JP2007072245A - 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器 - Google Patents

光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP2007072245A
JP2007072245A JP2005260292A JP2005260292A JP2007072245A JP 2007072245 A JP2007072245 A JP 2007072245A JP 2005260292 A JP2005260292 A JP 2005260292A JP 2005260292 A JP2005260292 A JP 2005260292A JP 2007072245 A JP2007072245 A JP 2007072245A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
light
laser beam
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005260292A
Other languages
English (en)
Inventor
Shin Koide
慎 小出
Yutaka Kobashi
裕 小橋
Shin Fujita
伸 藤田
Tomoyuki Ito
友幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Sanyo Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Epson Imaging Devices Corp filed Critical Sanyo Epson Imaging Devices Corp
Priority to JP2005260292A priority Critical patent/JP2007072245A/ja
Publication of JP2007072245A publication Critical patent/JP2007072245A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】高感度の光センサを構成する。
【解決手段】 半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、前記受光素子に流れる電流の向きが前記レーザービームのスキャン方向に交差するように、前記受光素子を形成する工程を具備したことを特徴とする。
【選択図】 図1

Description

本発明は、表示輝度の制御を行う表示装置に好適な光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器に関する。
液晶パネルは、ガラス基板、石英基板等の2枚の基板間に液晶を封入して構成される。各基板には電極を設け、画像信号を電極に供給する。各基板の電極相互間の液晶は、画像信号に応じて光学特性が変化する。即ち、各基板の電極相互間の液晶に画像信号に基づく電圧を印加することで、液晶分子の配列を変化させるのである。これにより、各画素における光の透過率が画像信号に応じて変化することになり、画像信号に応じた画像表示が行われる。
このような液晶パネルにおいて高輝度の表示を行うために、一般的には、液晶パネルの背面にはバックライトが設けられている。このようなバックライトとして、導光板を用いて、照明の均一性を向上させる装置も開発されている。バックライトによって液晶パネルの表示領域を照明することで、十分な輝度で表示領域上の表示を観察することができる。
ところで、液晶パネルの表示の見易さは、周囲の明るさに応じて変化する。例えば、周囲光が明るいほど、表示領域の照明を明るくした方が、表示は見やすい。逆に、周囲光が十分に暗い場合には、表示領域を必要以上に明るくする必要はない。
特許文献1には、周囲の明るさに拘わらず見やすい表示を提供するために、周囲の光を検知してそのフィードバック情報によりバックライトの輝度を制御する技術が開示されている。
特開2003−78838号公報
ところで、特許文献1の装置においては、周囲光(外光)を検出する光センサとして、ディスクリート部品を採用している。このため、光センサをフレキシブルプリント基板上に実装する必要があり、工数及びコスト増を招来する。
そこで、液晶パネル等の表示パネルを構成する基板上に、光センサを形成することが考えられる。しかしながら、例えば、600℃以下で処理する低温ポリシリコン技術によって製造する液晶パネル上に受光素子を形成する場合には、受光素子の光検出電流が比較的小さく、十分な精度を得にくい。また、受光素子の個体差が大きく、外光の検出精度を向上させるためには、製品出荷段階で光センサの調整作業が必要となるという問題が考えられる。
なお、これは、低温ポリシリコン技術を利用した全ての表示パネルに共通の問題である。
本発明は、低温ポリシリコン技術において半導体層を結晶化させるためのレーザーアニール工程において、レーザーのビーム方向(スキャン方向)と受光素子の形状及び配置の関係を最適化することにより、入射光の照度を高感度に検出することができる光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器を提供することを目的とする。
本発明に係る光センサの製造方法は、半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、前記受光素子に流れる電流の向きが前記レーザービームのスキャン方向に交差するように、前記受光素子を形成する工程を具備したことを特徴とする。
また、本発明に係る光センサの製造方法は、半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、前記受光素子に流れる電流の向きが前記レーザービームの長手方向に略平行となるように、前記受光素子を形成する工程を具備したことを特徴とする。
これらの構成によれば、受光素子に流れる電流の向きはレーザービームのスキャン方向に交差する。言い換えると、受光素子に流れる電流の向きはレーザービームの長手方向に略一致する。従って、レーザーアニールによって生じる粒界の筋は、受光素子に流れる電流の向きに沿うことになり、受光素子のばらつきを低減することができる。これにより、高感度の受光素子が得られる。
また、前記受光素子に流れる電流の向きと前記レーザービームのスキャン方向とは直交することを特徴とする。
また、前記受光素子に流れる電流の向きと前記レーザービームの長手方向とは、一致していることを特徴とする
これらの構成によれば、レーザーアニールによって生じる粒界の筋は、確実に受光素子に流れる電流の向きに沿うことになる。
本発明に係る電気光学装置の製造方法は、半導体層を有する受光素子にレーザービームをスキャンさせながら照射してレーザーアニールを施す電気光学装置の製造方法であって、有効表示領域の少なくとも一辺に沿って半導体層を形成する工程と、レーザービームをスキャンさせて前記半導体層をレーザーアニールする工程と、前記レーザービームのスキャン方向に交差する方向にP型領域とN型領域とが配置されるように、前記半導体層に不純物を導入する工程とを具備したことを特徴とする。
本発明に係る電気光学装置の製造方法は、半導体層を有する受光素子にレーザービームをスキャンさせながら照射してレーザーアニールを施す電気光学装置の製造方法であって、有効表示領域の少なくとも一辺に沿って半導体層を形成する工程と、レーザービームをスキャンさせて前記半導体層をレーザーアニールする工程と、前記レーザービームの長手方向に略平行にP型領域とN型領域とが配置されるように、前記半導体層に不純物を導入する工程とを具備したことを特徴とする。
これらの構成によれば、有効表示領域の少なくとも一辺に沿って半導体層が形成される。この半導体層は、レーザービームのスキャンによってレーザーアニールされる。次に、半導体層に不純物を導入してP型領域及びN型領域を形成する。この場合には、P型領域とN型領域の配置の向き、即ち、受光素子に流れる電流の向きはレーザービームのスキャン方向に交差、即ち、レーザービームの長手方向に略一致する。従って、レーザーアニールによって生じる粒界の筋は、受光素子に流れる電流の向きに沿うことになり、受光素子のばらつきを低減することができる。これにより、高感度の受光素子を備えた電気光学装置が得られる。
本発明に係る電気光学装置は、有効表示領域を有する表示部と、前記有効表示領域の少なくとも一辺に沿って配置され、半導体層に流れる電流の方向に沿った方向に粒界の筋が形成された前記半導体層を有する受光素子とを具備したことを特徴とする。
このような構成によれば、受光素子を構成する半導体層に生じる粒界の筋は、半導体層に流れる電流の方向に沿っている。これにより、受光素子のばらつきは小さく、高感度の受光素子が得られる。
本発明に係る電子機器は、上記電気光学装置を用いたことを特徴とする電子機器。
このような構成によれば、ばらつきの少ない受光素子によって、例えば外光を正確に検出することができる。
以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は本発明の第1の実施の形態に係る電気光学装置の概要を示す平面図である。図2は図1の電気光学装置として液晶パネルを採用した場合において、液晶パネルをケースに収納した状態の断面構造の概略を説明するための説明図である。図3は図1の電気光学装置に採用される表示パネルの平面パターンを模式的に示す説明図である。図4は受光素子部分を構成する各層のパターンを示す平面図であり、図5はその等価回路図である。また、図6は図3のA−A’線の模式的断面図である。
<第1の実施の形態>
図1において、電気光学装置11は、2枚の基板を貼り合わせて構成された表示パネルによって構成されている。表示パネルとして液晶パネルを採用する場合には、図2に示すように、電気光学装置11は表示パネル21と照明装置22とを備える。なお、電気光学装置として自発光型の表示パネルを採用することもでき、この場合には、照明装置は不要である。
図2に示すように、表示パネル21は光を透過する素子基板23及び対向基板24相互間に、液晶25を封入して構成される。対向配置された素子基板23と対向基板24とは、図示しないシール材によって貼り合わされている。表示パネル21には、例えば水平方向に延在して設けられた図示しない複数の走査線と、垂直方向に延在して設けられた図示しない複数のデータ線とを有し、複数の走査線と複数のデータ線との交差に対応して画素が構成される。なお、後述するように、素子基板23は低温ポリシリコン技術によって製造されている。
素子基板23上には、画素を構成する図示しない画素電極(ITO)が配置される。また、対向基板24側にも図示しない対向電極(共通電極(ITO))が設けられる。素子基板23の画素電極上には、液晶25に接して、ラビング処理が施された図示しない配向膜が設けられている。一方、対向基板24側においても、液晶25に接して、ラビング処理が施された図示しない配向膜が設けられている。各配向膜は、例えば、ポリイミド膜等の透明な有機膜からなる。また、対向基板24にはデータ線及び走査線に沿って、図示しない遮光膜が形成されている。
なお、図2では図示を省略しているが、対向基板24の観察面側及び素子基板23の素子形成面の反対側の面には、夫々偏光板が設けられている。これらの偏光板は、素子基板23及び対向基板24に形成された配向膜のラビング方向に対応した偏光軸に設定される。
バックライトとして機能する照明装置22は表示パネル21の素子基板23の下方から光を出射する。照明装置22は、例えば、光源を構成する複数の発光ダイオード(以下、LEDという)と導光板とによって構成される。LEDからの光は導光板内に導かれ、導光板の底面及び側面の反射層によって反射、散乱し、導光板の上面から出射される。こうして、照明装置22の上方に配置された表示パネル21にバックライト光が入射されるようになっている。
照明装置22と表示パネル21とは積層された状態で、ケース26内に収納される。ケース26は上面が開口しており、この開口部27に表示パネル21の表示画面13が臨むように、表示パネル21がケース26内に固定されている。
表示パネル21は、ケース26の開口部27によって規定された表示画面13内の中央に、有効表示領域14が設けられている。有効表示領域14は、複数の走査線と複数のデータ線との交差に対応して画素が構成される。
表示パネル21においては、データ線には画像信号が供給され、走査線には走査信号が供給される。こうして、各画素は画像信号に基づいて駆動されて光の透過率が変化する。照明装置22から表示パネル21に入射した光は、表示パネル21の有効表示領域14において変調される。これにより、ケース26の開口部27側から有効表示領域14を観察することで、画像を視認することができる。なお、対向基板24には対向基板24の周辺部を遮光するための遮光膜28(図1の斜線部)が形成されている。有効表示領域14は、この遮光膜28によって形状、サイズが規定される。
表示画面13内の有効表示領域14の周辺には、非表示領域15が設けられている。本実施の形態においては、この非表示領域15内に、照度を検出するための受光素子29,30を夫々配置する受光素子配置領域16,17が設けられている。受光素子配置領域16においては、対向基板24上に遮光膜28が形成されており、この遮光膜28の形成領域において、外光が素子基板23側に入射することが阻止されるようになっている。
また、受光素子配置領域17は、対向基板24上の遮光膜28が形成されていない開口領域19内に設けられており、対向基板24の上面(観察面)側からの光を基板内に透過させる領域である。
受光素子配置領域16内には、素子基板23上に受光素子29が配置され、受光素子配置領域17内には、素子基板23上に受光素子30が配置される。後述するように、受光素子29,30は、低温ポリシリコン技術を用いて製造されている。
受光素子30には、対向基板24の観察面側から外光が入射するようになっており、受光素子30は外光の照度検出が可能である。一方、受光素子29は、遮光膜28及び後述する他の遮光膜によって外光の入射が阻止されており、暗電流の検出用、或いは、照明装置22からのバックライト光の照度検出用として用いることができる。
受光素子29によってバックライト光の照度を検出した場合には、受光素子29の検出結果を用いることで、外光の検出精度を向上させることも可能である。即ち、バックライトをLED等によって構成した場合には、バックライト光の照度を高精度に制御することができる。従って、受光素子29によって検出するバックライト光を明るさの基準として、受光素子30の出力を校正することで、外光の検出精度を向上させることができるのである。
図1の例では、表示パネル21は、平面形状が略長方形である。表示パネル21の一方の長辺に沿って、Yドライバ31が配置されている。また、表示パネル21の一方の短辺に沿って、Xドライバ32が配置されている。
図3に示すように、Yドライバ31からは有効表示領域14に向かって、複数の走査線33が延設され、Xドライバ32からは有効表示領域14に向かって、複数のデータ線34が延設されている。走査線33とデータ線34の交差に対応して、スイッチング素子35が設けられている。スイッチング素子35は、Yドライバ31から走査線33に供給される走査信号によってオン,オフ制御される。オンとなったスイッチング素子35は、Xドライバ32からデータ線34に供給される画像信号を画素電極36に供給する。
なお、図3は表示パネル21がTFT液晶パネルである例について示しているが、低温ポリシリコン技術によって製造されるものであれば、他のアクティブマトリクス表示パネルであっても同様に構成することができる。
近傍にXドライバ32が配置された表示パネル21の一短辺には、端子部37が設けられている。Yドライバ31及びXドライバ32と端子部37とは図示しない配線によって接続されている。
図1に示すように、近傍にYドライバ31が配置されていない有効表示領域14の長辺と表示パネル21の他方の長辺との間には、有効表示領域14の長辺に沿って、受光素子配置領域16が設けられている。即ち、受光素子配置領域16は、表示パネル21の長手方向に細長く設けられており、狭幅ではあるが、十分に広い面積を有する。この受光素子配置領域16と表示パネル21との間には、受光素子配置領域16に隣接して、受光素子配置領域17が設けられている。受光素子配置領域17は、受光素子配置領域16と同様に、表示パネル21の長手方向に細長く設けられており、狭幅ではあるが、十分に広い面積を有する。なお、受光素子配置領域16,17の長さは、有効表示領域14の短辺の長さよりも長い。また、この実施の形態では、受光素子配置領域16を左に、17を右に配置したが、後に説明される開口領域19をともなう受光素子配置領域17を左、16を右に配置してもよい。
図3に示すように、受光素子配置領域16には、複数の受光素子29が有効表示領域14の長辺に沿って配列されている。また、受光素子配置領域17には、複数の受光素子30が有効表示領域14の長辺に沿って配列されている。図3の例では、受光素子29,30をPINダイオード等の受光ダイオードによって示してあるが、他の素子を用いてもよい。
図3に示すように、受光素子29,30は、細長の受光素子配置領域16,17を利用することで、表示パネル21の長手方向に、十分な数だけ配列される。配列する受光素子29,30の個数は、受光素子配置領域16,17の長手方向の長さと、各受光素子29,30の幅によって決まる。
図4は受光素子29,30としてPIN型ダイオードを採用した場合における、受光素子29,30の配置を示している。1つの受光素子29は、P型領域51及びN型領域53(斜線部)相互間にI型領域52を設けて形成される。同様に、1つの受光素子30は、P型領域54及びN型領域56(斜線部)相互間にI型領域55を設けて形成される。ここで、I型領域は、「真性領域」の意味であるが、N型またはP型の濃度よりも十分に低い濃度の不純物が導入されていても良い。
1つの受光素子29,30は、P型領域、I型領域及びN型領域が接合されて、素子長はLに構成される(図4参照)。素子長Lとしては、例えば、5〜15μmを採用することができる。このように、受光素子29,30は十分に短い長さに形成され、しかも、相互に隣接して形成されており、隣り合った受光素子29,30同士の特性を略一致させることが可能である。
受光素子29,30の長さLを十分に短くすることができることから、受光素子29,30を配置する受光素子配置領域16,17を十分に狭幅に設定することができ、有効表示領域14と表示パネル21の縁辺との間の比較的狭い領域への配置が可能である。
一方、受光素子29,30に流れる検出電流の方向に直交する方向のP,N,I型領域の幅(受光素子の幅)は、図4に示すように、Wに設定される。幅Wとしては、例えば、20〜100μmを採用することができる。全受光素子の幅Wの総和は、略受光素子配置領域16,17の垂直方向の長さと同様であり、有効表示領域14の短辺の長さよりも長い。受光素子配置領域16,17は、略有効表示領域14の長辺に沿って設けられており、垂直方向の長さは十分に長い。即ち、受光素子29,30の幅Wの総和は、十分に大きく、全受光素子29,30の面積の総和は、十分に大きい。
図3に示すように、受光素子29を構成する各ダイオードのアノードは、配線41に共通接続されており、カソードは配線42に共通接続されている。また、受光素子30を構成する各ダイオードのアノードは、配線43に共通接続されており、カソードは配線44に共通接続されている。
受光素子29は入射光の照度に基づく出力を出力する。配線41,42間からは全受光素子29の出力の和を取り出すことができる。また、受光素子30は入射光の照度に基づく出力を出力する。配線43,44間からは全受光素子30の出力の和を取り出すことができる。
また、全受光素子29の出力と全受光素子30の出力との差を利用する場合等においては、配線42,43を共通接続することも考えられる。図1及び図4はこの場合の例を示している。図5はこの場合の受光素子29,30の接続状態を等価回路図によって示すものである。図1の例では、配線42,43は共通接続され、配線41,44と共に、端子部38を介して外部回路に接続されるようになっている。
受光素子29及び30と各配線41〜44との接続は、コンタクトホール60を介して行われる。受光素子20,30を構成する領域51〜56が形成される受光素子形成層と、配線41〜44が形成される配線層との間には、層間絶縁膜が形成されており、この層間絶縁膜に設けたコンタクトホール60を利用して、受光素子形成層と配線層との電気的な接続が行われている。
図4に示すように、コンタクトホール60を介して、受光素子29のP型領域51と配線41とが接続され、N型領域53と配線42とが接続されている。また、コンタクトホール60を介して、受光素子30のP型領域54と配線43とが接続され、N型領域56と配線44とが接続されている。配線42,43は共通の配線である。
また、遮光膜28によって外光の入射が阻止された受光素子29については、領域51〜53上に酸化膜を介して遮光膜58が設けられている。表示パネル21の厚み方向には、遮光膜58は受光素子29を構成する領域51〜53の近傍に配置されており、受光素子29への外光の入射を効果的に阻止する。
図6は受光素子29,30の断面構造の一例を示している。図6は図3のA−A’線における断面構造である。
図6において、石英基板又はガラス基板等の透明な基板23上には、下地絶縁膜71が形成されている。下地絶縁膜71上には、有効表示領域14を含む画素を形成する領域において、スイッチング素子であるTFTを構成する半導体層73が形成されている。半導体層73は、多結晶半導体としてのポリシリコンにて構成されている。なお、このポリシリコンは、後述するように、非単結晶半導体である非晶質半導体としてのアモルファスシリコンのレーザアニールにより結晶化されて形成されている。
半導体層73の両端には、不純物が導入されてソース領域72及びドレイン領域73が形成されている。半導体層73上には酸化膜75を介してゲート電極76が形成されている。ゲート電極76は、下層がモリブデン、上層がアルミニウムの2層構造であり、走査線33に接続されている。酸化膜75上には層間絶縁膜77が形成されており、層間絶縁膜77には、ソース領域72及びドレイン領域73上に夫々コンタクトホール78a,78bが形成されている。ソース領域72はコンタクトホール78aを介してデータ線34に接続されている。
データ線34が形成される配線層上及び層間絶縁膜77上には層間絶縁膜79が形成される。層間絶縁膜79にはコンタクトホール80が形成されており、ドレイン領域74は、コンタクトホール78b,80を介して、層間絶縁膜79上に形成された画素電極36に接続されている。
なお、層間絶縁膜79上には、各画素の開口領域の一部において、反射膜81が形成されている。画素電極36は層間絶縁膜79及び反射膜81上に形成されるようになっている。
一方、下地絶縁膜71上には、受光素子配置領域16,17において、PIN型の受光素子29,30が形成されている。受光素子29,30は、有効表示領域14内のTFTと同一の製造工程によって形成されている。
即ち、受光素子29は、半導体層73と同一層で形成された半導体層に、P型不純物を導入したP型領域51、N型不純物を導入したN型領域53、及び、真性半導体又は微量に不純物を導入したI型領域52を有している。同様に、受光素子30は、半導体層73と同一層で形成された半導体層に、P型不純物を導入したP型領域54、N型不純物を導入したN型領域56、及び、真性半導体又は微量に不純物を導入したI型領域55を有している。
これらの領域51〜56上には、酸化膜75が形成されている。受光素子29上の酸化膜75上には、遮光膜58が形成されている。遮光膜58はTFTのゲート電極76と同一工程で形成されており、下層がモリブデン、上層がアルミニウムの2層構造である。
層間絶縁膜77には、P型領域51、N型領域53、P型領域54及びN型領域56上においてコンタクトホール78c〜78f(図4のコンタクトホール60)が開孔されている。層間絶縁膜77上にはデータ線34と同層で、配線41〜44が形成されており、各領域51,53,54,56は夫々コンタクトホール78c〜78fを介して配線41〜44に接続される。配線41〜44は、例えば、チタン、アルミニウム、チタンが積層された3層構造を有する。なお、配線42,43は一体的に形成されており、電気的に接続された例を示している。
層間絶縁膜77上の配線層及び層間絶縁膜77上には、層間絶縁膜79が形成されている。本実施の形態においては、層間絶縁膜79上には、受光素子29の形成領域に対応して遮光膜82が形成されている。遮光膜82は、有効表示領域14に形成された反射層81と同一工程で形成されており、例えば、アルミニウム材料が用いられている。
画素電極36、遮光膜82及び層間絶縁膜79上には、液晶25に接して、配向膜84が形成されている。配向膜84は所定の方向にラビング処理されている。
一方、対向基板24には、有効表示領域14を区画すると共に、開口領域19(図1参照)を区画する遮光膜28が形成されている。遮光膜28上及び対向基板24上には、配向膜85が形成されている。配向膜85は所定の方向にラビング処理されている。
このような構成によれば、対向基板24の観察面側から入射した光は、開口領域19を介して素子基板23側に進行する。受光素子30は領域54〜56に生じた空乏層を介して光発生電荷に応じた検出電流が流れる。この検出電流が、領域54,56に接続された配線43,44を介して外部に出力される。こうして、外光の照度を検出することができる。
なお、受光素子29は、遮光膜28,82,58によって外光の入射が阻止されており、暗電流の検出が可能である。また、受光素子29は、照明装置22からのバックライト光の照度検出も可能である。
これらの受光素子29,30の検出結果を用いることで、例えば、外光の明るさに応じて照明装置22の明るさ制御が可能である。例えば、外光が明るいことが検出された場合には、外光の明るさに応じて照明装置22の明るさを明るくする。これにより、表示の視認性を向上させることも可能である。
なお、本実施の形態においては、遮光膜28,82,58を設けたが、これらの遮光膜のうちの少なくとも1層の遮光膜を有していれば、外光の入射は阻止可能である。本実施の形態では、3層の遮光膜を設けたことから、外光の直接光だけでなく、パネル内部での反射光が受光素子29に入射することも防止することができ、遮光性能に優れている。
また、上述したように、受光素子配置領域16,17の長さが十分に長いことから、全受光素子29,30の幅Wの和は十分に大きく、配線41〜44からは十分なレベルの光検出電流を得ることができる。即ち、受光素子29,30は、光センサとして、十分な光感度を有する。
なお、各受光素子29,30は、幅Wを比較的小さくして、比較的多くの数の受光素子を有効表示領域14の長辺に沿って配列した。全受光素子29,30の幅Wの和によって感度が決まるので、幅Wの和が十分に大きければ、電気的には、各受光素子29,30を比較的広幅に少ない個数で構成してもよく、受光素子配置領域16,17の長辺の全長に亘る幅Wの各1つずつの受光素子で構成してもよい。
なお、受光素子29,30の幅を比較的小さくしていることから、受光素子29,30に対する応力を低減することができ、強度を向上させることができる。
図4及び図6は2つの受光素子29,30を離間させて配置した例を説明したが、受光素子29,30同士の一部を共通化した受光素子89,90を採用することもできる。図7及び図8はこの場合の構成を図4及び図6に対応した図面で示すものである。図7は受光素子部分を構成する各層のパターンを示す平面図であり、図8は図6に対応した模式的断面図である。図7及び図8において夫々図4及び図6と同一の構成要素には同一符号を付して説明を省略する。
図8に示すように、受光素子89,90は、1つの半導体層内に不純物を注入することで形成されている。1つの半導体層中に、P型領域51、I型領域52、N型領域91、P型領域92、I型領域55、N型領域56が形成されている。図7及び図8に示すように、P型領域51、I型領域52、N型領域91によって受光素子89が構成され、P型領域92、I型領域55、N型領域56によって受光素子90が構成される。
本実施の形態においても、受光素子89,90を合わせた素子長Lを十分に短くすることができることから、受光素子89,90を配置する受光素子配置領域を十分に狭幅に設定することができ、有効表示領域14と表示パネル21の縁辺との間の比較的狭い領域への配置が可能である。
また、受光素子89,90を構成するP,N,I型領域の幅(受光素子の幅)は、図4と同様のWに設定される。また、全受光素子の幅Wの総和は、略受光素子配置領域の垂直方向の長さと同様である。即ち、受光素子89,90の幅Wの総和は、十分に大きく、全受光素子89,90の面積の総和は、十分に大きい。
受光素子89を構成する各ダイオードのアノードは、配線41に共通接続されており、カソードは配線95に共通接続されている。また、受光素子90を構成する各ダイオードのアノードは、配線95に共通接続されており、カソードは配線44に共通接続されている。
受光素子89は入射光の照度に基づく出力を出力する。配線41,95間からは全受光素子89の出力の和を取り出すことができる。また、受光素子90は入射光の照度に基づく出力を出力する。配線95,44間からは全受光素子90の出力の和を取り出すことができる。
また、例えば、配線44を電源端子に接続し、配線41を基準電位点に接続して、受光素子89,90を同時に動作させた場合には、配線95から受光素子90,89の出力の差を取り出すことも可能である。受光素子89及び90と各配線41,95,44との接続は、コンタクトホール78c,78f,78g(図7のコンタクトホール60)を介して行われる。
<製造プロセス>
次に、図9乃至図11を参照して本実施の形態に係る光センサの製造方法について説明する。
本実施の形態においては、受光素子配置領域16,17に形成する受光素子29,30又は89,90の各領域の結合方向、即ち、受光素子に流れる検出電流の向きと低温ポリシリコン技術において採用するレーザーアニールにおけるレーザーのビーム方向(又はスキャン方向)との関係を最適化することによって、受光素子の受光感度を向上させるものである。
先ず、レーザーのビーム方向(又はスキャン方向)とセンサーの形成方向との関係について説明する。
レーザーアニールを用いて結晶化する低温ポリシリコンTFT作製プロセスでは、レーザーのスキャン方向によりTFT特性に若干の差が生じることが考えられる。しかしながら現状では、レーザーのスキャン方向にそろえてTFTの向きを揃えている例はまれである。その必要性があるほどに、TFTの特性や信頼性が違わないからである。
しかしながら、微小な光量に反応するセンサーを低温ポリシリコンで作製しようとする場合には、レーザーのスキャン方向に対するばらつきが極めて重要になる。なぜならば、光によって発生するホールとエレクトロン、そしてそれらの再結合による消滅はシリコンのバンドギャップ中の準位を中心として行われるが、レーザーのスキャン方向により多結晶の粒界が発生する方向分布が異なって粒界中に多数存在するエレクトロンまたはホールの局在準位の位置に偏りができると、光によるエレクトロンとホールの生成・消滅割合の位置分布も異なり、受光感度の素子ばらつきの原因となるからである。
したがって低温ポリシリコンプロセスでセンサーを作製する場合には、とりわけレーザーの照射方向と素子形成方向をあらかじめ規定しておく必要がある。
そこで、本実施の形態においては、レーザーのビーム方向と受光素子の電流方向とを平行にする。言い換えると、レーザーのスキャン方向と受光素子の電流方向を90°にするようになっている。なお、レーザーのスキャン方向と受光素子の電流方向との間に傾斜をつければある程度の効果を期待することができ、例えば、45°等の角度に設定してもよい。これにより、センサーのばらつきを小さくして良好な感度を得られるようにしている。
以下、図8に示す受光素子89,90の形成方法について説明する。
素子基板23としては、ガラス基板等が用いられる。素子基板23には、シリコン窒化膜や酸化シリコン膜等のアンダーコート層をプラズマCVD(Chemical Vapor Deposition)法で形成してもよい。
次に、PE(Plasma Enhanced)−CVD法によるPE−CVD工程あるいはスパッタリング法によるスパッタリング工程等により、素子基板23上に非晶質半導体層であるアモルファスシリコン膜を所定の厚さで堆積させる。次に、アモルファスシリコン膜上に膜厚1μm程度のレジストを塗布して積層させる。
次いで、画素領域のTFTを構成する半導体層73及び受光素子89,90部分に対応したマスクを形成して、レジストを露光及び現像する。受光素子89,90及び薄膜トランジスタとなる領域以外の領域上のレジストは全てが露光される。
次に、ドライエッチング工程によって、アモルファスシリコン膜を島状にパターニングする。こうして、受光素子89,90となる部分及び薄膜トランジスタの半導体層73となる部分に、所定膜厚のアモルファスシリコン膜が形成される。
次に、アモルファスシリコン膜を結晶化させてポリシリコン膜にするために、エキシマレーザビームを照射してレーザーアニールする。
図9は本実施の形態におけるレーザー照射のスキャン方向を示す説明図である。
図9中の基板102は、図1の表示パネル21用のものであり、短手方向の一方側にYドライバ31が配置され、他方側に受光素子配置領域16,17が配置されており、受光素子配置領域16,17は、表示パネル21の長手方向に細長に設けられている。図9ではこれらの基板102が大板101上に複数形成された状態で、レーザーアニールを実施することを示している。
レーザー照射装置101は複数の基板102上に掛け渡された状態で配置されており、長尺のレーザービーム103をスキャンさせながら、1列の全ての基板102に同時に照射することができるようになっている。レーザー照射装置101のスキャン方向は、図9の矢印に示すように、基板102の長手方向である。
ところで、TFT作製ガラス基板とレーザー照射方向との関係を示す図9に示すように、レーザービーム103は細長いいわゆる長尺の形状をしており、その長手方向と垂直にレーザーをスキャンさせるのが一般的である。なお、レーザービームの発振はパルスまたは連続、スキャン速度やステップピッチなどはさまざまな値が考えられるが、その条件次第であるが、長尺ビームの長手方向と平行の方向にポリシリコン膜に多結晶の粒界が多数発生するのが一般的である。
場合によっては光学顕微鏡でも長尺ビームの長手方向と平行の方向にポリシリコン膜に筋があるのが観察できることもよくある。粒界が多数発生する向きとダイオード素子形成方向をどのようにすべきかは後に述べる。
次に、液晶パネルのTFT基板に着目してみる。図示したように、レーザービーム103のスキャン方向とYドライバの形成領域の長手方向が一致する場合には、受光素子の配置位置をYドライバと画素部に対して反対側に置くとスペース効率が極めて良くなる。その理由は、センサーは感度を高めるためにはできるだけ大きい方が良いので大きなスペースを確保できることと、光を検出する電流はピコアンペア(〜10-12A)程度なので、他の駆動信号のノイズを受けにくくするために他の駆動配線と干渉しない位置であり、端子部までセンサーからの電源や信号配線を容易に取り出せる位置でなければならないからである。
次に、受光素子の一例としてPIN型のダイオードを使った例で述べる。上述したように、遮光されたダイオードと外光が入射するダイオードとを直列に接続している。検出電流は、PIN型ダイオードのアノードとカソードとの間を流れることになるが、その方向は、レーザービーム103の長手方向と水平、言い換えるとレーザーのスキャン方向と垂直である。この場合、ポリシリコンの粒界はその電流の流れ方向と同じ方向に多く分布されることとなる。
図10は粒界の方向を説明するための説明図である。図10に示すように、レーザービーム103の長手方向と受光素子の検出電流の向きとが平行な場合には、ポリシリコンの粒界の筋は、図10(a)に示すように、検出電流の流れる向きに沿って発生する場合が多い。一方、レーザービーム103の長手方向と検出電流の流れる向きとが垂直な場合には、図10(b)に示すように、電流の流れる向きと垂直方向に発生する場合が多い。
図10(b)のように、ポリシリコンの粒界の筋が電流の流れる向きと垂直に生じた場合には、センサーの感度のばらつき原因となる。特に、センサーを高感度にしようとした場合には、スイッチング素子として用いられているポリシリコンのTFTと異なり、その影響を排除することがとりわけ重要である。
更に、図11を参照してこの問題を説明する。図11はPINダイオード1個分の電流の流れる向きに沿った断面でのバンド図である。
多結晶粒界が原因で準位が電場の特に強い(バンド曲がりが大きいところの)禁止帯中に発生すると、光照射によるエレクトロンとホールの発生中心となる。その場合、同じ光照射量であっても、レーザーで発生した粒界に起因する準位の位置次第で光検出電流量に違いが生じ、センサー個体差が生ずる。つまりセンサーの感度がばらつく原因になる。
一方で、電流の方向に沿って多く粒界が存在するような場合は、エレクトロンとホールの進む向きと同じ方向に粒界が分布する(図10(a)の状態)ので、たまたま電場の強い位置または弱い位置に粒界が存在するといったことがない。従って、センサーの個体差が小さくなる。
この理由から、本実施の形態においては、図9に示すように、表示パネル21の長手方向と同一方向に、レーザースキャンの方向を設定して、レーザービーム103の方向を受光素子89,90の検出電流の向きに一致させるようになっている。
レーザーアニール工程においては、アモルファスシリコン膜が結晶化してポリシリコン膜となるようにエキシマレーザの出力、すなわちパワーを調節する。次いで、所定の速度で、図9の矢印に示す方向にレーザー照射装置101をスキャンさせる。これにより、アモルファスシリコン膜は、結晶化されてポリシリコン膜となる。この結果、受光素子89の領域と、薄膜トランジスタの半導体層73の領域は、アモルファスシリコン膜がポリシリコン膜となる。
本実施の形態においては、このレーザーアニール工程において、図9に示すように、レーザービーム103の方向を受光素子に流れる検出電流の方向に一致させる。即ち、レーザースキャン方向を受光素子に流れる検出電流の向きに直交させる。これにより、粒界の筋を検出電流の方向に一致させることができる。こうして、各受光素子の個体差を低減することが可能である。
次に、このポリシリコン膜の全面に低濃度のボロン(B)をイオンドーピングして、各薄膜トランジスタにチャネル領域を形成する。次いで、ポリシリコン膜上に、PE−CVD法やECR(Electron-Cyclotron Resonance)−CVD法などによって、酸化膜75を形成する。
次に、受光素子89,90のN+領域91,56に相当するポリシリコン膜上及び薄膜トランジスタのソース領域及72びドレイン領域74に相当するポリシリコン膜上のみが開口したレジストを形成する。そして、このレジストをマスクとして高濃度のリン(P)イオンをドーピングすることで、受光素子89,90のN+領域91,56と、薄膜トランジスタのソース領域72及びドレイン領域74を形成する。
次に、レジストを除去した後、酸化膜75上にモリブデン−タンタル合金(Mo−Ta)やモリブデン−タングステン合金(Mo−W)、或いはモリブデン−アルミニウム等のメタル層を成膜する。そして、このメタル層をパターニングして、受光素子89,90のP+領域51,92となる部分を開口させる。この状態で、このパターニングしたメタル層をマスクとして、高濃度のボロン(B)をイオンドーピングして、受光素子89,90のP+領域51,92を形成する。
更に、このメタル層を再度パターニングして、受光素子89,90のI領域52,55に相当する部分を開口させる。この状態で、このパターニングしたメタル層をマスクとして、低濃度のリンをイオンドーピングして、受光素子89,90のI領域52,55を形成する。
このとき、各薄膜トランジスタにおいては、パターニングされたメタル層がゲート電極76となる。また、受光素子89,90ではパターニングされたメタル層が遮光膜58となる。こうして、PIN型の受光素子89,90が形成される。
このように本実施の形態においては、低温ポリシリコン技術におけるレーザーアニールにおいて、レーザーのビーム方向と受光素子の電流方向とを平行、即ち、レーザーのスキャン方向と受光素子の電流方向とを直交させている。これにより、粒界の筋を略受光素子の電流の向きに一致させることができ、受光素子のばらつきを小さくし、感度を向上させることができる。これにより、例えば外光の正確な検出を可能にすることができる。
<第2の実施の形態>
図12及び図13は本発明の第2の実施の形態に係り、図12は第2の実施の形態に係る電気光学装置の概要を示す平面図である。また、図13は受光素子部分を構成する各層のパターンを示す平面図である。
本実施の形態は画像を横向きに表示する(横長の)表示パネル130を採用した例である。表示パネル130は、図1のYドライバ31とXドライバ32とを入れ替えたパネルに相当する。即ち、図12の有効表示領域131、Xドライバ132、Yドライバ133、端子部134及び受光素子配置領域137は、夫々図1の有効表示領域14、Xドライバ32、Yドライバ31、端子部37及び受光素子配置領域16,17に相当する。
本実施の形態においては、Yドライバ133は、有効表示領域131の短辺の一方に沿って配置されており、受光素子配置領域137は、Yドライバ133が配置されていない有効表示領域131の他方の短辺に沿って設けられている。
図13は受光素子配置領域13の一部を示しており、図8の遮光された受光素子89に相当する受光素子141と遮光されていない受光素子90に相当する受光素子142を示している。受光素子配置領域137においても、夫々複数の受光素子141,142が配置される共に、一対の受光素子141,142は電気的に直列接続される。
この場合、受光素子配置領域137は、図1の受光素子配置領域16,17の向きを90度傾斜させたものであるので、図7に示す受光素子89,90を単純に90度傾斜させて構成することも考えられる。
しかし、本実施の形態においては、低温ポリシリコン技術におけるレーザーアニールに際して、レーザー照射装置101(図9参照)のスキャン方向が図12のYドライバ133側から受光素子配置領域137側に向かう方向であることを考慮して、受光素子141,142を、検出電流の流れる向きがレーザーのビーム方向に一致するようにしている。即ち、受光素子141,142は、P+領域、I領域、N+領域の接合方向を、有効表示領域131の短辺方向に一致させるように、配置されている。
各受光素子141のP+領域は、配線140によって共通接続される。また、各受光素子141のN+領域及び各受光素子142のP+領域は、配線139によって共通接続される。また、各受光素子142のN+領域は、配線138によって共通接続される。即ち、配線138乃至140は夫々図7の配線41,95,44に相当する。なお、配線138乃至140は、チタン、アルミニウム、チタンが積層された3層構造を有する。
他の構成及び作用は第1の実施の形態と同様である。
このように本実施の形態においても、低温ポリシリコン技術におけるレーザーアニールにおいて、レーザーのビーム方向と受光素子の電流方向とを平行、即ち、レーザーのスキャン方向と受光素子の電流方向とを直交させている。これにより、粒界の筋を略受光素子の電流の向きに一致させることができ、受光素子のばらつきを小さくし、感度を向上させることができる。
<第3の実施の形態>
図14は本発明の第3の実施の形態に係る電気光学装置において採用される受光素子部分を構成する各層のパターンを示す平面図である。
本実施の形態は第1及び第2の実施の形態における受光素子89,90,141,42に代えて、受光素子151,152を採用したものである。受光素子151,152は、P+領域、I領域、N+領域の接合方向を、有効表示領域14,131の長辺及び短辺方向に対して45度傾斜させるように、配置されている。
各受光素子151のP+領域は、配線155によって共通接続される。また、各受光素子151のN+領域及び各受光素子152のP+領域は、配線156によって共通接続される。また、各受光素子152のN+領域は、配線157によって共通接続される。即ち、配線155乃至157は夫々図7の配線41,95,44、図13の配線140乃至138に相当する。
本実施の形態においては、低温ポリシリコン技術におけるレーザーアニールに際して、レーザー照射装置101(図9参照)のスキャン方向が有効表示領域の長辺方向に一致している場合でも、受光素子151,152は、検出電流の流れる向きがレーザーのビーム方向に対して45度傾斜して配置される。これにより、レーザーアニールに際して生じる粒界の筋は、検出電流の流れる向きに対して45度程度傾斜した方向に生じる。この場合でも、粒界の筋が検出電流の流れる向きに対して直交する場合に比べて、受光素子151,152のばらつきを抑制することができる。
また、本実施の形態においては、受光素子配置領域を有効表示領域の長辺及び短辺に沿ってL字形に設ける場合等においても、長辺に沿った部分及び短辺に沿った部分における受光素子の形状配置を共通化することができる。即ち、この場合でも、レーザーアニールに際して生じる粒界の筋は、いずれの部分でも、検出電流の流れる向きに対して45度程度傾斜した方向となるという利点がある。
他の構成、作用及び効果は第2の実施の形態と同様である。
<第4の実施の形態>
図15は本発明の第4の実施の形態に係る電気光学装置としてEL(エレクトロルミネッセンス)パネルを採用した場合の断面構造を示す断面図である。
基板171上には低温ポリシリコン層173が形成される。基板171と基板172とは、有機EL層174を介在させて対向配置される。有機EL層174は、R,G,Bの各画素を構成する。基板172には遮光膜175が形成されている。
本実施の形態においては、有機EL層174のR,G,B画素のいずれかに、又は夫々に1つずつに対向して、基板173上に受光素子176が形成されている。受光素子176に対向する基板172には、遮光膜177が形成されている。これにより、受光素子176は、外光の入射が阻止され、暗電流の検出、又は、有機EL層174の各画素の発光強度を検出することができるようになっている。
また、基板171の端部には、受光素子178が形成されている。受光素子178は外光を検出することができるようになっている。
これらの受光素子176,178は、図1等に示すように、表示画面の非表示領域において、有効表示領域の長辺に沿った細長の領域に複数形成される。これにより、受光素子176の面積の和及び受光素子178の面積の和はいずれも十分に大きく、全受光素子176による感度及び全受光素子178による感度は、いずれも十分に高い。
本実施の形態においても、受光素子176,178は、検出電流の流れる向きが低温ポリシリコン技術におけるレーザーアニールのレーザーのビーム方向に一致するように配置される。これにより、レーザーアニールに際して生じる粒界の筋は、略検出電流の流れる向きに対して一致し、受光素子のばらつきを小さくすることができる。
このように本実施の形態は、有機EL層を有する自発光素子に適用可能である。
また、上述の電気光学装置を用いた電子機器も本発明に含まれる。図16は電子機器の例を示す斜視図であり、携帯電話の外観を示している。図16に示すように、電子機器として携帯電話200の表示部201に、上述した電気光学装置、例えば液晶表示装置が用いられる。
他にも、電子機器としては、例えば、光源と該光源から出射された光を変調するライトバルブと、該ライトバルブにより変調された光を投射するための光学系を備えた、投射型表示装置である。さらに、電子機器としては、他にも、テレビジョンや、ビューファインダ型・モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、ディジタルスチルカメラ、タッチパネルを備えた機器等などが挙げられる。そして、これらの各種の電子機器に対して、本発明に係る電気光学装置が適用可能なのは言うまでもない。
また、本発明の電気光学装置は、パッシブマトリクス型の液晶表示パネルだけでなく、アクティブマトリクス型の液晶パネル(例えば、TFT(薄膜トランジスタ)やTFD(薄膜ダイオード)をスイッチング素子として備えた液晶表示パネル)にも同様に適用することが可能である。また、液晶表示パネルだけでなく、エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置、プラズマディスプレイ装置、電気泳動ディスプレイ装置、電子放出を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display 等)、DLP(Digital Light Processing)(別名DMD:Digital Micromirror Device)等の各種の電気光学装置においても本発明を同様に適用することが可能である。
本発明の第1の実施の形態に係る電気光学装置の概要を示す平面図である。 図1の電気光学装置として液晶パネルを採用した場合において、液晶パネルをケースに収納した状態の断面構造の概略を説明するための説明図である。 図1の電気光学装置に採用される表示パネルの平面パターンを模式的に示す説明図である。 受光素子部分を構成する各層のパターンを示す平面図であり、 図4の等価回路図である。 図3のA−A’線の模式的断面図である。 受光素子部分を構成する各層のパターンを示す平面図であり、 図6に対応した模式的断面図である。 本実施の形態におけるレーザー照射のスキャン方向を示す説明図。 粒界の方向を説明するための説明図。 PINダイオード1個分の電流の流れる向きに沿った断面でのバンド図。 第2の実施の形態に係る電気光学装置の概要を示す平面図。 受光素子部分を構成する各層のパターンを示す平面図。 本発明の第3の実施の形態に係る電気光学装置において採用される受光素子部分を構成する各層のパターンを示す平面図。 本発明の第4の実施の形態に係る電気光学装置としてEL(エレクトロルミネッセンス)パネルを採用した場合の断面構造を示す断面図。 電子機器の例を示す斜視図。
符号の説明
14…有効表示領域、16,17…受光素子配置領域、19…開口領域、21…表示パネル、28…遮光膜、31…Yドライバ、32…Xドライバ。

Claims (8)

  1. 半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、
    前記受光素子に流れる電流の向きが前記レーザービームのスキャン方向に交差するように、前記受光素子を形成する工程を具備したことを特徴とする光センサの製造方法。
  2. 前記受光素子に流れる電流の向きと前記レーザービームのスキャン方向とは直交することを特徴とする請求項1に記載の光センサの製造方法。
  3. 半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、
    前記受光素子に流れる電流の向きが前記レーザービームの長手方向に略平行となるように、前記受光素子を形成する工程を具備したことを特徴とする光センサの製造方法。
  4. 前記受光素子に流れる電流の向きと前記レーザービームの長手方向とは、一致していることを特徴とする請求項3に記載の光センサの製造方法。
  5. 半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、
    有効表示領域の少なくとも一辺に沿って半導体層を形成する工程と、
    レーザービームをスキャンさせて前記半導体層をレーザーアニールする工程と、
    前記レーザービームのスキャン方向に交差する方向にP型領域とN型領域とが配置されるように、前記半導体層に不純物を導入する工程とを具備したことを特徴とする電気光学装置の製造方法。
  6. 半導体層にレーザービームをスキャンさせながら照射して前記半導体膜に結晶化を施して受光層を得る光センサの製造方法であって、
    有効表示領域の少なくとも一辺に沿って半導体層を形成する工程と、
    レーザービームをスキャンさせて前記半導体層をレーザーアニールする工程と、
    前記レーザービームの長手方向に略平行にP型領域とN型領域とが配置されるように、前記半導体層に不純物を導入する工程とを具備したことを特徴とする電気光学装置の製造方法。
  7. 有効表示領域を有する表示部と、
    前記有効表示領域の少なくとも一辺に沿って配置され、半導体層に流れる電流の方向に沿った方向に粒界の筋が形成された前記半導体層を有する受光素子とを具備したことを特徴とする電気光学装置。
  8. 請求項7に記載の電気光学装置を用いたことを特徴とする電子機器。
JP2005260292A 2005-09-08 2005-09-08 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器 Withdrawn JP2007072245A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260292A JP2007072245A (ja) 2005-09-08 2005-09-08 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260292A JP2007072245A (ja) 2005-09-08 2005-09-08 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2007072245A true JP2007072245A (ja) 2007-03-22

Family

ID=37933728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260292A Withdrawn JP2007072245A (ja) 2005-09-08 2005-09-08 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2007072245A (ja)

Similar Documents

Publication Publication Date Title
JP4007390B2 (ja) 電気光学装置及び電子機器
US9324276B2 (en) Liquid crystal display device and method for automatically controlling brightness
US20120153289A1 (en) Semiconductor device, active matrix substrate, and display device
US9348182B2 (en) Active matrix substrate and display device
JP4033217B2 (ja) 電気光学装置および電子機器
US7820531B2 (en) Method of manufacturing semiconductor device, method of manufacturing display apparatus, apparatus of manufacturing semiconductor device, and display apparatus
WO2017024708A1 (zh) 显示基板及其制作方法、显示器件
US20110175133A1 (en) Organic light emitting device and method of fabricating the same
US8964141B2 (en) Thin film transistor, method of manufacturing the same, and display device having thin film transistor
JP4656082B2 (ja) 電気光学装置及び電子機器
JP2010145875A (ja) 液晶表示装置及びその製造方法
US9599866B2 (en) Active matrix substrate and display device
JP2007072242A (ja) 電気光学装置及び電子機器
JP2007095878A (ja) 光センサ、電気光学装置及び電子機器
JP2007072245A (ja) 光センサの製造方法、電気光学装置の製造方法、電気光学装置及び電子機器
US8064323B2 (en) Electro-optical device and electronic apparatus
US10685990B2 (en) Display panel and display device
JP4623046B2 (ja) 電気光学装置及び電子機器
JP5154321B2 (ja) 電気光学装置の製造方法、電気光学装置及び電子機器
JP2008185868A (ja) 電気光学装置
JP4946083B2 (ja) 受光装置、電気光学装置及び電子機器
JP2007273934A (ja) 受光装置、電気光学装置及び電子機器
US20090278135A1 (en) Thin film transistor, method of manufacturing the same, and display device using the same
US11282866B2 (en) Wiring substrate and display device
KR101675841B1 (ko) 표시 장치의 포토 센서 및 이의 제조 방법

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202