JPH0892621A - Production of ultra-low nitrogen steel - Google Patents

Production of ultra-low nitrogen steel

Info

Publication number
JPH0892621A
JPH0892621A JP25916894A JP25916894A JPH0892621A JP H0892621 A JPH0892621 A JP H0892621A JP 25916894 A JP25916894 A JP 25916894A JP 25916894 A JP25916894 A JP 25916894A JP H0892621 A JPH0892621 A JP H0892621A
Authority
JP
Japan
Prior art keywords
blowing
converter
furnace
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25916894A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Ikuhiro Washimi
郁宏 鷲見
Tomoo Izawa
智生 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25916894A priority Critical patent/JPH0892621A/en
Publication of JPH0892621A publication Critical patent/JPH0892621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To provide a process for producing an ultra-low nitrogen steel capable of stably obtaining molten metal of a low nitrogen concn. to the extent that such low concn. is hardly attainable by the existing converter refining methods. CONSTITUTION: When the max. oxygen feed rate throughout the entire period of blowing in converter blowing is decided as a reference value and if the oxygen feed rate at the time of the blowing decreases by >=30% of this reference value, the effective sectional area of a converter throat expressed by A(m<2> ) of the equation: A=AE-AL, where AE: the sectional area (m<2> ) of the aperture at the converter throat and AL: the cross sectional area (m<2> ) of a top blowing lance 5, is so controlled as to satisfy the equation: 0.01<A/([C]×q2 )<0.15, where [C]: the carbon concn. (wt.%) in the molten metal at the time of the blowing described above and q02 : the oxygen feed flow rate (Nm<3> /min) at the time of the blowing. As a result, the ultra-low nitrogen steel is produced by stable operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、転炉型の精錬容器を
用いて行なう溶鉄の精錬方法に関するものであり、特に
鋼材の窒素含有量を極力低下させ、そして、その含有量
の制御を容易に行わしめる精錬方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining molten iron using a converter-type refining vessel, and particularly, to reduce the nitrogen content of steel materials as much as possible and to control the content easily. It relates to the refining method that can be carried out.

【0002】[0002]

【従来の技術】製鋼法の発展の歴史に見られるように、
窒素ガスを多量に含む空気を吹錬ガスとして用いた転炉
法や平炉法は、純酸素ガスを吹錬ガスとして高速で溶湯
に吹付け、短時間で吹錬を完了する純酸素転炉法に取っ
て代わられ、鋼材製品の低窒素化が実現された。これ
は、今日の自動車用並びに缶用等、優れた加工性能が要
求される薄板製品の品質向上及び需要拡大に寄与した。
しかし、これら鋼材の製品品質の一層の向上要求によ
り、当該製品の素材に対しても一層の低炭素化及び低窒
素化並びにその安定化が求められるようになっている。
2. Description of the Related Art As seen in the history of the development of steelmaking,
The converter method and open hearth method that use air containing a large amount of nitrogen gas as the blowing gas are pure oxygen converter method in which pure oxygen gas is blown as a blowing gas onto the molten metal at high speed and the blowing is completed in a short time. Was replaced by, and the nitrogen content of steel products was reduced. This has contributed to the improvement in quality and expansion of demand for thin plate products for which excellent processing performance is required for today's automobiles and cans.
However, due to the demand for further improvement of the product quality of these steel materials, further reduction of carbon and nitrogen and stabilization thereof have been required for the materials of the products.

【0003】鋼材の低炭素化のためには、転炉精錬にお
ける複合吹錬技術、及びRH主体の脱ガスのための2次
精錬技術の発展が大きく寄与してきた。即ち、転炉にお
いては、底吹きガスによる攪拌を強化することにより、
Feの酸化損失を増大させずに低炭素濃度まで吹き下げ
ることが可能となった。このように転炉出鋼溶湯の炭素
濃度が低下したことに加えて、脱ガス工程においても、
環流量の増大や大量のガス吹き込みにより脱ガス装置の
脱炭機能が更に向上し、転炉及び脱ガスの一貫工程で炭
素濃度が10ppm以下の極低炭素化が実現されてい
る。
The development of composite blowing technology in converter refining and secondary refining technology for degassing mainly of RH has greatly contributed to the reduction of carbon in steel materials. That is, in the converter, by strengthening the stirring by the bottom-blown gas,
It became possible to blow down to a low carbon concentration without increasing the oxidation loss of Fe. In this way, in addition to the decrease in the carbon concentration of the molten steel discharged from the converter, in the degassing step,
The decarburization function of the degasser is further improved by increasing the recirculation flow rate and blowing a large amount of gas, and an extremely low carbon concentration of 10 ppm or less has been realized in the integrated process of the converter and the degassing.

【0004】一方、鋼材の低窒素化要求に対しては、従
来問題とされてきた脱ガス工程や鋳造工程での吸窒対策
の検討が行われてきたものの、その効果は十分とはいえ
ず、未だに複合吹錬工程や脱ガス工程での完全な吸窒防
止技術や脱窒促進技術の向上が望まれている。
On the other hand, in response to the demand for low nitrogen content in steel materials, although measures to reduce nitrogen absorption in the degassing process and casting process, which have hitherto been a problem, have been studied, the effect is not sufficient. However, there is still a demand for complete improvement of the denitrification prevention technology and denitrification promotion technology in the combined blowing process and degassing process.

【0005】転炉における脱炭工程において、初期溶湯
である溶銑にもともと含有されている窒素は、吹錬初期
段階の高炭素溶湯条件下では、吹錬の進行と共に溶湯か
ら脱窒される傾向にあるが、吹錬中期以降の中炭素溶湯
条件下では、一旦脱窒が進行しなくなり、次いで吹錬末
期の低炭素溶湯条件下では逆に吸窒する傾向を示す。即
ち、転炉吹錬の脱炭工程において極低窒素鋼を溶製する
ためには、吹錬初期での脱窒作用を促進すること、及び
吹錬中期以降における吸窒を抑制ないし防止することが
極めて重要である。特に、吸窒防止技術は極低窒素鋼を
得るためには必須条件である。
In the decarburization process in the converter, the nitrogen originally contained in the hot metal which is the initial molten metal tends to be denitrified from the molten metal with the progress of the blowing under the high carbon molten metal condition in the initial stage of the blowing. However, under the conditions of the medium carbon melt after the middle stage of the blowing, the denitrification does not proceed once, and then under the condition of the low carbon melt at the final stage of the blowing, it tends to absorb nitrogen. That is, in order to produce ultra-low nitrogen steel in the decarburization process of converter blowing, to promote denitrification in the initial stage of blowing and to suppress or prevent nitrification after the middle stage of blowing. Is extremely important. In particular, the technology for preventing nitrogen absorption is an essential condition for obtaining ultra-low nitrogen steel.

【0006】吹錬末期における溶湯の吸窒機構に関し
て、転炉内溶湯面上方の気相雰囲気条件がこの時期に入
って変化することが考えられる。即ち、吹錬初期から中
期前半にかけては、溶湯中の炭素濃度が高く、吹き込ま
れた酸素ガスは炭素と反応し多量のCOガスが生成す
る。そのため気相雰囲気のガス成分組成としては、CO
ガスあるいは部分的に更に酸化が進んだCO2 ガスを含
むCOガスが殆どを占め、気相雰囲気中の窒素ガス組成
は非常に低く抑えられる。従って、溶湯中の窒素は気相
中へ脱窒する。更に、この時期には、溶湯中の窒素活量
を増大させる炭素の溶湯中濃度が高いこと、及び多量の
COガスが生成し溶湯攪拌が強いことが脱窒反応にとっ
て有利に作用するからである。
Regarding the mechanism of nitrogen absorption of molten metal in the final stage of blowing, it is conceivable that the gas phase atmosphere conditions above the surface of the molten metal in the converter may change during this period. That is, the carbon concentration in the molten metal is high from the initial stage of blowing to the first half of the middle period, and the blown oxygen gas reacts with carbon to produce a large amount of CO gas. Therefore, the gas component composition of the gas phase atmosphere is CO
Most of the gas or CO gas containing CO 2 gas which has been further oxidized occupies most of the gas, and the nitrogen gas composition in the gas phase atmosphere can be kept very low. Therefore, the nitrogen in the molten metal is denitrified into the gas phase. Further, at this time, a high concentration of carbon in the molten metal, which increases the nitrogen activity in the molten metal, and a large amount of CO gas generated and strong stirring of the molten metal have an advantageous effect on the denitrification reaction. .

【0007】これに対して、吹錬中期後半以降に関して
は、溶湯中の窒素活量を増大させる炭素濃度が低下し、
また界面活性元素である酸素の溶湯中濃度が高くなるた
め、脱窒反応に不利な条件となる。更に、吹錬中に発生
する総ガス量が減少するので前記雰囲気中の窒素ガス濃
度が相対的に高くなる。特に、吹錬の後半においては送
酸流量を脱炭最盛期の1/2以下にも減らすため、気相
中の窒素分圧は単純計算では吹錬初期の2倍以上にもな
る。従って、このような条件下では溶湯からの脱窒を期
待するよりも吸窒を防止する方が得策である。
On the other hand, from the latter half of the middle stage of blowing, the carbon concentration for increasing the nitrogen activity in the molten metal decreases,
Further, the concentration of oxygen, which is a surface-active element, in the molten metal becomes high, which is a disadvantageous condition for the denitrification reaction. Further, since the total amount of gas generated during blowing is reduced, the nitrogen gas concentration in the atmosphere becomes relatively high. In particular, in the latter half of blowing, the flow rate of oxygen is reduced to 1/2 or less of the peak decarburization period, so that the partial pressure of nitrogen in the gas phase is more than double that at the beginning of blowing by simple calculation. Therefore, under such conditions, it is better to prevent absorption of nitrogen than to expect denitrification from the molten metal.

【0008】このような状況に対して、極低窒素鋼を製
造するために、特開平1−136922号公報には、脱
炭によるガス発生の最盛期を過ぎた後、Arガス等の不
活性ガスを酸素ランスから上方に向けて噴出させること
により、転炉と排ガスフ−ドとの隙間から空気が浸入し
酸素ランスに沿って下降して空気が炉内へ浸入するのを
防止する方法(以下、先行技術1という)が開示されて
いる。また、特開平2−301508号公報には、転炉
吹錬の終了直前に、転炉排ガス回収用フ−ドに不活性ガ
ス、窒素ガス、空気等を導入することにより排ガス量を
確保し、空気の炉内への浸入を防止する方法(以下、先
行技術2という)が開示されている。更に、実公平4−
45号公報には、転炉排ガスの循環経路を設け、入側の
排ガス排出経路中へ連結管を設けてガス発生量の少ない
時期に発生ガスを循環させることによりガス量を確保
し、空気の炉内への浸入を防止する方法(以下、先行技
術3という)が開示されている。
Under these circumstances, in order to produce an extremely low nitrogen steel, JP-A-1-136922 discloses that after the peak period of gas generation due to decarburization, the inert gas such as Ar gas is passed. By injecting gas upward from the oxygen lance, it is possible to prevent air from entering the furnace through the gap between the converter and the exhaust gas hood and descending along the oxygen lance to prevent air from entering the furnace ( Hereinafter, the prior art 1) is disclosed. Further, in JP-A-2-301508, just before the end of the blowing of the converter, the amount of exhaust gas is secured by introducing an inert gas, nitrogen gas, air or the like into the converter exhaust gas recovery hood, A method for preventing the infiltration of air into the furnace (hereinafter referred to as Prior Art 2) is disclosed. Furthermore, the actual fair 4-
Japanese Patent Laid-Open No. 45-45 discloses that a converter exhaust gas circulation path is provided and a connecting pipe is provided in the exhaust gas exhaust path on the inlet side to circulate the generated gas at a time when the gas generation amount is small to secure the gas amount and A method for preventing intrusion into the furnace (hereinafter referred to as Prior Art 3) is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、先行技
術1では、吹錬末期における排ガス減少に伴う炉内への
空気浸入を防止するために、高価な不活性ガスを大量に
必要とするため経済的でない。また、先行技術2及び先
行技術3では、それぞれ排ガスフ−ドまたは入側の排ガ
ス排出経路中へ、不活性ガス等からなるガスまたは循環
させた排ガスを導入し、吹錬末期における排ガス減少量
を補償することにより空気の炉内への浸入を防止しよう
とするものであるため、その効果が十分ではない。
However, the prior art 1 is economical because a large amount of expensive inert gas is required in order to prevent air infiltration into the furnace due to the reduction of exhaust gas in the final stage of blowing. Not. Further, in Prior Art 2 and Prior Art 3, a gas consisting of an inert gas or circulated exhaust gas is introduced into the exhaust gas hood or the exhaust gas discharge path on the inlet side to reduce the exhaust gas reduction amount at the final stage of blowing. Since it is intended to prevent the infiltration of air into the furnace by compensation, the effect is not sufficient.

【0010】このように、先行技術1、2及び3はいず
れも炉内への空気の浸入を防止するために、炉内あるい
は排ガスフ−ド等に新たなガスを加えるか、あるいは循
環させた排ガスを加えるかしてガスの量を増加させる方
法に基づいており、ガスを増加させる具体的方法を開示
しているが、それぞれ上述した問題が解決されていな
い。
As described above, in each of the prior arts 1, 2 and 3, in order to prevent the infiltration of air into the furnace, a new gas is added to or circulated in the furnace or the exhaust gas hood. It is based on a method of increasing the amount of gas by adding exhaust gas and discloses a specific method of increasing the gas, but the above-mentioned problems have not been solved.

【0011】そこで本発明者等は、炉口からの空気浸入
の防止方法として、炉口における発生ガスの流速を適正
値に確保する方法を研究した。転炉の上方にはこれに近
接して排ガスフ−ドが上方に延びて設けられており、吹
錬時の発生ガスはこの排ガスフ−ドを経て処理される。
ところが、転炉と排ガスフ−ドとの接続部の隙間から吸
い込まれてフ−ド内へ浸入した空気の一部は、上吹きラ
ンス近傍での複雑なガス流れの影響を受け、ランス表面
における下降流と共に炉内に巻き込まれる。そして、炉
内の気相雰囲気の窒素分圧を上昇せしめる。炉内へのこ
の空気の巻き込みを防止するには、炉口断面積を小さく
し、炉内からの発生ガスの炉口における流速を適正値に
確保することが有効である。
Therefore, the present inventors have studied a method of ensuring an appropriate value for the flow velocity of the generated gas at the furnace opening as a method for preventing air intrusion from the furnace opening. An exhaust gas hood is provided above and close to the converter so as to extend upward, and the gas generated during blowing is processed through this exhaust gas hood.
However, a part of the air sucked from the gap between the converter and the exhaust gas hood and entering the hood is affected by a complicated gas flow in the vicinity of the upper blowing lance, and the lance surface is affected. Entrained in the furnace with the downflow. Then, the nitrogen partial pressure of the gas phase atmosphere in the furnace is increased. In order to prevent the entrainment of this air into the furnace, it is effective to reduce the cross-sectional area of the furnace opening and secure the flow velocity of the gas generated from the furnace at the furnace opening at an appropriate value.

【0012】しかしながら、転炉吹錬においては、炉内
からの発生ガスのみでなく、スピッテイングといわれる
溶融鉄の微細粒子やヒュ−ムといわれる溶湯への酸素ガ
ス吹付けによって生じる火点で生成する蒸発鉄(気体状
態の鉄)が、炉口を経由しダストとして集塵される。従
って、炉口断面積を小さくし過ぎると、炉口でのガスの
空塔速度を増大させ、激しいスピッテイングやヒュ−ム
の発生を招き炉外への飛散量を増やしたり、場合によっ
ては炉口にそれらの飛散物が付着・堆積し、炉口詰まり
等の原因になり、安定操業の阻害要因にもなる。
However, in the blowing of the converter, not only the gas generated from the inside of the furnace but also the fine point of molten iron called spitting or the fumes generated by the blowing of oxygen gas to the molten metal called fumes are generated. Evaporated iron (iron in the gas state) is collected as dust via the furnace opening. Therefore, if the cross-sectional area of the furnace opening is made too small, the superficial velocity of the gas at the furnace opening is increased, causing intense spitting and fume generation, increasing the amount of scattering outside the furnace, and in some cases the furnace opening. These scattered substances adhere to and accumulate on the furnace, causing clogging of the furnace opening and other factors, which also hinder stable operation.

【0013】更に、炉内からの発生ガス量は、送酸した
酸素ガスが溶湯中の炭素と反応して生成するCOガス
(C+O2 =2CO)になるといった単純な化学量論で
決まるのでなく、溶湯中の炭素濃度の影響も受ける。溶
湯中の炭素濃度が低くなるに従い、脱炭のための酸素効
率は低下し、鉄等の有価金属の酸化にも使われ、しかも
低炭素域では発生ガス量が著しく減少し、炉口における
流速を適正値に確保することが困難となる。
Further, the amount of gas generated from the furnace is not determined by a simple stoichiometry such that the oxygen gas fed into the furnace becomes CO gas (C + O 2 = 2CO) generated by reacting with carbon in the molten metal. It is also affected by the carbon concentration in the melt. As the carbon concentration in the molten metal decreases, the oxygen efficiency for decarburization decreases, it is also used for the oxidation of valuable metals such as iron, and the amount of generated gas decreases significantly in the low carbon region. It becomes difficult to secure a proper value.

【0014】従って、この発明の目的は、上述した問題
点を解決し、現在の転炉精錬法では達成困難な程度にま
で窒素濃度の低い溶湯を安定して得ることができる、極
低窒素鋼の製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and to obtain a molten metal having a low nitrogen concentration to the extent that it is difficult to achieve by the current converter refining method, which is an extremely low nitrogen steel. It is to provide a manufacturing method of.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上述した
問題を解決すべく鋭意研究を重ね、次の知見を得た。転
炉での吹錬過程において、脱炭が進行し送酸流量を低下
させると、前述したように転炉炉口から排出される発生
ガス量が低下し、炉口から炉内へ浸入する空気量の増大
が問題となる。そこで、極低窒素鋼を製造するためには
この浸入空気による溶湯の吸窒を防止しなければならな
い。この炉口から炉内へ空気が浸入する条件は、炉内か
ら発生するガス量が低下した場合、この発生ガスが現実
に通過する転炉の炉口断面積(以下、転炉炉口有効断面
積という)を小さくし、炉口における発生ガスの流速を
確保すること、更に溶湯中の炭素濃度に応じて転炉炉口
有効断面積を調整することにより安定して極低窒素鋼を
溶製することが可能となる。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have obtained the following findings. In the blowing process in the converter, if decarburization progresses and the flow rate of oxygen is reduced, as described above, the amount of gas generated from the converter furnace port decreases and the air that enters the furnace through the furnace port decreases. The increase in quantity becomes a problem. Therefore, in order to manufacture ultra-low nitrogen steel, it is necessary to prevent nitrification of the molten metal by the infiltration air. The condition that air intrudes into the furnace from this furnace mouth is that the cross-sectional area of the converter mouth through which this generated gas actually passes when the amount of gas generated from the furnace decreases (hereinafter referred to as Area), to secure the flow velocity of the gas generated at the furnace opening, and to adjust the effective cross sectional area of the converter furnace opening according to the carbon concentration in the molten metal, to stably produce ultra-low nitrogen steel. It becomes possible to do.

【0016】この発明は、上記知見に基づいてなされた
ものであって、転炉を用い酸素を上吹きランスより送酸
する溶鉄の吹錬において、全吹錬期間を通じた最大送酸
量を基準値とした場合、吹錬時の送酸量が前記基準値の
30%以上減少した場合には、下記(1)式: A=AE −AL --------(1) 但し、AE :転炉炉口開口部の断面積(m2 )、 AL :上吹きランスの横断面積(m2 ) のA(m2 )で表わされる転炉炉口有効断面積を、下記
(2)式: 0.01<A/(〔C〕×qO2)<0.15 -------(2) 但し、〔C〕:前記吹錬時の溶湯中炭素濃度( wt.%
)、 qO2:前記吹錬時の送酸流量(Nm3 /min)、 を満たすように制御することに特徴を有するものであ
る。
The present invention was made on the basis of the above findings, and in the blowing of molten iron in which oxygen is fed from the upper blowing lance using a converter, the maximum amount of feeding oxygen during the entire blowing period is used as a standard. If the value, when the oxygen-flow amount during blowing is reduced by more than 30% of the reference value, the following equation (1): a = a E -A L -------- (1) Where A E is the cross-sectional area of the converter furnace mouth opening (m 2 ), A L is the cross-sectional area of the upper blowing lance (m 2 ) A (m 2 ) of the converter furnace mouth effective cross-sectional area, Formula (2) below: 0.01 <A / ([C] × q O2 ) <0.15 ------- (2) where [C]: carbon concentration in molten metal at the time of blowing ( wt.%
), Q O2 : flow rate of oxygen supply (Nm 3 / min) at the time of blowing, which is a characteristic of controlling so as to satisfy.

【0017】[0017]

【作用】この発明においては、炉内からの発生ガス量が
減少した場合、発生ガスが通過する炉口の断面積を実質
的に狭くするので、発生ガス量の減少にもかかわらず炉
口部における発生ガスの流速は低下せず、従って、炉内
への空気の浸入が防止される。
According to the present invention, when the amount of gas generated from the furnace decreases, the cross-sectional area of the furnace opening through which the generated gas passes is substantially reduced. The flow rate of the evolved gas at does not decrease, thus preventing the infiltration of air into the furnace.

【0018】本発明者等は、転炉内への上記のような空
気浸入の防止条件を見出すため、吹錬時の送酸流量(q
O2)と溶湯中炭素濃度(〔C〕)との積に注目し、これ
に対する転炉炉口有効断面積(A)の比:A/(〔C〕
×qO2)をパラメ−タとして、炉口からの空気の浸入、
吹錬時の溶湯による吸窒機構、及び吹錬時の発生ガス量
を検討した。なお、転炉炉口有効断面積(A)は下記
(1)式: A=AE −AL --------(1) 但し、AE :転炉炉口開口部の断面積(m2 )、 AL :上吹きランスの横断面積(m2 ) で定義した。
The inventors of the present invention have found out the conditions for preventing the above-mentioned air infiltration into the converter, in order to find out the flow rate of acid (q
Pay attention to the product of O2 ) and the carbon concentration in the molten metal ([C]), and the ratio of the converter furnace effective area (A) to this: A / ([C]
XqO2 ) as a parameter, infiltration of air from the furnace opening,
The mechanism of nitrogen absorption by the molten metal during blowing and the amount of gas generated during blowing were investigated. Incidentally, converter furnace outlet effective area (A) is the following (1) equation: A = A E -A L -------- (1) where, A E: disconnection of the converter furnace outlet opening Area (m 2 ), AL : It was defined by the cross-sectional area (m 2 ) of the top blowing lance.

【0019】上記パラメ−タ:A/(〔C〕×qO2
は、分母の吹錬時の送酸流量(qO2)と溶湯中炭素濃度
(〔C〕)との積が大きいほど発生ガス量は多量とな
り、分子の転炉炉口有効断面積(A)が小さいほど発生
ガスは狭い炉口を通過しなければならない。従って、前
記パラメ−タ:A/(〔C〕×qO2)が小さいほど炉口
における発生ガスの流出速度は速くなり、炉口から炉内
への空気浸入を防止する効果が大きくなる。しかしなが
ら、炉口における発生ガスの排出流速が速くなるほどス
ピッテイングやヒュ−ムの発生量も多くなるという不利
益も発生する。
The above parameters: A / ([C] × q O2 )
Is the larger the product of the oxygen transfer rate (qO2) and the carbon concentration ([C]) in the molten metal during the blowing of the denominator, the greater the amount of gas generated, and the numerator effective cross-sectional area (A) The smaller is, the generated gas must pass through the narrow furnace opening. Therefore, the smaller the parameter A / ([C] × q O2 ) is, the faster the outflow rate of the gas generated at the furnace opening becomes, and the greater the effect of preventing air infiltration from the furnace opening into the furnace. However, there is also a disadvantage that the amount of spitting and fume generated increases as the exhaust gas flow velocity at the furnace opening increases.

【0020】更に、吹錬時の発生ガス量の減少量が溶湯
の吸窒に及ぼす影響について試験した。
Further, the effect of the decrease in the amount of gas generated during blowing on the nitrification of the molten metal was tested.

【0021】その結果、転炉吹錬時の送酸量について、
全吹錬期間を通じた最大送酸量、即ち、吹錬初期の高炭
素域吹錬における送酸量を基準値とした場合(本願にお
いて基準値という)、吹錬時の送酸量の減少量が前記基
準値の30%未満であれば、溶湯の吸窒は起こらないこ
とがわかった。
As a result, with regard to the amount of acid fed during converter blowing,
The maximum amount of acid transfer throughout the entire blowing period, that is, when the amount of acid transfer in high carbon region blowing at the beginning of blowing is taken as a reference value (referred to as the reference value in the present application), the amount of decrease in the amount of oxygen sent during blowing It was found that when the value of is less than 30% of the standard value, the molten metal does not absorb nitrogen.

【0022】一方、吹錬時の送酸量の減少量が前記基準
値の30%以上であっても、パラメ−タ:A/(〔C〕
×qO2)の値が、0.15未満であれば、溶湯の吸窒は
実質的に起こらない。しかしながら、前記パラメ−タの
値が0.01以下になると、スピッテイングやヒュ−ム
の発生が増大し炉口への地金付着が激しく、正常な操業
が阻害される。従って、吹錬時の送酸量の減少量が基準
値の30%以上の状態における吹錬時には、パラメ−
タ:A/(〔C〕×qO2)の値が0.01超から0.1
5未満の範囲内となるように転炉炉口有効断面積:Aを
制御しなければならない。
On the other hand, even if the decrease in the amount of acid fed during blowing is 30% or more of the standard value, the parameter: A / ([C]
When the value of xqO2 ) is less than 0.15, the molten metal does not substantially absorb nitrogen. However, when the value of the parameter is 0.01 or less, the occurrence of spitting and fume increases, the metal adheres to the furnace mouth severely, and normal operation is hindered. Therefore, when blowing in a state in which the amount of reduction in the amount of acid fed during blowing is 30% or more of the reference value,
T: The value of A / ([C] × q O2 ) exceeds 0.01 to 0.1
The effective area of the converter throat: A must be controlled so that it falls within the range of less than 5.

【0023】[0023]

【実施例】以下、本発明の内容を実施例によって詳細に
説明する。 〔実施例1〕250tonの上底吹複合吹錬転炉に、転
炉炉口有効断面積を吹錬中に変更可能なように、転炉炉
口部にスライドゲ−トを設置した。図1は、この実施例
で使用した、転炉炉口部にスライドゲ−トを設置して転
炉炉口有効断面積を可変とした転炉の構造を示す概略縦
断面図である。同図において、1は転炉、2は溶鋼、3
は発生ガス回収用フ−ド、4はスライドゲ−ト、5は上
吹きランス、そして6は底吹き羽口を示す。表1に、本
発明法No.1〜6、及び比較法No.1〜7についての転
炉操業条件及び吸窒調査試験条件を示す。
EXAMPLES The contents of the present invention will be described in detail below with reference to examples. [Example 1] In a 250 ton top-bottom blowing composite blowing converter, a slide gate was installed at the converter furnace opening so that the converter furnace opening effective area could be changed during blowing. FIG. 1 is a schematic vertical cross-sectional view showing the structure of a converter used in this embodiment, in which a slide gate is installed at the converter furnace mouth portion and the converter furnace mouth effective sectional area is variable. In the figure, 1 is a converter, 2 is molten steel, 3 is
Is a hood for collecting generated gas, 4 is a slide gate, 5 is a top blowing lance, and 6 is a bottom blowing tuyere. Table 1 shows the converter operating conditions and the nitrogen absorption investigation test conditions for the method Nos. 1 to 6 of the present invention and the comparative methods No. 1 to 7.

【0024】[0024]

【表1】 [Table 1]

【0025】操業フロ−は、通常の転炉での吹錬に準
じ、予め炉内にスクラップを装入し、それに溶銑を装入
した。スクラップは製鉄所内で発生する自家スクラップ
であり、1チャ−ジ当たり約5000kg使用した。溶
銑は予め予備処理プロセスで脱燐及び脱硫処理したもの
を1チャ−ジ当たり約250ton使用した。転炉は複
合吹錬型で、底吹きを約50Nm3 /minのArガス
で行ない、上吹き酸素量の基準値を1000Nm3 /m
inで行なった。吹錬時間は約14分であったが、吹錬
開始後約10〜13分経過の時点から送酸量を約400
〜750Nm3 /minの範囲内に減少させた。なお、
減少させないチャ−ジも実施した。そして同時に、転炉
炉口有効断面積を約12m2 から1〜12m2 の範囲内
の所定値に減少させた。このように、吹錬の末期におい
て送酸量及び転炉炉口有効面積を変化させた場合の溶鋼
中窒素濃度の挙動を調べ、吸窒状況を評価した。即ち、
送酸量変更時及び吹錬終了時の溶鋼をサンプリングし、
炭素および窒素含有量を分析した。また、吹錬終了後に
炉口の状況を観察し、地金の付着量を評価した。
As for the operation flow, scrap was charged in advance in the furnace, and hot metal was charged therein, in accordance with the usual blowing in a converter. The scrap is a self-generated scrap generated in the steel mill, and about 5000 kg was used per charge. The hot metal used was dephosphorized and desulfurized in a pretreatment process in advance and used about 250 tons per charge. The converter is a composite blowing type, the bottom blowing is performed with Ar gas of about 50 Nm 3 / min, and the standard value of the top blowing oxygen amount is 1000 Nm 3 / m.
It was done in. The blowing time was about 14 minutes, but the amount of acid sent was about 400 after about 10 to 13 minutes after the start of blowing.
To 750 Nm 3 / min. In addition,
A charge that did not decrease was also implemented. At the same time, and the effective cross-sectional area BOF furnace outlet was reduced from about 12m 2 to a predetermined value in a range of 1~12m 2. In this way, the behavior of nitrogen concentration in molten steel was investigated when the amount of oxygen fed and the effective area of the converter furnace mouth were changed in the final stage of blowing, and the nitrogen absorption state was evaluated. That is,
Sampling the molten steel at the time of changing the amount of acid supply and at the end of blowing,
The carbon and nitrogen content was analyzed. After the completion of blowing, the condition of the furnace mouth was observed to evaluate the amount of metal attached.

【0026】表2に、上記本発明法及び比較法の各チャ
−ジの、送酸量変更直後及び吹錬終了時のそれぞれの時
期のパラメ−タ:A/(〔C〕×qO2)の値、溶鋼の窒
素含有量(wt.%)及び吸窒量、並びに炉口地金付着
状況を示す。
Table 2 shows the parameters of each charge of the method of the present invention and the comparative method immediately after changing the amount of oxygen to be sent and at the end of blowing: A / ([C] × q O2 ). Value, the nitrogen content (wt.%) Of molten steel and the amount of nitrogen absorption, and the state of adhesion of the metal at the furnace mouth.

【0027】[0027]

【表2】 [Table 2]

【0028】なお、表2中、送酸量変更直後のA/
(〔C〕×qO2)の算出の際、〔C〕としては送酸量変
更時の溶鋼の炭素含有量、即ち、送酸量変更時にサンプ
リングした溶鋼の炭素含有量(wt.%)を用いた。表
2から下記事項がわかる。パラメ−タ:A/(〔C〕×
O2)の値に依存して吸窒量及び炉口地金付着量に差が
生じる。即ち、比較法にみられるように、送酸量変更後
のパラメ−タ:A/(〔C〕×qO2)の値が0.15以
上の場合は吸窒量が大きい。但し、比較法No.6は、送
酸量の減少量がなかったので、吸窒は認められなかっ
た。また、比較法No.7は、送酸量の減少量が少なかっ
たので発生ガスの減少量も少なく、従って上記パラメ−
タの値が0.15以上であるにもかかわらず吸窒は認め
られなかった。比較法No.5及び6では、吹錬終点時の
上記パラメタの値は適正値であるが、送酸量変更時のパ
ラメ−タ:A/(〔C〕×qO2)の値が0.01以下
(それぞれ0.079及び0.0087)という吹錬条
件であったため、その時期に発生した炉口地金付着が顕
著にみられた。これに対して本発明法では、送酸量を減
少させて発生ガス量が大幅に減少してもパラメ−タ:A
/(〔C〕×qO2)の値が0.15未満のため炉口にお
ける発生ガスの流速が大きく確保されたため、吸窒は起
こらなかった。更に、前記パラメ−タの値は0.01超
であったので、炉口地金の付着も発生しなかった。
It should be noted that in Table 2, A /
In the calculation of ([C] × q O2 ), as [C], the carbon content of the molten steel at the time of changing the oxygen-sending amount, that is, the carbon content (wt.%) Of the molten steel sampled at the time of changing the oxygen-sending amount is changed. Using. The following items can be seen from Table 2. Parameter: A / ([C] ×
Depending on the value of q O2 ), there is a difference in the amount of nitrogen absorption and the amount of metal attached to the furnace mouth. That is, as seen in the comparative method, when the value of the parameter: A / ([C] × q O2 ) after changing the amount of acid fed is 0.15 or more, the amount of nitrogen absorption is large. However, in Comparative method No. 6, since there was no decrease in the amount of oxygen sent, no nitrogen absorption was observed. Further, in Comparative method No. 7, the decrease in the amount of acid fed was small, and thus the decrease in the amount of generated gas was also small.
Nitration was not observed even though the value of ta was 0.15 or more. In the comparative methods No. 5 and 6, the values of the above parameters at the end of blowing are proper values, but the value of the parameter A / ([C] × q O2 ) at the time of changing the amount of oxygen transfer is 0. Since the blowing conditions were 01 or less (0.079 and 0.0087, respectively), the metal adhesion to the furnace mouth was remarkable at that time. On the other hand, according to the method of the present invention, the parameter: A
Since the value of / ([C] × q O2 ) was less than 0.15, the flow velocity of the gas generated at the furnace opening was kept high, so that nitrification did not occur. Further, since the value of the above parameter was more than 0.01, the adhesion of the metal in the furnace mouth did not occur.

【0029】〔実施例2〕小型の上底吹複合吹錬転炉
に、炉口有効断面積を吹錬中に変更可能なように、前記
転炉炉口部に昇降可能な機構を有するプラグを設置し
た。図2は、この実施例で使用した、転炉炉口部にプラ
グを設置して炉口有効断面積を可変とした転炉の構造を
示す概略縦断面図である。同図において、1は転炉、2
は溶湯、3は発生ガス回収用フ−ド、5は上吹きラン
ス、6は底吹き羽口、そして7はプラグである。同図に
示すように、プラグ7は上吹きランスと同心円状態に設
置され、プラグ7を炉口上端部まで降下させてことによ
り、炉口有効断面積を変更することができる。プラグ7
は予め数種類、製作準備しておいた。プラグなしの炉口
断面積は0.6m2 であり、降下させるプラグの種類に
より炉口有効断面積を0.4m2 、0.3m2 及び0.
15m2 に変更した。
[Embodiment 2] In a small-sized upper-bottom blowing composite blowing converter, a plug having a mechanism capable of moving up and down at the converter furnace opening so that the effective opening area of the furnace opening can be changed during blowing. Was installed. FIG. 2 is a schematic vertical cross-sectional view showing the structure of a converter used in this embodiment, in which a plug is installed at the converter furnace opening portion to make the effective opening area of the converter variable. In the figure, 1 is a converter, 2
Is a molten metal, 3 is a hood for recovering generated gas, 5 is a top blowing lance, 6 is a bottom blowing tuyere, and 7 is a plug. As shown in the figure, the plug 7 is installed concentrically with the upper blowing lance, and the effective opening area of the furnace opening can be changed by lowering the plug 7 to the upper end of the furnace opening. Plug 7
Had prepared several types in advance. The cross-sectional area of the furnace opening without a plug is 0.6 m 2 , and the effective cross-sectional area of the furnace opening is 0.4 m 2 , 0.3 m 2 and 0.
Changed to 15m 2 .

【0030】表3に、本発明法No.7〜9、及び比較法
No.8及び9についての転炉操業条件及び吸窒調査試験
条件を示す。
Table 3 shows the converter operating conditions and the nitrogen absorption investigation test conditions for the method Nos. 7 to 9 of the present invention and the comparative methods No. 8 and 9.

【0031】[0031]

【表3】 [Table 3]

【0032】操業フロ−は、通常の転炉での吹錬と同様
に行ない、溶銑6tonを装入後、上吹きランスを降下
し、送酸した。転炉は複合吹錬式で、炉底に設置された
3本のノズルからArガス約2Nm3 /minを吹き込
み、上吹きランスからの送酸量の基準値を18Nm3
minとした。吹錬時間は約17分で、送酸開始後13
〜16分経過の時点から送酸量を約7〜12Nm3 /m
inの範囲内に減らした。そして同時にプラグを降下さ
せて、炉口断面積をプラグなしの0.6m2 から、0.
4m2 、0.3m2 又は0.15m2 の炉口有効断面積
に減少させた。このようにして、吹錬の末期の送酸量及
び炉口有効面積を変化させた場合の溶湯中窒素濃度の挙
動を調べ、吸窒状況を評価した。即ち、送酸量を減らす
直前及び吹錬終了時に溶湯からサンプリングし、炭素お
よび窒素含有量を分析調査した。また、吹錬終了後に炉
口の状況を観察し、地金の付着量を評価した。
The operation flow was carried out in the same manner as in the usual blowing in a converter. After charging 6 tons of hot metal, the upper blowing lance was lowered and oxygen was fed. The converter is a compound blowing type, and about 2 Nm 3 / min of Ar gas is blown from three nozzles installed at the bottom of the furnace, and the standard value of the amount of oxygen fed from the top blowing lance is 18 Nm 3 / min.
It was set to min. Blowing time is about 17 minutes, 13 after starting acid transfer
Approximately 7 to 12 Nm 3 / m from the time when 16 minutes have passed
Reduced to within the range of in. At the same time, the plug is lowered to change the cross-sectional area of the furnace opening from 0.6 m 2 without a plug to 0.
4m 2, was reduced to throat effective area of 0.3 m 2 or 0.15 m 2. In this way, the behavior of nitrogen concentration in the molten metal when the amount of oxygen fed in the final stage of blowing and the effective area of the furnace opening were changed was investigated, and the nitrogen absorption state was evaluated. That is, immediately before reducing the amount of acid to be sent and at the end of blowing, the molten metal was sampled and analyzed for carbon and nitrogen contents. After the completion of blowing, the condition of the furnace mouth was observed to evaluate the amount of metal attached.

【0033】表4に、上記本発明法及び比較法の各チャ
−ジの、送酸量変更直後及び吹錬終了時のそれぞれの時
期のパラメ−タ:A/(〔C〕×qO2)の値、溶鋼の窒
素含有量(wt.%)及び吸窒量(wt.%)、並びに
炉口地金付着状況を示す。
Table 4 shows the parameters of each charge of the method of the present invention and the comparative method immediately after changing the amount of oxygen to be sent and at the end of blowing: A / ([C] × q O2 ). Value, the nitrogen content (wt.%) And the nitrogen absorption amount (wt.%) Of the molten steel, and the blast metal adhesion state.

【0034】[0034]

【表4】 [Table 4]

【0035】表4から下記事項がわかる。パラメ−タ:
A/(〔C〕×qO2)の値に依存して吸窒量及び炉口地
金付着量に差が生じることは、実施例1と比較して転炉
炉容が小さく、炉口開口部面積の減縮方式が変わっても
実施例1と同様である。即ち、比較法にみられるよう
に、送酸量変更後のパラメ−タ:A/(〔C〕×qO2
の値が0.15以上の場合は吸窒量が大きい。これに対
して本発明法では、送酸量を減少させて発生ガス量が大
幅に減少してもパラメ−タ:A/(〔C〕×qO2)の値
が0.15未満であるので、実質的な吸窒は起こらなか
った。しかも前記パラメ−タの値が0.01超であった
ので、炉口地金の付着も発生しなかった。
The following matters can be seen from Table 4. Parameters:
The difference in the amount of nitrogen absorption and the amount of adhesion of the base metal in the furnace mouth depends on the value of A / ([C] × q O2 ), which means that the converter furnace volume is smaller than in Example 1 and the furnace mouth opening is small. Even if the reduction method of the area is changed, it is the same as the first embodiment. That is, as seen in the comparative method, the parameter after changing the amount of acid to be fed: A / ([C] × q O2 ).
When the value of is 0.15 or more, the amount of nitrogen absorption is large. On the other hand, according to the method of the present invention, the value of the parameter A / ([C] × q O2 ) is less than 0.15 even if the amount of oxygen to be sent is reduced to a large extent. , Substantial nitrification did not occur. Moreover, since the value of the above parameter was more than 0.01, adhesion of the metal at the furnace mouth did not occur.

【0036】図3は、他の型の炉口プラグを設置して炉
口有効断面積を可変とした転炉の構造を示す概略縦断面
図である。同図に示すプラグを使用して炉口有効断面積
を変化させても、上述したプラグの効果は全く変わらな
かった。
FIG. 3 is a schematic vertical sectional view showing the structure of a converter in which another type of furnace port plug is installed to make the furnace port effective sectional area variable. Even if the effective area of the furnace opening was changed using the plug shown in the figure, the effect of the above-mentioned plug was not changed at all.

【0037】[0037]

【発明の効果】本発明によれば、転炉における溶鉄吹錬
の末期に送酸量を減少させると、炉内からの発生ガス量
が不可避的に著しく減少するが、その場合でも溶鉄の吸
窒を完全に防止することができ、しかも炉口への地金付
着発生を抑制することもできるので、安定した操業によ
り極低窒素鋼を製造することができる、工業上極めて有
用な効果がもたらされる。
According to the present invention, when the amount of oxygen fed is reduced at the end of molten iron blowing in a converter, the amount of gas generated from the furnace is inevitably markedly reduced. Nitrogen can be completely prevented, and the adhesion of metal to the furnace mouth can also be suppressed.Therefore, extremely low nitrogen steel can be produced by stable operation, which is a very useful industrial effect. Be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用した、転炉炉口部にスライドゲ
−トを設置して炉口有効断面積を可変とした転炉の構造
を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing the structure of a converter used in Example 1 in which a slide gate is installed at a converter furnace opening portion and an effective sectional area of the furnace opening is made variable.

【図2】実施例2で使用した、転炉炉口部にプラグを設
置して炉口有効断面積を可変とした転炉の構造を示す概
略縦断面図である。
FIG. 2 is a schematic vertical cross-sectional view showing the structure of a converter used in Example 2 in which a plug is installed in a converter furnace opening portion and a furnace opening effective sectional area is made variable.

【図3】実施例2で使用した、転炉炉口部にプラグを設
置して炉口有効断面積を可変とした他の転炉の構造を示
す概略縦断面図である。
FIG. 3 is a schematic vertical cross-sectional view showing the structure of another converter used in Example 2 in which a plug is installed in the converter furnace opening portion to make the effective opening area of the converter variable.

【符号の説明】[Explanation of symbols]

1 転炉、 2 溶鋼、 3 発生ガス回収用フ−ド 4 スライドゲ−ト、 5 上吹きランス、 6 底吹き羽口、 7 プラグ。 1 converter, 2 molten steel, 3 generated gas recovery hood 4 slide gate, 5 top blowing lance, 6 bottom blowing tuyere, 7 plug.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井澤 智生 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Izawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉を用い酸素を上吹きランスより送酸
する溶鉄の吹錬において、全吹錬期間を通じた最大送酸
量を基準値とした場合、吹錬時の送酸量が前記基準値の
30%以上減少した場合には、下記(1)式: A=AE −AL --------(1) 但し、AE :転炉炉口開口部の断面積(m2 )、 AL :上吹きランスの横断面積(m2 ) のA(m2 )で表わされる転炉炉口有効断面積を、下記
(2)式: 0.01<A/(〔C〕×qO2)<0.15 -------(2) 但し、〔C〕:前記吹錬時の溶湯中炭素濃度( wt.%
)、 qO2:前記吹錬時の送酸流量(Nm3 /min)、 を満たすように制御することを特徴とする極低窒素鋼の
製造方法。
1. In the blowing of molten iron in which oxygen is fed from a top blowing lance using a converter, when the maximum amount of oxygen fed during the entire blowing period is used as a reference value, the amount of oxygen fed during blowing is the above-mentioned value. when reduced by more than 30% of the reference value, the following equation (1): a = a E -A L -------- (1) where, a E: cross-sectional area of the converter furnace outlet opening (M 2 ), AL : The converter furnace port effective cross-sectional area represented by A (m 2 ) of the cross-sectional area (m 2 ) of the upper blowing lance is expressed by the following formula (2): 0.01 <A / ([ C] × q O2 ) <0.15 ------- (2) where [C]: carbon concentration in the molten metal during the above-mentioned blowing (wt.%
), Q O2 : Acid supply flow rate during blowing (Nm 3 / min), which is controlled so as to satisfy the following.
JP25916894A 1994-09-29 1994-09-29 Production of ultra-low nitrogen steel Pending JPH0892621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25916894A JPH0892621A (en) 1994-09-29 1994-09-29 Production of ultra-low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25916894A JPH0892621A (en) 1994-09-29 1994-09-29 Production of ultra-low nitrogen steel

Publications (1)

Publication Number Publication Date
JPH0892621A true JPH0892621A (en) 1996-04-09

Family

ID=17330306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25916894A Pending JPH0892621A (en) 1994-09-29 1994-09-29 Production of ultra-low nitrogen steel

Country Status (1)

Country Link
JP (1) JPH0892621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077492A (en) * 2005-08-17 2007-03-29 Kobe Steel Ltd Blowing method for converter
JP2007077491A (en) * 2005-08-17 2007-03-29 Kobe Steel Ltd Blowing method for converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077492A (en) * 2005-08-17 2007-03-29 Kobe Steel Ltd Blowing method for converter
JP2007077491A (en) * 2005-08-17 2007-03-29 Kobe Steel Ltd Blowing method for converter

Similar Documents

Publication Publication Date Title
KR930001129B1 (en) Method for smelting reduction of ni ore
US3955965A (en) Refining metals
AU626016B2 (en) Method for manufacturing molten metal containing ni and cr
CA1146759A (en) Method of manufacturing stainless steel
US3169058A (en) Decarburization, deoxidation, and alloy addition
JPH0892621A (en) Production of ultra-low nitrogen steel
US4001009A (en) Process for the manufacture of steels with a high chromium content
JP3679475B2 (en) Method for refining stainless steel
JP3158912B2 (en) Stainless steel refining method
US3800630A (en) Procedure and installation for continuous steel making
KR20000041671A (en) Method for refining high purity steel
JPS6211044B2 (en)
JPH11279631A (en) Method for refining molten stainless steel
JP3063537B2 (en) Stainless steel manufacturing method
CN111235352B (en) Method and system for preparing vanadium-rich slag and low-vanadium alloy from low-vanadium alloy and AOD (argon oxygen decarburization) duplex
SU1013489A1 (en) Method for smelting steel in converter
US4165980A (en) Method of rapidly decarburizing ferro- alloys with oxygen
JP2880842B2 (en) How to make clean steel
SU969745A1 (en) Method for smelting steel
JP3718945B2 (en) Method for smelting reduction of chromium ore
RU1786109C (en) Process for producing titanium steel
JPH06299219A (en) Smelting reduction method for chromium ore
JP2882236B2 (en) Stainless steel manufacturing method
JP2001032009A (en) Method for refining molten steel containing chromium
KR950012414B1 (en) Deoxidation method of low carbon ingot slag