JP2007072177A - Electrophotographic method and electrophotographic apparatus - Google Patents

Electrophotographic method and electrophotographic apparatus Download PDF

Info

Publication number
JP2007072177A
JP2007072177A JP2005259167A JP2005259167A JP2007072177A JP 2007072177 A JP2007072177 A JP 2007072177A JP 2005259167 A JP2005259167 A JP 2005259167A JP 2005259167 A JP2005259167 A JP 2005259167A JP 2007072177 A JP2007072177 A JP 2007072177A
Authority
JP
Japan
Prior art keywords
electrophotographic
fixing
photosensitive member
electrophotographic photosensitive
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005259167A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Kazuto Hosoi
一人 細井
Jun Ohira
純 大平
Yukihiro Abe
幸裕 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005259167A priority Critical patent/JP2007072177A/en
Publication of JP2007072177A publication Critical patent/JP2007072177A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Fixing For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic method and an electrophotographic apparatus by excellent environmental stabilitycan be obtained, image defects such as fusion of a developer or image flow can be prevented and an electric power consumption can be reduced,. <P>SOLUTION: The electrophotographic method using an electrophotographic photoreceptor successively laminated with a photoconductive layer composed of an amorphous film using silicon as a base and a surface layer consisting of an amorphous film containing at least one of silicon and carbon on a cylindrical substrate is characterized in that the atom ratio of the surface layer is expressed by SilxxCx and the value of x is set in a range of 0.05≤x≤1.0; the toner image formed on the surface of the electrophotographic photoreceptor is transferred to a transfer material and is simultaneously fixed thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光(広義の光であって、紫外線、可視光線、赤外線、X線、γ線等を意味する)のような電磁波に対して感受性のある電子写真感光体を用いた電子写真方法及び電子写真装置に関する。更に詳しくは、非晶質材料で構成される電子写真感光体上に形成したトナー像を転写材に転写と同時に定着させ画像形成を行う電子写真方法及び電子写真装置に関する。   The present invention relates to an electrophotographic method using an electrophotographic photosensitive member sensitive to electromagnetic waves such as light (light in a broad sense, meaning ultraviolet rays, visible rays, infrared rays, X-rays, γ rays, etc.). And an electrophotographic apparatus. More specifically, the present invention relates to an electrophotographic method and an electrophotographic apparatus for forming an image by fixing a toner image formed on an electrophotographic photosensitive member made of an amorphous material onto a transfer material simultaneously with transfer.

従来、電子写真法としては多数の方法が知られている。この方法は、一般には光導電性物質を利用し、種々の手段により電子写真感光体上に静電潜像を形成し、次いで該静電潜像をトナーで現像を行ってトナー像を形成し、必要に応じて紙等の転写材にトナー像を転写した後、熱・圧力等により転写材上にトナー画像を定着して複写物又はプリントを得るものである。   Conventionally, many methods are known as electrophotographic methods. This method generally uses a photoconductive substance, forms an electrostatic latent image on an electrophotographic photosensitive member by various means, and then develops the electrostatic latent image with toner to form a toner image. If necessary, the toner image is transferred to a transfer material such as paper, and then the toner image is fixed on the transfer material by heat or pressure to obtain a copy or print.

上記電子写真感光体の素材としては、セレン、硫化カドミニウム、酸化亜鉛、アモルファスシリコン(以下、a−Siと記す)等の無機材料、或は有機材料等、各種の材料が提案されている。これらのうちでもa−Siに代表される珪素原子を主成分として含む非晶質堆積膜、例えば水素及び/又はハロゲン(例えばフッ素、塩素等)を含むa−Si等の非晶質堆積膜は高性能、高耐久、無公害な感光体として提案され、実用化されている。   Various materials such as inorganic materials such as selenium, cadmium sulfide, zinc oxide, amorphous silicon (hereinafter referred to as a-Si), or organic materials have been proposed as materials for the electrophotographic photoreceptor. Among these, an amorphous deposited film containing silicon atoms represented by a-Si as a main component, for example, an amorphous deposited film such as a-Si containing hydrogen and / or halogen (for example, fluorine, chlorine, etc.) It has been proposed and put to practical use as a high-performance, high-durability, non-polluting photoconductor.

a−Siに代表されるa−Si系感光体は、半導体レーザー(600nm〜700nm)等の波長光に高い感度を示し、しかも、繰り返し使用による劣化も殆ど認められない等の優れた点を有するので、例えば高速複写機やLBP(レーザービームプリンタ)等の電子写真感光体として広く使用されている。   The a-Si photoconductor represented by a-Si has high sensitivity to wavelength light such as a semiconductor laser (600 nm to 700 nm), and has excellent points such as almost no deterioration due to repeated use. Therefore, it is widely used as an electrophotographic photosensitive member such as a high-speed copying machine or an LBP (laser beam printer).

a−Si系感光体の形成法としては、スパッタリング法、熱により原料ガスを分解する方法(熱CVD法)、光により原料ガスを分解する方法(光CVD)、プラズマにより原料ガスを分解する方法(プラズマCVD法)等、多数の方法が知られている。中でもプラズマCVD法、即ち原料ガスを直流又は高周波、(RF,VHF)又はマイクロ波を利用して発生させたグロー放電等によって分解し、ガラス、石英、耐熱性合成樹脂フィルム、ステンレス、アルミニュウム等の所望の基体上に堆積膜を形成する方法は、電子写真用a−Si系感光体の形成方法等に止まらず、他の用途の堆積膜形成方法を含め、現在実用化が非常に進んでおり、そのための装置も各種提案されている。   As a method for forming an a-Si photosensitive member, a sputtering method, a method of decomposing a source gas by heat (thermal CVD method), a method of decomposing a source gas by light (photo CVD), and a method of decomposing a source gas by plasma Many methods such as (plasma CVD method) are known. Above all, the plasma CVD method, that is, the raw material gas is decomposed by glow discharge generated using direct current or high frequency, (RF, VHF) or microwave, etc., such as glass, quartz, heat resistant synthetic resin film, stainless steel, aluminum, etc. The method for forming a deposited film on a desired substrate is not limited to a method for forming an a-Si photoconductor for electrophotography, but is now in practical use, including a method for forming a deposited film for other uses. Various devices for this purpose have also been proposed.

近年、デジタル化、カラー化へのシフトが進み、電子写真装置の環境安定性や高画質化への要求は以前に増して高まっている。加えて、エコロジーの観点から、消費電力低減への要求も急速に増しており、電子写真感光体の電気的特性や光導電特性の更なる向上とともに、オゾン量や消費電力の低減が可能な電子写真プロセスも提案されている。   In recent years, the shift to digitalization and colorization has progressed, and the demands for environmental stability and high image quality of electrophotographic apparatuses are increasing. In addition, from the ecological point of view, the demand for reducing power consumption is also increasing rapidly. As the electrical and photoconductive properties of electrophotographic photosensitive members are further improved, the amount of ozone and power consumption can be reduced. A photographic process has also been proposed.

具体的には、a−SiC表面層を設けた電子写真感光体に低抵抗トナーを現像し加熱又は圧力手段により軟化させながら記録媒体に転写と同時に予備定着行い、その後に本定着を行う方法が開示されている(例えば、特許文献1参照)。又、電子写真感光体に現像したトナーを熱又は圧力又はその他の物理的エネルギーにより記録媒体に転写と同時に定着する方法が開示されている(例えば、特許文献2参照)。
特開昭63−135981号公報 特開昭63−133175号公報
Specifically, there is a method in which a low-resistance toner is developed on an electrophotographic photosensitive member provided with an a-SiC surface layer, preliminarily fixed simultaneously with transfer to a recording medium while being softened by heating or pressure means, and then main fixing is performed. It is disclosed (for example, see Patent Document 1). Further, a method is disclosed in which toner developed on an electrophotographic photosensitive member is fixed simultaneously with transfer onto a recording medium by heat, pressure or other physical energy (see, for example, Patent Document 2).
JP-A 63-135981 JP-A-63-133175

a−Si系感光体を含め、従来の各種電子写真感光体の帯電及び除電手段としては、殆どの場合ワイヤー電極(金メッキを施した50〜100μmφのタングステン線等の金属線)とシールド板を主構成部材とするコロナ帯電器( コロトロン、スコロトロン) が利用されている。即ち、コロナ帯電器のワイヤー電極に高電圧(4〜8kV程度)を印加することにより発生するコロナ電流を電子写真感光体に作用させ、該電子写真感光体の帯電及び除電を行うものであり、該コロナ帯電器は均一な帯電及び除電に優れている。   As charging and discharging means for various conventional electrophotographic photosensitive members including a-Si type photosensitive members, in most cases, wire electrodes (metal wires such as 50-100 μmφ tungsten wires with gold plating) and shield plates are mainly used. A corona charger (corotron, scorotron) is used as a constituent member. That is, the corona current generated by applying a high voltage (about 4 to 8 kV) to the wire electrode of the corona charger is applied to the electrophotographic photosensitive member, and the electrophotographic photosensitive member is charged and discharged. The corona charger is excellent in uniform charging and discharging.

しかし、コロナ放電に伴い、かなり大量のオゾン(O3 )が発生する。該オゾンは、空気中の窒素を酸化して窒素酸化物(NOx)等を生成する。更に、該窒素酸化物は空気中の水分と反応して硝酸等を生じる。 However, a considerably large amount of ozone (O 3 ) is generated with corona discharge. The ozone oxidizes nitrogen in the air to generate nitrogen oxide (NOx) and the like. Further, the nitrogen oxide reacts with moisture in the air to generate nitric acid and the like.

窒素酸化物及び硝酸等のコロナ放電生成物は感光体表面や、周辺の機器に付着し、堆積する。コロナ放電生成物は吸湿性が強いため、感光体表面に堆積すると、コロナ放電生成物の吸湿による低抵抗化で、実質的に感光体の電荷保持能力が全面的、或は部分面的に低下して、画像流れ(感光体表面の電荷が面方向にリークして静電荷潜像パターンが崩れる、或は形成されない状態)と称される画像不良を生じる場合がある。   Corona discharge products such as nitrogen oxides and nitric acid adhere to and deposit on the photoreceptor surface and peripheral equipment. Since corona discharge products are highly hygroscopic, if the corona discharge products are deposited on the surface of the photoreceptor, the resistance of the corona discharge products is reduced due to moisture absorption, which substantially lowers the charge holding capacity of the photoreceptor. As a result, an image defect called image flow (state in which the charge on the surface of the photoconductor leaks in the surface direction and the electrostatic charge latent image pattern breaks or is not formed) may occur.

又、コロナ帯電器のシールド板内面に付着したコロナ放電生成物は電子写真装置の稼働中のみならず、夜間等の装置の休止中に揮発遊離し、該帯電器の放電開口部に対応した感光体表面に付着し吸湿することによって該感光体表面を低抵抗化させる。   Further, the corona discharge product adhering to the inner surface of the shield plate of the corona charger is volatilized and released not only during the operation of the electrophotographic apparatus but also during the rest of the apparatus at night or the like, and the photosensitive corresponding to the discharge opening of the charger. The surface of the photoreceptor is reduced in resistance by adhering to the body surface and absorbing moisture.

その結果、電子写真装置の再稼動時、最初に出力される1枚目、或はそれに続く数枚の出力画像には、帯電器開口部に対応する領域に画像流れが発生し易い。   As a result, when the electrophotographic apparatus is restarted, an image flow tends to occur in the area corresponding to the charger opening in the first output image or the subsequent several output images.

そこで、従来は、電子写真感光体を直接加熱するためのヒーターを設けたり、温風送風装置により温風を該電子写真感光体に送風して該電子写真感光体表面を加温(30〜50℃)して乾燥状態を維持することにより該電子写真感光体表面に付着しているコロナ放電生成物が吸湿して電子写真感光体表面を実質的に低抵抗化することを防止し、画像流れ現象を防止する処置が採られ、電子写真装置の消費電力を増加させる原因となっているため電子写真感光体の加熱手段が排除可能なプロセスが求められている。   Therefore, conventionally, a heater for directly heating the electrophotographic photosensitive member is provided, or warm air is blown to the electrophotographic photosensitive member by a hot air blowing device to heat the surface of the electrophotographic photosensitive member (30 to 50). ) And maintaining the dry state prevents the corona discharge product adhering to the surface of the electrophotographic photosensitive member from absorbing moisture and substantially reducing the resistance of the surface of the electrophotographic photosensitive member. Since a measure for preventing the phenomenon has been taken and this is a cause of increasing the power consumption of the electrophotographic apparatus, a process capable of eliminating the heating means of the electrophotographic photosensitive member is required.

更に、電子写真プロセスに用いられる定着方法の多くはトナーを熱により定着する熱定着方式が採用されており、この熱定着に用いられる熱源ヒーターも電子写真装置の消費電力に占める割合が高く、電子写真装置の消費電力を低減するために低温定着や熱以外の定着方式が求められており、各種定着方法が提案されている。   Furthermore, many of the fixing methods used in the electrophotographic process employ a heat fixing method in which toner is fixed by heat, and the heat source heater used for this heat fixing also accounts for a high proportion of the power consumption of the electrophotographic apparatus. In order to reduce the power consumption of a photographic apparatus, fixing methods other than low-temperature fixing and heat are required, and various fixing methods have been proposed.

例えば、電子写真感光体表面にトナー像を形成した後、弾性ゴム部材等のローラにより圧力及び/又は熱を加えることにより転写材に対し該トナー像を転写と同時に定着する電子写真プロセス等がある。   For example, there is an electrophotographic process in which a toner image is formed on the surface of an electrophotographic photosensitive member and then the toner image is fixed to a transfer material simultaneously with transfer by applying pressure and / or heat with a roller such as an elastic rubber member. .

この転写と同時に定着を行う電子写真プロセスは、他の電子写真感光体に比べ硬度が硬いa−Si系感光体との組み合わせが有効であるが、その反面トナーに用いられる樹脂等がa−Si系感光体表面に付着するフィルミング現象やトナーがa−Si系感光体表面に融着する等の課題や従来のコロナ帯電を用いた転写方式に比べ転写効率が劣り、画像濃度が低下する等の課題を解決する必要があった。   The electrophotographic process for fixing at the same time as the transfer is effective in combination with an a-Si type photoconductor having a hardness higher than that of other electrophotographic photoconductors, but the resin used for the toner is a-Si. Problems such as filming phenomenon adhering to the surface of the photoconductor and toner fusing to the surface of the a-Si photoconductor, transfer efficiency is inferior to the transfer method using the conventional corona charging, and the image density is lowered. It was necessary to solve the problem.

従って、電子写真方法乃至電子写真装置を設計する際に、上記のような課題が解決されるように、電子写真感光体の電子写真物性、機械的耐久性等の総合的な観点からの改良を図るとともに、帯電方法、定着方法、電子写真装置の一段の改良を図ることが必要とされている。   Therefore, when designing an electrophotographic method or an electrophotographic apparatus, improvements from the comprehensive viewpoints such as electrophotographic physical properties and mechanical durability of the electrophotographic photosensitive member are made so as to solve the above-described problems. At the same time, it is necessary to further improve the charging method, the fixing method, and the electrophotographic apparatus.

本発明は上記事情に鑑みてなされたもので、その目的とする処は、環境安定性に優れ、現像剤のフィルミングや融着、或は画像流れ等の画像不良を防止するとともに、消費電力の低減が可能な電子写真方法及び電子写真装置を提供することにある。   The present invention has been made in view of the above circumstances, and its intended process is excellent in environmental stability, prevents image defects such as developer filming and fusion, or image flow, and power consumption. It is an object of the present invention to provide an electrophotographic method and an electrophotographic apparatus capable of reducing the above.

上記目的を達成するため、本発明は、円筒状基体上に珪素を母体とする非晶質膜から成る光導電層及び珪素、炭素の少なくとも1つを含む非晶質膜から成る表面層を順次積層した子写真感光体を用いた電子写真方法において、該表面層の原子比率がSi1-XX で表されxの値を0.95≦x≦1.0の範囲とし、該電子写真感光体の表面に形成したトナー像を転写材に転写同時定着することを特徴とする。 In order to achieve the above object, the present invention sequentially forms a photoconductive layer made of an amorphous film based on silicon and a surface layer made of an amorphous film containing at least one of silicon and carbon on a cylindrical substrate. In the electrophotographic method using the laminated child photographic photoconductor, the atomic ratio of the surface layer is represented by Si 1-X C X and the value of x is in the range of 0.95 ≦ x ≦ 1.0. The toner image formed on the surface of the photoreceptor is transferred and fixed onto a transfer material at the same time.

本発明者らは上記目的を達成すべく鋭意検討を行った結果、a−Si系感光を用いた電子写真プロセス条件において、消費電力の低減が可能な電子写真方法及び電子写真装置を完成させるために、電子写真プロセスとa−Si系感光体表面層の改善の両面から検討を行った。   As a result of intensive studies to achieve the above object, the present inventors have completed an electrophotographic method and an electrophotographic apparatus capable of reducing power consumption under electrophotographic process conditions using a-Si photosensitivity. In addition, the electrophotographic process and the improvement of the surface layer of the a-Si photoreceptor were examined.

その結果、a−Si系感光体の表面層として炭素原子を母体とした非晶質膜に珪素原子を微量に含有した非晶質膜或は珪素原子を含まない非晶質炭素膜をa−Si系感光体の表面層に用いることによって、a−Si系感光体のトナーに対する離型性を向上させることが可能であることを見出した。   As a result, an amorphous film containing a small amount of silicon atoms or an amorphous carbon film containing no silicon atoms in an amorphous film containing carbon atoms as a base layer as the surface layer of the a-Si-based photoconductor is a- It has been found that the releasability of the a-Si photoconductor with respect to the toner can be improved by using it for the surface layer of the Si photoconductor.

表面層の炭素含有比率としては原子比率がSi1-XXで表されxの値を0.95≦x≦1.0の範囲である非晶質炭素化珪素膜及び非晶質炭素膜が極めてトナーに対する離型性が向上することを見出した。 As the carbon content ratio of the surface layer, an amorphous silicon carbide film and an amorphous carbon film in which the atomic ratio is represented by Si 1-X C X and the value of x is in the range of 0.95 ≦ x ≦ 1.0 Has found that the releasability with respect to the toner is extremely improved.

又、a−Si系感光体の表面層を上記の範囲とし、表面層の離型性が向上する効果としてa−Si系感光体表面にトナー像を形成し該トナー像を転写材に転写と同時に定着する電子写真プロセスにおいても、a−Si系感光体表面にトナーが強固に付着し成長するトナー融着或はトナーに含まれる樹脂成分がa−Si系感光体表面にコーティングされるフィルミング現象を防止することが可能である。   Further, the surface layer of the a-Si photoconductor is set in the above range, and as an effect of improving the releasability of the surface layer, a toner image is formed on the surface of the a-Si photoconductor, and the toner image is transferred to a transfer material. In the electrophotographic process where fixing is performed at the same time, the toner is firmly adhered to the surface of the a-Si photoconductor, and the toner fusion or the resin component contained in the toner is coated on the surface of the a-Si photoconductor. It is possible to prevent the phenomenon.

上記定着方法としては、弾性ゴムローラ部材等を用いa−Si系感光体表面に圧接する圧力定着又は該弾性ゴムローラ部材を加熱し熱定着させる方法と共に該圧力定着及び該熱定着を予備定着とし、転写材に予備定着した後に本定着を行うための定着器を設けた2段定着等が有効であるが、消費電力の観点から何れの定着工程に関しても圧力定着が望ましい。   As the fixing method, pressure fixing that uses an elastic rubber roller member or the like to press-contact the surface of the a-Si photosensitive member or a method of heating and fixing the elastic rubber roller member together with the pressure fixing and the heat fixing as a preliminary fixing, transfer Although two-stage fixing provided with a fixing device for performing main fixing after preliminary fixing to the material is effective, pressure fixing is desirable for any fixing process from the viewpoint of power consumption.

次いで本発明者らは、電子写真装置の消費電力を低減する手段としてa−Si系感光体の加熱手段を用いない電子写真プロセスを実現する目的でオゾン発生量の少ない帯電方法を検討した結果、接触帯電が有効であることが判明した。   Next, as a result of studying a charging method with less ozone generation for the purpose of realizing an electrophotographic process that does not use a heating means of an a-Si photosensitive member as a means for reducing power consumption of an electrophotographic apparatus, It has been found that contact charging is effective.

接触帯電とは、接触帯電部材から被帯電体に直接的に電荷が注入されることで被帯電体表面が帯電する系である。直接帯電、或は注入帯電、或は電荷注入帯電とも称される。より詳しくは、中抵抗の接触帯電部材が被帯電体表面に接触して、放電現象を介さずに、つまり放電を基本的に用いないで被帯電体表面に直接電荷注入を行うものである。この帯電系はイオンの発生を伴わないためオゾン、NOx等の発生を抑え、画像流れを防止できるため、電子写真感光体を直接加温する手段を設ける必要がなくなる。   Contact charging is a system in which the surface of a charged body is charged by directly injecting charges from the contact charging member into the charged body. It is also called direct charging, injection charging, or charge injection charging. More specifically, a medium-resistance contact charging member comes into contact with the surface of the member to be charged, and charge is directly injected into the surface of the member to be charged without going through a discharge phenomenon, that is, basically using no discharge. Since this charging system does not involve generation of ions, generation of ozone, NOx, etc. can be suppressed and image flow can be prevented, so that it is not necessary to provide means for directly heating the electrophotographic photosensitive member.

本発明によれば、環境安定性に優れ、現像剤のフィルミングや融着、或は画像流れ等の画像不良を防止するとともに、消費電力の低減が可能な電子写真方法及び電子写真装置を提供することが可能となる。   According to the present invention, there are provided an electrophotographic method and an electrophotographic apparatus that are excellent in environmental stability, prevent image defects such as developer filming and fusion, or image flow and reduce power consumption. It becomes possible to do.

以下に本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の表面層を設けたa−Si系感光体を用いたデジタル複写機の画像形成プロセスを示す概略図であって、矢印X方向に回転する感光体101の周辺には、主帯電ローラ102、現像器104、定着ローラ105、搬送系106、クリーナー109、除電光源120等が配設されている。   FIG. 1 is a schematic view showing an image forming process of a digital copying machine using an a-Si type photosensitive member provided with a surface layer of the present invention. A charging roller 102, a developing device 104, a fixing roller 105, a transport system 106, a cleaner 109, a static elimination light source 120, and the like are disposed.

以下、更に具体的に画像形成プロセスを説明すると、感光体101は、電圧を印加した主帯電器102により一様に帯電され、これにレーザーユニット118から発せられた光によって静電潜像が形成される。   Hereinafter, the image forming process will be described more specifically. The photosensitive member 101 is uniformly charged by the main charger 102 to which a voltage is applied, and an electrostatic latent image is formed on the photosensitive member 101 by light emitted from the laser unit 118. Is done.

レーザーユニット118の制御には、CCDを用いた画像処理部117からの信号が用いられる。即ち、ランプ110から発した光が原稿台ガラス111上に置かれた原稿112に反射し、ミラー113,114,115を経由し、レンズユニット116によって結像され、画像処理部117によって電気信号に変換された信号が導かれている。そして、この潜像に現像器104からトナーが供給されてトナー像が形成される。   For the control of the laser unit 118, a signal from the image processing unit 117 using a CCD is used. That is, the light emitted from the lamp 110 is reflected by the document 112 placed on the document table glass 111, passes through the mirrors 113, 114, and 115, is imaged by the lens unit 116, and is converted into an electric signal by the image processing unit 117. The converted signal is derived. The latent image is supplied with toner from the developing device 104 to form a toner image.

一方、転写紙供給系103を通って、レジストローラ121によって先端タイミングを調整され、感光体101方向に供給される転写材Pは、定着ローラ105と感光体101の間隙において背面から、定着ローラ105により圧力又は/及び熱が加えられることにより感光体表面のトナー像は転写材Pに転写と同時に定着され搬送系106により装置外に搬出される。   On the other hand, the transfer material P, which is adjusted in the leading edge timing by the registration roller 121 through the transfer paper supply system 103 and is supplied in the direction of the photoconductor 101, is fed from the back to the fixing roller 105 in the gap between the fixing roller 105 and the photoconductor 101. By applying pressure or / and heat, the toner image on the surface of the photoreceptor is fixed to the transfer material P at the same time as being transferred, and is carried out of the apparatus by the transport system 106.

感光体101上に残留するトナーは、クリーナー109のクリーニングローラ107及びクリーニングブレード108によって回収され、残留する静電潜像を除電光源120によって消去する。   The toner remaining on the photoreceptor 101 is collected by the cleaning roller 107 and the cleaning blade 108 of the cleaner 109, and the remaining electrostatic latent image is erased by the static elimination light source 120.

図2は図1に示したデジタル複写機プロセスに加え定着器222を設け、定着工程を2段階で行う画像形成プロセスを示す概略図である。   FIG. 2 is a schematic view showing an image forming process in which a fixing unit 222 is provided in addition to the digital copying machine process shown in FIG.

図1と同様にトナー像を形成した感光体201方向に供給される転写材Pは、定着ローラ205と感光体201の間隙において背面から定着ローラ205により圧力又は/及び熱が加えられる。感光体表面のトナー像は、転写材Pに転写と同時に予備定着され、搬送系206を通って定着器222に至り、加熱又は圧力手段によりトナー像が定着されて装置外に搬出される。   As in FIG. 1, the transfer material P supplied in the direction of the photoconductor 201 on which the toner image is formed is subjected to pressure or / and heat from the back by the fixing roller 205 in the gap between the fixing roller 205 and the photoconductor 201. The toner image on the surface of the photoreceptor is preliminarily fixed on the transfer material P at the same time as the transfer, reaches the fixing device 222 through the transport system 206, is fixed by the heating or pressure means, and is carried out of the apparatus.

定着ローラ105,205の表面材料は、シリコンゴム、ウレタンゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム等の弾性体であるつことが望ましく、形態としては、空隙が緻密な発泡状のスポンジローラであっても良い。   The surface material of the fixing rollers 105 and 205 is preferably an elastic body such as silicon rubber, urethane rubber, butadiene rubber, isoprene rubber, nitrile rubber, and the form is a foamed sponge roller with a fine gap. May be.

又、定着ローラ105,205の中空部にヒーター等の熱源を設け、圧力定着と同時に熱定着を併用することで圧接状態を、低圧にすると共に熱源の投入電力を低減することができる。   Further, by providing a heat source such as a heater in the hollow portion of the fixing rollers 105 and 205 and using the heat fixing together with the pressure fixing, the pressure contact state can be lowered and the input power of the heat source can be reduced.

又、定着ローラ105,205は、感光体101,201表面に圧接する状態で感光体101,201の回転方向に順じて回転し転写材Pを搬送系106,206へ搬送するが、必要に応じて定着時以外は圧接状態から解除した状態に設定しても良い。   Further, the fixing rollers 105 and 205 rotate in the rotation direction of the photoconductors 101 and 201 while being pressed against the surfaces of the photoconductors 101 and 201 to convey the transfer material P to the conveyance systems 106 and 206. Accordingly, it may be set in a state of being released from the pressure contact state except during fixing.

更に必要に応じて図2に示すように定着ローラ205の他に定着器222のような第2の定着手段を設けることも効果的である。   If necessary, it is also effective to provide a second fixing unit such as a fixing unit 222 in addition to the fixing roller 205 as shown in FIG.

又、加熱定着を併用する場合の定着温度に関しては、使用するトナーの種類によって異なるが、一般的には100℃〜250℃特に150℃〜200℃が好適である。   Further, the fixing temperature when heat fixing is used in combination varies depending on the type of toner to be used, but generally 100 ° C. to 250 ° C., particularly 150 ° C. to 200 ° C. is preferable.

図3はプラズマCVD法による電子写真感光体の製造装置の一例を模式的に示した図である。   FIG. 3 is a diagram schematically showing an example of an apparatus for producing an electrophotographic photosensitive member by a plasma CVD method.

この装置は大別すると、堆積装置3100、原料ガスの供給装置3200、反応容器3110内を減圧する為の排気装置(図示せず)から構成されている。堆積装置3100中の反応容器3110内にはアースに接続された円筒状基体3112、円筒状基体の加熱用ヒーター3113、原料ガス導入管3114が設置され、更に高周波マッチングボックス3115を介して高周波電源3120が接続されている。   This apparatus is roughly divided into a deposition apparatus 3100, a source gas supply apparatus 3200, and an exhaust apparatus (not shown) for depressurizing the inside of the reaction vessel 3110. A cylindrical substrate 3112 connected to ground, a heater 3113 for heating the cylindrical substrate, and a raw material gas introduction pipe 3114 are installed in the reaction vessel 3110 in the deposition apparatus 3100, and a high-frequency power source 3120 is connected via a high-frequency matching box 3115. Is connected.

原料ガス供給装置3200は、SiH4 、H2 、CH4 、NO、B26 、CF4 等の原料ガスボンベ3221〜3226とバルブ3231〜3236、3241〜3246、3251〜3256及びマスフローコントローラ3211〜3216から構成され、各構成ガスのボンベは、補助バルブ3210を介して反応容器3110内のガス導入管3114に接続されている。 The source gas supply device 3200 includes source gas cylinders 3221 to 3226 such as SiH 4 , H 2 , CH 4 , NO, B 2 H 6 , and CF 4 , valves 3231 to 2236, 3241 to 3246, 3251 to 3256, and a mass flow controller 3211. The gas cylinder of each constituent gas is connected to a gas introduction pipe 3114 in the reaction vessel 3110 via an auxiliary valve 3210.

円筒状基体3112は、導電性受け台3123の上に設置されることによってアースに接続される。   The cylindrical base 3112 is connected to the ground by being installed on the conductive cradle 3123.

図4はa−Si感光体製造装置の一例を示した概略図である。   FIG. 4 is a schematic view showing an example of an a-Si photoreceptor manufacturing apparatus.

図4の装置は円筒形の反応容器402の底面に排気口が設けられ、排気口は排気管407に接続され該排気管407の他端は不図示の排気装置に接続されている。反応容器402の中心部に、堆積膜の形成される1本の円筒状基体401が基体支持体406に載置された状態で配置されている。   In the apparatus of FIG. 4, an exhaust port is provided on the bottom surface of a cylindrical reaction vessel 402, the exhaust port is connected to an exhaust pipe 407, and the other end of the exhaust pipe 407 is connected to an exhaust apparatus (not shown). At the center of the reaction vessel 402, one cylindrical substrate 401 on which a deposited film is formed is disposed in a state of being placed on a substrate support 406.

異なる周波数の高周波電源408,415から高周波電力をマッチングボックス409,416を介した後、高周波電極404より反応容器402内に高周波電力を供給する構成となっている。   After the high frequency power is supplied from the high frequency power sources 408 and 415 having different frequencies through the matching boxes 409 and 416, the high frequency power is supplied into the reaction vessel 402 from the high frequency electrode 404.

図5は本発明により作製されるa−Si感光体の層構成を説明するための模式的構成図である。   FIG. 5 is a schematic configuration diagram for explaining a layer configuration of an a-Si photosensitive member manufactured according to the present invention.

図5(a)は基体501の上に電荷注入阻止層502、光導電層503、表面層504が順に積層されたa−Si感光体である。光導電層503は、少なくとも水素を含むa−Si感光体から成り、表面層504は水素原子を含み少なくとも珪素原子と炭素原子の何れかを含む非晶質材料で構成され、電子写真装置における顕像保持能力を有する。   FIG. 5A shows an a-Si photosensitive member in which a charge injection blocking layer 502, a photoconductive layer 503, and a surface layer 504 are laminated on a base 501 in this order. The photoconductive layer 503 is made of an a-Si photoreceptor containing at least hydrogen, and the surface layer 504 is made of an amorphous material containing hydrogen atoms and containing at least silicon atoms or carbon atoms. Has image holding ability.

図5(b)は図5(a)の層構成に加えて光導電層502と表面層504の間にバッファ層505を設けた場合の層構成を示し、バッファ層505と表面層504は組成変化により行う場合には、その組成変化が連続的であっても良い。   FIG. 5B shows a layer structure in the case where a buffer layer 505 is provided between the photoconductive layer 502 and the surface layer 504 in addition to the layer structure of FIG. 5A. The buffer layer 505 and the surface layer 504 are composed of the composition. When performing by change, the composition change may be continuous.

バッファ層505は、非晶質材料であれば特に制限はないが、表面層504を連続的に形成できるように表面層504と同じ組成であることが好ましい。   The buffer layer 505 is not particularly limited as long as it is an amorphous material, but preferably has the same composition as the surface layer 504 so that the surface layer 504 can be continuously formed.

表面層504は、電荷阻止能を有し、更に耐湿性、連続繰り返し使用特性、電気的耐圧性、使用環境特性、耐久性において本発明の目的を達成するために設けられる。
本発明の表面層は、原料ガスとしては常温常圧でガス状の炭化水素を用い、プラズマCVD法、スパッタリング法、イオンプレーティング法等によって作製可能であるが、プラズマCVD法を用いて作製した膜は透明度、硬度共に高く、電子写真感光体の表面層として用いるには好ましい。
The surface layer 504 has a charge blocking ability, and is provided to achieve the object of the present invention in terms of moisture resistance, continuous repeated use characteristics, electrical pressure resistance, use environment characteristics, and durability.
The surface layer of the present invention can be produced by using a gaseous hydrocarbon at normal temperature and pressure as a source gas, and can be produced by a plasma CVD method, a sputtering method, an ion plating method or the like, but is produced by using a plasma CVD method. The film has high transparency and hardness, and is preferable for use as a surface layer of an electrophotographic photoreceptor.

又、本発明の表面層を作製する際のプラズマCVD法に用いる放電周波数としては如何なる周波数も用いることができ、工業的にはRF周波数帯と呼ばれる1〜50MHz、特に13.56MHzの高周波が好適に用いることができる。又、特に50〜450MHzのVHFと呼ばれる周波数帯の高周波を用いた場合には、透明度、硬度共に更に高くできるので、表面層としての使用に際してはより好ましい。   In addition, any frequency can be used as the discharge frequency used in the plasma CVD method for producing the surface layer of the present invention, and industrially, a high frequency of 1 to 50 MHz, particularly 13.56 MHz, called an RF frequency band is preferable. Can be used. In particular, when a high frequency of a frequency band called VHF of 50 to 450 MHz is used, both transparency and hardness can be further increased, so that it is more preferable when used as a surface layer.

本発明における表面層504は、非晶質材料から成り、例えば、水素原子(H)及び/又はハロゲン原子(X)を含有し、更に炭素原子を含有する非晶質炭素化珪素(a−Si:H,X)や、炭素原子の含有が主となり、珪素原子を含有しない非晶質炭素(a−C:H,X)等の材料が好適に用いられる。更に、本発明の非晶質炭素化珪素層や非晶質炭素層は、原子比率がSi1-XXで表されxの値を0.95≦x≦1.0の範囲であれば各々単層で表面層を構成しても構わないし、積層で構成しても構わない。 The surface layer 504 in the present invention is made of an amorphous material and contains, for example, an amorphous carbonized silicon (a-Si) containing hydrogen atoms (H) and / or halogen atoms (X) and further containing carbon atoms. : H, X) and materials such as amorphous carbon (a-C: H, X) which mainly contain carbon atoms and do not contain silicon atoms are preferably used. Furthermore, the amorphous carbonized layer or amorphous carbon layer of the present invention has an atomic ratio expressed by Si 1-X C X and the value of x is in the range of 0.95 ≦ x ≦ 1.0. Each surface layer may be formed of a single layer, or may be formed of stacked layers.

ここで言う非晶質炭素とは、黒鉛(グラファイト)とダイヤモンドとの中間的な性質を持つアモルファス状の炭素を主に表しているが、微結晶や多結晶を部分的に含んでいても良い。   The amorphous carbon mentioned here mainly represents amorphous carbon having an intermediate property between graphite (graphite) and diamond, but may partially contain microcrystals or polycrystals. .

尚、表面層504が非晶質炭素化珪素膜で形成する場合の成膜ガスとしては、SiH4 、Si26 、Si38 、Si410等の水素化珪素及びCH4 、C26 、C38 、C410等のガス及びガス化し得る炭化水素が有効に使用されるものとして挙げられる。又、これらの炭素供給用の原料ガスを必要に応じてH2 、He、Ar、Ne等のガスにより希釈して使用しても良い。 As the film forming gas when the surface layer 504 is formed of an amorphous carbonized silicon film, silicon hydride such as SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10, and CH 4 , Gases such as C 2 H 6 , C 3 H 8 , C 4 H 10 , and hydrocarbons that can be gasified can be effectively used. Further, these raw material gases for supplying carbon may be diluted with a gas such as H 2 , He, Ar, Ne or the like as necessary.

又、表面層504が非晶質炭素膜で形成する場合の炭素供給用ガスとなり得る物質としては、CH4 、C26 、C38 、C410等のガス状態の、又はガス化し得る炭化水素が有効に使用されるものとして挙げられ、更に層作製時の取り扱い易さ、炭素供給効率の良さ等の点でCH4 、C26 が好ましいものとして挙げられる。又、これらの炭素供給用の原料ガスを必要に応じてH2 、He、Ar、Ne等のガスにより希釈して使用しても良い。 Further, as a material that can be a carbon supply gas when the surface layer 504 is formed of an amorphous carbon film, a gas state such as CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , or the like Hydrocarbons that can be gasified are mentioned as being effectively used, and CH 4 and C 2 H 6 are preferred because they are easy to handle at the time of layer preparation, good carbon supply efficiency, and the like. Further, these raw material gases for supplying carbon may be diluted with a gas such as H 2 , He, Ar, Ne or the like as necessary.

次に、図3及び図4の製造装置を用いた場合の電子写真感光体の製造を概略を図3の装置を例として以下に説明する。   Next, an outline of the production of the electrophotographic photosensitive member using the production apparatus of FIGS. 3 and 4 will be described below by taking the apparatus of FIG. 3 as an example.

以下、図3の装置を用いた光受容部材の形成方法の手順の一例について説明する。   Hereinafter, an example of a procedure of a method for forming a light receiving member using the apparatus of FIG. 3 will be described.

反応容器3110内に円筒状基体3112を設置し、不図示の排気装置(例えば、真空ポンプ)により反応容器3110内を排気する。続いて円筒状基体加熱用ヒーター3113により円筒状基体3112の温度を20℃〜500℃の所望の温度に制御する。次いで、原料ガスを反応容器3110内に流入させるにはガスボンベのバルブ3231〜3236、反応容器のリークバルブ3117が閉じられていることを確認し又、流入バルブ3241ー3246、流出バルブ3251〜3256、補助バルブ3210が開かれていることを確認し、メインバルブ3118を開いて反応容器3110及びガス供給配管3116を排気する。   A cylindrical substrate 3112 is installed in the reaction vessel 3110, and the inside of the reaction vessel 3110 is evacuated by an unillustrated exhaust device (for example, a vacuum pump). Subsequently, the temperature of the cylindrical substrate 3112 is controlled to a desired temperature of 20 ° C. to 500 ° C. by the heater 3113 for heating the cylindrical substrate. Next, in order to flow the raw material gas into the reaction vessel 3110, it is confirmed that the gas cylinder valves 3231 to 2236 and the reaction vessel leak valve 3117 are closed, and the inflow valves 3241 to 3246, the outflow valves 3251 to 3256, After confirming that the auxiliary valve 3210 is opened, the main valve 3118 is opened and the reaction vessel 3110 and the gas supply pipe 3116 are exhausted.

その後、真空系3119の読みが0.7Paになった時点で補助バルブ3260、流出バルブ3251〜3256を閉じる。その後、ガスボンベ3221〜3226より各ガスをバルブ3231〜3236を開いて導入し圧力調整器3261〜3266により各ガス圧を所定の圧力に調整する。次に、流入バルブ3241〜3246を徐々に開けて各ガスをマスフローコントローラ3211〜3216内に導入する。   Thereafter, when the reading of the vacuum system 3119 reaches 0.7 Pa, the auxiliary valve 3260 and the outflow valves 3251 to 3256 are closed. Thereafter, each gas is introduced from the gas cylinders 3221 to 3226 by opening the valves 3231 to 2236, and each gas pressure is adjusted to a predetermined pressure by the pressure regulators 3261 to 3266. Next, the inflow valves 3241 to 3246 are gradually opened to introduce each gas into the mass flow controllers 3211 to 3216.

以上の手順によって成膜準備を完了した後、円筒状基体3112上に、先ず電荷注入阻止層の形成を行う。   After completing the film formation preparation by the above procedure, a charge injection blocking layer is first formed on the cylindrical substrate 3112.

即ち、円筒状基体3112が所望の温度になったところで、各流出バルブ3251〜3256のうちの必要なものと補助バルブ3260とを徐々に開き、各ガスボンベ3221〜3226から所望の原料ガスをガス導入管3114を介して反応容器3110内に導入する。   That is, when the cylindrical substrate 3112 reaches a desired temperature, necessary ones of the outflow valves 3251 to 3256 and the auxiliary valve 3260 are gradually opened to introduce a desired source gas from the gas cylinders 3221 to 2226. It introduces into the reaction vessel 3110 through the tube 3114.

次に、各マスフローコントローラ3211〜3216によって、各原料ガスが所望の流量になる様に調整する。その際、反応容器3110内が133Pa以下の所望の圧力になるように、真空計3119を見ながらメインバルブ3118の開口を調整する。内圧が安定したところで、高周波電源3120を所望の電力に設定して、例えば周波数1MHz〜450MHzの高周波電力を高周波マッチングボックス3115を通じてカソード電極3111に供給し、高周波グロー放電を生起させる。この放電エネルギーによって反応容器3110内に導入させた各原料ガスが分解され、円筒状基体3112上に所望の珪素原子を主成分とする電荷注入阻止層が堆積される。   Next, it adjusts so that each source gas may become a desired flow volume by each mass flow controller 3211-216. At that time, the opening of the main valve 3118 is adjusted while looking at the vacuum gauge 3119 so that the inside of the reaction vessel 3110 has a desired pressure of 133 Pa or less. When the internal pressure is stabilized, the high-frequency power supply 3120 is set to a desired power, and high-frequency power with a frequency of 1 MHz to 450 MHz, for example, is supplied to the cathode electrode 3111 through the high-frequency matching box 3115 to cause high-frequency glow discharge. Each material gas introduced into the reaction vessel 3110 is decomposed by this discharge energy, and a charge injection blocking layer mainly containing desired silicon atoms is deposited on the cylindrical substrate 3112.

所望の膜厚の形成が行われた後、光導電層の形成に必要な原料ガスに切り換へ所望の膜厚の形成が行われた後に、高周波電力の供給を止め、各流出バルブ3251〜3256を閉じて反応容器3110への各原料ガスの流入を止め、光導電層の形成を終える。   After the formation of the desired film thickness, after the formation of the desired film thickness to switch to the source gas necessary for the formation of the photoconductive layer, the supply of the high frequency power is stopped, and each outflow valve 3251- 3256 is closed to stop the flow of each source gas into the reaction vessel 3110, and the formation of the photoconductive layer is completed.

上記光導電層上に表面層を形成する場合も基本的には上記の操作を繰り返せば良く、反応容器3110内の原料ガスを排気した後、表面層に必要な原料ガスに切り換へ反応容器3110内に流す。所定の内圧に調整した後に前層と同様の操作により所望の膜厚の表面層を形成すれば良い。   When the surface layer is formed on the photoconductive layer, basically, the above operation may be repeated. After the source gas in the reaction vessel 3110 is exhausted, the reaction vessel is switched to the source gas necessary for the surface layer. Flow in 3110. After adjusting to a predetermined internal pressure, a surface layer having a desired film thickness may be formed by the same operation as the previous layer.

本発明の表面層の層厚としては、通常0.01μm〜3μm、好適には0.05μm〜2μm、最適には0.1μm〜1μmが望ましい。膜厚が0.01μmよりも薄いと電子写真感光体としての機械的強度が損なわれる場合がある。又、表面層の膜厚が3μmを超えると残留電位の増加等、電子写真特性が損なわれる場合がある。   The layer thickness of the surface layer of the present invention is usually 0.01 μm to 3 μm, preferably 0.05 μm to 2 μm, and most preferably 0.1 μm to 1 μm. If the film thickness is less than 0.01 μm, the mechanical strength as an electrophotographic photosensitive member may be impaired. On the other hand, when the film thickness of the surface layer exceeds 3 μm, electrophotographic characteristics such as an increase in residual potential may be impaired.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらによって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.

図3に示す構成の装置を用い、発振周波数が13.56MHzの高周波電力をマッチングボックス3115を介してカソード電極3111に供給し、直径80mm、長さ358mmの円筒状基体上に、表1に示す条件で図5(a)に示す層構成で電子写真感光体を作製した。本実施例では、表面層504は表2に示す条件で4本の電子写真感光体A〜Dを作製した。   Using the apparatus having the configuration shown in FIG. 3, high frequency power having an oscillation frequency of 13.56 MHz is supplied to the cathode electrode 3111 through the matching box 3115, and is shown in Table 1 on a cylindrical substrate having a diameter of 80 mm and a length of 358 mm. Under the conditions, an electrophotographic photosensitive member was produced with the layer structure shown in FIG. In this example, four electrophotographic photoreceptors A to D were prepared for the surface layer 504 under the conditions shown in Table 2.

作製した4本の電子写真感光体を図1に類似の電子写真装置(評価用に改造したキヤノン製iR5000)にセットしてスチレン系樹脂とポリエチレン樹脂を主成分とする圧力定着用トナーを用いて以下に示す方法によりフィルミング、融着及び画像流れの評価を行った。その際、プロセススピード265mm/sec、前露光量(波長660nmのLED)4lux・secの条件とした。   The prepared four electrophotographic photosensitive members are set in an electrophotographic apparatus similar to that shown in FIG. 1 (a Canon iR5000 modified for evaluation), and a pressure fixing toner mainly composed of a styrene resin and a polyethylene resin is used. Filming, fusing and image flow were evaluated by the following methods. At that time, the process speed was 265 mm / sec and the pre-exposure amount (LED having a wavelength of 660 nm) was 4 lux · sec.

又、定着ローラ105は、シリコンゴム材料を使用し線圧30kgf/cmの圧力による転写同時定着を行った。   For the fixing roller 105, a silicon rubber material was used for simultaneous transfer and fixing with a linear pressure of 30 kgf / cm.

作製した電子写真感光体A〜Dの評価結果を表6に示す。又、表面層の炭素含有比率(Xの値)を表3に示す。
(炭素含有比率)
作製した各電子写真感光体に対しRBS測定を用いて表面層の組成分析を行い、炭素含有比率C/(Si+C)の値とした。
(フィルミング評価方法)
フィルミングを促進するために回収したトナーにより電子写真感光体101表面を摺擦するクリーニングローラ107を設けないクリーニング条件でA4版の連続通紙10万枚耐久を行った電子写真感光体について、表面層の膜厚を反射分光計で測定した。次に、100μmのアルミナ粉を濡れた柔らかい布に付け、電子写真感光体表面を母線方向へ約10kgfの圧力で10往復擦った。このときの力加減は、予め新品の電子写真感光体表面を擦った際に表面層が削れないことを確認した程度の圧力が望ましい。
The evaluation results of the produced electrophotographic photoreceptors A to D are shown in Table 6. Further, Table 3 shows the carbon content ratio (value of X) of the surface layer.
(Carbon content ratio)
The composition of the surface layer was analyzed using RBS measurement for each of the produced electrophotographic photoreceptors, and the carbon content ratio C / (Si + C) was obtained.
(Filming evaluation method)
The surface of an electrophotographic photosensitive member that has sustained 100,000 sheets of A4 size paper under cleaning conditions without a cleaning roller 107 that rubs the surface of the electrophotographic photosensitive member 101 with toner collected to promote filming. The layer thickness was measured with a reflection spectrometer. Next, 100 μm of alumina powder was applied to a wet soft cloth, and the surface of the electrophotographic photosensitive member was rubbed 10 times in the direction of the bus at a pressure of about 10 kgf. The pressure at this time is preferably a pressure that is confirmed to prevent the surface layer from being scraped when the surface of a new electrophotographic photosensitive member is rubbed in advance.

その後、再度反射分光計で表面層の膜厚を測定し、その差分をフィルミング量と規定した。   Thereafter, the thickness of the surface layer was measured again with a reflection spectrometer, and the difference was defined as the filming amount.

フィルミング量の評価は、比較例1における感光体Eのフィルミング量を100とした相対比較である。従って、数値が小さいほどフィルミングの発生量が少なく、良好である事を示す。
(融着評価方法)
以下に、融着の促進評価方法を図1を用いて説明する。
The evaluation of the filming amount is a relative comparison with the filming amount of the photoconductor E in Comparative Example 1 being 100. Therefore, the smaller the numerical value, the smaller the amount of filming and the better.
(Fusion evaluation method)
Hereinafter, a fusion promotion evaluation method will be described with reference to FIG.

図1に示した電子写真装置に電子写真感光体を搭載し室温(約25℃)相対湿度10%の環境条件でA4版の連続通紙耐久を10万枚行い、融着の評価を行った。但し、原稿は白地に1mm幅の黒ラインが対角線状に1本プリントされた1ラインチャートを使用した。   The electrophotographic photosensitive member was mounted on the electrophotographic apparatus shown in FIG. 1, and the continuous sheet durability of A4 plate was 100,000 sheets under environmental conditions of room temperature (about 25 ° C.) and relative humidity of 10%, and the fusion was evaluated. . However, the original used was a one-line chart in which one black line having a width of 1 mm was printed diagonally on a white background.

耐久終了後、現像器104位置における暗部電位が400Vになるように主帯電ローラ102の帯電電流量を調整し、原稿台111にベタ白の原稿112を置き、明部電位が50Vになるようにハロゲンランプ110の点灯電圧を調整し、A3版のベタ白画像を作成した。この画像によって現像剤の融着により発生する黒ポチを観察する。但し、融着の観察領域はA3版ベタ白画像上における電子写真装置感光体一周分に相当する領域とする。   After the end of the endurance, the charging current amount of the main charging roller 102 is adjusted so that the dark portion potential at the position of the developing device 104 is 400V, and the solid white original 112 is placed on the document table 111 so that the bright portion potential is 50V. The lighting voltage of the halogen lamp 110 was adjusted to create an A3 size solid white image. With this image, black spots generated by the fusion of the developer are observed. However, the observation area for fusion is an area corresponding to one rotation of the electrophotographic photosensitive member on the A3 size solid white image.

融着の評価は、比較例1における感光体Eの融着発生数を100とした相対比較である。従って、数値が小さいほど融着の発生個数が少なく、良好であることを示す。
(画像流れ評価方法)
以下に、画像流れの評価方法を図1を用いて説明する。
The evaluation of fusion is a relative comparison with the number of occurrences of fusion of the photoconductor E in Comparative Example 1 as 100. Therefore, the smaller the numerical value, the smaller the number of fusion occurrences, and the better.
(Image flow evaluation method)
Hereinafter, an image flow evaluation method will be described with reference to FIG.

現像器104位置における電子写真感光体101の暗部電位が400Vになるように主帯電ローラ102の帯電電流を調整し、原稿台に5本/mmの横ラインを設けた原稿を置き、35℃相対湿度85%の画像流れに対して厳しい環境条件でA4版の転写紙Pを連続で10万枚の通紙を行った後、24時間休止状態とする。次に、24時間後に画像チェックを行い、5本/mmのラインが見えない領域の面積を評価する。但し、画像流れの観察領域はA3版画像上における電子写真装置感光体一周分に相当する領域とする。   The charging current of the main charging roller 102 is adjusted so that the dark part potential of the electrophotographic photosensitive member 101 at the position of the developing unit 104 is 400 V, and a document with 5 horizontal lines / mm is placed on the document table, and the relative temperature is 35 ° C. After passing 100,000 sheets of A4 size transfer paper P continuously under severe environmental conditions for an image flow of 85% humidity, the apparatus is put into a resting state for 24 hours. Next, after 24 hours, an image check is performed to evaluate the area of the area where the 5 lines / mm line cannot be seen. However, the image flow observation area is an area corresponding to one rotation of the electrophotographic apparatus photoconductor on the A3 size image.

画像流れの評価は、比較例1における感光体Eの画像流れ面積を100とした相対比較である。従って、数値が小さいほど画像流れの面積が少なく、良好であることを示す。   The evaluation of the image flow is a relative comparison with the image flow area of the photoconductor E in Comparative Example 1 as 100. Therefore, the smaller the numerical value, the smaller the area of the image flow and the better.

Figure 2007072177
Figure 2007072177

Figure 2007072177
Figure 2007072177

Figure 2007072177
<比較例1>
図3に示す構成の装置を用い、発振周波数が13.56MHzの高周波電力をマッチングボックス3115を介してカソード電極3111に供給し、直径80mm、長さ358mmの円筒状基体上に、表1に示す条件で図5(a)に示す層構成で電子写真感光体を作製した。本比較例では、表面層504は表4に示す条件で4本の電子写真感光体E〜Hを作製した。又、表面層の炭素含有比率(Xの値)を表5に示す。
Figure 2007072177
<Comparative Example 1>
Using the apparatus having the configuration shown in FIG. 3, high frequency power having an oscillation frequency of 13.56 MHz is supplied to the cathode electrode 3111 through the matching box 3115, and is shown in Table 1 on a cylindrical substrate having a diameter of 80 mm and a length of 358 mm. Under the conditions, an electrophotographic photosensitive member was produced with the layer structure shown in FIG. In this comparative example, the surface layer 504 produced four electrophotographic photoreceptors E to H under the conditions shown in Table 4. Further, Table 5 shows the carbon content ratio (value of X) of the surface layer.

作製した4本の電子写真感光体E〜Hを図1に類似の電子写真装置(評価用に改造したキヤノン製iR5000)にセットして実施例1と同様の方法によりフィルミング、融着及び画像流れの評価を行い、その結果を実施例1の評価結果と共に表6に示す。   The produced four electrophotographic photoreceptors E to H are set in an electrophotographic apparatus similar to that shown in FIG. 1 (Canon iR5000 modified for evaluation), and filming, fusing, and image are performed in the same manner as in Example 1. The flow was evaluated, and the results are shown in Table 6 together with the evaluation results of Example 1.

Figure 2007072177
Figure 2007072177

Figure 2007072177
Figure 2007072177

Figure 2007072177
以上の結果から、電子写真感光体の表面層における炭素含有比率(Xの値)を本発明の範囲を0.95≦x≦1.0とすることにより転写同時定着プロセスを採用した電子写真装置での使用においてもフィルミング、融着及び画像流れ等の発生を防止することが可能であることが判明した。
Figure 2007072177
From the above results, an electrophotographic apparatus employing the simultaneous transfer fixing process by setting the carbon content ratio (value of X) in the surface layer of the electrophotographic photosensitive member to the range of the present invention is 0.95 ≦ x ≦ 1.0. It has been found that it is possible to prevent the occurrence of filming, fusing, image flow, and the like even in the use of the image forming apparatus.

図3に示す構成の装置を用い、発振周波数が13.56MHzの高周波電力をマッチングボックス3115を介してカソード電極3111に供給し、直径80mm、長さ358mmの円筒状基体上に、表7に示す条件で図5(b)に示す層構成で電子写真感光体を作製した。本実施例では、表面層504は実施例1と同様の表2に示す条件で4本の電子写真感光体I〜Lを作成した。   Using the apparatus having the configuration shown in FIG. 3, high frequency power having an oscillation frequency of 13.56 MHz is supplied to the cathode electrode 3111 through the matching box 3115, and is shown in Table 7 on a cylindrical substrate having a diameter of 80 mm and a length of 358 mm. Under the conditions, an electrophotographic photosensitive member was produced with the layer structure shown in FIG. In this example, the surface layer 504 produced four electrophotographic photoreceptors I to L under the conditions shown in Table 2 as in Example 1.

作製した4本の電子写真感光体を図2に類似の電子写真装置(評価用に改造したキヤノン製iR5000)にセットしてスチレン系樹脂とポリエチレン樹脂を主成分とする圧力定着用トナーを用いて以下に示す方法によりフィルミング、融着及び画像流れの評価を行った。その際、プロセススピード265mm/sec、前露光量(波長660nmのLED)4lux・secの条件とした。又、定着ローラ205の中空にヒーターを設け80℃に加熱する構成とし、該定着ローラ205の表面はシリコンゴム材料を使用し、熱及び線圧20kgf/cmの圧力により転写同時定着を行い、更に定着器222より圧力定着を行う2段定着とした。   The prepared four electrophotographic photosensitive members are set in an electrophotographic apparatus similar to that shown in FIG. 2 (a Canon iR5000 modified for evaluation), and a pressure fixing toner mainly composed of a styrene resin and a polyethylene resin is used. Filming, fusing and image flow were evaluated by the following methods. At that time, the process speed was 265 mm / sec and the pre-exposure amount (LED having a wavelength of 660 nm) was 4 lux · sec. Further, a heater is provided in the hollow of the fixing roller 205 and heated to 80 ° C., the surface of the fixing roller 205 is made of a silicon rubber material, and the transfer and fixing are performed simultaneously by heat and a pressure of 20 kgf / cm. Two-stage fixing in which pressure fixing is performed by the fixing device 222 is adopted.

作製した電子写真感光体I〜Lの評価結果を比較例1の電子写真感光体Eの評価結果を100としたときの相対評価として表8に示す。尚、表面層の炭素含有比率(Xの値)は実施例1と同様に表3に示す値である。   The evaluation results of the produced electrophotographic photoreceptors I to L are shown in Table 8 as relative evaluation when the evaluation result of the electrophotographic photoreceptor E of Comparative Example 1 is 100. Incidentally, the carbon content ratio (value of X) of the surface layer is the value shown in Table 3 as in Example 1.

Figure 2007072177
Figure 2007072177

Figure 2007072177
以上の結果から、電子写真感光体の表面層における炭素含有比率(Xの値)を本発明の範囲を0.95≦x≦1.0とすることによりバッファ層を設けた層構成においても転写同時定着プロセスを採用した電子写真装置で使用した場合でもフィルミング、融着及び画像流れ等の発生を防止することが可能であることが判明した。
Figure 2007072177
Based on the above results, the carbon content ratio (value of X) in the surface layer of the electrophotographic photosensitive member is transferred even in a layer configuration in which a buffer layer is provided by setting the range of the present invention to 0.95 ≦ x ≦ 1.0 It has been found that filming, fusing, image flow, and the like can be prevented even when used in an electrophotographic apparatus employing a simultaneous fixing process.

図4に示す構成の装置を用い、高周波電源408から発振周波数が60MHzの高周波電力をマッチングボックス409を介し更に高周波電源415から発振周波数が105MHzの高周波電力をマッチングボックス416を介して電極404に重畳した状態で供給し、直径80mm、長さ358mmの円筒状基体上に、表9に示す条件で図5(a)に示す層構成で電子写真感光体を作製した。本実施例では、表面層504は表10に示す条件で4本の電子写真感光体M〜Pを作製した。   4, high-frequency power having an oscillation frequency of 60 MHz is superimposed on the electrode 404 from the high-frequency power source 408 via the matching box 409 and high-frequency power having an oscillation frequency of 105 MHz is superimposed on the electrode 404 via the matching box 416. In this state, an electrophotographic photosensitive member was produced on a cylindrical substrate having a diameter of 80 mm and a length of 358 mm under the conditions shown in Table 9 and having the layer structure shown in FIG. In this example, the surface layer 504 produced four electrophotographic photoreceptors M to P under the conditions shown in Table 10.

作製した4本の電子写真感光体を図2に類似の電子写真装置(評価用に改造したキヤノン製iR5000)にセットしてスチレン系樹脂とポリエチレン樹脂を主成分とする圧力定着用トナーを用いて以下に示す方法によりフィルミング、融着及び画像流れの評価を行った。その際、プロセススピード265mm/sec、前露光量(波長660nmのLED)4lux・secの条件とした。又、定着ローラ205の表面はシリコンゴム材料を使用し、線圧20kgf/cmの圧力により転写同時定着を行い、更に定着器222により圧力定着を行う2段定着とした。   The prepared four electrophotographic photosensitive members are set in an electrophotographic apparatus similar to that shown in FIG. 2 (a Canon iR5000 modified for evaluation), and a pressure fixing toner mainly composed of a styrene resin and a polyethylene resin is used. Filming, fusing and image flow were evaluated by the following methods. At that time, the process speed was 265 mm / sec and the pre-exposure amount (LED having a wavelength of 660 nm) was 4 lux · sec. Further, the surface of the fixing roller 205 is made of a silicon rubber material, and simultaneous transfer and fixing are performed by a linear pressure of 20 kgf / cm, and further, pressure fixing is performed by a fixing device 222.

作製した電子写真感光体M〜Pの評価結果を比較例1の電子写真感光体Eの評価結果を100としたときの相対評価として表12に示す。尚、表面層の炭素含有比率(Xの値)は表11に示す値である。   The evaluation results of the produced electrophotographic photoreceptors M to P are shown in Table 12 as relative evaluation when the evaluation result of the electrophotographic photoreceptor E of Comparative Example 1 is 100. In addition, the carbon content ratio (value of X) of the surface layer is a value shown in Table 11.

Figure 2007072177
Figure 2007072177

Figure 2007072177
Figure 2007072177

Figure 2007072177
Figure 2007072177

Figure 2007072177
以上の結果から、60MHzと105MHzを重畳した高周波電力を用いて作製した電子写真感光体においても表面層の炭素含有比率(Xの値)を本発明の範囲を0.95≦x≦1.0とすることにより、転写同時定着プロセスを採用した電子写真装置での使用においてもフィルミング、融着及び画像流れ等の発生を防止することが可能であることが判明した。
Figure 2007072177
From the above results, the carbon content ratio (value of X) in the surface layer of the electrophotographic photosensitive member produced using the high frequency power superposing 60 MHz and 105 MHz is within the range of 0.95 ≦ x ≦ 1.0. Thus, it has been found that filming, fusing, image flow, and the like can be prevented even when used in an electrophotographic apparatus employing a simultaneous transfer fixing process.

本発明の電子写真装置を模式的に示す図である。It is a figure which shows typically the electrophotographic apparatus of this invention. 本発明の2段定着を採用した電子写真装置を模式的に示す図である。1 is a diagram schematically illustrating an electrophotographic apparatus that employs two-stage fixing according to the present invention. FIG. 本発明に係るRF電力を用いたPCVD法を適用可能な製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus which can apply the PCVD method using RF electric power which concerns on this invention. 本発明に係るVHF電力を用いたPCVD法を適用可能な製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus which can apply the PCVD method using the VHF electric power which concerns on this invention. 本発明に係る電子写真感光体の一例を示す層構成の概略断面図である。It is a schematic sectional drawing of the layer structure which shows an example of the electrophotographic photoreceptor which concerns on this invention.

符号の説明Explanation of symbols

101,201 電子写真感光体
102,202 主帯電ローラ
103,203 転写紙供給系
104,204 現像器
105,205 定着ローラ
106,206 搬送系
107,207 クリーニングローラ
108,208 クリーニングブレード
109,209 クリーナー
110,210 ランプ
111,211 原稿台
112,212 原稿
113〜114,213〜215 ミラー
116,216 レンズユニット
117,217 画像処理部
118,218 レーザーユニット
119,219 ミラー
120,220 除電光源
121,221 レジストローラ
222 定着器
3100 堆積装置
3110 反応容器
3111 カソード電極
3112 円筒状基体
3113 基体加熱用ヒーター
3114 ガス導入管
3115 高周波マッチングボックス
3116 ガス配管
3117 リークバルブ
3118 メインバルブ
3119 真空系
3120 高周波電源
3121 絶縁材料
3122 排気管
3123 受け台
3200 ガス供給装置
3211〜3216 マスフローコントローラ
3221〜3226 ボンベ
3231〜3236 バルブ
3241〜3246 流入バルブ
3251〜3256 流出バルブ
3260 補助バルブ
3261〜3266 圧力調整器
400 真空処理装置
401 円筒状基体
402 反応容器
403 ガス導入管
404 高周波電極
405 高周波電力供給システム
406 基体支持体
407 排気管
408,415 高周波電源
409,416 マッチングボックス
410 回転軸
411 モータ
412 ギア
413 電力分岐部
414 シールド
501 基体
502 電荷注入阻止層
503 光導電層
504 表面層
505 バッファ層
101, 201 Electrophotographic photosensitive member 102, 202 Main charging roller 103, 203 Transfer paper supply system 104, 204 Developer 105, 205 Fixing roller 106, 206 Conveying system 107, 207 Cleaning roller 108, 208 Cleaning blade 109, 209 Cleaner 110 , 210 Lamp 111, 211 Document table 112, 212 Document 113-114, 213-215 Mirror 116, 216 Lens unit 117, 217 Image processing unit 118, 218 Laser unit 119, 219 Mirror 120, 220 Static elimination light source 121, 221 Registration roller 222 Fixing device 3100 Deposition device 3110 Reaction vessel 3111 Cathode electrode 3112 Cylindrical substrate 3113 Heater for substrate heating 3114 Gas introduction tube 3115 High-frequency matching 3116 Gas piping 3117 Leak valve 3118 Main valve 3119 Vacuum system 3120 High frequency power supply 3120 High frequency power supply 3121 Insulating material 3122 Exhaust pipe 3123 Receiving base 3200 Gas supply device 3211 1-3216 Mass flow controller 3221-3226 Cylinder 3231 1-3236 Valve 3241-3246 Inflow valve 3251-3256 Outflow valve 3260 Auxiliary valve 3261-3266 Pressure regulator 400 Vacuum processing device 401 Cylindrical substrate 402 Reaction vessel 403 Gas introduction tube 404 High frequency electrode 405 High frequency power supply system 406 Base support 407 Exhaust tube 408, 415 High frequency power source 409, 416 Matching Box 410 Rotating shaft 411 Motor 412 Gear 413 Power branch 414 Shield 501 Base 502 Electric Load injection blocking layer 503 Photoconductive layer 504 Surface layer 505 Buffer layer

Claims (14)

円筒状基体上に珪素を母体とする非晶質膜から成る光導電層及び珪素、炭素の少なくとも1つを含む非晶質膜からなる表面層を順次積層した電子写真感光体を用いた電子写真方法において、
前記表面層の原子比率がSi1-XX で表されxの値を0.95≦x≦1.0の範囲とし、該電子写真感光体の表面に形成したトナー像を転写材に転写同時定着することを特徴とする電子写真方法。
Electrophotography using an electrophotographic photosensitive member in which a photoconductive layer made of an amorphous film based on silicon and a surface layer made of an amorphous film containing at least one of silicon and carbon are sequentially laminated on a cylindrical substrate. In the method
A toner image formed on the surface of the electrophotographic photosensitive member is transferred to a transfer material, wherein the atomic ratio of the surface layer is represented by Si 1-X C X and the value of x is in the range of 0.95 ≦ x ≦ 1.0. An electrophotographic method characterized by fixing simultaneously.
前記転写同時定着が圧力定着であることを特徴とする請求項1記載の電子写真方法。   2. The electrophotographic method according to claim 1, wherein the simultaneous transfer fixing is pressure fixing. 前記転写同時定着に次いで第2の定着工程を設けたことを特徴とする請求項1記載の電子写真方法。   2. The electrophotographic method according to claim 1, further comprising a second fixing step subsequent to the simultaneous transfer fixing. 前記転写同時定着及び/又は第2の定着工程が圧力定着であることを特徴とする請求項3記載の電子写真方法。   4. The electrophotographic method according to claim 3, wherein the simultaneous transfer fixing and / or the second fixing step is pressure fixing. 主帯電がローラ帯電であることを特徴とする請求項1〜4の何れかに記載の電子写真方法。   5. The electrophotographic method according to claim 1, wherein the main charging is roller charging. 前記電子写真感光体表面を摺擦手段により摺擦することを特徴とする請求項1〜5の何れかに記載の電子写真方法。   6. The electrophotographic method according to claim 1, wherein the surface of the electrophotographic photosensitive member is rubbed by rubbing means. 前記電子写真感光体の温度制御を行わないことを特徴とする請求項1〜6の何れかに記載の電子写真方法。   7. The electrophotographic method according to claim 1, wherein temperature control of the electrophotographic photosensitive member is not performed. 円筒状基体上に珪素を母体とする非晶質膜から成る光導電層及び珪素、炭素の少なくとも1つを含む非晶質膜から成る表面層を順次積層した電子写真感光体を用いた電子写真装置において、
前記表面層の原子比率がSi1−x Cx で表されxの値が0.95≦x≦1.0の範囲である電子写真感光体に対し帯電、露光、現像手段により該電子写真感光体の表面にトナー像を形成し、転写材に該トナー像を転写すると同時に定着する転写同時定着手段を設けたことを特徴とする電子写真装置。
Electrophotography using an electrophotographic photosensitive member in which a photoconductive layer made of an amorphous film based on silicon and a surface layer made of an amorphous film containing at least one of silicon and carbon are sequentially laminated on a cylindrical substrate. In the device
An electrophotographic photosensitive member in which the atomic ratio of the surface layer is expressed by Si1-xCx and the value of x is in the range of 0.95 ≦ x ≦ 1.0 is charged, exposed, and developed by means of the electrophotographic photosensitive member. An electrophotographic apparatus comprising a transfer simultaneous fixing means for forming a toner image on a surface and fixing the toner image on a transfer material at the same time as the transfer.
前記転写同時定着手段が圧力定着であることを特徴とする請求項8記載の電子写真装置。   9. The electrophotographic apparatus according to claim 8, wherein the simultaneous transfer fixing unit is pressure fixing. 前記転写同時定着手段に次いで第2の定着手段を設けたことを特徴とする請求項8記載の電子写真装置。   9. The electrophotographic apparatus according to claim 8, wherein a second fixing unit is provided after the simultaneous transfer fixing unit. 前記転写同時定着手段及び/又は第2の定着手段が圧力定着であることを特徴とする請求項10記載の電子写真装置。   The electrophotographic apparatus according to claim 10, wherein the simultaneous transfer fixing unit and / or the second fixing unit is pressure fixing. 主帯電手段がローラ帯電であることを特徴とする請求項8〜11の何れかに記載の電子写真装置。   The electrophotographic apparatus according to claim 8, wherein the main charging means is roller charging. 前記電子写真感光体表面を摺擦する摺擦手段を設けることを特徴とする請求項8〜12の何れかに記載の電子写真装置。   The electrophotographic apparatus according to any one of claims 8 to 12, further comprising a rubbing means for rubbing the surface of the electrophotographic photosensitive member. 前記電子写真感光体の温度制御手段を設けないことを特徴とする請求項8〜13の何れかに記載の電子写真装置。   The electrophotographic apparatus according to claim 8, wherein a temperature control unit for the electrophotographic photosensitive member is not provided.
JP2005259167A 2005-09-07 2005-09-07 Electrophotographic method and electrophotographic apparatus Withdrawn JP2007072177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259167A JP2007072177A (en) 2005-09-07 2005-09-07 Electrophotographic method and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259167A JP2007072177A (en) 2005-09-07 2005-09-07 Electrophotographic method and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
JP2007072177A true JP2007072177A (en) 2007-03-22

Family

ID=37933668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259167A Withdrawn JP2007072177A (en) 2005-09-07 2005-09-07 Electrophotographic method and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP2007072177A (en)

Similar Documents

Publication Publication Date Title
JP3507322B2 (en) Electrophotographic equipment
JP3530667B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPH1083091A (en) Electrophotographic photoreceptor and its production
JPH112912A (en) Light receiving member, image forming device provided therewith and image forming method using it
US6534228B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP3530676B2 (en) Method for manufacturing light receiving member, light receiving member, electrophotographic apparatus having light receiving member, and electrophotographic process using light receiving member
JP2000003055A (en) Electrophotographic device
JP2004133397A (en) Electrophotographic photoreceptor
JP3913123B2 (en) Method for producing electrophotographic photosensitive member
JP2007072177A (en) Electrophotographic method and electrophotographic apparatus
JP3710304B2 (en) Electrophotographic equipment
JP2001337474A (en) Method for manufacturing light-accepting member, light- accepting member and electrophotographic device
JP3571917B2 (en) Electrophotographic equipment
JP2000162800A (en) Electrophotographic device
JPH10301310A (en) Electrophotographic photoreceptor and its production
JP2000010313A (en) Electrophotographic device
EP1004945B1 (en) Electrophotographic apparatus and electrophotographic light receiving member
JP2006163219A (en) Electrophotographic photoreceptor
JP2000162802A (en) Electrophotographic device
JP2001290338A (en) Electrophotographic device
JP2002023401A (en) Photoreception member and electrophotographic device using the same
JP2005309211A (en) Electrophotographic photoreceptor and electrophotographic apparatus using same
JP2000221715A (en) Electrophotographic photoreceptor
JP2000162801A (en) Electrophotographic photoreceptor
JPH11249523A (en) Electrophotographic system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202