JP2007077492A - Blowing method for converter - Google Patents

Blowing method for converter Download PDF

Info

Publication number
JP2007077492A
JP2007077492A JP2005325424A JP2005325424A JP2007077492A JP 2007077492 A JP2007077492 A JP 2007077492A JP 2005325424 A JP2005325424 A JP 2005325424A JP 2005325424 A JP2005325424 A JP 2005325424A JP 2007077492 A JP2007077492 A JP 2007077492A
Authority
JP
Japan
Prior art keywords
blowing
oxygen
converter
amount
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005325424A
Other languages
Japanese (ja)
Other versions
JP4761938B2 (en
Inventor
Masanobu Nakamura
正信 中村
Koichiro Semura
康一郎 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005325424A priority Critical patent/JP4761938B2/en
Publication of JP2007077492A publication Critical patent/JP2007077492A/en
Application granted granted Critical
Publication of JP4761938B2 publication Critical patent/JP4761938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make it difficult for the spitting granular irons as the stuck metal to stick to a furnace opening hole part. <P>SOLUTION: In a blowing method into a converter by performing oxygen-blowing from a top-blown lance 7 into the top-bottom blown converter, the oxygen-feeding velocity for blowing the oxygen from the top-blown lance 7 is adjusted based on superficial velocity of the waste gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、上吹きランスから転炉内に酸素を吹き込んで吹錬を行う転炉の吹錬方法に関する。   The present invention relates to a blowing method for a converter in which oxygen is blown into a converter from an upper blowing lance, for example.

従来より、特許文献1に示すように転炉の操業においては、転炉(炉体)内に溶銑を装入し、転炉の炉口へ上吹きランスを挿入した後に、この上吹きランスから溶銑に向けて酸素ガスを吹き付けることによって吹錬を行っている。このとき、転炉の底部からガスを吹き込んで溶銑を攪拌している。
上吹きランスから酸素ガスを吹き込む際、酸素ガスが溶銑の表面に衝突するため、溶銑の一部がスピッティング粒鉄となって炉口へと飛んでいき、このスピッティング粒鉄が炉口へ付着して地金(以降、炉口に付着した地金のことを付着地金という)となる。
Conventionally, as shown in Patent Document 1, in the operation of a converter, hot metal is charged into the converter (furnace body), and an upper blowing lance is inserted into the furnace port of the converter, and then from this upper blowing lance. Blowing is performed by blowing oxygen gas toward the hot metal. At this time, the hot metal is stirred by blowing gas from the bottom of the converter.
When oxygen gas is blown from the top blowing lance, the oxygen gas collides with the surface of the hot metal, so part of the hot metal flies to the furnace port as spitting particle iron, and this spitting particle iron enters the furnace port. Adhering to the bullion (hereinafter, the bullion adhering to the furnace port is called the adhering bullion).

炉口周りに付着地金が付着して堆積すると炉口が小さくなってしまうことから、例えば、転炉内にスクラップを装入する際、スクラップを転炉内へ入れるスクラップシュートが炉口に詰まってしまってスクラップを転炉内へ入れられない問題が発生する。
また、溶銑(溶鋼)の温度[℃]の測定を行うサブランスを炉体内へ挿入する際、前記サブランスが付着地金に衝突してしまう危険性がある。また、チャージ数が多くなるにつれて炉体の底部(炉底部)の耐火物が溶損して減少する結果、次第に相対的に炉口近傍が重くなり、転炉が起きあがりにくくなる傾動トリップが発生する恐れがある。
For example, when charging scrap into the converter, the scrap chute that puts the scrap into the converter is clogged in the furnace mouth, because the adhering metal is deposited and deposited around the furnace opening. This causes a problem that scrap cannot be put into the converter.
Further, when a sub lance for measuring the temperature [° C.] of hot metal (molten steel) is inserted into the furnace body, there is a risk that the sub lance will collide with the adhered metal. Also, as the number of charges increases, the refractory at the bottom of the furnace body (furnace bottom) melts and decreases, and as a result, the vicinity of the furnace port gradually becomes heavier, and a tilting trip that makes it difficult for the converter to start up may occur. There is.

このように、炉口周りに付着地金が堆積すると様々な問題を引き起こすことから転炉の操業においては付着地金が所定以上堆積すると、例えば、酸素パイプを用いて炉口に付着した付着地金を溶断した後、スクラップシュートを用いて付着地金を除去したり、専用の地金溶解ランスを用いて溶解したりしている。
特開2005−89839号公報
In this way, depositing adhering metal around the furnace port causes various problems, so if the adhering metal deposits more than a predetermined amount in the operation of the converter, for example, the adhering metal adhering to the furnace port using an oxygen pipe is used. After the gold is melted, the ingot is removed using a scrap chute or melted using a dedicated metal melting lance.
JP 2005-89839 A

しかしながら、付着地金の除去作業を行う間は、転炉の操業を停止しなければならず、生産性が低下してしまう問題がある。また、付着地金の除去作業の際に、炉口の絞り部の耐火物が地金と共に脱落することがあり、転炉寿命が短くなる問題がある。
このような問題を解決するために、転炉の操業においては、炉口周りでの付着地金の堆積速度を低下させる、即ち、付着地金となるスピッティング粒鉄が炉口へ付着し難くすることで前記除去作業をできるだけ少なくすることが望まれている。そこで、ランスチップの改善などを行うことで、スピッティング粒鉄が炉口へ付着しないようにする技術が考えられているが、十分な効果が得られていないのが実情である。
However, the operation of the converter must be stopped during the removal work of the adhering metal, and there is a problem that productivity is lowered. In addition, there is a problem in that the refractory at the throttle portion of the furnace port may fall off together with the metal during the removal work of the attached metal, which shortens the converter life.
In order to solve such a problem, in the operation of the converter, the deposition rate of the adhering metal around the furnace port is decreased, that is, the spitting granular iron that becomes the adhering metal hardly adheres to the furnace port. Therefore, it is desired to reduce the removal work as much as possible. Therefore, a technique for preventing spitting granular iron from adhering to the furnace port by improving the lance tip has been considered, but the actual situation is that a sufficient effect has not been obtained.

そこで、本発明は、上記問題点に鑑み、付着地金となるスピッティング粒鉄が炉口へ付着し難い転炉の吹錬方法を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a method for blowing a converter in which spitting granulated iron that becomes an adhering metal hardly adheres to a furnace port.

前記目的を達成するために、本発明は、次の手段を講じた。即ち、本発明における課題解決のための技術的手段は、上底吹きの転炉で上吹きランスから溶銑へ酸素を吹きつけて吹錬を行う転炉の吹錬方法において、前記上吹きランスの送酸速度を、式(1)を満たすように調整する点にある。   In order to achieve the above object, the present invention has taken the following measures. That is, the technical means for solving the problems in the present invention is a method of blowing a converter in which oxygen is blown from the top blowing lance to the molten iron in a top bottom blowing converter, It exists in the point which adjusts an acid delivery speed | rate so that Formula (1) may be satisfy | filled.

Figure 2007077492
Figure 2007077492

発明者は、酸素を吹き込んだ際に、炉口に地金が付かない空塔速度,即ち、送酸速度を、様々な実験等により見出した。
即ち、吹錬の際、式(1)を満たすように送酸速度を調整することによって、付着地金となるスピッティング粒鉄が炉口へ付着し難くすることができると共に、転炉における生産性を向上させることができることを見出した。
さて、吹錬を開始した直後では、溶銑の湯面を覆うスラグ(カバースラグ)があまり形成されておらず、このカバースラグが少ない状態で、送酸速度を大きくすると、酸素が直接湯面に当たりスピッティング粒鉄が跳ね上がり易くなるので、カバースラグが少ない時期では、送酸速度を小さくし、カバースラグが多い時期では、送酸速度を大きくして吹錬時間を短くするのがよい。即ち、カバースラグの形成度合いに応じた送酸速度を決定するのが好ましい。
The inventor has found the superficial velocity at which no metal is attached to the furnace port when oxygen is blown, that is, the acid feeding rate, through various experiments.
That is, by adjusting the acid feed rate so as to satisfy the formula (1) at the time of blowing, it is possible to make it difficult for spitting granulated iron to be attached to the furnace mouth and to produce in the converter. It was found that the property can be improved.
Immediately after the start of blowing, there is not much slag (cover slag) covering the hot metal surface, and if this cover slag is low and the acid feed rate is increased, oxygen directly hits the hot water surface. Since spitting grain iron easily jumps up, it is preferable to reduce the acid feed rate when the cover slag is low and to increase the acid feed rate and shorten the blowing time when the cover slag is large. That is, it is preferable to determine the acid feed rate according to the degree of cover slag formation.

そこで、発明者は、様々な実験を行った結果、上吹きランスから吹きつける酸素の吹錬開始からの積算量が総酸素量の40%を超えた際には、式(2)を満たすように、送酸速度を調整することを見出した。   Therefore, as a result of various experiments, the inventor satisfies the formula (2) when the integrated amount from the start of oxygen blowing from the top blowing lance exceeds 40% of the total oxygen amount. It was found that the acid feed rate was adjusted.

Figure 2007077492
Figure 2007077492

これによれば、溶銑に吹きつけた酸素量の積算量が、酸素を吹きつける全体の酸素量(総酸素量)が40%を超えた時期に対しては、送酸速度の下限値の値を上昇させることにより吹錬時間を短くすることができる。
また、上吹きランスから吹きつける酸素の吹錬開始からの積算量が総酸素量の40%に達するまでは、式(3)を満たすように、前記送酸速度を調整するのが好ましい。
According to this, when the total amount of oxygen blown to the hot metal exceeds 40% of the total amount of oxygen blown (total oxygen amount), the lower limit value of the acid feed rate is reached. Blowing time can be shortened by raising.
In addition, it is preferable to adjust the acid feed rate so as to satisfy the formula (3) until the integrated amount from the start of the blowing of oxygen blown from the top blowing lance reaches 40% of the total oxygen amount.

Figure 2007077492
Figure 2007077492

これによれば、積算量が総酸素量の40%に達するまでの時期に対しては、送酸速度の下限値の値を下げることで、スピッティング粒鉄が跳ね上がり難くして、スピッティング粒鉄が炉口になるべく付かないようにすることができる。   According to this, for the time until the integrated amount reaches 40% of the total oxygen amount, by lowering the lower limit value of the acid feed rate, it becomes difficult for the spitting grain iron to jump up, and the spitting grain It is possible to prevent iron from attaching to the furnace opening as much as possible.

本発明によれば、付着地金となるスピッティング粒鉄が炉口へ付着しにくくなる。   According to this invention, it becomes difficult for spitting granular iron used as adhesion metal to adhere to a furnace mouth.

以下、本発明の実施の形態を、図面に基づき説明する。
図1は本発明の転炉の吹錬方法を行う転炉の全体側面図を示している。なお、転炉はこの実施形態に限定されない。転炉は、炉体の上側から酸素を吹きつけ且つ、炉体の底部からガスを吹き込むことができる上底吹き転炉であり、炉体1内に溶銑(溶鋼)やスクラップ等が収容可能となっている。
前記炉体1は有底で筒状に形成された鉄皮2と、この鉄皮2の内部に設けられた複数の耐火物3(耐火レンガ)から構成されている。炉体1の底部4にはガスを吹き込むためのガス吹き込み部5が設けられ、このガス吹き込み部5に対向する側、即ち、図1では炉体1の上部に炉口6が形成されている。炉口6に酸素などを吹くための上吹きランス7が挿入可能になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall side view of a converter for performing the blowing method for a converter according to the present invention. The converter is not limited to this embodiment. The converter is an upper-bottom blowing converter capable of blowing oxygen from the upper side of the furnace body and blowing gas from the bottom of the furnace body, and can accommodate hot metal (molten steel), scrap, etc. in the furnace body 1 It has become.
The furnace body 1 is composed of a bottomed and cylindrically formed iron shell 2 and a plurality of refractories 3 (refractory bricks) provided inside the iron shell 2. A gas blowing portion 5 for blowing gas is provided at the bottom portion 4 of the furnace body 1, and a furnace port 6 is formed on the side facing the gas blowing portion 5, that is, in the upper portion of the furnace body 1 in FIG. 1. . An upper blowing lance 7 for blowing oxygen or the like into the furnace port 6 can be inserted.

鉄皮2は、底部10と、この底部10から炉口6側にいくにしたがって徐々に内径及び外径が大きくなる拡大部11と、この拡大部11から連続していて内径及び外径が略一定の直胴部12と、この直胴部12から炉口6側にいくにしたがって徐々に内径及び外径が小さくなる絞り部13とを備えたものとなっている。
前記耐火物3は、鉄皮2の底部10,拡大部11,直胴部12及び絞り部13に沿うように順番に鉄皮2内に貼り付けられ、貼り付けられた耐火物3の内面が鉄皮2の内面に略沿ったものとなっている。鉄皮2の直胴部12に溶銑8(溶鋼)を出湯(出鋼)するための出湯口9(出鋼口)が形成されている。
The iron skin 2 has a bottom portion 10, an enlarged portion 11 whose inner diameter and outer diameter gradually increase from the bottom portion 10 toward the furnace port 6, and a continuous inner diameter and outer diameter from the enlarged portion 11. It has a constant straight body 12 and a throttle part 13 whose inner and outer diameters gradually decrease from the straight body 12 toward the furnace port 6 side.
The refractory 3 is affixed in order in the iron shell 2 along the bottom part 10, the enlarged part 11, the straight body part 12, and the throttle part 13 of the iron skin 2, and the inner surface of the affixed refractory 3 is It is substantially along the inner surface of the iron skin 2. A hot water outlet 9 (outgoing steel outlet) is formed in the straight body portion 12 of the iron skin 2 for hot metal 8 (molten steel).

炉体1には、鉄皮2及び耐火物3によって、外径又は内径が徐々に大きくなる炉拡大部15が形成され、この炉拡大部15に連続して形成され外径又は内径が略一定となる炉直胴部16と、この炉直胴部16から炉口6にいくにしたがって外径又は内径が小さくなる炉絞り部17とがそれぞれ形成されている。
以上の転炉によれば、炉体1内に溶銑を装入し、炉体1(転炉)の炉口6へ上吹きランス7を挿入した後に、この上吹きランス7から溶銑に向けて酸素ガスを吹き付けることによって吹錬を行うことができる。吹錬を行う際には、炉体1の底部からガスを吹き込んで溶銑を攪拌する。
In the furnace body 1, a furnace expansion portion 15 whose outer diameter or inner diameter gradually increases is formed by the iron shell 2 and the refractory 3, and is continuously formed in the furnace expansion portion 15, and the outer diameter or inner diameter is substantially constant. A furnace straight body portion 16 and a furnace throttle portion 17 whose outer diameter or inner diameter decreases as going from the furnace straight body portion 16 to the furnace port 6 are formed.
According to the above converter, after the hot metal is charged into the furnace body 1 and the upper blowing lance 7 is inserted into the furnace port 6 of the furnace body 1 (converter), the upper blowing lance 7 is directed toward the hot metal. Blowing can be performed by blowing oxygen gas. When blowing, gas is blown from the bottom of the furnace body 1 to stir the hot metal.

本発明の吹錬方法では、上吹きランス7から酸素を吹き込む際の送酸速度Fo2を、式(1)を満たすように調整している。即ち、脱りん処理や脱炭処理における吹錬において、式(1)を満たすように、上吹きランス7で酸素を吹き込んでいる。 In the blowing method of the present invention, the acid feed rate Fo 2 when oxygen is blown from the top blowing lance 7 is adjusted so as to satisfy the formula (1). That is, in blowing in the dephosphorization process or the decarburization process, oxygen is blown with the upper blowing lance 7 so as to satisfy the formula (1).

Figure 2007077492
Figure 2007077492

式(1)において、炉口内径Rは炉絞り部17(鉄皮2の絞り部13)の最端部に設けた耐火物3の内径、詳しくは、左側の最端部耐火物3aの内面から右側の最端部耐火物3bの内面までの距離である。
式(1)は、様々な実験により導出したものである。
以下、式の導出過程について説明する。
発明者はどのようなスピッティング粒鉄が炉口6へ付着しているか過去の操業や実験により調査した。操業が終了した後に、炉口6へ付着した付着地金を採取し、その断面積や組成分析などを行ったところ、スピッティング粒鉄の粒径が1mm程度のものが付着地金となることが分かった。
In the formula (1), the furnace port inner diameter R is the inner diameter of the refractory 3 provided at the outermost end of the furnace restrictor 17 (the restrictor 13 of the iron shell 2), more specifically, the inner surface of the leftmost end refractory 3a. To the inner surface of the rightmost end refractory 3b.
Equation (1) is derived from various experiments.
Hereinafter, the derivation process of the equation will be described.
The inventor investigated what kind of spitting granular iron adhered to the furnace port 6 by past operations and experiments. After the operation is completed, the adhering metal attached to the furnace port 6 is collected, and the cross-sectional area and composition analysis are performed. I understood.

そこで、発明者は、空塔速度V、即ち、送酸速度Fo2を変化させ、各送酸速度Fo2における吹錬状態(操業状態)をシミュレーションや実験操業により調べた。
図2,3はその結果である。図2,3では、1チャージ当たりで酸素を吹き込む総酸素量を100%とし、酸素を吹き込んだ積算量が総酸素量の40%までの期間を初期とすると共に、積算量が総酸素量の40%を超えた期間を中期以降として結果をまとめたものである。
図2,3に示すように、炉内高さH,炉体(転炉)に入れる主原料(例えば、溶銑、故銑、冷銑)の合計量は一定とした。前記実験において、吹錬条件を表1のように設定した。
Accordingly, the inventors superficial velocity V, i.e., by changing the oxygen-flow-rate Fo 2, was examined by the blowing state (operating state) of each oxygen-flow-rate Fo 2 simulations and experiments operations.
2 and 3 show the results. 2 and 3, the total amount of oxygen blown per charge is set to 100%, and the period until the cumulative amount of oxygen blown up to 40% of the total oxygen amount is initial, and the cumulative amount is equal to the total oxygen amount. The results are summarized with the period exceeding 40% as the middle term and beyond.
As shown in FIGS. 2 and 3, the total amount of main raw materials (for example, hot metal, waste metal, and cold iron) to be put into the furnace height (H) and the furnace body (converter) is constant. In the experiment, the blowing conditions were set as shown in Table 1.

また、実験における転炉装入溶銑成分及び転炉吹止時の溶鋼成分、溶銑に投入する副原料は表2,3に示す範囲内に設定した。   In addition, the converter charging molten iron component, the molten steel component at the time of blowing the converter, and the auxiliary raw material charged into the molten iron were set within the ranges shown in Tables 2 and 3.

Figure 2007077492
Figure 2007077492

Figure 2007077492
Figure 2007077492

Figure 2007077492
Figure 2007077492

操業状態としては、各操業における吹錬時間(分/ch)、溶鋼1トン当たりのダスト発生量(kg/t)、地金取り間隔(ch/回)、即ち、付着地金の除去を終了してから再度除去作業を開始するまでに操業できる総チャージ数、放熱ロス(Mcal/t),鉄鉱石投入量(kg/t)、
出鋼歩留、出鋼量(t/ch)をそれぞれ調べた。
上述した各操業状態に基づいて、出鋼歩留、出鋼量(t/ch)、製鋼時間(分/ch)、地金取り時間(分/ch)、生産ピッチ(ch/日)、生産能力(kt/日)を求めた。
The operation status includes the blowing time (min / ch) in each operation, the amount of dust generated per ton of molten steel (kg / t), the interval of collecting metal (ch / time), that is, removal of adhered metal The total number of charges that can be operated before the removal work is started again, heat dissipation loss (Mcal / t), iron ore input (kg / t),
The steel yield and the steel output (t / ch) were examined.
Based on each of the above operating conditions, steel yield, steel output (t / ch), steelmaking time (min / ch), metal removal time (min / ch), production pitch (ch / day), production The ability (kt / day) was determined.

製鋼時間は吹錬時間に主原料装入,調質,出鋼,排滓にかかる時間として15分を加算したものである。地金取り時間は、1回の地金取り時間は30分としたうえで、この時間を地金取り間隔で割ることで1チャージ当たりの地金取り作業時間としている。生産ピッチは、一日当たりに製鋼できる総チャージ数,即ち、稼働時間/1チャージにかかる時間である。
なお、1チャージにかかる時間は、製鋼時間と地金取り時間とを合わせたものである。生産能力(kt/日)は、生産ピッチと出鋼量との積で算出した。
The steelmaking time is the sum of 15 minutes as the time required for main raw material charging, refining, steel extraction, and waste removal to the blowing time. The bullion collecting time is set to 30 minutes for one bullion collecting time, and this time is divided by the bullion collecting interval to obtain the bullion collecting work time per charge. The production pitch is the total number of charges that can be made per day, that is, the operation time / the time required for one charge.
The time required for one charge is the sum of the steel making time and the metal collecting time. The production capacity (kt / day) was calculated by the product of the production pitch and the amount of steel output.

図4は、上記で示したシミュレーションや実験操業での空塔速度Vを横軸にとり、生産能力を縦軸にとってグラフ化したものである。図4から分かるように、空塔速度Vが13.5m/secを境としてその値が大きくなるほど、初期や中期のどちらとも生産能力は減少している。
空塔速度Vが大きくなると同じ送酸速度Fo2であってもスピッティング粒鉄が炉口6に付着し易くなる。即ち、空塔速度Vが大きい場合、数チャージに1回程度の頻繁な地金除去作業を行わなければならず、その影響で生産ピッチが減少し、生産能力が低下する。
FIG. 4 is a graph in which the horizontal axis represents the superficial velocity V in the simulation and the experimental operation described above, and the production capacity represents the vertical axis. As can be seen from FIG. 4, as the value of the superficial velocity V increases from 13.5 m / sec as a boundary, the production capacity decreases in both the initial stage and the middle stage.
When the superficial velocity V increases, spitting granular iron easily adheres to the furnace port 6 even at the same acid feed rate Fo 2 . That is, when the superficial velocity V is high, frequent bullion removal work must be performed about once every several charges, and the production pitch decreases due to the influence, and the production capacity decreases.

逆に、空塔速度Vが13.5m/secを境としてその値が小さくなるほど、初期や中期のどちらとも生産能力は減少している。空塔速度Vが小さくなる条件下、即ち、式(1A)から明らかなように送酸速度Fo2は減少する。この送酸速度Fo2を小さくしたり炉口内径Rを大きくした場合、例えば、脱炭処理に時間が掛かったり、放熱ロスが大きく、この影響で吹錬時間が長くなる。
以上、シミュレーションや実験操業によれば、酸素を吹き込む際での空塔速度Vは、13.5m/sec以上17.5m/sec以下の範囲が良く、これを式で示すと式(1)のようになった。
Conversely, as the superficial velocity V becomes smaller at 13.5 m / sec, the production capacity decreases in both the initial and middle periods. Under the condition that the superficial velocity V becomes small, that is, as is apparent from the equation (1A), the acid feed rate Fo 2 decreases. When the acid feed rate Fo 2 is decreased or the furnace port inner diameter R is increased, for example, it takes time for the decarburization process or the heat radiation loss is large, and the blowing time becomes longer due to this influence.
As described above, according to the simulation and the experimental operation, the superficial velocity V when oxygen is blown has a good range of 13.5 m / sec or more and 17.5 m / sec or less. It became so.

したがって、式(1)を満たすように、空塔速度V,即ち、送酸速度Fo2をコントロールすることによって、炉口6に地金が付きにくくなると共に、生産性を向上させることができる。
なお、上吹きランス7から吹き込んだ酸素量と、炉口6から排出された排ガス量とが等しいと考えると、排ガスの空塔速度Vと送酸速度Fo2との関係式は、式(1A)と表すことができる。式(1A)を導出するに際し、前記排ガスは、上吹きランス7で吹き込んだ酸素の全てが溶銑中の炭素Cと反応して生成されたCOガス等とした。また、排ガスの温度は1573Kとし、吹き込んだ酸素の温度を298Kとして、熱膨張を考慮した。
Therefore, by controlling the superficial velocity V, that is, the acid feed rate Fo 2 so as to satisfy the expression (1), it becomes difficult to attach the metal to the furnace port 6 and the productivity can be improved.
When the amount of oxygen blown from the top blowing lance 7 and the amount of exhaust gas discharged from the furnace port 6 are considered to be equal, the relational expression between the superficial velocity V of exhaust gas and the acid feed rate Fo 2 is expressed by the equation (1A). )It can be expressed as. In deriving the formula (1A), the exhaust gas was CO gas generated by reacting all of the oxygen blown by the top blowing lance 7 with the carbon C in the hot metal. The temperature of the exhaust gas was set to 1573K, the temperature of the oxygen blown was set to 298K, and thermal expansion was taken into consideration.

さて、吹錬において、式(1)を満たすように上吹きランス7で酸素を吹き込むのが好ましいが、吹錬を開始した直後では、溶銑の湯面上にカバースラグSがあまり形成されておらず、このカバースラグSが少ない状態で、空塔速度Vを高める、即ち、送酸速度Fo2を大きくすると、スピッティング粒鉄が跳ね上がり易くなり、スピッティング粒鉄が炉口6に付着し易くなる。そこで、出来るだけスピッティング粒鉄が炉口6に付着しないためにもカバースラグSが少ない時期では送酸速度Fo2を小さくし、カバースラグSが十分にできた時期では、送酸速度Fo2を大きくして吹錬時間を短くするのがよい。 Now, in blowing, it is preferable to blow oxygen with the top blowing lance 7 so as to satisfy the formula (1), but the cover slag S is not formed so much on the hot metal surface immediately after the blowing. Without increasing the cover slag S, if the superficial velocity V is increased, that is, the acid feed rate Fo 2 is increased, the spitting granular iron tends to jump up and the spitting granular iron easily adheres to the furnace port 6. Become. Therefore, in the period spitting grain iron have reduced the oxygen-flow-rate Fo 2 in timing cover slag S is less in order not to adhere to the furnace opening 6, the cover slag S could sufficiently be, oxygen-flow-rate Fo 2 It is better to shorten the blowing time by increasing.

そこで、発明者は、様々な実験を行った結果、図4に示すように、上吹きランス7での酸素を吹き込んだ積算量が総酸素量に対して40%を超えた際、言い換えれば、吹錬の中期では、空塔速度Vの下限値を上昇させる。即ち、送酸速度Fo2を下限値を上昇させるのがよい。
したがって、積算量が総酸素量に対して40%を超えた際には、空塔速度Vの下限値を14.5m/sにした式(2)を満たすように、送酸速度Fo2を調整するのがよい。このとき、炭素量(%)から見れば、炭素量[C]が0.2%以下になるまで、式(2)を満たすように、送酸速度Fo2を調整するのが好ましい。
Therefore, the inventor conducted various experiments, and as shown in FIG. 4, when the cumulative amount of oxygen blown in the top blowing lance 7 exceeded 40% with respect to the total oxygen amount, in other words, In the middle of blowing, the lower limit of the superficial velocity V is increased. That is, it is preferable to raise the lower limit of the acid feed rate Fo 2 .
Therefore, when the integrated amount exceeds 40% of the total oxygen amount, the acid feed rate Fo 2 is set so as to satisfy the formula (2) in which the lower limit value of the superficial velocity V is 14.5 m / s. It is good to adjust. At this time, when viewed from the carbon content (%), it is preferable to adjust the acid feed rate Fo 2 so as to satisfy the formula (2) until the carbon content [C] becomes 0.2% or less.

即ち、積算量が総酸素量に対して40%を超え且つ炭素量[C]が0.2%以下に低下するまでの間は、式(2)を満たすように送酸速度Fo2を調整するのが好ましい。 That is, the acid feed rate Fo 2 is adjusted so as to satisfy the formula (2) until the integrated amount exceeds 40% of the total oxygen amount and the carbon amount [C] decreases to 0.2% or less. It is preferable to do this.

Figure 2007077492
Figure 2007077492

また、積算量が総酸素量に対して40%に達するまでの吹錬の初期では、カバースラグSがあまり形成されていないので、送酸速度Fo2を小さくするのがよい。図4に示すように、積算量が総酸素量に対して40%に達するまでは、空塔速度Vの上限値を減少させる。即ち、送酸速度Fo2の上限値を低下させるのがよい。
したがって、積算量が総酸素量に対して40%に達するまでは、空塔速度Vの上限値を16.5m/sに低下させた式(3)を満たすように、送酸速度Fo2を調整するのがよい。
Further, at the initial stage of blowing until the integrated amount reaches 40% with respect to the total oxygen amount, the cover slag S is not formed so much, so it is preferable to reduce the acid feed rate Fo 2 . As shown in FIG. 4, the upper limit value of the superficial velocity V is decreased until the integrated amount reaches 40% with respect to the total oxygen amount. That is, it is preferable to lower the upper limit value of the acid feed rate Fo 2 .
Therefore, until the integrated amount reaches 40% of the total oxygen amount, the acid feed rate Fo 2 is set so as to satisfy the equation (3) in which the upper limit value of the superficial velocity V is reduced to 16.5 m / s. It is good to adjust.

Figure 2007077492
Figure 2007077492

図5,6は送酸速度Fo2を変化させて、転炉の操業(脱りん処理を伴いつつ脱炭処理)を行ったものである。図5,6では、吹錬で1チャージ当たりの総酸素量を100%として、吹き込んだ酸素の積算量が総酸素量に対して40%未満では吹錬初期とし、吹き込んだ酸素の積算量が総酸素量に対して40%以上90%未満では吹錬中期とし、吹き込んだ酸素の積算量が総酸素量に対して90%以上達したときは吹錬末期として、各時期に送酸速度Fo2を変化させた。この転炉の操業では、吹錬条件を表1のように設定すると共に、転炉装入溶銑成分及び転炉吹止時の溶鋼成分、溶銑に投入する副原料は表2,3に示す範囲内に設定した。 5 and 6 show the operation of the converter (decarburization with dephosphorization) by changing the acid feed rate Fo 2 . 5 and 6, the total amount of oxygen per charge by blowing is 100%, and the total amount of oxygen blown is less than 40% of the total oxygen amount, the initial stage of blowing is the initial amount. When the total amount of oxygen is 40% or more and less than 90%, the middle stage of blowing is used, and when the cumulative amount of oxygen blown reaches 90% or more of the total amount of oxygen, the final stage of blowing is performed. 2 was changed. In the operation of this converter, the blowing conditions are set as shown in Table 1, and the molten steel component at the time of converter charging, the molten steel component at the time of blowing the converter, and the auxiliary materials to be charged into the molten iron are in the ranges shown in Tables 2 and 3. Set in.

図5から分かるように、少なくとも吹錬中期に式(1)又は式(2)を満たすように、送酸速度Fo2を調整することによって生産能力を10(kt/日)以上確保することができると共に、地金取り間隔を9(ch/回)以上(少なくとも9チャージに1回の割合で地金除去作業を行う)確保することができた。
また、少なくとも吹錬初期に式(3)を満たすように、送酸速度Fo2を調整することによって、上記式を満たさないものに比べ、平均的な地金取り間隔を大きくさせることができた。
As can be seen from FIG. 5, it is possible to secure a production capacity of 10 (kt / day) or more by adjusting the acid feed rate Fo 2 so as to satisfy the formula (1) or the formula (2) at least in the middle of blowing. In addition, it was possible to secure a bullion collection interval of 9 (ch / time) or more (removing bullion at a rate of once per 9 charges).
In addition, by adjusting the acid feed rate Fo 2 so as to satisfy the formula (3) at least in the initial stage of blowing, the average bullion collecting interval could be increased as compared with those not satisfying the above formula. .

図6に示すように、本発明の実施例1〜6に比べ、式(1)〜式(3)のいすれも満たさない比較例1〜3では、生産能力が10(kt/日)未満(特に9.0前後)となり、本発明の実施例に比べ劣っている。また、地金取り間隔においても、比較例1を除いては5.0(ch/回)以下となり、少なくとも5チャージに1回は地金除去作業を行わなければならず、地金除去作業を頻繁にする必要があるので本発明の実施例に比べ劣っている。
本発明の吹錬方法は、上底吹きの転炉で上吹きランス7から酸素を吹き込んで吹錬を行うものであれば、脱りん処理を行う場合でも、脱炭処理を行う場合でも適用することが可能である。
As shown in FIG. 6, the production capacity is less than 10 (kt / day) in Comparative Examples 1 to 3 that do not satisfy any of Formulas (1) to (3) compared to Examples 1 to 6 of the present invention. (Especially around 9.0), which is inferior to the embodiment of the present invention. In addition, the bullion removal interval is 5.0 (ch / time) or less except for Comparative Example 1, and the bullion removal work must be performed at least once every 5 charges. It is inferior to the embodiment of the present invention because it needs to be frequent.
The blowing method of the present invention is applicable to both dephosphorization treatment and decarburization treatment as long as oxygen is blown from the top blowing lance 7 in an upper bottom blowing converter. It is possible.

上記の実施の形態では、酸素の積算量が総酸素量に対して40%までのときを吹錬初期としていたが、積算量が総酸素量に対して30〜50%になる時期を吹錬初期としてもよい。この場合は、吹錬初期の時期に対応して、吹錬中期は、積算量が総酸素量に対して30〜50%以降の時期となる。   In the above embodiment, the initial stage of blowing is when the integrated amount of oxygen is up to 40% of the total oxygen amount, but the time when the integrated amount becomes 30 to 50% of the total oxygen amount is blown. It may be initial. In this case, corresponding to the initial stage of blowing, the middle stage of blowing is the period when the integrated amount is 30 to 50% or more with respect to the total oxygen amount.

転炉の全体側面図である。It is the whole converter side view. 吹錬初期において炉口内径と送酸速度の条件を変化させて実施した操業結果及び生産性シミュレーションの結果である。It is the result of the operation and productivity simulation which were carried out by changing the conditions of the furnace port inner diameter and the acid feed rate in the early stage of blowing. 吹錬中期から末期において炉口内径と送酸速度の条件を変化させて実施した操業結果及び生産性シミュレーションの結果である。It is the result of the operation and productivity simulation which were carried out by changing the conditions of the inner diameter of the furnace port and the acid feed rate from the middle to the final stage of blowing. 排ガスの空塔速度と生産能力との関係図である。It is a relationship figure of the superficial velocity of exhaust gas, and production capacity. 本発明の吹錬方法を実施した実施例をまとめたものである。The Example which implemented the blowing method of this invention is put together. 比較例をまとめたものである。The comparative examples are summarized.

符号の説明Explanation of symbols

1 炉体
2 鉄皮
3 耐火物(耐火レンガ)
6 炉口
1 Furnace 2 Iron skin 3 Refractory (Refractory brick)
6 Furnace

Claims (3)

上底吹きの転炉で上吹きランスから溶銑へ酸素を吹きつけて吹錬を行う転炉の吹錬方法において、
前記上吹きランスの送酸速度を、式(1)を満たすように調整することを特徴とする転炉の吹錬方法。
Figure 2007077492
In the blowing method of the converter in which oxygen is blown from the top blowing lance to the hot metal in the top bottom blowing converter,
A method for blowing a converter, wherein an acid feed rate of the upper blowing lance is adjusted so as to satisfy Formula (1).
Figure 2007077492
前記上吹きランスから吹きつける酸素の吹錬開始からの積算量が総酸素量の40%を超えた際には、式(2)を満たすように、前記送酸速度を調整することを特徴とする請求項1に記載の転炉の吹錬方法。
Figure 2007077492
When the integrated amount from the start of the blowing of oxygen blown from the upper blowing lance exceeds 40% of the total oxygen amount, the acid feed rate is adjusted so as to satisfy the formula (2). The method for blowing a converter according to claim 1.
Figure 2007077492
前記上吹きランスから吹きつける酸素の吹錬開始からの積算量が総酸素量の40%に達するまでは、式(3)を満たすように、前記送酸速度を調整することを特徴とする請求項1又は2に記載の転炉の吹錬方法。
Figure 2007077492
The oxygen delivery rate is adjusted so as to satisfy the formula (3) until the integrated amount from the start of the blowing of oxygen blown from the upper blowing lance reaches 40% of the total oxygen amount. Item 3. A converter blowing method according to Item 1 or 2.
Figure 2007077492
JP2005325424A 2005-08-17 2005-11-09 Blowing method for converter Expired - Fee Related JP4761938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325424A JP4761938B2 (en) 2005-08-17 2005-11-09 Blowing method for converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005236943 2005-08-17
JP2005236943 2005-08-17
JP2005325424A JP4761938B2 (en) 2005-08-17 2005-11-09 Blowing method for converter

Publications (2)

Publication Number Publication Date
JP2007077492A true JP2007077492A (en) 2007-03-29
JP4761938B2 JP4761938B2 (en) 2011-08-31

Family

ID=37938093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325424A Expired - Fee Related JP4761938B2 (en) 2005-08-17 2005-11-09 Blowing method for converter

Country Status (1)

Country Link
JP (1) JP4761938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180582A (en) * 2011-03-03 2012-09-20 Sumitomo Metal Ind Ltd Method for producing molten steel
JP2014043617A (en) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal Converter refining method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247525A (en) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd Method for melting and refining stainless steel
JPH0892621A (en) * 1994-09-29 1996-04-09 Nkk Corp Production of ultra-low nitrogen steel
JPH10251730A (en) * 1997-03-17 1998-09-22 Nkk Corp Converter blowing method capable of restraining metal from sticking on furnace opening hole
JP2000129330A (en) * 1998-10-26 2000-05-09 Nippon Steel Corp Converter steelmaking method having little metal scattering
JP2003027123A (en) * 2001-07-19 2003-01-29 Sumitomo Metal Ind Ltd Method for operating converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247525A (en) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd Method for melting and refining stainless steel
JPH0892621A (en) * 1994-09-29 1996-04-09 Nkk Corp Production of ultra-low nitrogen steel
JPH10251730A (en) * 1997-03-17 1998-09-22 Nkk Corp Converter blowing method capable of restraining metal from sticking on furnace opening hole
JP2000129330A (en) * 1998-10-26 2000-05-09 Nippon Steel Corp Converter steelmaking method having little metal scattering
JP2003027123A (en) * 2001-07-19 2003-01-29 Sumitomo Metal Ind Ltd Method for operating converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180582A (en) * 2011-03-03 2012-09-20 Sumitomo Metal Ind Ltd Method for producing molten steel
JP2014043617A (en) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal Converter refining method

Also Published As

Publication number Publication date
JP4761938B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
MXPA01012291A (en) Method of producing metallic iron and raw material feed device.
JP2001004279A (en) Direct refining container
JP2007002305A (en) Method for smelting molten pig iron using cupola
EP0881304A1 (en) Method of vacuum decarburization/refining of molten steel and apparatus therefor
CN107119158A (en) A kind of residual iron placing method of schreyerite steelmaking furnace
JP4761938B2 (en) Blowing method for converter
JP6809248B2 (en) How to use electrodes for electric furnaces, electric furnaces and electric furnaces
JP4761937B2 (en) Blowing method for converter
US3990890A (en) Process for refining molten copper matte with an enriched oxygen blow
US8475561B2 (en) Method for producing molten iron
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP4422305B2 (en) Operation method of copper smelting furnace and blower lance used therefor
JP2007046116A (en) Furnace body of converter
JP4016502B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP4979514B2 (en) Hot metal dephosphorization method
JP4016500B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP3969522B2 (en) Operation method of copper smelting furnace
JP4979209B2 (en) How to adjust furnace profile
JP4632829B2 (en) Desulfurization method of ferronickel
JPH05239521A (en) Production of molten iron
JP4016501B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP4672198B2 (en) Gas blowing method for temperature measuring tuyere
JP2001049361A (en) Method for recovering zinc in dust
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees