”. Bypass ratio control means 32 for performing control to change the bypass ratio, which is the ratio of the flow rate of water flowing through the bypass pipe 4 to the flow rate of water flowing through the heat exchanger 4, and to suppress overshoot of the hot water supply temperature; It has.

以下、図2に示したフローチャートに従って、「給湯運転」の実行手順について説明する。使用者によるリモコン40の操作によって、給湯装置1が「給湯運転」の実行が可能な運転状態となると、コントローラ30は、図2のSTEP1で、流量センサ12により給水管2への入水が検知されるのを待つ。   Hereinafter, the execution procedure of the “hot water supply operation” will be described with reference to the flowchart shown in FIG. 2. When the hot water supply device 1 is in an operation state in which the “hot water supply operation” can be executed by the operation of the remote controller 40 by the user, the controller 30 detects the water entering the water supply pipe 2 by the flow sensor 12 in STEP 1 of FIG. Wait for it.

そして、使用者により、給湯管3の先端に接続されたカラン6が開けられて、流量センサ12により給水管2への入水が検知されると、給湯制御手段31は、STEP2に進んでバーナ20の点火処理を行う。バーナ20の点火処理は、燃焼ファン24を作動させた後、点火電極23に火花放電を生じさせた状態で、ガス元弁22とガス比例弁21を開弁して行う。   When the user opens the currant 6 connected to the tip of the hot water supply pipe 3 and the flow sensor 12 detects water entering the water supply pipe 2, the hot water supply control means 31 proceeds to STEP 2 and proceeds to the burner 20. Ignition processing is performed. The ignition process of the burner 20 is performed by opening the gas source valve 22 and the gas proportional valve 21 with the spark discharge generated in the ignition electrode 23 after the combustion fan 24 is operated.

続くSTEP3で、給湯制御手段31は、給湯温度が目標給湯温度となるように、ガス比例弁21の開度及び燃焼ファン24の回転数を調節してガスバーナ20の燃焼量を制御する。具体的には、例えば、入水温度センサ10の検出温度が10℃、目標給湯温度が40℃、流量センサ12により検出される入水量が20l/minであるときは、図3のXに示したように、ガスバーナ20の目標加熱量を600kcal/minとしてガスバーナ20の燃焼量を制御することで、以下の式(1)に示すように、給湯温度Tsを40℃とする。   In subsequent STEP 3, the hot water supply control means 31 controls the combustion amount of the gas burner 20 by adjusting the opening of the gas proportional valve 21 and the rotational speed of the combustion fan 24 so that the hot water supply temperature becomes the target hot water supply temperature. Specifically, for example, when the detected temperature of the incoming water temperature sensor 10 is 10 ° C., the target hot water supply temperature is 40 ° C., and the incoming water amount detected by the flow rate sensor 12 is 20 l / min, it is indicated by X in FIG. In this way, by controlling the combustion amount of the gas burner 20 with the target heating amount of the gas burner 20 set to 600 kcal / min, the hot water supply temperature Ts is set to 40 ° C. as shown in the following equation (1).

Ts = 600(kcal/min)/20(l/min) + 10(℃) = 40(℃) ・・・・・(1)
なお、バイパス比は、熱交換器4の出湯温度が低温腐食を防止するために予め設定された下限温度(例えば50℃)以上となるように設定され、図3のXでは0.33に設定されている。また、給湯制御手段31は、給湯温度センサ11により検出される実施の給湯温度が目標給湯温度からずれるときには、ガスバーナ20の目標燃焼量を補正する。
Ts = 600 (kcal / min) / 20 (l / min) + 10 (° C) = 40 (° C) (1)
The bypass ratio is set so that the temperature of the hot water of the heat exchanger 4 is not less than a preset lower limit temperature (for example, 50 ° C.) in order to prevent low temperature corrosion, and is set to 0.33 in X of FIG. Has been. The hot water supply control means 31 corrects the target combustion amount of the gas burner 20 when the hot water supply temperature detected by the hot water supply temperature sensor 11 deviates from the target hot water supply temperature.

続くSTEP4で、給湯制御手段31は、流量センサ12により検出される入水量Flが所定レベル(例えば10%)以上減少したか否かを判断する。そして、入水流量Flが該所定レベル以上減少したときにはSTEP10に分岐する。   In subsequent STEP 4, the hot water supply control means 31 determines whether or not the incoming water amount Fl detected by the flow sensor 12 has decreased by a predetermined level (for example, 10%) or more. When the incoming water flow rate Fl decreases by more than the predetermined level, the process branches to STEP10.

STEP10〜STEP13はバイパス比制御手段32による処理であり、バイパス比制御手段32は、STEP10で給湯温度を補正するための補正バイパス比Brcを算出する。ここで、入水流量Flが減少すると、それに応じて、給湯制御手段31はSTEP3の温調制御によりガスバーナ20の加熱量を減少させる。   STEP10 to STEP13 are processes by the bypass ratio control means 32, and the bypass ratio control means 32 calculates a corrected bypass ratio Brc for correcting the hot water supply temperature in STEP10. Here, when the incoming water flow rate Fl decreases, the hot water supply control means 31 decreases the heating amount of the gas burner 20 by the temperature control of STEP 3 accordingly.

なお、給湯温度のオーバーシュートは、入水量Flの減少度合いが大きいほど大きくなる。そこで、STEP4における入水量Flが減少したことの判断条件を、例えば入水量Flが50%減少した場合のように、入水量Flの減少度合いをさらに大きく設定して行い、これにより、給湯温度の極端なオーバーシュートを抑制するようにしてもよい。   In addition, the overshoot of the hot water supply temperature increases as the degree of decrease in the incoming water amount Fl increases. Therefore, the determination condition for the decrease in the incoming water amount Fl in STEP 4 is performed by setting the degree of decrease in the incoming water amount Fl further, for example, when the incoming water amount Fl is reduced by 50%. You may make it suppress extreme overshoot.

例えば、図3のYに示したように、Xの状態で温調制御が実行された状態で、入水量Flが20l/minから10l/minに半減すると、給湯温度を40℃にするために必要なガスバーナ20の加熱量も600kcal/min(本発明の第1の加熱量に相当する)から300kcal/min(本発明の第2の加熱量に相当する)へと半減する。しかし、このようにガスバーナ20の加熱量を減少させても、熱交換器20が有する熱容量による余熱の影響を受けて、熱交換器20内を流通する水に対する加熱量は、直ちには300kcal/minまで減少しない。   For example, as shown in Y of FIG. 3, in the state where the temperature control is executed in the state of X, when the incoming water amount Fl is halved from 20 l / min to 10 l / min, the hot water supply temperature is set to 40 ° C. The necessary heating amount of the gas burner 20 is also halved from 600 kcal / min (corresponding to the first heating amount of the present invention) to 300 kcal / min (corresponding to the second heating amount of the present invention). However, even if the heating amount of the gas burner 20 is reduced in this way, the heating amount with respect to the water flowing through the heat exchanger 20 is immediately 300 kcal / min due to the influence of the residual heat due to the heat capacity of the heat exchanger 20. Will not decrease.

そのため、熱交換器20における水の加熱が過剰となり、Yに示したように、熱交換器4からの出湯温度は、余熱による加熱量(40kcal/l・min)分だけ上昇した90℃となる。その結果、給湯温度は以下の式(2)により約70℃となり、目標給湯温度の40℃に対して大きくオーバーシュートする。   Therefore, heating of the water in the heat exchanger 20 becomes excessive, and as shown by Y, the tapping temperature from the heat exchanger 4 becomes 90 ° C. which is increased by the heating amount (40 kcal / l · min) due to the residual heat. . As a result, the hot water supply temperature is about 70 ° C. according to the following equation (2), and greatly overshoots the target hot water supply temperature of 40 ° C.

Ts = 1/1.33×90(℃)+0.33/1.33×10(℃)
= 70.14(℃) ・・・・・(2)
そこで、バイパス比制御手段32は、バイパス比例弁13によりバイパス比を変更して、上記オーバーシュートを抑制する制御を行う。具体的には、先ず、STEP10で、給湯温度Tsを目標給湯温度付近に維持できる補正バイパス比Brcを算出する。例えば、図3のXの状態から入水量が半減(20l/min → 10l/min)したときには、熱交換器4における余熱量を入水量Flが減少する前後のガスバーナ20の差(600−300kcal/min)から、300kcal/minと推定する。
Ts = 1 / 1.33 × 90 (° C.) + 0.33 / 1.33 × 10 (° C.)
= 70.14 (℃) (2)
Therefore, the bypass ratio control means 32 performs control to change the bypass ratio by the bypass proportional valve 13 and suppress the overshoot. Specifically, first, in STEP 10, a corrected bypass ratio Brc that can maintain the hot water supply temperature Ts near the target hot water supply temperature is calculated. For example, when the amount of incoming water is halved (20 l / min → 10 l / min) from the state X in FIG. min) to be estimated at 300 kcal / min.

そして、該余熱量により、熱交換器4の出湯温度THEXが、以下の式(3)により、90℃になると想定する。 By該余heat, hot water temperature T HEX of the heat exchanger 4, the following equation (3) is assumed to be a 90 ° C..

HEX = 10(℃) + 40(kcal/l・min)(ガスバーナ分)
+ 40(kcal/l・min)(余熱分) ・・・・・・(3)
そして、熱交換器4の出湯温度が90℃であるときに、給湯温度Tsが目標給湯温度である40℃となる補正バイパス比Brcを、以下の式(4)により算出する。
T HEX = 10 (℃) + 40 (kcal / l ・ min) (for gas burner)
+ 40 (kcal / l · min) (remaining heat) (3)
Then, when the tapping temperature of the heat exchanger 4 is 90 ° C., a corrected bypass ratio Brc at which the hot water supply temperature Ts becomes 40 ° C. which is the target hot water supply temperature is calculated by the following equation (4).

40(℃) = 1/(1+Brc) ×90(℃) + Brc/(1+Brc)×10(℃)
・・・・・(4)
上記式(4)から、Br=1.67が得られる。また、続くSTEP11で、バイパス比制御手段32は、バイパス比を補正バイパス比Brcとする補正時間tbを、以下の式(5)により算出する。
40 (° C.) = 1 / (1 + Brc) × 90 (° C.) + Brc / (1 + Brc) × 10 (° C.)
(4)
From the above equation (4), Br = 1.67 is obtained. Further, in subsequent STEP 11, the bypass ratio control means 32 calculates a correction time tb with the bypass ratio as the correction bypass ratio Brc by the following equation (5).

tb = VHEX÷{10(l/mim)×(1/(1+Brc)/60) ・・・・・(5)
但し、VHEX:熱交換器4の保有水量、Brc:補正バイパス比。
tb = V HEX ÷ {10 (l / mim) × (1 / (1 + Brc) / 60) (5)
Where V HEX is the amount of water held in the heat exchanger 4 and Brc is the corrected bypass ratio.

この場合、補正時間tbは、入水量Flが減少した時において熱交換器4内に所在していた水が全て出湯されるまでに要する時間となる。   In this case, the correction time tb is a time required until all the water located in the heat exchanger 4 is discharged when the incoming water amount Fl decreases.

そして、バイパス比制御手段32は、STEP12でバイパス比を補正バイパス比Brcとし、STEP13とSTEP20からなるループを実行する。そして、STEP13で補正時間tbが経過した時にSTEP3に戻る。また、STEP20で流水センサ12により給水管2への入水が検知されなくなったときには、STEP6に進む。この場合は、給湯制御手段31はガスバーナ20を消火して「給湯運転」を終了する。   Then, the bypass ratio control means 32 sets the bypass ratio to the corrected bypass ratio Brc in STEP 12 and executes a loop composed of STEP 13 and STEP 20. Then, when the correction time tb has passed in STEP13, the process returns to STEP3. Moreover, when the water flow sensor 12 no longer detects water entering the water supply pipe 2 in STEP 20, the process proceeds to STEP 6. In this case, the hot water supply control means 31 extinguishes the gas burner 20 and ends the “hot water supply operation”.

このように、バイパス補正時間tBが経過するまで、バイパス比を補正バイパス比Brとすることで、入水量Flが減少した時に熱交換器4内に所在し、余熱により過剰に加熱されて熱交換器4から出湯される湯の流量が減少し、給湯温度が目標給湯温度付近に維持される。そのため、目標給湯温度に対する給湯温度のオーバーシュートが生じることを抑制することができる。 In this way, by setting the bypass ratio to the corrected bypass ratio Br until the bypass correction time t B elapses, it is located in the heat exchanger 4 when the incoming water amount Fl decreases, and is heated excessively due to residual heat. The flow rate of hot water discharged from the exchanger 4 decreases, and the hot water supply temperature is maintained near the target hot water supply temperature. Therefore, it is possible to suppress the occurrence of overshoot of the hot water supply temperature with respect to the target hot water supply temperature.

なお、熱交換器4内を流通する水の流量の減少により熱交換器4内で沸騰が生じることを防止するため、バイパス比に上限(例えば2.0)を設けて、該上限を超えない範囲で、バイパス比制御手段32によるバイパス比の制御を行うようにしてもよい。さらに、バイパス比の上限の設定に応じて、バイパス比の制御を行う時間を制限するようにしてもよい。例えば、バイパス比の上限が2.5であるときはバイパス比の制御を行う時間を3秒以内に制限し、バイパス比の上限が2.6であるときはバイパス比の制御を行う時間を2秒以内に制限し、バイパス比の上限が2.8であるときはバイパス比の制御を行う時間を1秒以内に制限してもよい。   In order to prevent boiling in the heat exchanger 4 due to a decrease in the flow rate of water flowing through the heat exchanger 4, an upper limit (for example, 2.0) is provided in the bypass ratio, and the upper limit is not exceeded. The bypass ratio may be controlled by the bypass ratio control means 32 within the range. Furthermore, the time for controlling the bypass ratio may be limited according to the setting of the upper limit of the bypass ratio. For example, when the upper limit of the bypass ratio is 2.5, the time for controlling the bypass ratio is limited to within 3 seconds, and when the upper limit of the bypass ratio is 2.6, the time for controlling the bypass ratio is 2 When the upper limit of the bypass ratio is 2.8, the time for controlling the bypass ratio may be limited to within one second.

また、本実施の形態では、本発明の入水温度検出手段として、入水温度センサ10を備えたが、給湯温度センサ11の検出温度とガスバーナ20の加熱量とから給水管2への入水温度を推定する手段により、本発明の入水温度検出手段を構成してもよい。   Moreover, in this Embodiment, although the incoming water temperature sensor 10 was provided as an incoming water temperature detection means of this invention, the incoming water temperature to the feed water pipe 2 is estimated from the detected temperature of the hot water supply temperature sensor 11, and the heating amount of the gas burner 20. The incoming water temperature detecting means of the present invention may be constituted by the means to do.

また、本実施の形態では、ガスバーナ20により熱交換器4を加熱する給湯装置を示したが、石油バーナや電気ヒータ等、他の種類の加熱手段により熱交換器を加熱する給湯装置に対しても本発明の適用が可能である。   Moreover, although the hot water supply apparatus which heats the heat exchanger 4 with the gas burner 20 was shown in this Embodiment, with respect to the hot water supply apparatus which heats a heat exchanger with another kind of heating means, such as an oil burner and an electric heater. The present invention can also be applied.

本発明の給湯装置の全体構成図。The whole hot-water supply apparatus block diagram of this invention. 給湯運転のフローチャート。The flowchart of a hot water supply driving | operation. 入水量減少時におけるバイパス比の設定の説明図。Explanatory drawing of the setting of the bypass ratio at the time of the amount of incoming water reduction. 従来の給湯装置の全体構成図。The whole block diagram of the conventional hot-water supply apparatus.

符号の説明Explanation of symbols

1…給湯装置、2…給水管、3…給湯管、4…熱交換器、5…バイパス管、10…入水温度センサ(入水温度検出手段)、12…流量センサ、13…バイパス比例弁(バイパス比変更手段)、20…ガスバーナ、30…コントローラ、31…給湯制御手段、32…バイパス比制御手段   DESCRIPTION OF SYMBOLS 1 ... Hot water supply apparatus, 2 ... Water supply pipe, 3 ... Hot water supply pipe, 4 ... Heat exchanger, 5 ... Bypass pipe, 10 ... Incoming water temperature sensor (incoming water temperature detection means), 12 ... Flow rate sensor, 13 ... Bypass proportional valve (bypass) Ratio changing means), 20 ... gas burner, 30 ... controller, 31 ... hot water supply control means, 32 ... bypass ratio control means

Claims (3)

給水管及び給湯管と接続されて、該給水管から供給される水を加熱して該給湯管に出湯する熱交換器と、該熱交換器を加熱する加熱手段と、該熱交換器をバイパスして該給水管と該給湯管とを連通するバイパス管と、該熱交換器を流通する水の流量に対する該バイパス管を流通する水の流量の比であるバイパス比を変更するバイパス比変更手段と、前記給水管から前記熱交換器に供給される水の温度を検出する入水温度検出手段と、前記給水管から前記熱交換器及び前記バイパス管に供給される水の総流量を検出する流量検出手段と、
前記給湯管の前記バイパス管との接続箇所の下流側に供給される湯の温度が所定の目標給湯温度となるように、前記入水温度検出手段の検出温度と前記流量検出手段の検出流量とに基づいて、前記加熱手段の加熱量を制御する給湯運転を実行する給湯制御手段とを備えた給湯装置において、
前記給湯運転の実行中に、前記流量検出手段の検出流量が減少し、前記給湯制御手段によって、前記加熱手段の加熱量を第1の加熱量から第2の加熱量に減少する制御がなされたときに、該第1の加熱量と該第2の加熱量との差に応じて前記熱交換器における余熱量を推定し、該余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御するバイパス比制御手段を備えたことを特徴とする給湯装置。
A heat exchanger connected to a water supply pipe and a hot water supply pipe for heating the water supplied from the water supply pipe and discharging the hot water to the hot water supply pipe, heating means for heating the heat exchanger, and bypassing the heat exchanger A bypass pipe for communicating the water supply pipe and the hot water supply pipe, and a bypass ratio changing means for changing a bypass ratio which is a ratio of a flow rate of water flowing through the bypass pipe to a flow rate of water flowing through the heat exchanger And an incoming water temperature detecting means for detecting a temperature of water supplied from the water supply pipe to the heat exchanger, and a flow rate for detecting a total flow of water supplied from the water supply pipe to the heat exchanger and the bypass pipe. Detection means;
The detected temperature of the incoming water temperature detecting means and the detected flow rate of the flow rate detecting means so that the temperature of hot water supplied to the downstream side of the hot water pipe connected to the bypass pipe becomes a predetermined target hot water temperature. A hot water supply device comprising a hot water supply control means for executing a hot water supply operation for controlling the heating amount of the heating means,
During execution of the hot water supply operation, the detected flow rate of the flow rate detecting means is reduced, and the hot water supply control means is controlled to reduce the heating amount of the heating means from the first heating amount to the second heating amount. Sometimes, the amount of remaining heat in the heat exchanger is estimated in accordance with the difference between the first amount of heating and the second amount of heating, and the increase in the tapping temperature of the heat exchanger due to the amount of remaining heat is cancelled. Further, a hot water supply apparatus comprising a bypass ratio control means for controlling the bypass ratio via the bypass ratio changing means.
前記バイパス比制御手段は、前記流量検出手段の検出流量が減少した時点から、該時点において前記熱交換器内に所在していた湯水が前記熱交換器から全て出湯されるまでの間、前記余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御することを特徴とする請求項1記載の給湯装置。   The bypass ratio control means starts from the time when the detected flow rate of the flow rate detecting means decreases until the hot water existing in the heat exchanger at that time is discharged from the heat exchanger. The hot water supply apparatus according to claim 1, wherein the bypass ratio is controlled via the bypass ratio changing means so as to cancel out the rise in the temperature of the hot water discharged from the heat exchanger due to the amount of heat. 前記バイパス比制御手段は、前記バイパス比が予め定められた上限以下となる範囲で、前記余熱量による前記熱交換器の出湯温度の上昇分を打ち消すように、前記バイパス比変更手段を介して前記バイパス比を制御することを特徴とする請求項1又は請求項2記載の給湯装置。   The bypass ratio control means includes the bypass ratio changing means via the bypass ratio changing means so as to cancel the rise in the temperature of the hot water discharged from the heat exchanger due to the amount of residual heat in a range where the bypass ratio is equal to or less than a predetermined upper limit. The hot water supply apparatus according to claim 1 or 2, wherein a bypass ratio is controlled.
JP2005265162A 2005-09-13 2005-09-13 Water heater Active JP4173883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265162A JP4173883B2 (en) 2005-09-13 2005-09-13 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265162A JP4173883B2 (en) 2005-09-13 2005-09-13 Water heater

Publications (2)

Publication Number Publication Date
JP2007078231A true JP2007078231A (en) 2007-03-29
JP4173883B2 JP4173883B2 (en) 2008-10-29

Family

ID=37938743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265162A Active JP4173883B2 (en) 2005-09-13 2005-09-13 Water heater

Country Status (1)

Country Link
JP (1) JP4173883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017152A1 (en) * 2008-03-27 2011-01-27 Kyungdong Navien Co., Ltd. Boiler for supplying heating water and hot water simultaneously
WO2020141712A1 (en) * 2018-12-31 2020-07-09 주식회사 경동나비엔 Apparatus and method for supplying hot water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017152A1 (en) * 2008-03-27 2011-01-27 Kyungdong Navien Co., Ltd. Boiler for supplying heating water and hot water simultaneously
WO2020141712A1 (en) * 2018-12-31 2020-07-09 주식회사 경동나비엔 Apparatus and method for supplying hot water
CN113260820A (en) * 2018-12-31 2021-08-13 庆东纳碧安株式会社 Apparatus and method for supplying hot water
CN113260820B (en) * 2018-12-31 2023-03-07 庆东纳碧安株式会社 Apparatus and method for supplying hot water

Also Published As

Publication number Publication date
JP4173883B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5920429B2 (en) Combustion equipment
JP2008032267A (en) Connected hot water supply system
JP6376390B2 (en) Hot water storage hot water system
JP4173883B2 (en) Water heater
JP5708975B2 (en) Water heater
JP5140634B2 (en) Hot water storage hot water supply system and cogeneration system
JP2008057814A (en) Gas hot water supply apparatus
JP2007278610A (en) Control method for gas water heater, and gas water heater for carrying out the control method
JP3705246B2 (en) Hot water system
JP5986183B2 (en) Combustion device
JP4738385B2 (en) Hot water storage water heater
KR20170046100A (en) Heating system
JP2005188801A (en) Combustion control method of boiler
JP2010065913A (en) Water heater
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP2007322083A (en) Control method for hot-water supply device
KR102092219B1 (en) Overheat prevention method of boiler when controlling returnig water temperature
JP6624879B2 (en) Water heater
JP7348011B2 (en) combustion device
JP2019199987A (en) Composite heat source machine
JP3845099B2 (en) Water heater heating control device
JPS6246608B2 (en)
JPH08100950A (en) Storage type hot water supply system
JP6851152B2 (en) Heating device
JP3996157B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250