JP2007077234A - Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board - Google Patents

Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board Download PDF

Info

Publication number
JP2007077234A
JP2007077234A JP2005265141A JP2005265141A JP2007077234A JP 2007077234 A JP2007077234 A JP 2007077234A JP 2005265141 A JP2005265141 A JP 2005265141A JP 2005265141 A JP2005265141 A JP 2005265141A JP 2007077234 A JP2007077234 A JP 2007077234A
Authority
JP
Japan
Prior art keywords
insulating resin
component
resin
solvent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265141A
Other languages
Japanese (ja)
Inventor
Shin Takanezawa
伸 高根沢
Koji Morita
高示 森田
Takako Ejiri
貴子 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005265141A priority Critical patent/JP2007077234A/en
Publication of JP2007077234A publication Critical patent/JP2007077234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation resin without reducing its flowing property, an insulation resin film having a supporting body, also a substrate material having the resin, without having a crack of its coated film, having good coated film strength and also having a low expansion rate and a small thermal deformation, a wiring board suitable for minute wiring and a method for producing the same. <P>SOLUTION: This insulation resin having the supporting body contains solution E containing a component A: silica, component B: an epoxy resin, component C: a silane-coupling agent having an epoxy group or an amino group as a functional group and component D: any of dimethyl formamide (DMF), N-methyl-2-pyrrolidone (NMP), N-dimethyl acetamide (DMAC) or mixed solvent of them for a solvent in mixing the components A, B and C. The insulation resin film having the supporting body obtained by forming the layer of the insulation resin on the supporting body, the substrate material obtained by using the insulation resin film having the supporting body, the wiring board obtained by forming a conductor circuit on the substrate material having the resin and the method for producing the same are also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁樹脂、支持体付き絶縁樹脂フィルム及びそれを用いた樹脂付き基材、該樹脂付き基材に導体回路を形成した配線板及びその製造方法に関する。   The present invention relates to an insulating resin, an insulating resin film with a support, a base material with a resin using the same, a wiring board in which a conductor circuit is formed on the base material with resin, and a method for manufacturing the same.

従来の配線板は、プリプレグと呼ばれるガラス布にエポキシ樹脂を含浸し、半硬化状態にした材料を銅箔と重ねて熱プレスにより積層一体化した後、ドリルで層間接続用のスルーホールと呼ばれる穴をあけ、スルーホール内壁と銅箔表面上に無電解めっきを行い、必要に応じてさらに電解めっきを行って回路導体として必要な厚さにした後、不要な銅を除去して多層配線板を製造するのが一般的であった。   A conventional wiring board is made by impregnating a glass cloth called prepreg with epoxy resin, stacking and integrating the semi-cured material with copper foil, and laminating and integrating with a hot press, and then using a hole called a through hole for interlayer connection And electroless plating on the inner wall of the through hole and the surface of the copper foil. If necessary, further electrolytic plating is performed to obtain the necessary thickness as a circuit conductor, and then unnecessary copper is removed to form a multilayer wiring board. It was common to manufacture.

ところで、近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進みその形態も多ピン化、小型化へと急速に変化している。この為、配線板は、電子部品の実装密度を向上するために、微細配線化の開発が進められている。   By the way, in recent years, electronic devices have been further reduced in size, weight and functionality, and along with this, LSIs and chip parts have been highly integrated, and their form has rapidly changed to multi-pin and miniaturization. ing. For this reason, in order to improve the mounting density of electronic components, the development of fine wiring is being advanced.

これらの要求に合致する配線板の製造手法として、ガラスクロスを含まない絶縁樹脂をプリプレグの代わりに用い、必要な部分のみビアホールで接続しながら配線層を形成するビルドアップ方式の配線板があり、軽量化や小型化、微細化に適した手法として主流になりつつある。   As a method of manufacturing a wiring board that meets these requirements, there is a build-up type wiring board that uses an insulating resin that does not contain glass cloth instead of a prepreg, and forms a wiring layer while connecting only necessary portions with via holes, It is becoming mainstream as a method suitable for weight reduction, miniaturization, and miniaturization.

例えば、特許文献1には回路充填性に優れた接着フィルムが、また特許文献2には半硬化状態での取り扱い性や架橋NBR粒子による絶縁樹脂の塗膜改質が開示されている。
特開平11−87927号公報 特開2000−256537号公報
For example, Patent Document 1 discloses an adhesive film excellent in circuit filling property, and Patent Document 2 discloses handling property in a semi-cured state and coating reforming of an insulating resin with crosslinked NBR particles.
Japanese Patent Laid-Open No. 11-87927 JP 2000-256537 A

これらの先行技術は、接着フィルムを容易に形成する手法や塗膜の改質の点での効果は期待できる。しかしながら、微細配線化や信号数の増加、はんだ温度の高温化の際に必要な熱膨張率を低減する方法には触れられていない。   These prior arts can be expected to be effective in the method of easily forming an adhesive film and the modification of the coating film. However, there is no mention of a method for reducing the coefficient of thermal expansion necessary for making fine wiring, increasing the number of signals, and increasing the solder temperature.

即ち、配線板を構成する材料には、電子機器の軽薄、短小化を達成するために、エッチング時に銅残りやレジストが追従し易い平滑性や150℃付近まで温度が上昇した場合でも、基材や導体(銅)、はんだ等との膨張差を縮められる低膨張率が必要となっている。   In other words, the material constituting the wiring board is made of a base material even when the copper residue or resist is easy to follow during etching and even when the temperature rises to around 150 ° C. in order to achieve a light and thin electronic device. In addition, a low expansion coefficient that can reduce the difference in expansion from conductors (copper), solder, and the like is required.

また、絶縁樹脂をフィルム状にしてラミネートにより内層回路板上に形成する手法は高生産性の点で有利である。
さらに、微細配線化の点から、銅の厚みを任意に調整でき、レジストの配線精度が導体の配線精度と一致しやすいセミアディティブ法が主流となってきた。
In addition, the technique of forming the insulating resin in the form of a film on the inner circuit board by lamination is advantageous in terms of high productivity.
Furthermore, from the viewpoint of miniaturization, the semi-additive method has become the mainstream because the thickness of copper can be arbitrarily adjusted and the wiring accuracy of the resist easily matches the wiring accuracy of the conductor.

上記のセミアディティブ法は、銅箔を用いず、めっきで導体を形成するために、絶縁樹脂には通常の絶縁樹脂の特性以外にめっき銅と高い接着性を保有させることが必要であり、特性面のバランス化の点から難易度が高くなる。   In the semi-additive method described above, in order to form conductors by plating without using copper foil, it is necessary for the insulating resin to have high adhesiveness with the plated copper in addition to the characteristics of the normal insulating resin. Difficulty increases in terms of balancing the faces.

このような課題に対し、従来の技術では不十分であった。つまり、絶縁樹脂の低熱膨化のためには、絶縁樹脂組成中の無機フィラー分を多くする手法が一般的である。
しかし、無機フィラー分を多くすると、流動性が低下し絶縁樹脂フィルムの基板への接着性や充填性が悪化する、絶縁樹脂の塗膜が脆くなり、割れや強度が低下するといった問題が発生しやすくなるからである。
Conventional techniques have not been sufficient for such problems. That is, in order to reduce the thermal expansion of the insulating resin, a method of increasing the amount of inorganic filler in the insulating resin composition is generally used.
However, if the amount of the inorganic filler is increased, the fluidity decreases and the adhesion and filling properties of the insulating resin film to the substrate deteriorate, the insulating resin coating film becomes brittle, and cracks and strength decrease. This is because it becomes easier.

本発明者らは、このような問題を解決するために研究を進めた結果、無機フィラー成分としてナノサイズのシリカを用い、このシリカにエポキシ樹脂と架橋する表面処理として特定のカップリング剤処理を選定し、高極性の溶剤中でエポキシ樹脂と一緒に処理する方法を見いだした。この手法を用いた成分を絶縁樹脂成分に用いることで、シリカの量が従来と同じ場合でも熱膨張率を低減できることが可能となった。   As a result of conducting research to solve such problems, the present inventors have used nano-sized silica as an inorganic filler component, and a specific coupling agent treatment as a surface treatment for crosslinking this epoxy with an epoxy resin. Selected and found a method to treat with epoxy resin in highly polar solvent. By using a component using this method as an insulating resin component, it is possible to reduce the coefficient of thermal expansion even when the amount of silica is the same as the conventional one.

本発明は、流動性が低下することない絶縁樹脂及び支持体付き絶縁樹脂フィルムを提供すると共に、塗膜の割れがなく、塗膜強度が良好であり、かつ、低膨張率で熱変形が少ない樹脂付き基材並びに微細配線に適した配線板及びその製造方法を提供するものである。   The present invention provides an insulating resin and an insulating resin film with a support, in which fluidity does not decrease, and there is no cracking of the coating film, the coating film strength is good, and the thermal expansion is low with a low expansion coefficient. The present invention provides a substrate with resin, a wiring board suitable for fine wiring, and a manufacturing method thereof.

本発明は、
A成分:シリカ、
B成分:エポキシ樹脂、
C成分:エポキシ基又はアミノ基を官能基に有したシランカップリング剤、
D成分:A成分、B成分及びC成分を混合する際の溶剤にジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の何れか若しくは混合した溶剤
を含むE溶液を含有してなる絶縁樹脂に関する。
また、本発明は、溶剤を除いた樹脂とシリカを合計した濃度が、40〜85重量%の範囲である絶縁樹脂に関する。
また、本発明は、シリカが、平均粒径が0.02〜5μmである絶縁樹脂に関する。
The present invention
Component A: silica,
B component: epoxy resin,
C component: a silane coupling agent having an epoxy group or amino group as a functional group,
D component: E containing a solvent mixed with either dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) as a solvent when mixing the A component, the B component and the C component. The present invention relates to an insulating resin containing a solution.
The present invention also relates to an insulating resin in which the concentration of the resin excluding the solvent and silica is in the range of 40 to 85% by weight.
Moreover, this invention relates to the insulating resin whose silica is 0.02-5 micrometers in average particle diameter.

また、本発明は、E溶液が、D成分を用意し、次いでこのD成分にC成分を加えて攪拌し、さらにA成分を加えて攪拌し、最後にB成分を加えて攪拌して作製したものである絶縁樹脂に関する。
また、本発明は、E溶液が、D成分を用意し、次いでこのD成分にA成分を加えて攪拌し、さらにC成分を加えて攪拌し、最後にB成分を加えて攪拌して作製したものである絶縁樹脂に関する。
また、本発明は、エポキシ基又はアミノ基を官能基に有したシランカップリング剤の配合量が、シリカの量に対して0.01〜10重量%である絶縁樹脂に関する。
また、本発明は、E溶液が、室温で5分以上静置放置した後、室温で回転数600min−1以上の条件で5分以上攪拌したものである絶縁樹脂に関する。
In the present invention, the E solution was prepared by preparing the D component, then adding the C component to the D component and stirring, further adding the A component and stirring, and finally adding the B component and stirring. The present invention relates to an insulating resin.
In the present invention, the E solution was prepared by preparing the D component, then adding the A component to the D component and stirring, further adding the C component and stirring, and finally adding the B component and stirring. The present invention relates to an insulating resin.
The present invention also relates to an insulating resin in which the amount of the silane coupling agent having an epoxy group or amino group as a functional group is 0.01 to 10% by weight based on the amount of silica.
The present invention also relates to an insulating resin in which the E solution is allowed to stand at room temperature for 5 minutes or more and then stirred at room temperature for 5 minutes or more under the condition of a rotational speed of 600 min −1 or more.

また、本発明は、エポキシ樹脂が、固形状又は溶剤を含んだ状態であり、溶剤を含んだ状態のエポキシ樹脂を用いるときの溶剤が前記の溶剤で希釈したものであり、その際の溶剤を除いたエポキシ樹脂の濃度が50〜90重量%である絶縁樹脂に関する。
また、本発明は、E溶液を絶縁樹脂に加える際、室温で回転数600min−1以上の条件で攪拌しながら少量ずつ添加して絶縁樹脂ワニスとしたものである絶縁樹脂に関する。
また、本発明は、E溶液に用いるジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の比率が、絶縁樹脂中に使用される溶剤全体の15〜50重量%である支持体付き絶縁樹脂フィルムに関する。
また、本発明は、エポキシ樹脂が、エポキシ基数2.5以上である絶縁樹脂に関する。
また、本発明は、溶剤を除いた絶縁樹脂に占めるシリカの割合が、30〜65重量%である絶縁樹脂に関する。
In the present invention, the epoxy resin is in a solid state or a state containing a solvent, and the solvent used when the epoxy resin containing the solvent is diluted with the above solvent, the solvent at that time is The present invention relates to an insulating resin having a removed epoxy resin concentration of 50 to 90% by weight.
The present invention also relates to an insulating resin that is added in small amounts while stirring at room temperature under the condition of a rotational speed of 600 min −1 or more to add an insulating resin varnish to the insulating resin.
In the present invention, the ratio of dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) used in the E solution is 15 to 50% by weight of the total solvent used in the insulating resin. % Of the insulating resin film with a support.
The present invention also relates to an insulating resin in which the epoxy resin has an epoxy group number of 2.5 or more.
The present invention also relates to an insulating resin in which the proportion of silica in the insulating resin excluding the solvent is 30 to 65% by weight.

また、本発明は、前記の絶縁樹脂を支持体に塗布し、溶剤を揮発してなる支持体付き絶縁フィルムに関する。
また、本発明は、前記の支持体付き絶縁フィルムを基材に熱転写させて熱硬化してなる樹脂付き基板に関する。
また、本発明は、前記の樹脂付き基材を酸化性水溶液に浸漬して絶縁樹脂表面を粗面化し、次いで回路導体をめっき銅で形成してなる配線板に関する。
また、本発明は、内層回路を有する基材の片面又は両面に前記の絶縁樹脂を塗布、乾燥して支持体付き絶縁フィルムを作製し、次いで酸化性水溶液に浸漬して絶縁樹脂表面を粗面化し、その後回路導体をめっき銅で形成することを特徴とする配線板の製造方法に関する。
さらに、本発明は、回路間に前記の絶縁樹脂フィルムを複数形成することを特徴とする配線板の製造方法に関する。
Moreover, this invention relates to the insulating film with a support body which apply | coats the said insulating resin to a support body and volatilizes a solvent.
Moreover, this invention relates to the board | substrate with resin formed by carrying out the thermal transfer of the said insulating film with a support body to a base material, and thermosetting.
The present invention also relates to a wiring board obtained by immersing the substrate with resin in an oxidizing aqueous solution to roughen the surface of the insulating resin and then forming a circuit conductor with plated copper.
In addition, the present invention applies the insulating resin to one or both surfaces of a substrate having an inner layer circuit, and dries it to produce an insulating film with a support, and then immerses it in an oxidizing aqueous solution to roughen the surface of the insulating resin. And then a circuit conductor is formed of plated copper.
Furthermore, this invention relates to the manufacturing method of the wiring board characterized by forming two or more said insulating resin films between circuits.

本発明の絶縁樹脂及び支持体付き絶縁樹脂フィルムは流動性が低下することなく、樹脂付き基材への接着性や充填性が良好で、塗膜の割れがなく、塗膜強度が良好であり、かつ、低膨張率で熱変形が少ないという効果を奏し、微細配線に適した配線板を製造することができる。   The insulating resin and the insulating resin film with a support of the present invention have good adhesiveness and filling property to the substrate with resin without deterioration of fluidity, no cracking of the coating film, and good coating film strength. In addition, it is possible to produce a wiring board suitable for fine wiring, with the effect of low thermal expansion and low thermal deformation.

本発明になる支持体付き絶縁樹脂フィルムは、
A成分:シリカ
B成分:エポキシ樹脂、
C成分:エポキシ基又はアミノ基を官能基に有したシランカップリング剤、
D成分:A成分、B分及びC成分を混合する際の溶剤にジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の何れか若しくは混合した溶剤
を含むE溶液を含有した絶縁樹脂を用いることが必要である。
The insulating resin film with a support according to the present invention is
A component: Silica B component: Epoxy resin,
C component: a silane coupling agent having an epoxy group or amino group as a functional group,
D component: E containing dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), or dimethylacetamide (DMAC) or a mixed solvent as a solvent when mixing component A, component B and component C It is necessary to use an insulating resin containing a solution.

本発明に用いられるA成分のシリカは、平均粒径が0.02〜5μmの破砕シリカ、合成球状シリカの何れも使用が可能であるが、流度分布の均一性の点から合成球状シリカを用いることが好ましい。市販品としては、電気化学工業(株)製のUFP−80(商品名)、UFP−30(商品名)や(株)アドマテックス製のSO−G1(商品名)、SO−G2(商品名)、SO−G3(商品名)等が使用可能である。   As the silica of component A used in the present invention, either crushed silica having an average particle size of 0.02 to 5 μm or synthetic spherical silica can be used, but synthetic spherical silica is used from the point of uniformity of flow rate distribution. It is preferable to use it. Commercially available products include UFP-80 (trade name), UFP-30 (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd., SO-G1 (trade name), SO-G2 (trade name) manufactured by Admatechs Co., Ltd. ), SO-G3 (trade name), etc. can be used.

シリカの平均粒径を0.02〜5μmの範囲とした理由は、0.02μm未満の場合、シリカの表面積増加により親水性が増し、増粘性が高まるため塗工時にスジや厚みムラが生じ易くなる傾向がある。また5μmを超える場合は、シリカの密度が相対的に減少して熱膨張率低減の効果が小さくなる傾向がある。   The reason why the average particle diameter of the silica is in the range of 0.02 to 5 μm is that when it is less than 0.02 μm, hydrophilicity increases due to increase in the surface area of the silica, and thickening increases, so that streaks and thickness unevenness are likely to occur during coating. Tend to be. On the other hand, when it exceeds 5 μm, the density of silica tends to be relatively reduced and the effect of reducing the thermal expansion coefficient tends to be reduced.

シリカの量は、溶剤を除いた絶縁樹脂に占める割合として30〜65重量%の範囲が好ましい。シリカの量が30重量%未満では熱膨張率の小さいシリカが少ないため絶縁樹脂全体の熱膨張率が大きくなる傾向がある。また65重量%を超えると絶縁樹脂中の有機成分の割合が減るため硬化塗膜が脆くなり、割れの発生や塗膜強度が低下する傾向がある。   The amount of silica is preferably in the range of 30 to 65% by weight as a proportion of the insulating resin excluding the solvent. If the amount of silica is less than 30% by weight, the thermal expansion coefficient of the entire insulating resin tends to increase because of a small amount of silica having a small coefficient of thermal expansion. On the other hand, if it exceeds 65% by weight, the ratio of the organic component in the insulating resin is reduced, so that the cured coating film becomes brittle, and there is a tendency that cracking occurs and the coating film strength decreases.

本発明に用いられるエポキシ樹脂は、エポキシ基数2.5以上が好ましく、このようなエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、燐含有エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が使用可能である。これらのエポキシ樹脂の中では、高伸びと多層配線板特性の観点からビフェニル型エポキシ樹脂が特に好ましい。   The epoxy resin used in the present invention preferably has 2.5 or more epoxy groups. Examples of such epoxy resins include biphenyl type epoxy resins, naphthalene type epoxy resins, phosphorus-containing epoxy resins, phenol novolac type epoxy resins, and cresols. A novolac type epoxy resin or the like can be used. Among these epoxy resins, biphenyl type epoxy resins are particularly preferable from the viewpoint of high elongation and multilayer wiring board characteristics.

エポキシ樹脂は、固形状又は溶剤を含んだ状態のものが用いられ、溶剤としてはジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)で希釈したものを用いることが必要がある。   Epoxy resin is used in a solid state or in a state containing a solvent, and a solvent diluted with dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) is used. Is necessary.

溶剤を除いたエポキシ樹脂の濃度は、50〜90重量%の範囲が好ましい。
エポキシ樹脂の希釈溶剤として、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)を用いる理由はシリカの分散性と関係しているからである。即ち、シリカは凝集や沈降が生じ易いが、極性が高い前記溶剤を用いるとシリカ内のシラノール基と溶剤が結合し易くなり、凝集や沈降が防止できるからである。
The concentration of the epoxy resin excluding the solvent is preferably in the range of 50 to 90% by weight.
The reason for using dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), or dimethylacetamide (DMAC) as the dilution solvent for the epoxy resin is related to the dispersibility of silica. That is, silica is likely to aggregate and settle, but if the solvent having high polarity is used, the silanol group in the silica and the solvent are easily bonded to each other, and aggregation and sedimentation can be prevented.

また、エポキシ樹脂の濃度を50〜90重量%が好ましいとした理由は、50重量%未満では溶剤量が多くなり、その結果、絶縁樹脂塗工時に溶剤が揮発し難くなって残存し易くなり、後工程で溶剤が揮発して作業環境が悪化する傾向がある。また90重量%を超えると未溶解のエポキシ樹脂が生じ易くなる傾向がある。   In addition, the reason why the concentration of the epoxy resin is preferably 50 to 90% by weight is that the amount of the solvent is increased if it is less than 50% by weight, and as a result, the solvent is less likely to volatilize during coating of the insulating resin, and it is likely to remain. There is a tendency that the working environment deteriorates due to the volatilization of the solvent in the subsequent process. Moreover, when it exceeds 90 weight%, there exists a tendency for an undissolved epoxy resin to produce easily.

本発明でエポキシ基又はアミノ基を官能基に有したシランカップリング剤は、エポキシ基の場合、X−Si(OR)で表せるもので、Xがエポキシ基であり、ORがメトキシ基又はエトキシ基のものであれば使用可能である。例えば、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシランが使用可能である。アミノ基の場合も同様であり、例えば、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシランN−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩が使用可能である。 In the present invention, the silane coupling agent having an epoxy group or amino group as a functional group can be represented by X-Si (OR) 3 in the case of an epoxy group, X is an epoxy group, and OR is a methoxy group or ethoxy group. Any base can be used. For example, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane can be used. is there. The same applies to an amino group, for example, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltriethoxysilane. 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxy Silane hydrochloride can be used.

上記のエポキシ基又はアミノ基を官能基に有したシランカップリング剤の配合量は、シリカの量に対して0.01〜10重量%の範囲が好ましい。0.01重量%未満では熱膨張率の低減効果が少なく、10重量%を超えるとカップリング剤とエポキシ樹脂の反応に関してのカップリング剤が過剰となるため、Tgやはんだ耐熱性が低下する傾向がある。   The amount of the silane coupling agent having an epoxy group or amino group as a functional group is preferably in the range of 0.01 to 10% by weight with respect to the amount of silica. If it is less than 0.01% by weight, the effect of reducing the coefficient of thermal expansion is small, and if it exceeds 10% by weight, the coupling agent for the reaction between the coupling agent and the epoxy resin becomes excessive, and Tg and solder heat resistance tend to decrease. There is.

A成分のシリカ、B成分のエポキシ樹脂、C成分のエポキシ基又はアミノ基を官能基に有したシランカップリング剤の3成分を混合する際の溶剤は、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の何れか若しくは混合した溶剤を用いる必要がある。これらの溶剤は高極性という点で共通性があるために用いることができる。   Solvents for mixing the three components of component A silica, component B epoxy resin, component C epoxy group or silane coupling agent having an amino group as a functional group are dimethylformamide (DMF), N-methyl- It is necessary to use either 2-pyrrolidone (NMP) or dimethylacetamide (DMAC) or a mixed solvent. These solvents can be used because they have commonality in terms of high polarity.

即ち、シリカ内のシラノール基は親和性が高いため、極性が高い溶剤を用いることはシリカと溶剤の分散性の点から有利となる。
また、粒径が小さいシリカは表面積が大きいため凝集し易くなるが、シリカ同士の凝集を防止する点でも有利となるからである。
高極性の溶剤としてはアセトニトリルなどがあるが、沸点が低い場合、溶剤の揮発による濃度変化が起き易いことから、上記の3種類の溶剤の単独又は混合使用とした。
That is, since the silanol group in silica has high affinity, it is advantageous from the viewpoint of dispersibility of silica and solvent to use a solvent having high polarity.
In addition, silica having a small particle size has a large surface area and thus easily aggregates. However, it is also advantageous in preventing aggregation between silicas.
A highly polar solvent includes acetonitrile, but when the boiling point is low, concentration change due to volatilization of the solvent tends to occur. Therefore, the above three types of solvents are used alone or in combination.

これらの溶剤を用いて、シリカ、エポキシ樹脂、エポキシ基又はアミノ基を官能基に有したシランカップリング剤の3成分を混合して作製した溶液の濃度は、40〜85重量%の範囲が好ましい。溶液の濃度が40重量%未満では溶剤分が増えるために絶縁樹脂塗工時に溶剤が揮発し難くなって溶剤が残存し易くなり、後工程で溶剤が揮発して作業環境が悪化する傾向がある。また85重量%を超えると攪拌時の流動が起き難くなり、シリカやエポキシ樹脂の分散性が悪化する傾向がある。   Using these solvents, the concentration of a solution prepared by mixing three components of silica, epoxy resin, epoxy group or silane coupling agent having an amino group as a functional group is preferably in the range of 40 to 85% by weight. . If the concentration of the solution is less than 40% by weight, the amount of the solvent increases, so that the solvent does not easily evaporate when the insulating resin is applied, and the solvent tends to remain, and the working environment tends to deteriorate due to the solvent evaporating in the subsequent process. . On the other hand, if it exceeds 85% by weight, the flow during stirring is difficult to occur, and the dispersibility of silica and epoxy resin tends to deteriorate.

溶液(E)を作製する手順としては、まず溶剤を用意し、この溶剤を攪拌しながらカップリング剤、シリカ、エポキシ樹脂の順番で投入して作製する方法と、溶剤を攪拌しながらまず、シリカを投入し、次いで、カップリング剤、エポキシ樹脂の順番で作製する方法を選択できる。この投入順序で重要なのは、シリカを溶剤とカップリング剤に浸漬させることであり、エポキシ樹脂は最後に投入する必要がある。この理由は不明であるが、分子間の距離と関係していると推定している。   As a procedure for preparing the solution (E), first, a solvent is prepared, and a method in which the coupling agent, silica, and epoxy resin are added in this order while stirring the solvent; Then, a method for producing a coupling agent and an epoxy resin in this order can be selected. What is important in this charging sequence is that silica is immersed in a solvent and a coupling agent, and the epoxy resin needs to be charged last. The reason for this is unknown, but it is presumed to be related to the distance between molecules.

また、前記の順番で作製した溶液(E)は、室温で5分以上、48時間以内で静置放置し、その後室温で回転数600min−1の条件で5分以上攪拌することにより、絶縁樹脂内への分散性を高めることができる。即ち、溶液(E)は、エポキシ樹脂を投入することにより急激な粘度上昇が生じるためである。この粘度の上昇は、投入するエポキシ樹脂全量の10重量%を超えた付近から生じる。 The solution (E) prepared in the above order is allowed to stand at room temperature for 5 minutes or more and within 48 hours, and then stirred at room temperature for 5 minutes or more under the condition of a rotational speed of 600 min −1 to obtain an insulating resin. Dispersibility into the inside can be increased. That is, the solution (E) has a sharp increase in viscosity when the epoxy resin is added. This increase in viscosity occurs from around 10% by weight of the total amount of the epoxy resin to be charged.

エポキシ樹脂全量を投入した後は、ホイップ状となり、流動性が不足する。このホイップ状で流動性がない状態の溶液(E)をそのまま使用しても良いが、この溶液(E)を小分けして用いる場合、濃度差が生じる可能性があり好ましくない。このため、溶液(E)をまず、室温で5分以上静置放置する。室温で5分間の静置放置は、粘度が安定する時間である。なお、室温で5分間以上放置すればこれ以上の静置放置は必要がない。   After adding the entire amount of epoxy resin, it becomes whip-like and lacks fluidity. The whip-like solution (E) in a non-fluid state may be used as it is, but when this solution (E) is used in small portions, a difference in concentration may occur, which is not preferable. For this reason, the solution (E) is first left to stand at room temperature for 5 minutes or more. The standing at room temperature for 5 minutes is a time for the viscosity to stabilize. In addition, if it is allowed to stand at room temperature for 5 minutes or more, it is not necessary to leave it at rest.

次に、室温で5分間以上放置した溶液(E)は、回転数600min−1以上の条件で5分以上攪拌することで、粘度が急激に低下する。そして、ホイップ状であった溶液(E)の粘度は、0.05Pa・s以下となる。この操作により、溶液(E)の濃度は安定し、小出しによる使用も可能にできる。 Next, the solution (E) which has been allowed to stand for 5 minutes or more at room temperature has its viscosity drastically lowered by stirring for 5 minutes or more under the condition of a rotational speed of 600 min −1 or more. And the viscosity of the solution (E) which was whip-like will be 0.05 Pa.s or less. By this operation, the concentration of the solution (E) is stabilized and can be used by dispensing.

作製した溶液(E)は所定量を絶縁樹脂に加えるが、この際、室温で回転数600min−1以上の攪拌機を用いて溶液(E)を少量ずつ攪拌しながら添加することが好ましい。
この理由は、絶縁樹脂中の溶剤は、揮発し易い低沸点溶剤が用いられるためであり、極性が低いメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル等を単独又は併用するからである。これらの極性が低い溶剤を含んだ絶縁樹脂中に、前記の極性が高い溶剤を使用した溶液(E)を加える際に、ケミカルショックを考慮しないとシリカの凝集が生じる傾向がある。このため、作製した溶液(E)は、所定量を絶縁樹脂に加える際に少量ずつ攪拌しながら加える必要がある。
A predetermined amount of the prepared solution (E) is added to the insulating resin. At this time, it is preferable to add the solution (E) while stirring little by little using a stirrer having a rotation speed of 600 min −1 or more at room temperature.
This is because the solvent in the insulating resin is a low-boiling solvent that easily volatilizes, and methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, propylene glycol monomethyl ether or the like having low polarity is used alone or in combination. When the solution (E) using the above-mentioned solvent having a high polarity is added to the insulating resin containing a solvent having a low polarity, silica aggregation tends to occur unless chemical shock is taken into consideration. For this reason, it is necessary to add the prepared solution (E) while stirring little by little when adding a predetermined amount to the insulating resin.

また、作製した溶液(E)のジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の比率は、絶縁樹脂中に使用される溶剤全体の15〜50重量%の範囲とすることが好ましい。15重量%未満では、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)が不足するため、絶縁樹脂とした場合にシリカの凝集や沈降が生じる傾向があり、50重量%を超えると塗工時に揮発し難い溶剤が増すため作業環境上好ましくない。   The ratio of dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) in the prepared solution (E) is 15 to 50% by weight of the total solvent used in the insulating resin. It is preferable to set it as the range. If it is less than 15% by weight, dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) is deficient, and therefore, when used as an insulating resin, there is a tendency for silica aggregation and sedimentation to occur. If it exceeds 50% by weight, the solvent that is difficult to volatilize during coating increases, which is not preferable in terms of the working environment.

上記の溶液(E)を作製又は絶縁樹脂に添加する際、攪拌機を用いて作製し、600min−1以上の回転数を有する装置が必要である。この攪拌機に用いる回転羽根の形状には制限はなく、円状や十字状等何れも使用可能である。攪拌機の動力源にも制限はなく、電気、圧縮空気等が使用できる。 When the above solution (E) is produced or added to the insulating resin, an apparatus which is produced using a stirrer and has a rotation speed of 600 min −1 or more is required. There is no restriction | limiting in the shape of the rotary blade used for this stirrer, and circular shape, a cross shape, etc. can be used. The power source of the stirrer is not limited, and electricity, compressed air, etc. can be used.

溶液(E)を加える絶縁樹脂は、特に制限がなくエポキシ樹脂系、イミド樹脂系、シアネート樹脂系、ポリフェニレンエーテル樹脂系、フェノール樹脂系等が使用できる。この中で、耐薬品性、耐めっき液性及び絶縁性の点からエポキシ樹脂系を使用することが好ましい。   The insulating resin to which the solution (E) is added is not particularly limited, and epoxy resin, imide resin, cyanate resin, polyphenylene ether resin, phenol resin, and the like can be used. Among these, it is preferable to use an epoxy resin system from the viewpoint of chemical resistance, plating solution resistance and insulation.

本発明においては、液状状態の絶縁樹脂を支持体に塗布、乾燥して支持体付き絶縁樹脂フィルムとするものである。支持体は特に制限はなく、ポリエステルフィルム、ポリピレンフィルム、メチルペンテンコポリマーフィルム、ポリエチレンナフタレートフィルム、ポリフッ化エチレン系繊維フィルム、銅箔、アルミ箔等が使用できる。この中で、コストパフォーマンスや絶縁樹脂の塗工し易さの観点から、ポリエステルフィルムが好ましい。   In the present invention, a liquid insulating resin is applied to a support and dried to form an insulating resin film with a support. The support is not particularly limited, and a polyester film, a polypyrene film, a methylpentene copolymer film, a polyethylene naphthalate film, a polyfluorinated ethylene fiber film, a copper foil, an aluminum foil, or the like can be used. Among these, a polyester film is preferable from the viewpoint of cost performance and ease of application of the insulating resin.

フィルムタイプとする場合、前記の樹脂系にフィルム成分のフェノキシ、アクリロニトリルブタジエン共重合体、このアクリロニトリルブタジエン共重合体のナノメータサイズに粒子化した粒子化物、スチレンニトリルブタジエン共重合体等も使用できる。
また、環境問題の観点から臭素やアンチモンを使用せずに難燃化するためのリン又はN系の難燃剤を使用することができる。
In the case of a film type, film components such as phenoxy, acrylonitrile butadiene copolymer, nanometer-sized particles of this acrylonitrile butadiene copolymer, styrene nitrile butadiene copolymer, and the like can also be used.
In addition, from the viewpoint of environmental problems, phosphorus or an N-based flame retardant can be used for making flame retardant without using bromine or antimony.

作製した支持体付き絶縁フィルムは、基材に熱転写させる。熱転写の方法は、ラミネート、プレス等加熱、加圧して基材の凹凸面を充填、平坦とすることができれば特に制限するものではない。
また、基材は、公知の基材が使用できる。例えば、ガラス布−エポキシ樹脂、紙−フェノール樹脂、紙−エポキシ樹脂、ガラス布・ガラス紙−エポキシ樹脂、ガラス布−ポリイミドフィルム、ポリイミドフィルム等が使用でき特に制限はない。これらの基材に絶縁樹脂を熱転写した後、絶縁樹脂を加熱硬化する。加熱硬化の条件は、絶縁樹脂の組成系や基材の耐熱性から条件は異なるが、通常、160〜200℃で30〜90分間の熱処理が望ましい。
The produced insulating film with a support is thermally transferred to a substrate. The method of thermal transfer is not particularly limited as long as the uneven surface of the substrate can be filled and flattened by heating and pressurizing such as laminating and pressing.
Moreover, a well-known base material can be used for a base material. For example, glass cloth-epoxy resin, paper-phenol resin, paper-epoxy resin, glass cloth / glass paper-epoxy resin, glass cloth-polyimide film, polyimide film and the like can be used without any particular limitation. After the insulating resin is thermally transferred to these substrates, the insulating resin is heated and cured. The conditions for heat curing differ depending on the composition system of the insulating resin and the heat resistance of the substrate, but usually a heat treatment at 160 to 200 ° C. for 30 to 90 minutes is desirable.

次いで、絶縁樹脂上に回路導体を形成するが、その手法はめっき銅で行う。このめっき銅で回路導体を形成する場合、絶縁樹脂とめっき銅との接着性を確保するために、絶縁樹脂を酸化性水溶液に浸漬処理する必要がある。酸化性水溶液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液、フッ化ナトリウム/クロム/硫酸粗化液、ホウフッ酸粗化液等を用いることができる。   Next, a circuit conductor is formed on the insulating resin, and the method is performed with plated copper. When forming a circuit conductor with this plated copper, it is necessary to immerse the insulating resin in an oxidizing aqueous solution in order to ensure the adhesion between the insulating resin and the plated copper. As the oxidizing aqueous solution, a chromium / sulfuric acid roughening solution, an alkaline permanganic acid roughening solution, a sodium fluoride / chromium / sulfuric acid roughening solution, a borofluoric acid roughening solution, or the like can be used.

なお、酸化性水溶液の浸漬工程での絶縁樹脂の溶解を促進するために、酸化性水溶液の浸漬工程の前にスウェラー又はスウェリングと称している溶剤―アルカリ水溶液の浸漬工程を経ても良い。この溶剤―アルカリ水溶液は、ジエチレングリコールモノブチルエーテルと水酸化ナトリウムや水酸化カリウム等の強アルカリとの混合物を用いることができる。   In addition, in order to accelerate | stimulate melt | dissolution of the insulating resin in the immersion process of oxidizing aqueous solution, you may pass the immersion process of the solvent-alkali aqueous solution called sweller or swering before the immersion process of oxidizing aqueous solution. As the solvent-alkali aqueous solution, a mixture of diethylene glycol monobutyl ether and a strong alkali such as sodium hydroxide or potassium hydroxide can be used.

溶剤―アルカリ水溶液の浸漬工程と酸化性水溶液の浸漬工程の条件に制限はないが、生産性の面からそれぞれ、50〜90℃で3〜25分程度が妥当である。
次に、酸化性水溶液で使用した重金属を中和するため、塩化第1錫、硫酸−過酸化水素水、硫酸ヒドロキシルアンモニウムなどの水溶液に浸漬する。その条件は、室温〜45℃で2〜10分程度が妥当である。
Although there is no restriction | limiting in the conditions of the immersion process of a solvent-alkali aqueous solution and the immersion process of oxidizing aqueous solution, From the surface of productivity, about 3 to 25 minutes are respectively appropriate at 50-90 degreeC.
Next, in order to neutralize the heavy metal used in the oxidizing aqueous solution, it is immersed in an aqueous solution such as stannous chloride, sulfuric acid-hydrogen peroxide solution, hydroxylammonium sulfate. Appropriate conditions are from room temperature to 45 ° C. for about 2 to 10 minutes.

次いで、めっき銅工程へ移行するが、このめっき銅工程は公知の無電解めっき銅処理で良く、例えば、コンディショナー工程、めっき触媒付与処理工程を経て、無電解めっき液に浸漬することにより、絶縁樹脂上に厚さが0.3〜1.5μmの無電解めっき層を析出させる。必要に応じ、さらに電気めっきを行う。
無電解めっきに使用する無電解めっき液は、公知の無電解めっき液を使用することができ、特に制限はない。また、電気めっきについても公知の方法によることができ特に制限はない。
Next, the process proceeds to a plated copper process. This plated copper process may be a known electroless plated copper treatment, for example, by passing through a conditioner process and a plating catalyst application treatment process, and then dipping in an electroless plating solution, thereby insulating resin. An electroless plating layer having a thickness of 0.3 to 1.5 μm is deposited thereon. If necessary, further electroplating is performed.
As the electroless plating solution used for electroless plating, a known electroless plating solution can be used, and there is no particular limitation. Also, electroplating can be performed by a known method and is not particularly limited.

また、回路は、エッチング法やめっきレジストを用いて必要な箇所のみ銅を厚付けするセミアディティブ法などの方法があるが特に制限はない。なお、多層配線板とする際は、多層化する回路導体の表面を接着処理する必要がある。この接着処理は、公知の手法で良く、例えば、酸化銅の針状結晶を形成する手法や銅を化学的に溶解して凹凸面を形成する手法、機械的に銅表面を研磨する手法等何れの手法を用いることができる。   In addition, the circuit has a method such as an etching method or a semi-additive method in which copper is thickened only at a necessary portion using a plating resist, but there is no particular limitation. In addition, when setting it as a multilayer wiring board, it is necessary to carry out the adhesion process on the surface of the circuit conductor made multilayer. This bonding process may be a known method, for example, a method of forming a copper oxide needle crystal, a method of chemically dissolving copper to form an uneven surface, a method of mechanically polishing the copper surface, etc. Can be used.

以下、本発明を実施例に従い、詳細に説明する。
実施例1
(1)溶液(E)の作製
(1)−1 材料の秤量
A成分:シリカ(平均粒径0.04μm、電気化学工業(株)製、商品名UFP−80) …60g
B成分:ビフェニルノボラック型エポキシ樹脂(日本化薬(株)製、商品名NC−3000−H)、希釈溶剤:なし…78g
C成分:アミノシランカップリング剤(信越化学(株)製、3−アミノプロピルトリメトキシシラン、商品名KBM−903)…0.6g
D成分:溶剤N−メチル−2−ピロリドン(NMP)(試薬)…90g
Hereinafter, the present invention will be described in detail according to examples.
Example 1
(1) Preparation of solution (E) (1) -1 Weighing of materials A component: Silica (average particle size 0.04 μm, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name UFP-80) ... 60 g
B component: biphenyl novolak type epoxy resin (product name NC-3000-H, manufactured by Nippon Kayaku Co., Ltd.), diluent solvent: none 78 g
Component C: aminosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltrimethoxysilane, trade name KBM-903) ... 0.6 g
Component D: Solvent N-methyl-2-pyrrolidone (NMP) (reagent) ... 90 g

(1)−2 材料の混合
新東科学(株)製攪拌機BL−1200製に付属の十字状攪拌羽根を取り付け、そして、ポリカップにD成分を移し、回転数100min−1の条件で攪拌を開始した。
次に、ゆっくりとC成分を滴下し、全量滴下後、2分間攪拌した。次いで攪拌を止めないまま、A成分を5回に分けて投入した。なお、回転数は、A成分の2回目投入後、600min−1とし、投入間隔1分間でA成分を全量投入し、その後、3分間回転数を保持した。最後に、B成分をA成分と同じ間隔で投入し、全量投入後、回転数を900min−1に上げて3分間回転数を保持した。
(1) -2 Mixing of materials Attach the cross-shaped stirring blade attached to the Shinto Kagaku Co., Ltd. made stirrer BL-1200, transfer the D component to the plastic cup, and start stirring under the condition of a rotational speed of 100 min -1. did.
Next, C component was dripped slowly, and after stirring whole quantity, it stirred for 2 minutes. Next, component A was added in 5 portions without stopping stirring. The number of revolutions was 600 min −1 after the second injection of the A component, and the entire amount of the A component was introduced at an introduction interval of 1 minute, and then the number of revolutions was maintained for 3 minutes. Finally, the B component was charged at the same interval as the A component, and after the entire amount was charged, the rotation speed was increased to 900 min −1 and the rotation speed was maintained for 3 minutes.

(1)−3 溶液(E)の静置
900min−1の条件で3分間回転した後、攪拌を止め、溶液(E)が入ったポリカップを取り出した後、室温で10分間静置した。
(1) -3 Standing of Solution (E) After rotating for 3 minutes under the condition of 900 min −1 , stirring was stopped, the polycup containing the solution (E) was taken out, and then allowed to stand at room temperature for 10 minutes.

(1)−4 溶液(E)の再攪拌
再度、新東科学(株)製攪拌機BL−1200製を用いて、溶液(E)を回転数900min−1の条件で10分間攪拌した。
その後、アルミシャーを用いて、160℃−60分乾燥前後の重量から濃度を測定した。その結果、実施例1で作製した溶液(E)の濃度は、70重量%であった。
(1) -4 Re-stirring of the solution (E) The solution (E) was again stirred for 10 minutes under the condition of a rotation speed of 900 min -1 using a stirrer BL-1200 manufactured by Shinto Kagaku Co., Ltd.
Thereafter, the concentration was measured from the weight before and after drying at 160 ° C. for 60 minutes using an aluminum shear. As a result, the concentration of the solution (E) prepared in Example 1 was 70% by weight.

(2)絶縁樹脂の作製
下記に示す材料を秤量し、新東科学(株)製攪拌機BL−1200製を用いて回転数600min−1の条件で、室温中で60分間攪拌を行った。
・溶液(E)…171g
・アクリロニトリルブタジエンゴム(日本ゼオン(株)製、商品名ニポールー1031)…4g
・ノボラックフェノール樹脂(日立化成工業株式会社製、商品名HP−850)…17g
・溶剤、メチルエチルケトン…30g
(2) Production of Insulating Resin The materials shown below were weighed and stirred for 60 minutes at room temperature under the condition of a rotational speed of 600 min −1 using a stirrer BL-1200 manufactured by Shinto Kagaku Co., Ltd.
・ Solution (E): 171 g
・ Acrylonitrile butadiene rubber (manufactured by Nippon Zeon Co., Ltd., trade name Nipol-1031) ... 4g
・ Novolac phenol resin (trade name HP-850, manufactured by Hitachi Chemical Co., Ltd.) ... 17g
・ Solvent, methyl ethyl ketone ... 30g

(3)支持体付き絶縁樹脂フィルムの作製
(2)で作製した絶縁樹脂を、コンマコータを用いてポリエステルフィルムに塗布し、90℃で10分間乾燥して膜厚50±3μmの支持体付き絶縁樹脂フィルムを作製した。
(3) Production of insulating resin film with support The insulating resin produced in (2) was applied to a polyester film using a comma coater, dried at 90 ° C. for 10 minutes, and the insulating resin with a support having a thickness of 50 ± 3 μm. A film was prepared.

(4)絶縁樹脂付き基材の作製
ガラス布基材エポキシ樹脂両面銅張積層板〔銅箔の厚さ18μm、基板厚みt0.8mm、両面粗化箔を両面に有する日立化成工業(株)製、商品名MCL−E−67商品名〕]にエッチングを施して片面に回路層(以下、第1回路層とする)を有する基材を作製した。
(4) Production of base material with insulating resin Glass cloth base material epoxy resin double-sided copper-clad laminate [manufactured by Hitachi Chemical Co., Ltd. having a copper foil thickness of 18 μm, a substrate thickness of t0.8 mm, and double-sided roughened foil on both sides , Product name MCL-E-67 product name]] was etched to prepare a substrate having a circuit layer (hereinafter referred to as a first circuit layer) on one side.

次に、支持体付き絶縁樹脂フィルムを前記基材の片面に絶縁樹脂が回路層と接する面側にしてバッチ式真空加圧ラミネーター(名機(株)製、商品名MVLP−500)を用いて、100℃で圧力0.5MPa・s、真空時間30秒及び加圧時間30秒の条件でラミネートにより形成した。その後、ポリエステルフィルムを剥がした後、170℃で60分の硬化条件で上記絶縁樹脂を硬化した。   Next, the insulating resin film with a support is placed on one side of the base material on the side where the insulating resin is in contact with the circuit layer, and a batch type vacuum pressure laminator (trade name MVLP-500, manufactured by Meiki Co., Ltd.) is used. The laminate was formed at 100 ° C. under a pressure of 0.5 MPa · s, a vacuum time of 30 seconds, and a pressurization time of 30 seconds. Thereafter, the polyester film was peeled off, and then the insulating resin was cured under curing conditions at 170 ° C. for 60 minutes.

(5)回路導体の作製
層間接続用のビアホールを日立ビアメカニクス製COレーザ加工機(LCO−1B21型)を使用し、ビーム径80μm、周波数500Hzでパルス幅5μsec及びショット数7の条件で加工して作製した。
(5) Fabrication of circuit conductors Via holes for interlayer connection are processed using a Hitachi Via Mechanics CO 2 laser processing machine (LCO-1B21 type) with a beam diameter of 80 μm, a frequency of 500 Hz, a pulse width of 5 μsec, and a shot number of 7 And produced.

次いで、絶縁層を化学粗化するために、スウェラーとして、ジエチレングリコールモノブチルエーテル200ml/L及びNaOH5g/Lの水溶液を作製し、70℃に加温して5分間浸漬処理した。
次に、粗化液として、KMnO60g/L及びNaOH40g/Lの水溶液を作製し、80℃に加温して10分間浸漬処理した。引き続き、中和液(SnCl30g/L及びHCl300ml/L)の水溶液に室温中で5分間浸漬処理して中和した。
Next, in order to chemically roughen the insulating layer, an aqueous solution of 200 ml / L of diethylene glycol monobutyl ether and 5 g / L of NaOH was produced as a swirler, heated to 70 ° C. and immersed for 5 minutes.
Next, an aqueous solution of KMnO 4 60 g / L and NaOH 40 g / L was prepared as a roughening solution, heated to 80 ° C. and immersed for 10 minutes. Subsequently, it was neutralized by immersing it in an aqueous solution of a neutralizing solution (SnCl 2 30 g / L and HCl 300 ml / L) at room temperature for 5 minutes.

中和後、第1の絶縁層表面に第2の回路を形成するために、先ず、PdClを含む無電解めっき用触媒であるHS−202B(日立化成工業(株)製、商品名)に、室温中で10分間浸漬処理し、水洗後、無電解銅めっきであるCUST−201めっき液(日立化成工業(株)製、商品名)に室温中で15分間浸漬し、さらに硫酸銅電解めっきを行った。 After neutralization, in order to form a second circuit on the surface of the first insulating layer, first, HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a catalyst for electroless plating containing PdCl 2. Immerse in room temperature for 10 minutes, wash with water, immerse in CUST-201 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is electroless copper plating, for 15 minutes at room temperature, and further copper sulfate electrolytic plating Went.

その後、アニールを180℃で30分間行い絶縁層表面上に厚さが20μmの導体層を形成した。
次いで、めっき導体の不要な箇所をエッチング除去するために銅表面の酸化皮膜を#600のバフロール研磨で除去した後、エッチングレジストを形成し、エッチングし、その後エッチングレジストを除去して、第1の回路と接続したバイアホールを含む第2の回路形成を行った。
Thereafter, annealing was performed at 180 ° C. for 30 minutes to form a conductor layer having a thickness of 20 μm on the surface of the insulating layer.
Next, in order to remove unnecessary portions of the plated conductor by etching, the oxide film on the copper surface is removed by # 600 buffol polishing, and then an etching resist is formed and etched. Then, the etching resist is removed, and the first resist is removed. A second circuit including a via hole connected to the circuit was formed.

さらに、多層化するために、第2の回路導体表面を、亜塩素酸ナトリウム50g/L、NaOH20g/L及びリン酸三ナトリウム10g/Lの水溶液に85℃で20分間浸漬し、水洗して、80℃で20分間乾燥して第2の回路導体表面上に酸化銅の凹凸を形成した。この回路導体面に、支持体付き絶縁樹脂フィルムを形成して、熱硬化し、ビアホールの形成から前記と同様な手法で回路導体を作製して3層の多層配線板を作製した。   Furthermore, in order to multilayer, the second circuit conductor surface was immersed in an aqueous solution of sodium chlorite 50 g / L, NaOH 20 g / L and trisodium phosphate 10 g / L at 85 ° C. for 20 minutes, washed with water, Copper oxide irregularities were formed on the surface of the second circuit conductor by drying at 80 ° C. for 20 minutes. An insulating resin film with a support was formed on the surface of the circuit conductor, thermally cured, and a circuit conductor was prepared in the same manner as described above from the formation of a via hole to prepare a three-layer multilayer wiring board.

実施例2
実施例1の溶液(E)ついて、配合量は変えずにA成分のシリカを平均粒径が0.12μmのUFP−30(電気化学工業(株)製、商品名)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 2
For the solution (E) of Example 1, the component A silica was changed to UFP-30 (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle size of 0.12 μm without changing the blending amount. A material similar to that in Example 1 was used, and a three-layer multilayer wiring board was produced through the same steps as in Example 1.

実施例3
実施例1の溶液(E)ついて、配合量は変えずにA成分のシリカを平均粒径が1.0μmのSO−E3((株)アドマテックス製、商品名)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 3
The solution (E) of Example 1 was carried out with the exception that the component A silica was changed to SO-E3 (trade name, manufactured by Admatechs Co., Ltd.) having an average particle diameter of 1.0 μm without changing the blending amount. Using the same material as in Example 1, a multilayer wiring board having three layers was produced through the same steps as in Example 1.

実施例4
実施例1の溶液(E)ついて、配合量は変えずにC成分のカップリング剤をエポキシ基を含有したカップリング剤(信越化学(株)製、3−グリシドキシプロピルトリメトキシシラン、商品名KBM−403)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 4
For the solution (E) of Example 1, the C component coupling agent was used without changing the blending amount, and a coupling agent containing an epoxy group (manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane, product) A material similar to that in Example 1 was used except that the name KBM-403) was changed, and a multilayer wiring board having three layers was manufactured through the same steps as in Example 1.

実施例5
実施例1の溶液(E)ついて、配合量は変えずにD成分の溶剤をジメチルホルムアミド(DMF)(試薬)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 5
For the solution (E) of Example 1, the same materials as in Example 1 were used except that the solvent of component D was changed to dimethylformamide (DMF) (reagent) without changing the blending amount. A multilayer wiring board having three layers was manufactured through the same process.

実施例6
実施例1の溶液(E)ついて、配合量は変えずにD成分の溶剤をジメチルアセトアミド(DMAC)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 6
For the solution (E) of Example 1, the same material as in Example 1 was used except that the solvent of component D was changed to dimethylacetamide (DMAC) without changing the blending amount. After that, a three-layer multilayer wiring board was produced.

実施例7
実施例1の溶液(E)ついて、B成分のビフェニルノボラック型エポキシ樹脂(日本化薬(株)製、品名NC−3000−H)を固形量換算で実施例1と同様のまま、N−メチルー2−ピロリドン(NMP)(試薬)で溶解したものを用いた。その際のエポキシ樹脂の濃度は、80重量%である。その他は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 7
About the solution (E) of Example 1, B component biphenyl novolac type epoxy resin (Nippon Kayaku Co., Ltd., product name NC-3000-H) was converted into N-methyl What was dissolved in 2-pyrrolidone (NMP) (reagent) was used. In this case, the concentration of the epoxy resin is 80% by weight. Otherwise, the same material as in Example 1 was used, and a multilayer wiring board having three layers was produced through the same steps as in Example 1.

実施例8
実施例1の溶液(E)を作製するのに際し、材料の投入順序をD成分の次にA成分を投入し、次いでC成分を投入し、最後にB成分を投入した。その他は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 8
In preparing the solution (E) of Example 1, the ingredients were added in the order of ingredients D, then ingredients A, then ingredients C, and finally ingredients B. Otherwise, the same material as in Example 1 was used, and a multilayer wiring board having three layers was produced through the same steps as in Example 1.

実施例9
実施例1の溶液(E)ついて、B成分のエポキシ樹脂をビフェニルノボラック型エポキシ樹脂(日本化薬(株)製、商品名NC−3000−H)とクレゾールノボラック型エポキシ樹脂(住友化学(株)製、商品名ESCN−190−3)をそれぞれ39g(合計78g)配合し、その他は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Example 9
For the solution (E) of Example 1, the B component epoxy resin was changed to biphenyl novolac type epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-3000-H) and cresol novolac type epoxy resin (Sumitomo Chemical Co., Ltd.). Manufactured and trade name ESCN-190-3) is mixed with 39 g (78 g in total), and the other materials are the same as in Example 1, and a multilayer wiring board having three layers is obtained through the same steps as in Example 1. Produced.

比較例1
実施例1の溶液(E)ついて、配合量は変えずにD成分の溶剤をメチルエチルケトンに変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Comparative Example 1
For the solution (E) in Example 1, the same material as in Example 1 was used, except that the solvent of D component was changed to methyl ethyl ketone without changing the blending amount, and the same process as in Example 1 was carried out to form three layers. A multilayer wiring board was prepared.

比較例2
実施例1の溶液(E)ついて、C成分のアミノシランカップリング剤を使用しない以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Comparative Example 2
For the solution (E) of Example 1, the same material as in Example 1 was used except that the C component aminosilane coupling agent was not used, and a three-layer multilayer wiring board was obtained through the same steps as in Example 1. Produced.

比較例3
実施例1の溶液(E)ついて、配合量は変えずにC成分のカップリング剤をエポキシ基、アミノ基を含有しないビニルシランカップリング剤(ビニルトリエトキシシラン、信越化学(株)製、商品名KBE−1003)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Comparative Example 3
About the solution (E) of Example 1, the compounding amount is not changed, and the C component coupling agent is an epoxy group and an amino group-free vinyl silane coupling agent (vinyl triethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name) Except for changing to KBE-1003), a material similar to that in Example 1 was used, and a multilayer wiring board having three layers was manufactured through the same steps as in Example 1.

参考例1
実施例1の溶液(E)ついて、配合量は変えずにA成分のシリカを平均粒径が10μmのシリカ(電気化学工業(株)製、商品名FS−44)に変えた以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Reference example 1
The solution (E) of Example 1 was carried out with the exception that the component A silica was changed to silica having an average particle diameter of 10 μm (trade name FS-44, manufactured by Denki Kagaku Kogyo Co., Ltd.) without changing the blending amount. Using the same material as in Example 1, a multilayer wiring board having three layers was produced through the same steps as in Example 1.

参考例2
実施例1の溶液(E)を作製するのに際し、材料の投入順序をD成分の次にB成分を投入し、次いでC成分を投入し、最後にA成分を投入した。その他は、実施例1と同様と同様の材料を使用し、実施例1と同様の工程を経て3層の多層配線板を作製した。
Reference example 2
In preparing the solution (E) of Example 1, the B component was added next to the D component in the order of adding materials, then the C component was added, and finally the A component was added. Otherwise, the same material as in Example 1 was used, and a multilayer wiring board having three layers was produced through the same steps as in Example 1.

上記で作製した多層配線板について、溶液(E)の状態観察、溶液(E)の粘度、熱膨張率、絶縁樹脂塗膜の伸び率、外層導体回路との接着強度、不飽和雰囲気下での絶縁信頼性加速試験、288℃はんだ耐熱性試験及び絶縁フィルムを室温1ヶ月間放置した後の内層回路埋め込み性を評価した。その結果を表1、表2及び表3に示す。   About the multilayer wiring board produced above, the state observation of the solution (E), the viscosity of the solution (E), the coefficient of thermal expansion, the elongation rate of the insulating resin coating film, the adhesive strength with the outer conductor circuit, under an unsaturated atmosphere An insulation reliability acceleration test, a 288 ° C. solder heat resistance test, and an inner layer circuit embedding property after leaving the insulating film for one month at room temperature were evaluated. The results are shown in Table 1, Table 2 and Table 3.

〔溶液(E)の状態観察〕
各実施例、比較例及び参考例で作製した溶液(E)を室温中に5時間静置し、フィラーの沈降の有無及び溶液の分離の発生有無について観察した。
〔溶液(E)の粘度測定〕
各実施例、比較例及び参考例で作製した溶液(E)の粘度を、静置前(作製直後)と室温中に60分静置後に分けて測定した。粘度は、B型粘度BM−2を用いて、室温で測定した。
[Observation of state of solution (E)]
The solutions (E) prepared in each Example, Comparative Example and Reference Example were allowed to stand at room temperature for 5 hours, and the presence or absence of filler sedimentation and the occurrence of separation of the solution were observed.
[Measurement of viscosity of solution (E)]
The viscosities of the solutions (E) prepared in each Example, Comparative Example and Reference Example were measured separately before standing (immediately after preparation) and after standing for 60 minutes at room temperature. The viscosity was measured at room temperature using B-type viscosity BM-2.

〔熱膨張係率〕
各実施例、比較例及び参考例の絶縁樹脂を作製する工程で得られた絶縁樹脂ワニスを銅箔に塗工し、配線板作製と同様の熱処理を加え、そして、銅をエッチング除去して硬化した絶縁樹脂塗膜を得た。この絶縁樹脂塗膜を幅4mm、絶縁樹脂膜厚50μm及び長さが20mmの寸法に切断し、Du Pont社製2000型熱分析システム943TMAを用いて、引っ張り法、加重5gの条件で測定し、30〜100℃間の平均熱膨張率で表した。
[Coefficient of thermal expansion]
Insulating resin varnish obtained in the process of preparing the insulating resin of each example, comparative example and reference example was applied to copper foil, heat treatment similar to wiring board preparation was applied, and copper was etched away and cured An insulating resin coating film was obtained. This insulating resin coating film was cut into dimensions of 4 mm in width, 50 μm in insulating resin film thickness and 20 mm in length, and measured using a Du Pont 2000 type thermal analysis system 943TMA under the tensile method and a weight of 5 g. Expressed as an average coefficient of thermal expansion between 30 and 100 ° C.

〔塗膜の伸び率〕
各実施例、比較例及び参考例の絶縁樹脂を作製する工程で得られた絶縁樹脂ワニスを銅箔に塗工し、配線板作製と同様の熱処理を加え、そして、銅をエッチング除去して硬化した絶縁樹脂塗膜を得た。この絶縁樹脂塗膜を幅10mm、絶縁樹脂膜厚50μm及び長さが100mmに切断し、オートグラフ引っ張り試験(チャック間距離50mm)により絶縁樹脂塗膜を引っ張り、破断するまでの伸びを求めた。
[Elongation rate of coating film]
Insulating resin varnish obtained in the process of preparing the insulating resin of each example, comparative example and reference example was applied to copper foil, heat treatment similar to wiring board preparation was applied, and copper was etched away and cured An insulating resin coating film was obtained. This insulating resin coating film was cut to a width of 10 mm, an insulating resin film thickness of 50 μm, and a length of 100 mm, and the insulating resin coating film was pulled by an autograph tensile test (distance between chucks of 50 mm) to determine the elongation until it broke.

〔外層導体回路との接着強度〕
L1回路層(第3回路層)の一部に幅10mm及び長さ100mmの部分を形成し、この一端を剥がしてつかみ具でつかみ、垂直方向に50mm室温中で引き剥がしたときの荷重を測定した。
[Adhesive strength with outer layer conductor circuit]
A part with a width of 10 mm and a length of 100 mm is formed on a part of the L1 circuit layer (third circuit layer), this end is peeled off and gripped with a gripper, and the load when peeled off in a vertical direction at 50 mm at room temperature is measured. did.

〔不飽和雰囲気下での絶縁信頼性加速試験〕
各実施例、比較例及び参考例で作製した多層配線板において、絶縁樹脂の層間方向に電圧印加できるように端子部にリード線をはんだ付けで固定し、そして、絶縁樹脂の層間方向の絶縁抵抗を室温中で50Vの電圧を1分印加して測定した。さらに、これを試料とし、130℃、85%RHの不飽和雰囲気下で直流電圧6Vを印加しながら所定時間で試料を取り出し、室温中で50Vの電圧を1分印加して測定した時の10Ω以上を示す時間を絶縁信頼性の時間として表した。
[Insulation reliability acceleration test under unsaturated atmosphere]
In the multilayer wiring boards produced in each example, comparative example and reference example, the lead wire is fixed to the terminal portion by soldering so that a voltage can be applied in the interlayer direction of the insulating resin, and the insulation resistance in the interlayer direction of the insulating resin Was measured by applying a voltage of 50 V for 1 minute at room temperature. Furthermore, using this as a sample, the sample was taken out for a predetermined time while applying a DC voltage of 6 V in an unsaturated atmosphere of 130 ° C. and 85% RH, and measured by applying a voltage of 50 V for 1 minute at room temperature. the time indicating the above 8 Omega expressed as the time insulation reliability.

〔288℃はんだ耐熱性〕
各実施例、比較例及び参考例で作製した多層配線板を25mm角に切断し、288℃±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
[288 ° C solder heat resistance]
The multilayer wiring boards produced in each Example, Comparative Example and Reference Example were cut into 25 mm squares, floated in a solder bath adjusted to 288 ° C. ± 2 ° C., and the time until blistering was examined.

〔絶縁フィルムを室温1ヶ月間放置した後の内層回路埋め込み性〕
各実施例、比較例及び参考例で作製した絶縁樹脂付フィルムを室温で1ヶ月間放置した。その後、実施例と同様に絶縁樹脂付フィルムを内層回路板の片面に絶縁樹脂が回路層と接する面側にしてバッチ式真空加圧ラミネーター(名機(株)製、商品名MVLP−500)を用いて形成し、次に、PETフィルムを剥がした後、180℃で60分の硬化条件で上記絶縁樹脂を硬化した。この段階で、絶縁樹脂の内層回路板への埋め込み性を評価した。埋め込み性の評価は、直径2mm(φ)の丸穴が空いている箇所50穴を金属顕微鏡で観察し、全て埋め込みされている場合は100%OKと表示した。
[Embedment of inner layer circuit after insulating film is left at room temperature for one month]
The film with insulating resin produced in each example, comparative example and reference example was left at room temperature for 1 month. Then, the batch type vacuum pressurization laminator (made by Meiki Co., Ltd., trade name MVLP-500) is formed with the insulating resin film on one side of the inner circuit board in the same manner as in the example, with the insulating resin in contact with the circuit layer. Then, after peeling off the PET film, the insulating resin was cured under curing conditions at 180 ° C. for 60 minutes. At this stage, the embedding property of the insulating resin into the inner layer circuit board was evaluated. Evaluation of embedding property was performed by observing 50 holes with a 2 mm (φ) diameter hole with a metal microscope and displaying 100% OK when all the holes were embedded.

Figure 2007077234
Figure 2007077234

Figure 2007077234
Figure 2007077234

Figure 2007077234
Figure 2007077234

Claims (17)

A成分:シリカ、
B成分:エポキシ樹脂、
C成分:エポキシ基又はアミノ基を官能基に有したシランカップリング剤、
D成分:A成分、B成分及びC成分を混合する際の溶剤にジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の何れか若しくは混合した溶剤
を含むE溶液を含有してなる絶縁樹脂。
Component A: silica,
B component: epoxy resin,
C component: a silane coupling agent having an epoxy group or amino group as a functional group,
D component: E containing a solvent mixed with either dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) as a solvent when mixing the A component, the B component and the C component. An insulating resin containing a solution.
溶剤を除いた樹脂とシリカを合計した濃度が、40〜85重量%の範囲である請求項1記載の絶縁樹脂。   2. The insulating resin according to claim 1, wherein the total concentration of the resin excluding the solvent and silica is in the range of 40 to 85% by weight. シリカが、平均粒径が0.02〜5μmである請求項1又は2記載の絶縁樹脂。   The insulating resin according to claim 1, wherein the silica has an average particle size of 0.02 to 5 μm. E溶液が、D成分を用意し、次いでこのD成分にC成分を加えて攪拌し、さらにA成分を加えて攪拌し、最後にB成分を加えて攪拌して作製したものである請求項1〜3のいずれかに記載の絶縁樹脂。   The E solution is prepared by preparing the D component, then adding the C component to the D component and stirring, further adding the A component and stirring, and finally adding the B component and stirring. Insulating resin in any one of -3. E溶液が、D成分を用意し、次いでこのD成分にA成分を加えて攪拌し、さらにC成分を加えて攪拌し、最後にB成分を加えて攪拌して作製したものである請求項1〜3のいずれかに記載の絶縁樹脂。   The E solution is prepared by preparing the D component, then adding the A component to the D component and stirring, further adding the C component and stirring, and finally adding the B component and stirring. Insulating resin in any one of -3. エポキシ基又はアミノ基を官能基に有したシランカップリング剤の配合量が、シリカの量に対して0.01〜10重量%である請求項1〜5のいずれかに記載の絶縁樹脂。   The insulating resin according to any one of claims 1 to 5, wherein a compounding amount of the silane coupling agent having an epoxy group or an amino group as a functional group is 0.01 to 10% by weight based on the amount of silica. E溶液が、室温で5分以上静置放置した後、室温で回転数600min−1以上の条件で5分以上攪拌したものである請求項1〜6のいずれかに記載の絶縁樹脂。 The insulating resin according to any one of claims 1 to 6, wherein the solution E is allowed to stand at room temperature for 5 minutes or more and then stirred at room temperature for 5 minutes or more under the condition of a rotational speed of 600 min- 1 or more. エポキシ樹脂が、固形状又は溶剤を含んだ状態であり、溶剤を含んだ状態のエポキシ樹脂を用いるときの溶剤が請求項1記載の溶剤で希釈したものであり、その際の溶剤を除いたエポキシ樹脂の濃度が50〜90重量%である請求項1〜7のいずれかに記載の絶縁樹脂。   The epoxy resin is in a solid state or a state containing a solvent, and when the epoxy resin containing the solvent is used, the solvent is diluted with the solvent according to claim 1, and the epoxy excluding the solvent at that time The insulating resin according to claim 1, wherein the concentration of the resin is 50 to 90% by weight. E溶液を絶縁樹脂に加える際、室温で回転数600min−1以上の条件で攪拌しながら少量ずつ添加して絶縁樹脂ワニスとしたものである請求項1〜8のいずれかに記載の絶縁樹脂。 The insulating resin according to any one of claims 1 to 8, wherein when the E solution is added to the insulating resin, the insulating resin varnish is added in small amounts while stirring at room temperature under the condition of a rotational speed of 600 min- 1 or more. E溶液に用いるジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)又はジメチルアセトアミド(DMAC)の比率が、絶縁樹脂に使用される溶剤全体の15〜50重量%である請求項1〜9のいずれかに記載の絶縁樹脂。   The ratio of dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or dimethylacetamide (DMAC) used in the E solution is 15 to 50% by weight of the total solvent used for the insulating resin. 10. Insulating resin in any one of 9. エポキシ樹脂が、エポキシ基数2.5以上である請求項1〜10のいずれかに記載の絶縁樹脂。   The insulating resin according to claim 1, wherein the epoxy resin has an epoxy group number of 2.5 or more. 溶剤を除いた絶縁樹脂に占めるシリカの割合が、30〜65重量%である請求項1〜11のいずれかに記載の絶縁樹脂組成物。   The insulating resin composition according to any one of claims 1 to 11, wherein a ratio of silica in the insulating resin excluding the solvent is 30 to 65% by weight. 請求項1〜12のいずれかに記載の絶縁樹脂を支持体に塗布し、溶剤を揮発してなる支持体付き絶縁樹脂フィルム。   The insulating resin film with a support body formed by apply | coating the insulating resin in any one of Claims 1-12 to a support body, and volatilizing a solvent. 請求項13記載の支持体付き絶縁樹脂フィルムを基材に転写させて熱硬化してなる樹脂付き基材。   A base material with a resin obtained by transferring the insulating resin film with a support according to claim 13 to a base material and thermosetting it. 請求項14記載の樹脂付き基材を酸化性水溶液に浸漬して絶縁樹脂表面を粗面化し、次いで回路導体をめっき銅で形成してなる配線板。   A wiring board obtained by immersing the substrate with resin according to claim 14 in an oxidizing aqueous solution to roughen the surface of the insulating resin, and then forming a circuit conductor with plated copper. 内層回路を有する基材の片面又は両面に請求項1〜12のいずれかに記載の絶縁樹脂を支持体に塗布、乾燥して支持体付き絶縁樹脂フィルムを作製し、次いで酸化性水溶液に浸漬して絶縁樹脂表面を粗面化し、その後回路導体をめっき銅で形成することを特徴とする配線板の製造方法。   An insulating resin according to any one of claims 1 to 12 is applied to a support on one side or both sides of a substrate having an inner layer circuit, and dried to produce an insulating resin film with a support, and then immersed in an oxidizing aqueous solution. A method of manufacturing a wiring board, characterized in that the surface of the insulating resin is roughened, and then the circuit conductor is formed of plated copper. 回路間に請求項13記載の支持体付き絶縁樹脂フィルムを複数形成することを特徴とする請求項16記載の配線板の製造方法。
The method for manufacturing a wiring board according to claim 16, wherein a plurality of insulating resin films with a support according to claim 13 are formed between the circuits.
JP2005265141A 2005-09-13 2005-09-13 Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board Pending JP2007077234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265141A JP2007077234A (en) 2005-09-13 2005-09-13 Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265141A JP2007077234A (en) 2005-09-13 2005-09-13 Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board

Publications (1)

Publication Number Publication Date
JP2007077234A true JP2007077234A (en) 2007-03-29

Family

ID=37937858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265141A Pending JP2007077234A (en) 2005-09-13 2005-09-13 Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board

Country Status (1)

Country Link
JP (1) JP2007077234A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006698A (en) * 2007-03-30 2009-01-15 Fujifilm Corp Manufacturing process of film with metal film on both sides and film with metal film on both sides
WO2009116609A1 (en) 2008-03-21 2009-09-24 昭和電工株式会社 Resin composition and cured film thereof
CN105578737A (en) * 2014-11-04 2016-05-11 味之素株式会社 Circuit board and method for manufacturing the same
CN105916293A (en) * 2015-02-24 2016-08-31 味之素株式会社 Circuit board and method for manufacturing the same
JP2018172552A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006698A (en) * 2007-03-30 2009-01-15 Fujifilm Corp Manufacturing process of film with metal film on both sides and film with metal film on both sides
WO2009116609A1 (en) 2008-03-21 2009-09-24 昭和電工株式会社 Resin composition and cured film thereof
KR20100133358A (en) 2008-03-21 2010-12-21 쇼와 덴코 가부시키가이샤 Resin composition and cured film thereof
CN105578737B (en) * 2014-11-04 2020-01-24 味之素株式会社 Circuit board and method for manufacturing the same
KR20160052423A (en) * 2014-11-04 2016-05-12 아지노모토 가부시키가이샤 Circuit board and method for manufacturing thereof
JP2016092172A (en) * 2014-11-04 2016-05-23 味の素株式会社 Circuit board and manufacturing method thereof
KR102362911B1 (en) 2014-11-04 2022-02-16 아지노모토 가부시키가이샤 Circuit board and method for manufacturing thereof
CN105578737A (en) * 2014-11-04 2016-05-11 味之素株式会社 Circuit board and method for manufacturing the same
TWI683607B (en) * 2014-11-04 2020-01-21 日商味之素股份有限公司 Circuit board and its manufacturing method
TWI675610B (en) * 2015-02-24 2019-10-21 日商味之素股份有限公司 Circuit substrate and manufacturing method thereof
KR20160103519A (en) * 2015-02-24 2016-09-01 아지노모토 가부시키가이샤 Circuit board and method for manufacturing the same
JP2016157821A (en) * 2015-02-24 2016-09-01 味の素株式会社 Circuit board and method of manufacturing the same
CN105916293B (en) * 2015-02-24 2020-04-10 味之素株式会社 Circuit board and method for manufacturing the same
CN105916293A (en) * 2015-02-24 2016-08-31 味之素株式会社 Circuit board and method for manufacturing the same
KR102472271B1 (en) * 2015-02-24 2022-12-01 아지노모토 가부시키가이샤 Circuit board and method for manufacturing the same
JP2018172552A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device
JP7098881B2 (en) 2017-03-31 2022-07-12 住友ベークライト株式会社 Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards and semiconductor devices

Similar Documents

Publication Publication Date Title
JP6475781B2 (en) Surface treated copper foil, copper foil with carrier, substrate manufacturing method, printed wiring board manufacturing method, printed circuit board manufacturing method, copper clad laminate
TWI405805B (en) Resin compositon, insulating sheet with substrate, prepreg, multilayer printed wiring board, and semiconductor device
JP6109569B2 (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
KR101454949B1 (en) Resin sheet with copper foil, multilayer printed wiring board, method for manufacturing multilayer printed wiring board and semiconductor device
JP4888147B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, method for producing multilayer printed wiring board, and semiconductor device
WO2015012327A1 (en) Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
KR20060063775A (en) Copper foil with extremely thin adhesive layer and method for producing the copper foil with extremely thin adhesive layer
JP5544444B1 (en) Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
WO2014017606A1 (en) Copper foil with carrier
JP2024094332A (en) High dielectric resin composition, and carrier-attached resin film, prepreg, laminate, printed wiring board and semiconductor device including the same
JP2015021086A (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
JP5023732B2 (en) Laminated board
JP2007077234A (en) Insulation resin, insulation film having supporting body, substrate having resin by using the same, wiring board obtained by forming conductor circuit on the substrate having the resin and method for producing the wiring board
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP2015042779A (en) Surface-treated copper foil, copper foil with carrier, substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
JP5728998B2 (en) Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP2009188163A (en) Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP4760932B2 (en) Insulating resin film for multilayer wiring board, insulating resin film with copper foil for multilayer wiring board, and multilayer wiring board using these
JP4400060B2 (en) Insulating resin composition and use thereof
JP5728997B2 (en) Insulating resin material for wiring board, multilayer wiring board, and method for manufacturing multilayer wiring board
JP2007077354A (en) Prepreg and copper-clad laminate using the same
TWI467050B (en) Followed by layer formation
JP2004014611A (en) Insulation film with supports, multilayer printed circuit board, and its manufacturing method
JP2005005458A (en) Method for manufacturing multilayer wiring board
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof