JP2000162800A - Electrophotographic device - Google Patents

Electrophotographic device

Info

Publication number
JP2000162800A
JP2000162800A JP33793898A JP33793898A JP2000162800A JP 2000162800 A JP2000162800 A JP 2000162800A JP 33793898 A JP33793898 A JP 33793898A JP 33793898 A JP33793898 A JP 33793898A JP 2000162800 A JP2000162800 A JP 2000162800A
Authority
JP
Japan
Prior art keywords
light receiving
receiving member
surface layer
electrophotographic apparatus
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33793898A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Junichiro Hashizume
淳一郎 橋爪
Tatsuji Okamura
竜次 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33793898A priority Critical patent/JP2000162800A/en
Priority to US09/449,678 priority patent/US6218064B1/en
Priority to DE69926326T priority patent/DE69926326T2/en
Priority to EP99123572A priority patent/EP1004945B1/en
Publication of JP2000162800A publication Critical patent/JP2000162800A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the scattering or fusion of developer, or the uneven shaving of a surface layer or image flowing under any environmental condition and to prevent the image flowing without providing a means for directly heating a photoreceptive member. SOLUTION: This electrophotographic device has such constitution that the developer whose average particle diameter is 5 to 8 μm is scraped and removed by an elastic rubber blade whose impact resilience is >=10% and <=50%. The device is constituted to use the photoreceptive member whose abrasion loss after performing a copying process for A4 size to 10,000 sheets of transfer paper is >=0.1 Å and <=100 Å whose dynamic hardness is within the range of 10 to 500 kgf/mm2, and further which is provided with an amorphous fluorinated carbon film whose content of fluorine atoms is 5 to 50 atomic % as the surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真装置に関
し、さらに詳しくは改良された光受容部材を備えた電子
写真装置に関する。
The present invention relates to an electrophotographic apparatus, and more particularly, to an electrophotographic apparatus having an improved light receiving member.

【0002】[0002]

【従来の技術】従来、電子写真法としては、米国特許第
2297692号明細書、特公昭42−23910号公
報及び特公昭43−24748号公報に記載されている
ように、多数の方法が知られている。一般には光受容部
材を利用し、種々の手段により光受容部材上に電気的潜
像を形成し、次いでこの潜像を現像剤を用いて現像し、
必要に応じて選ばれた紙等の転写材に現像剤画像を電気
的に転写した後に、加熱、加圧、加熱加圧あるいは、溶
剤蒸気等により定着し複写物を得るものである。
2. Description of the Related Art Conventionally, many electrophotographic methods have been known as described in U.S. Pat. No. 2,297,692, Japanese Patent Publication No. 42-23910 and Japanese Patent Publication No. 43-24748. ing. Generally, using a light receiving member, an electric latent image is formed on the light receiving member by various means, and then the latent image is developed using a developer,
After the developer image is electrically transferred to a transfer material such as paper selected as necessary, it is fixed by heating, pressurizing, heating and pressurizing, or solvent vapor or the like to obtain a copy.

【0003】上記工程において、転写材ヘ現像剤画像を
転写した後でも光受容部材表面には残留現像剤が残るた
め、これを除去する手段としてクリーニングブレードを
当接し、この未転写現像剤を系外に排出してぃた。
In the above process, a residual developer remains on the surface of the light receiving member even after the transfer of the developer image to the transfer material. Therefore, a cleaning blade is brought into contact with the residual developer to remove the residual developer. Drained outside.

【0004】電子写真感光体に用いる光受容部材の素材
としては、セレン、硫化カドミニウム、酸化亜鉛、アモ
ルファスシリコン(以下a−Siと記す)等の無機材
料、あるいは有機材料等、各種の材料が提案されてい
る。これらのうちでもa−Siに代表される珪素原子を
主成分として含む非単結晶質堆積膜、例えば水素及び/
又はハロゲン(例えばフッ素、塩素等)を含む(例えば
水素またはダングリングボンドを補償する)a−Si等
のアモルファス堆積膜は高性能、高耐久、無公害な感光
体として提案され、その幾つかは実用化されている。特
開昭54−86341号公報、USP4.265.99
1号には、光導電層を主としてa−Siで形成した電子
写真感光体の技術が開示されている。また特開昭60−
12554号公報には珪素原子を含有する非晶質シリコ
ンからなる光導電層の表面に炭素及びハロゲン原子を含
む表面層が開示されており、さらに特開平2−1119
62号公報には、a−Si:H又は、a−C:H感光層上
に表面保護潤滑層を設けた感光体が開示されているが、
いずれも撥水性や耐摩耗性を向上させる技術であり、電
子写真プロセスと表面層の削れ性との関係に関する記載
はない。
Various materials such as inorganic materials such as selenium, cadmium sulfide, zinc oxide, amorphous silicon (hereinafter referred to as a-Si), and organic materials have been proposed as materials for the light receiving member used in the electrophotographic photosensitive member. Have been. Among these, non-single-crystal deposited films containing silicon atoms typified by a-Si as main components, for example, hydrogen and / or
Amorphous films such as a-Si containing halogen (eg, fluorine, chlorine, etc.) (eg, compensating for hydrogen or dangling bonds) have been proposed as high performance, highly durable, pollution-free photoreceptors, some of which have been proposed. Has been put to practical use. JP-A-54-86341, USP 4.265.99
No. 1 discloses a technique of an electrophotographic photosensitive member in which a photoconductive layer is mainly formed of a-Si. Japanese Patent Laid-Open No. 60-
No. 12554 discloses a surface layer containing carbon and halogen atoms on the surface of a photoconductive layer made of amorphous silicon containing silicon atoms.
No. 62 discloses a photoreceptor in which a surface protective lubricating layer is provided on an a-Si: H or aC: H photosensitive layer.
Both are techniques for improving water repellency and abrasion resistance, and there is no description about the relationship between the electrophotographic process and the shaving property of the surface layer.

【0005】a−Siに代表されるa−Si系感光体
は、半導体レーザー(700nm〜800nm)等の長
波長光に高い感度を示し、しかも繰り返し使用による劣
化もほとんど認められない等の優れた点を有するので、
例えば高速複写機やLBP(レーザービームプリンタ
ー)等の電子写真用感光体として広く使用されている。
An a-Si photosensitive member represented by a-Si exhibits excellent sensitivity to long-wavelength light such as a semiconductor laser (700 nm to 800 nm), and exhibits little deterioration due to repeated use. Because it has a point,
For example, it is widely used as a photoconductor for electrophotography such as a high-speed copying machine and an LBP (laser beam printer).

【0006】シリコン系非単結晶堆積膜の形成法として
は、スパッタリング法、熱により原料ガスを分解する方
法(熱CVD法)、光により原料ガスを分解する方法
(光CVD法)、プラズマにより原料ガスを分解する方
法(プラズマCVD法)等、多数の方法が知られてい
る。中でもプラズマCVD法、すなわち原料ガスを直流
又は高周波(RF,VHF)又は、マイクロ波を利用し
て発生させたグロー放電等によって分解し、ガラス、石
英、耐熱性合成樹脂フィルム、ステンレス、アルミニュ
ウム等の所望の基体上に堆積膜を形成する方法は、電子
写真用アモルファスシリコン堆積膜の形成方法等にとど
まらず、他の用途の堆積膜の形成方法を含め、現在実用
化が非常に進んでおり、そのための装置も各種提案され
ている。
As a method of forming a silicon-based non-single-crystal deposited film, there are a sputtering method, a method of decomposing a source gas by heat (thermal CVD method), a method of decomposing a source gas by light (photo CVD method), and a method of decomposing a source gas by plasma. Many methods are known, such as a method of decomposing gas (plasma CVD method). Above all, the plasma CVD method, that is, the raw material gas is decomposed by direct current or high frequency (RF, VHF) or glow discharge generated by using microwaves, and is made of glass, quartz, heat-resistant synthetic resin film, stainless steel, aluminum, etc. The method of forming a deposited film on a desired substrate is not limited to the method of forming an amorphous silicon deposited film for electrophotography and the like, and the method of forming a deposited film for other uses is currently in very practical use. Various devices have been proposed for this purpose.

【0007】光受容部材としては、高速に対応した電子
写真特性の向上が要求されると共に、より精細な画質を
要求される昨今においては、感光体特性の改善はもとよ
り、現像剤の小粒径化が進められ、コールターカウンタ
ーによる重量平均粒径が5〜8μmであるものが多く使
われている。
As the light receiving member is required to have improved electrophotographic characteristics corresponding to high speed and to require finer image quality, recently, not only the characteristics of the photosensitive member but also the small particle size of the developer have been improved. The use of those having a weight average particle size of 5 to 8 μm as measured by a Coulter counter is often used.

【0008】[0008]

【発明が解決しようとする課題】a−Si系光受容部材
を含め、従来の各種光受容部材の帯電及び除電手段とし
ては、ほとんどの場合ワイヤー電極(金メッキを施した
50〜100μmφのタングステン線等の金属線)とシ
ールド板を主構成部材とするコロナ帯電器(コロトロ
ン、スコロトロン)が利用されている。すなわちこのコ
ロナ帯電器のワイヤー電極に高電圧(4〜8kv程度)
を印加することにより発生するコロナ電流を光受容部材
に作用させこの光受容部材の帯電及び除電を行うもので
あり、このコロナ帯電器は均一な帯電及び除電に優れて
いる。
As a means for charging and discharging various conventional light receiving members including an a-Si based light receiving member, a wire electrode (such as a gold-plated tungsten wire of 50 to 100 μmφ, etc.) is used in most cases. Corona chargers (corotrons, scorotrons) mainly including a metal wire and a shield plate are used. That is, a high voltage (about 4 to 8 kv) is applied to the wire electrode of this corona charger.
Is applied to the photoreceptor member to cause charging and discharging of the photoreceptor member, and the corona charger is excellent in uniform charging and discharging.

【0009】しかしコロナ放電に伴い、かなり大量のオ
ゾン(O3)が発生する。このオゾンは、空気中の窒素
を酸化して窒素酸化物(NOx)を生成する。さらに、
この窒素酸化物は空気中の水分と反応して硝酸等を生じ
る。
However, a considerable amount of ozone (O 3 ) is generated by corona discharge. This ozone oxidizes nitrogen in the air to produce nitrogen oxides (NOx). further,
This nitrogen oxide reacts with moisture in the air to produce nitric acid and the like.

【0010】窒素酸化物及び硝酸等のコロナ放電生成物
は光受容部材表面や、周辺の機器に付着し、堆積する。
コロナ放電生成物は吸湿性が強いため、光受容部材表面
に堆積すると、コロナ放電生成物の吸湿による低抵抗化
で、実質的に光受容部材の電荷保持能力が全面的、ある
いは部分面的に低下して、画像流れ(光受容部材表面の
電荷が面方向にリ−クして静電荷潜像パターンが崩れ
る、あるいは形成されない状態)と称される画像欠陥を
生じる場合がある。
[0010] Corona discharge products such as nitrogen oxides and nitric acid adhere to and accumulate on the surface of the light receiving member and peripheral equipment.
Since the corona discharge product has a strong hygroscopic property, when it is deposited on the surface of the light receiving member, the resistance of the corona discharge product due to moisture absorption is reduced, and the charge holding ability of the light receiving member is substantially or partially improved. As a result, an image defect called image deletion (a state in which the charge on the surface of the photoreceptor leaks in the surface direction and the electrostatic latent image pattern is broken or not formed) may occur.

【0011】又、コロナ帯電器のシールド板内面に付着
したコロナ放電生成物は電子写真装置の稼働中のみなら
ず、夜間等の装置の休止中に揮発遊離し、この帯電器の
放電開口部に対応した光受容部材表面に付着し吸湿する
ことによって、この光受容部材表面を低抵抗化させる。
Further, the corona discharge products adhering to the inner surface of the shield plate of the corona charger are volatilized and released not only during the operation of the electrophotographic apparatus but also during the stoppage of the apparatus at night or the like. By adhering to the surface of the corresponding light receiving member and absorbing moisture, the surface of the light receiving member is reduced in resistance.

【0012】その結果、電子写真装置の再稼動時の最初
に出力される一枚目あるいはそれに続く数枚の出力画像
には、帯電器開口部に対応する領域に、画像流れが発生
し易い。
As a result, in the first or several subsequent output images output first when the electrophotographic apparatus is restarted, image deletion is likely to occur in the area corresponding to the opening of the charger.

【0013】又a−Si系光受容部材は他の光受容部材
よりも表面硬度が極めて高いため通常のクリーニング工
程では、光受容部材表面に付着したコロナ放電生成物が
除去されずに光受容部材表面に残留し易い傾向にある。
Further, since the a-Si type light receiving member has extremely higher surface hardness than other light receiving members, in the ordinary cleaning step, the corona discharge products adhered to the surface of the light receiving member are not removed and the light receiving member is not removed. It tends to remain on the surface.

【0014】そこで従来は、光受容部材を直接加温する
ためのヒーターを設けたり、温風送風装置により温風を
光受容部材に送風して光受容部材表面を加温(30〜5
0℃)して乾燥状態を維持することにより、光受容部材
表面に付着しているコロナ放電生成物が吸湿して光受容
部材表面を実質的に低抵抗化することを防止し、画像流
れ現象を防止する処置が取られている。特に、a−Si
系光受容部材の場合は、この加温乾燥手段は不可欠なも
のとして電子写真装置に組み込まれている。
Therefore, conventionally, a heater for directly heating the light receiving member is provided, or warm air is blown to the light receiving member by a hot air blowing device to heat the surface of the light receiving member (30 to 5).
0 ° C.) to maintain a dry state, thereby preventing the corona discharge products adhering to the surface of the light receiving member from absorbing moisture and substantially reducing the resistance of the surface of the light receiving member, and causing an image deletion phenomenon. Measures have been taken to prevent In particular, a-Si
In the case of a system light receiving member, the heating and drying means is incorporated in an electrophotographic apparatus as indispensable.

【0015】従来より、このような電子写真装置は、可
動マグネット等を内臓した回転円筒状現像剤担持体を備
えており、この担持体上に現像剤すなわちトナーあるい
はトナーとキャリアーとの混合物の薄層を形成した後、
これらを静電潜像を形成した光受容部材上に静電的に転
移させる方式が広く用いられている。特開昭54−43
037、特開昭58−144865、特開昭60−74
51等にはこれらの方式が開示されており、現像剤とし
ては磁性粒子を含むもの、すなわちトナーとキャリアー
の混合物あるいはトナー中にマグネタイトを含有しキャ
リアーを含まぬもの等が開示されている。
Conventionally, such an electrophotographic apparatus is provided with a rotating cylindrical developer carrier having a movable magnet and the like built therein, and a developer, that is, a toner or a mixture of a toner and a carrier is thinned on the carrier. After forming the layer,
A system in which these are electrostatically transferred onto a light receiving member on which an electrostatic latent image is formed is widely used. JP-A-54-43
037, JP-A-58-144865, JP-A-60-74
No. 51 and the like disclose these methods, and as a developer, a developer containing magnetic particles, that is, a mixture of a toner and a carrier or a developer containing magnetite in a toner and containing no carrier is disclosed.

【0016】このような現像方式の欠点は、電子写真装
置の休止中に回転円筒状現像剤担持体の光受容部材対向
部が光受容部材の熱によって膨張し、現像剤現像部にお
ける回転円筒状現像剤担持体と光受容部材との距離が短
くなる。
A drawback of such a developing method is that, while the electrophotographic apparatus is at rest, the portion of the rotating cylindrical developer carrier opposed to the light receiving member expands due to the heat of the light receiving member, and the rotating cylindrical developer carrier in the developing portion has a cylindrical shape. The distance between the developer carrier and the light receiving member is reduced.

【0017】このため、電界が強くなり現像剤が通常よ
りも転移し易くなる。又、この部位の反対面部位は、そ
の影響で距離が長くなるため電界が小さくなり現像剤が
転移し難くなる。この結果、回転円筒状現像剤担持体の
回転周期で部分的な画像濃度ムラ等の問題が発生する場
合があるため、光受容部材を加温しなくても画像流れが
発生しない電子写真装置が求められていた。
As a result, the electric field becomes stronger and the developer is more easily transferred than usual. In addition, the area on the opposite side of this area becomes longer due to the influence of the influence, so that the electric field becomes smaller and the transfer of the developer becomes difficult. As a result, a problem such as partial image density unevenness may occur in the rotation cycle of the rotating cylindrical developer carrier, so that there is an electrophotographic apparatus in which image flow does not occur without heating the light receiving member. Was sought.

【0018】さらに、帯電、露光、現像、転写、分離、
クリーニングの各工程を順次繰り返し、ブレードによる
スクレープクリーニングを行う電子写真装置において
は、繰り返しの操作によってこの光受容部材表面の摩擦
抵抗が除々に上昇する場合がある。光受容部材表面の摩
擦抵抗が上昇すると、クリーニングブレードの劣化を促
進し、残留現象剤(以下、残留トナーと記す)のクリー
ニング性が低下してしまう。
Further, charging, exposure, development, transfer, separation,
In an electrophotographic apparatus in which each step of cleaning is sequentially repeated to perform scrape cleaning with a blade, the frictional resistance on the surface of the light receiving member may gradually increase due to repeated operations. When the frictional resistance on the surface of the light receiving member increases, the deterioration of the cleaning blade is promoted, and the cleaning property of the residual phenomenon agent (hereinafter, referred to as residual toner) decreases.

【0019】このような状態で、複写工程を繰り返し行
うと、コロナ帯電器内で現象剤やこの現象剤に含まれる
外添剤(チタン酸ストロンチウム、シリカ等)の微粒子
が飛散してコロナ帯電器のワイヤー電極(以下、帯電ワ
イヤーと記す)に付着し、放電のムラになる場合があ
る。帯電器ワイヤー汚れによって放電ムラが発生する
と、正現象方式(光受容部材表面の非露光部を現像する
方式)においては画像上にスジ状の白抜け部、画像全面
にウロコ状の黒モヤ、周期性なく局部に発生する黒点
(0.1〜0.3mmφ)等の画像欠陥が発生する場合
がある。
When the copying process is repeated in such a state, the phenomena agent and the external additives (strontium titanate, silica, etc.) contained in the phenomena agent are scattered in the corona charger, and the corona charger is scattered. To a wire electrode (hereinafter, referred to as a charged wire), which may cause uneven discharge. If the discharge unevenness occurs due to the charger wire contamination, in the positive phenomenon method (a method of developing a non-exposed portion on the surface of the light receiving member), a streak-like white spot on an image, a scale-like black haze on the entire image, and a period. In some cases, image defects such as black spots (0.1 to 0.3 mmφ) that occur locally without any problem may occur.

【0020】又、帯電器ワイヤー汚れが発生すると、ワ
イヤーの汚れ部分と光受容部材の間で異常放電が誘発さ
れ、光受容部材表面を破壊し白点状の画像欠陥が発生す
る場合がある。
Further, when the charger wire becomes dirty, abnormal discharge is induced between the stained portion of the wire and the light receiving member, which may destroy the surface of the light receiving member and cause white spot image defects.

【0021】さらに、ブレード式クリーニング方式は原
稿チャートの文字パターンの差によりブレード面に滞留
する現像剤の量に差が生じ、受容部材表面に削れムラが
生じる場合がある。このような削れムラが発生した場
合、電子写真特性として感度ムラとなり画像に濃度ムラ
として発生する。特に、この現象は現像剤の粒径が小さ
いほど顕著である。
Further, in the blade-type cleaning system, the amount of the developer remaining on the blade surface varies due to the difference in the character pattern of the document chart, and the receiving member surface may be scraped unevenly. When such shaving unevenness occurs, the sensitivity becomes uneven as an electrophotographic characteristic, and the unevenness occurs in the image. In particular, this phenomenon is more remarkable as the particle size of the developer is smaller.

【0022】近年では画像特性の高画質化が要求されて
いるのが現状であり、このような状況下において現像剤
の小粒径化が進んでいる。この現像剤の小粒径化は画質
面では向上する半面、摺擦力が高くなる傾向があり、こ
の摺擦力の上昇により、クリーニングブレードのビビリ
等による残留現像剤(残留トナー)のすり抜けが生じ、
黒スジ状のクリーニング不良が発生する場合がある。
In recent years, there has been a demand for higher image quality in image characteristics, and under such circumstances, the particle size of the developer has been reduced. Although reducing the particle size of the developer improves the image quality, it tends to increase the rubbing force, and the increase in the rubbing force causes the residual developer (residual toner) to pass through due to chatter of the cleaning blade. Arises
Black line-shaped cleaning failure may occur.

【0023】さらに、摩擦抵抗が高いと光受容部材とク
リーニングブレード間で摩擦熱が発生して温度が上昇
し、熱定着に用いられる残留現像剤は、この摩擦熱によ
って光受容部材の表面に強固に付着する融着現象が発生
する場合がある。特にこの融着現象は、現像材の小粒径
化に比例して顕著にあらわれ、初期の段階では画像には
影響しない程度の微小なものであるが、繰り返しの使用
で微小な融着が核となり徐々に成長し画像に黒スジ状の
画像欠陥となる。
Further, when the frictional resistance is high, frictional heat is generated between the light receiving member and the cleaning blade to increase the temperature, and the residual developer used for heat fixing is firmly adhered to the surface of the light receiving member by the frictional heat. In some cases, a fusion phenomenon that adheres to the surface may occur. In particular, this fusing phenomenon appears remarkably in proportion to the reduction in the particle size of the developer, and is small enough not to affect the image in the initial stage. And gradually grows into black streak-like image defects in the image.

【0024】このような状況の解決方法としてクリーニ
ングブレードの押し付け圧力を高くする方法や、光受容
部材表面に付着した現象剤を削り取る力を増強させるた
め、弾性ゴムブレードの硬度を高めて摺擦力を向上させ
る等の対策が必要である。ブレードの硬度を高めること
は、ブレードの特性としては、ゴム的状態からガラス状
態に近づくため、材質としては脆くなりブレードの寿命
を短くする方向であり、これらの方法は光受容部材表面
との摩擦力が上昇する方向であるため、表面層のムラ削
れやが顕著になる可能性が高い。
As a solution to such a situation, a method of increasing the pressing pressure of the cleaning blade or a method of increasing the hardness of the elastic rubber blade by increasing the hardness of the elastic rubber blade in order to increase the force of scraping the phenomenon agent attached to the surface of the light receiving member. And other measures are needed. Increasing the hardness of the blade is a characteristic of the blade, as it approaches a glassy state from a rubbery state, so the material becomes brittle and the life of the blade is shortened.These methods are based on friction with the light receiving member surface. Since the force is in the rising direction, there is a high possibility that uneven shaving of the surface layer or the like will become remarkable.

【0025】近年複写機やプリンターのパーソナルユー
ス化に伴い小型化、低コスト、メンテナンスフリーが重
要な課題であり、省エネルギー、エコロジーといった観
点からも、光受容部材を直接あるいは間接的に加温する
手段を設けない設計が望ましい。
In recent years, miniaturization, low cost, and maintenance-free are important issues with the personal use of copiers and printers. Means for directly or indirectly heating the light receiving member from the viewpoint of energy saving and ecology. It is desirable that the design is not provided.

【0026】このような状況下において、加温手段を設
けずに画像流れが発生しなぃ光受容部材、及びいかなる
電子写真プロセス条件においても、ムラ削れが発生せ
ず、濃度ムラや融着のない高画質の電子写真を安定して
長期問供給することが可能な電子写真装置が求められて
る。
Under such circumstances, no image deletion occurs without the provision of the heating means. The light receiving member and no uneven shaving are generated under any electrophotographic process conditions. There has been a demand for an electrophotographic apparatus capable of stably supplying a high-quality electrophotograph without any problem for a long period of time.

【0027】本発明は、上記問題点を解決するためなさ
れたものであり、その目的とするところは、帯電、露
光、現像、転写、分離、クリ−ニングの各工程を順次繰
り返しブレードによるスクレープクリーニングを行う電
子写真装置において、摩擦抵抗が小さく、トナーの飛散
を防止し、帯電器ワイヤー汚れが発生しない光受容部材
を提供すると共に、コロナ放電生成物が付着し難く、さ
らにコロナ放電生成物が付着した場合においても、容易
に付着物を除去することが可能な電子写真装置を提供す
ることにより、いかなる環境下でも光受容部材の加温手
段を設けることなく画像流れのなぃ高品質の画像を長期
にわたり提供することが可能な電子写真装置を提供する
ものである。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to repeatedly perform each of the steps of charging, exposure, development, transfer, separation, and cleaning in order to perform scrape cleaning with a blade. In the electrophotographic apparatus, the frictional resistance is small, the toner is prevented from scattering, and a light receiving member that does not generate a charger wire stain is provided, and the corona discharge product is hardly adhered, and the corona discharge product is further adhered. By providing an electrophotographic apparatus capable of easily removing attached matter even in the case of performing the above, a high quality image without image deletion can be obtained without providing a heating means for the light receiving member under any environment. An object of the present invention is to provide an electrophotographic apparatus which can be provided for a long time.

【0028】[0028]

【課題を解決するための手段】本発明者らは、電子写真
プロセスと光受容部材の表面層の磨耗量との関係に着目
し、電子写真プロセスにおける光受容部材表面の撥水性
及び磨耗性を向上させることを試みた。その結果、本発
明の電子写真プロセス及び本発明の非単結晶質弗素化炭
素膜を光受容部材の表面層に用いた光受容部材の組み合
わせにより、表面層に弗素原子を含有させることで表面
層の撥水性を向上させ、コロナ放電生成物の付着を防止
し、さらに表面層のダイナミック硬度を10〜500k
gf/mm2 転写紙へ1万枚転写時の摩耗量を0.1Å
以上100Å以下にすることで最表面の弗素のみが脱離
することなく随時、弗素原子を含んだ表面にすることが
可能であると共に、表面層に弗素を含有させることによ
り表面の摩擦抵抗を低減し、滑り性を向上させ、表面層
のムラ削れや、クリーニング不良及び、融着が発生しな
ぃこと、また、いかなる環境条件においても光受容部材
の加温手段を設けることなく画像流れが発生しないこと
を見い出した。
The present inventors have focused on the relationship between the electrophotographic process and the amount of wear of the surface layer of the light receiving member, and have determined the water repellency and abrasion of the surface of the light receiving member in the electrophotographic process. Tried to improve. As a result, by combining the electrophotographic process of the present invention and the light receiving member using the non-single-crystalline fluorinated carbon film of the present invention as the surface layer of the light receiving member, the surface layer contains fluorine atoms, whereby Improves the water repellency of the surface, prevents the adhesion of corona discharge products, and further increases the dynamic hardness of the surface layer from 10 to 500 k.
gf / mm 2 The amount of wear when transferring 10,000 sheets to transfer paper is 0.1%.
By setting the thickness to 100 ° or less, it is possible to make the surface containing fluorine atoms at any time without desorbing only fluorine on the outermost surface, and to reduce the frictional resistance of the surface by including fluorine in the surface layer. It improves the slipperiness and prevents uneven scraping of the surface layer, poor cleaning and fusing, and image flow occurs without providing a heating means for the light receiving member under any environmental conditions. I found that I would not.

【0029】すなわち、本発明は次のようである。That is, the present invention is as follows.

【0030】1.光受容部材を回転させ、帯電、露光、
現像、転写、クリーニング工程を順次繰り返す電子写真
装置において、該光受容部材が、平均粒径5〜8μmの
現像剤を該光受容部材に現像、転写材へ転写し、現像材
が転写された後の光受容部材表面を反発弾性10%以上
50%以下の弾性ゴムブレードでスクレープクリーニン
グする電子写真装置でA4版の複写工程を転写紙1万枚
に行った後の摩耗量が0.1Å以上100Å以下であ
る、非単結晶質弗素化炭素膜で表面層が構成されている
ことを特徴とする電子写真装置。 2.前記光受容部材が導電性基体上にシリコン原子を母
体とする非単結晶材料で構成された光導電層及び非単結
晶材料で構成された表面層からなることを特徴とする上
記1に記載の電子写真装置。 3.前記表面層のダイナミック硬度が10〜500kg
f/mm2 であることを特徴とする上記1または2に記
載の電子写真装置。 4.前記非単結晶質弗素化炭素膜の弗素量((F/(C
+F))が5〜50原子%であることを特徴とする上記
1ないし3に記載の電子写真装置。 5.前記表面層が、少なくとも炭化水素系及び又は弗素
系のガスを1〜450MHzの高周波を用いたプラズマ
CVD法によって分解することによって堆積成膜するこ
とを特徴とする上記1ないし4に記載の電子写真装置。 6.前記光受容部材が、電荷注入阻止層、光導電層およ
び表面層の3層で構成されていることを特徴とする上記
1ないし5に記載の電子写真装置。 7.前記光受容部材が、電荷輸送層、電荷発生層および
表面層の3層で構成されていることを特徴とする上記1
ないし6に記載の電子写真装置。
1. By rotating the light receiving member, charging, exposure,
In an electrophotographic apparatus in which development, transfer, and cleaning steps are sequentially repeated, the light receiving member develops a developer having an average particle size of 5 to 8 μm on the light receiving member, transfers the developer to a transfer material, and after the developer is transferred. The surface of the light receiving member is scraped and cleaned with an elastic rubber blade having a rebound resilience of 10% or more and 50% or less. An electrophotographic apparatus comprising: a surface layer formed of a non-single-crystalline fluorinated carbon film; 2. 2. The light receiving member according to the above item 1, wherein the light receiving member comprises a photoconductive layer formed of a non-single-crystal material having silicon atoms as a base on a conductive substrate and a surface layer formed of a non-single-crystal material. Electrophotographic equipment. 3. The surface layer has a dynamic hardness of 10 to 500 kg.
3. The electrophotographic apparatus according to the above 1 or 2, wherein the f / mm 2 is f / mm 2 . 4. Fluorine content of the non-single crystalline fluorinated carbon film ((F / (C
+ F)) is from 5 to 50 atomic%. 5. 5. The electrophotography according to any one of claims 1 to 4, wherein the surface layer is formed by depositing a film by decomposing at least a hydrocarbon-based gas and / or a fluorine-based gas by a plasma CVD method using a high frequency of 1 to 450 MHz. apparatus. 6. 6. The electrophotographic apparatus according to any one of the above items 1 to 5, wherein the light receiving member is composed of three layers: a charge injection blocking layer, a photoconductive layer, and a surface layer. 7. (1) The light-receiving member comprises a charge transport layer, a charge generation layer, and a surface layer.
7. The electrophotographic apparatus according to any one of items 6 to 6.

【0031】[0031]

【発明の実施の形態】本発明の電子写真装置に用いられ
るクリーニングブレードの材質としては、ウレタンゴ
ム、シリコンゴム、ブタジエンゴム、イソプレンゴム、
ニトリルゴム、天然ゴム等がある。特に硬度、及び加工
のし易さの点から、一般に広く電子写真装置に用いられ
るウレタンゴム、シリコンゴムが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The cleaning blade used in the electrophotographic apparatus of the present invention may be made of urethane rubber, silicon rubber, butadiene rubber, isoprene rubber, or the like.
There are nitrile rubber and natural rubber. In particular, urethane rubber and silicone rubber, which are generally widely used in electrophotographic apparatuses, are preferable from the viewpoint of hardness and ease of processing.

【0032】電子写真装置に用いられるクリーニングブ
レードの反発弾性が10%より低いと、ブレードの特性
としては、ゴム的状態からガラス状態に近づくため、材
質としては脆くなりブレードの寿命を短くする方向であ
り又、クリーニングブレードの反発弾性が50%を超え
ると、ブレードにビビリが発生しクリーニング性が低下
したり、ブレードが捲れてしまい光受容部材表面にダメ
ージを与えてしまう等の問題が発生する場合があるの
で、クリーニングブレードの反発弾性は10%以上50
%以下が好適である。
If the rebound resilience of the cleaning blade used in the electrophotographic apparatus is lower than 10%, the blade characteristic changes from a rubbery state to a glassy state, so that the material becomes brittle and the life of the blade is shortened. Also, if the rebound resilience of the cleaning blade exceeds 50%, problems such as the occurrence of chatter on the blade and deterioration of the cleaning property, and the fact that the blade is turned up and damages the surface of the light receiving member occur. Therefore, the rebound resilience of the cleaning blade is 10% or more and 50
% Or less is preferred.

【0033】一方クリーニング性を向上するために、特
開昭54−143149に記載されているような溝付き
ブレードや、特開昭57−124777に記載されてい
るような突起付きブレード等が提案されているが、小粒
径の現像剤を使用し、光受容部材の加温手段を設けない
電子写真装置と非晶質弗素化炭素膜を表面層に設けた光
受容部材表面の磨耗量との関係に関する記載は全くなさ
れていない。
On the other hand, in order to improve the cleaning property, a blade with a groove as described in JP-A-54-143149 and a blade with a projection as described in JP-A-57-124777 have been proposed. However, an electrophotographic apparatus using a developer having a small particle diameter and not providing a heating means for the light receiving member and an abrasion amount of the surface of the light receiving member provided with the amorphous fluorinated carbon film on the surface layer are compared. No mention is made of the relationship.

【0034】本発明においては、光受容部材に用いるa
−C:F表面層のダイナミック硬度は10〜500kg
f/mm2 が好ましく、ダイナミック硬度が10kgf
/mm2 より小さい値になると機械的硬度が損なわれ、
ダイナミック硬度の値が500kgf/mm2 より大き
くなると表面層の磨耗量が減少するため、表面層が削れ
にくくなりコロナ放電生成物を削り取る効果が低減し画
像流れが発生する場合がある。また、表面層の膜中に含
まれる弗素量はF/(C+F)で5〜50原子%、好適
には10〜30原子%が適している。弗素量が5%未満
であると撥水性及び摩耗性が維持できなぃ場合がある。
また50%を越えると膜の密着性や緻密化が損なわれ、
機械的強度が損なわれる場合がある。
In the present invention, a
-C: The dynamic hardness of the F surface layer is 10 to 500 kg.
f / mm 2 is preferable, and the dynamic hardness is 10 kgf.
When the value is smaller than / mm 2 , the mechanical hardness is impaired,
When the value of the dynamic hardness is more than 500 kgf / mm 2 , the abrasion of the surface layer is reduced, so that the surface layer is hardly abraded, and the effect of scraping off the corona discharge product is reduced, which may cause image deletion. Further, the amount of fluorine contained in the surface layer film is 5 to 50 at%, preferably 10 to 30 at% in terms of F / (C + F). If the fluorine content is less than 5%, water repellency and abrasion may not be maintained.
If it exceeds 50%, the adhesion and densification of the film will be impaired,
Mechanical strength may be impaired.

【0035】上記、弗素原子含有量及びダイナミック硬
度の範囲において、表面層はA4版の複写工程を転写紙
1万枚に行った後の摩耗量が0.1Å以上100Å以下
の範囲を選択することにより摩擦によるブレードのビビ
リが少なく、ブレード面の部分的なストレスが抑えられ
るため、現像剤の部分的な滞留が緩和される。その結
果、ムラ削れせず均一に表面層が磨耗することにより、
クリーニング性に優れ、トナーの飛散がなく、ワイヤー
汚れ及び、削れの効果による融着を防止することが可能
である。又、表面層が均一に摩耗することにより、光受
容部材表面に付着したコロナ放電生成物を効率よくムラ
なく削り取られるため、光受容部材を加温する手段を設
けずとも、いかなる環境条件下においても画像流れが発
生しないのである。
In the above-mentioned range of the fluorine atom content and the dynamic hardness, the surface layer is selected to have an abrasion amount of 0.1 to 100 mm after the copying process of A4 plate is performed on 10,000 sheets of transfer paper. As a result, chattering of the blade due to friction is reduced, and partial stress on the blade surface is suppressed, so that partial stagnation of the developer is reduced. As a result, the surface layer is uniformly worn without uneven shaving,
It has excellent cleaning properties, does not scatter toner, and can prevent wire fouling and fusing due to shaving effects. In addition, since the surface layer is uniformly worn, the corona discharge products adhered to the surface of the light receiving member can be efficiently scraped off without unevenness. Therefore, without providing a means for heating the light receiving member, under any environmental conditions. Also, no image deletion occurs.

【0036】本発明に用いる光受容部材の表面層の前記
摩耗量が、100Åより大きい値になると機械的強度が
損なわれる場合があり、0.1Åより小さい値になると
表面層が磨耗しにくくなりコロナ放電生成物を削り取る
効果が低減し画像流れが発生する場合がある。
If the amount of wear of the surface layer of the light receiving member used in the present invention is greater than 100 °, mechanical strength may be impaired. If the amount of wear is less than 0.1 °, the surface layer is less likely to be worn. The effect of scraping off corona discharge products is reduced, and image deletion may occur.

【0037】さらに本発明の光受容部材に用いる表面層
の膜厚としては表面層の磨耗量と電子写真装置の寿命と
の関係から最適な膜厚が決定できる。一般的には0.0
1μm〜10μm、好適には0.1μm〜1μmの範囲
が望ましい。表面層の膜厚が0.01μm以下であると
機械的強度が損なわれ、10μm以上となると残留電位
が高くなる場合がある。
Further, the optimum thickness of the surface layer used in the light receiving member of the present invention can be determined from the relationship between the amount of wear of the surface layer and the life of the electrophotographic apparatus. Generally 0.0
A range of 1 μm to 10 μm, preferably 0.1 μm to 1 μm is desirable. If the film thickness of the surface layer is 0.01 μm or less, the mechanical strength is impaired, and if it is 10 μm or more, the residual potential may increase.

【0038】以下、図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0039】図1の(A)及び(B)は本発明による光
受容部材の模式的な断面図の一例であり、図1において
(A)は光導電層が機能分離されていない単一層からな
る単層型光受容部材である。又(B)は光導電層が電荷
発生層と電荷輸送層とに分離された機能分離型光受容部
材である。
FIGS. 1A and 1B are examples of a schematic cross-sectional view of a light receiving member according to the present invention. In FIG. 1A, a photoconductive layer is formed from a single layer whose function is not separated. Is a single-layer light receiving member. (B) is a function-separated type light-receiving member in which a photoconductive layer is separated into a charge generation layer and a charge transport layer.

【0040】図1(A)に示すa−Si系光受容部材は
アルミニウム等の導電性基体101と、導電性基体10
1の表面に順次積層された電荷注入阻止層102と光導
電層103及び表面層104からなる。ここで、電荷注
入阻止層102は導電性基体101から光導電層103
ヘの電荷の注入を阻止するものであり、必要に応じて設
けられる。光導電層103は少なくともシリコン原子を
含む非晶質材料で構成され、光導電性を示すものであ
る。さらに表面層104は少なくとも炭素原子と弗素原
子を含む非晶質材料で構成され、電子写真装置における
顕像を保持する能力をもつものである。
The a-Si light receiving member shown in FIG. 1A is made of a conductive substrate 101 such as aluminum and a conductive substrate 10.
The charge injection blocking layer 102, the photoconductive layer 103, and the surface layer 104 are sequentially laminated on the surface of the substrate 1. Here, the charge injection blocking layer 102 is formed from the conductive substrate 101 to the photoconductive layer 103.
This is to prevent the injection of electric charge into the device, and is provided as needed. The photoconductive layer 103 is made of an amorphous material containing at least silicon atoms, and has photoconductivity. Further, the surface layer 104 is made of an amorphous material containing at least carbon atoms and fluorine atoms, and has a capability of maintaining a visible image in an electrophotographic apparatus.

【0041】以下では、電荷注入阻止層102の有無に
より効果が異なる場合を除いては、電荷注入阻止層10
2はあるものとして説明する。
In the following, the charge injection blocking layer 10 is used except when the effect differs depending on the presence or absence of the charge injection blocking layer 102.
2 will be described as being present.

【0042】図1(B)に示すa−Si系光受容部材
は、光導電層103が少なくともシリコン原子と炭素原
子を含む非晶質材料で構成された電荷輸送層106と、
少なくともシリコン原子を含む非品質材料で構成された
電荷発生層105が順次積層された構成の機能分離型と
した光受容部材である。この光受容部材に光照射すると
主として電荷発生層105で生成されたキャリアーが電
荷輸送層106を通過して導電性基体101に至る。
The a-Si light receiving member shown in FIG. 1B has a charge transport layer 106 in which the photoconductive layer 103 is made of an amorphous material containing at least silicon atoms and carbon atoms.
This is a function-separated type light receiving member having a configuration in which a charge generation layer 105 made of a non-quality material containing at least silicon atoms is sequentially stacked. When the light receiving member is irradiated with light, carriers mainly generated in the charge generation layer 105 pass through the charge transport layer 106 and reach the conductive substrate 101.

【0043】なお、表面層104の成膜ガスとしては、
CF4,C26,CHF3,CH22,CH3F等の弗素
系ガス、H2及びCH4,C26,C38,C410等の炭
化水素系ガスが有効に使用されるものとしてあげられ
る。又、これらの弗素供給用の原料ガスを必要に応じて
He、Ar、Ne等の不活性ガスにより希釈して使用し
てもよい。
The film forming gas for the surface layer 104 is as follows.
Fluorinated gases such as CF 4 , C 2 F 6 , CHF 3 , CH 2 F 2 and CH 3 F, and H 2 and hydrocarbons such as CH 4 , C 2 H 6 , C 3 H 8 and C 4 H 10 The gas can be used effectively. Further, these source gases for supplying fluorine may be diluted with an inert gas such as He, Ar, Ne or the like, if necessary.

【0044】図2は、プラズマCVD法(PCVD法)
による光受容部材の一般的堆積装置の一例を模式的に示
した図である。
FIG. 2 shows a plasma CVD method (PCVD method).
FIG. 1 is a view schematically showing an example of a general deposition apparatus for a light receiving member according to the present invention.

【0045】この装置は大別すると、堆積装置210
0、原料ガスの供給装置2200、反応容器2110内
を減圧するための排気装置(図示せず)から構成されて
いる。堆積装置2100中の反応容器2110内にはア
ースに接続された円筒状被成膜基体2112、円筒状被
成膜基体の加熱用ヒーター2113、原料ガス導入管2
114が設置され、さらに高周波マッチングボックス2
115を介して高周波電源2120が接続されている。
This apparatus is roughly classified into a deposition apparatus 210
0, a source gas supply device 2200, and an exhaust device (not shown) for reducing the pressure inside the reaction vessel 2110. A cylindrical deposition substrate 2112 connected to the ground, a heater 2113 for heating the cylindrical deposition substrate, a source gas introduction pipe 2 are provided in a reaction vessel 2110 in the deposition apparatus 2100.
114, and a high-frequency matching box 2
A high frequency power supply 2120 is connected via 115.

【0046】原料ガス供給装置2200は、SiH4
2,CH4,NO,B26,CF4等の原料ガスボンベ
2221〜2226とバルブ2231〜2236、22
41〜2246、2251〜2256及びマスフローコ
ントローラー2211〜2216から構成され、各構成
ガスのボンベはバルブ2260を介して反応容器211
0内のガス導入管2114に接続されている。
The raw material gas supply device 2200 includes SiH 4 ,
Source gas cylinders 2221 to 2226 such as H 2 , CH 4 , NO, B 2 H 6 , CF 4, and valves 2231 to 2236, 22
41 to 2246, 2251 to 2256, and mass flow controllers 2211 to 2216. The gas cylinders for the respective constituent gases are supplied via the valve 2260 to the reaction vessel 211.
0 is connected to a gas introduction pipe 2114.

【0047】円筒状被成膜基体2112は導電性受け台
2123の上に設置されることによってアースに接続さ
れる。
The cylindrical film-forming substrate 2112 is connected to the ground by being placed on the conductive support 2123.

【0048】以下、図2の装置を用いた、光受容部材の
形成方法の手順の一例について説明する。
An example of a procedure of a method for forming a light receiving member using the apparatus shown in FIG. 2 will be described below.

【0049】反応容器2110内に円筒状被成膜基体2
112を設置し、不図示の排気装置(例えば真空ンプ)
により反応容器2110内を排気する。続いて円筒状被
成膜基体加熱用ヒーター2113および不図示の制御装
置により円筒状被成膜基体2112の温度を20℃〜5
00℃の所望の温度に制御する。次いで、光受容部材形
成用の原料ガスを反応容器2110内に流入させるには
ガスボンベのバルブ2231〜2236、反応容器のリ
ークバルブ2117が閉じられていこと、および流入バ
ルブ2241〜2246、流出バルブ2251〜225
6、補助バルブ2260が開かれていることを確認し、
メインバルブ2118を開いて反応容器2110及びガ
ス供給配管2116内を排気する。
A cylindrical film-forming substrate 2 is
112 is installed, and an exhaust device (not shown) (not shown)
Evacuates the reaction vessel 2110. Subsequently, the temperature of the cylindrical film-forming substrate 2112 is controlled to 20 ° C. to 5 ° C. by the heater 2113 for heating the cylindrical film-forming substrate and a control device (not shown).
Control to the desired temperature of 00 ° C. Next, in order to allow the source gas for forming the light receiving member to flow into the reaction vessel 2110, the valves 2231 to 2236 of the gas cylinder and the leak valve 2117 of the reaction vessel are closed, and the inflow valves 2241 to 2246 and the outflow valve 2251 to 225
6. Confirm that the auxiliary valve 2260 is open,
The main valve 2118 is opened to evacuate the reaction vessel 2110 and the gas supply pipe 2116.

【0050】その後、真空計2119の読みが0.7P
aになった時点で補助バルブ2260、流出バルブ22
51〜2256を閉じる。その後ガスボンベ2221〜
2226より各ガスをバルブ2231〜2236を開い
て導入し、圧力調整器2261〜2266により各ガス
圧を1.96X105 Paに調整する。以上の手順によ
って成膜準備を完了した後、円筒状被成膜基体2112
上に、まず光導電層の形成を行う。
Thereafter, the gauge 2119 reads 0.7P
a, the auxiliary valve 2260 and the outflow valve 22
Close 51-2256. Then the gas cylinder 2221
Each gas is introduced from 2226 by opening valves 2231 to 2236, and each gas pressure is adjusted to 1.96 × 10 5 Pa by pressure regulators 2261 to 2266. After the preparation for the film formation is completed by the above procedure, the cylindrical film formation base 2112 is formed.
First, a photoconductive layer is formed.

【0051】すなわち、円筒状被成膜基体2112が所
望の温度になったところで、各流出バルブ2251〜2
256のうちの必要なものと補助バルブ2260とを徐
々に開き、各ガスボンベ2221〜2226から所望の
原料ガスをガス導入管2114を介して反応容器211
0内に導入する。次に、各マスフローコントローラー2
211〜2216によって、各原料ガスが所望の流量に
なるように調整する。その際、反応容器2110内が1
33Pa以下の所望の圧力になるように、真空計211
9を見ながらメィンバルブ2118の開口を調整する。
内圧が安定したところで、高周波電源2120を所望の
電力、例えば周波数1MHz〜450MHzの高周波電
力に設定して、これを高周波マッチングボックス211
5を通じてカソード電極2111に供給し高周波グロー
放電を生起させる。この放電エネルギーによって反応容
器2110内に導入された各原料ガスが分解され、円筒
状被成膜基体2112上に所望のシリコン原子を主成分
とする光導電層が堆積される。所望の膜厚の形成が行わ
れた後、高周波電力の供給を止め、各流出バルブ225
1〜2256を閉じて反応容器2110ヘの各原料ガス
の流入を止め、光導電層の形成を終える。
That is, when the temperature of the cylindrical film-forming substrate 2112 reaches a desired temperature, each of the outflow valves 2251 to 2251
The necessary one of the 256 and the auxiliary valve 2260 are gradually opened, and a desired raw material gas is supplied from each of the gas cylinders 2221 to 2226 through the gas introduction pipe 2114 to the reaction vessel 211.
Introduce into 0. Next, each mass flow controller 2
According to 211 to 2216, each raw material gas is adjusted so as to have a desired flow rate. At this time, the inside of the reaction vessel 2110 is 1
The vacuum gauge 211 is set to a desired pressure of 33 Pa or less.
9 while adjusting the opening of the main valve 2118.
When the internal pressure is stabilized, the high-frequency power supply 2120 is set to a desired power, for example, a high-frequency power of a frequency of 1 MHz to 450 MHz, and the high-frequency power is set to a high-frequency matching box 211.
5 to the cathode electrode 2111 to generate a high-frequency glow discharge. Each source gas introduced into the reaction vessel 2110 is decomposed by this discharge energy, and a photoconductive layer mainly containing silicon atoms is deposited on the cylindrical substrate 2112. After the formation of the desired film thickness, the supply of the high-frequency power is stopped, and each outflow valve 225
By closing 1-2256, the flow of each source gas into the reaction vessel 2110 is stopped, and the formation of the photoconductive layer is completed.

【0052】光導電層の組成や膜厚は公知のものを適用
することができる。上記光導電層に表面層を形成する場
合も基本的には上記の操作を繰り返せばよい。
Known compositions and thicknesses of the photoconductive layer can be applied. In the case of forming a surface layer on the photoconductive layer, the above operation may be basically repeated.

【0053】図3は、高周波電源を用いたプラズマCV
D法による光受容部材の堆積装置の別の一例を模式的に
示した図である。
FIG. 3 shows a plasma CV using a high frequency power supply.
It is the figure which showed typically another example of the deposition apparatus of the light receiving member by the D method.

【0054】この装置は大別すると、堆積装置310
0、原料ガスの供給装置3200、反応容器3110内
を減圧するための排気装置(図示せず)から構成されて
ぃる。堆積装置3100中の反応容器3110内にはア
ースに接続された円筒状被成膜基体3112、円筒状被
成膜基体の加熱用ヒーター3113、原料ガス導入管3
114が設置され、さらに高周波マッチングボックス3
115を介して高周波電源3120が接続されている。
This apparatus is roughly classified into a deposition apparatus 310
0, a source gas supply device 3200, and an exhaust device (not shown) for reducing the pressure inside the reaction vessel 3110. A cylindrical deposition substrate 3112 connected to the ground, a heater 3113 for heating the cylindrical deposition substrate, and a source gas introduction pipe 3 are provided in a reaction vessel 3110 in the deposition apparatus 3100.
114 is installed, and the high-frequency matching box 3
A high frequency power supply 3120 is connected via 115.

【0055】原料ガス供給装置3200は、SiH4
2,CH4,NO,B26,CF4等の原料ガスボンベ
3221〜3226とバルブ3231〜3236、32
41〜3246、3251〜3256及びマスフローコ
ントローラー3211〜3216から構成され、各構成
ガスのポンベはバルブ3260を介して反応容器311
0内のガス導入管3114に接続されている。
The raw material gas supply device 3200 includes SiH 4 ,
H 2, CH 4, NO, B 2 H 6, a raw material gas cylinder such as CF 4 3221 to 3226 and the valve 3231~3236,32
41-3246, 3251-256, and mass flow controllers 3211-216. The constituent gas pumps are connected via a valve 3260 to the reaction vessel 311.
0 is connected to the gas introduction pipe 3114.

【0056】円筒状被成膜基体3112は導電性受け台
3123の上に設置されることによってアースに接続さ
れる。カソード電極3111は導電性材料からなり、絶
縁材料3121によって絶縁されている。
The cylindrical substrate 3112 is connected to the ground by being placed on the conductive support 3123. The cathode electrode 3111 is made of a conductive material, and is insulated by the insulating material 3121.

【0057】導電性受け台3123に用いる導電性材料
としては、銅、アルミニウム、金、銀、白銀、鉛、ニッ
ケル、コバルト、鉄、クロム、モリブデン、チタン、ス
テンレス及び、これらの材料の材料の2種類以上の複合
材料等が使用できる。
The conductive material used for the conductive support 3123 includes copper, aluminum, gold, silver, silver, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, and materials of these materials. More than two types of composite materials can be used.

【0058】カソード電極3111を絶縁するため絶縁
材料としては、セラミックス、テフロン、(登録商標)
マイカ、ガラス、石英、シリコーンゴム、ポリエチレ
ン、ポリプロピレン等が使用できる。
As an insulating material for insulating the cathode electrode 3111, ceramics, Teflon, (registered trademark)
Mica, glass, quartz, silicone rubber, polyethylene, polypropylene and the like can be used.

【0059】使用されるマッチングボックスは3115
は高周波電源3120と負荷の整合を取ることができる
ものであればいかなる構成のものでも好適に使用でき
る。整合を取る方法としては、自動調整が好適であるが
手動で調整されるものであっても本発明の効果には全く
影響はない。
The matching box used is 3115
Any structure can be suitably used as long as it can match the load with the high frequency power supply 3120. As a method for obtaining the matching, automatic adjustment is preferable, but even if it is adjusted manually, the effect of the present invention is not affected at all.

【0060】高周波電力が印加されるカソード電極31
11の材質としては銅、アルミニウム、金、銀、白金、
鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チ
タン、ステンレス及びメこれらの材料の2種類以上の複
合材料等が使用できる。形状は円筒形状が好ましいが必
要に応じて楕円形状、多角形状を用いてもよい。
Cathode electrode 31 to which high-frequency power is applied
Materials of 11 include copper, aluminum, gold, silver, platinum,
Lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, and composite materials of two or more of these materials can be used. The shape is preferably a cylindrical shape, but an elliptical shape or a polygonal shape may be used if necessary.

【0061】カソード電極3111は必要に応じて冷却
手段を設けてもよい。具体的な冷却媒体としては水、空
気、液体窒素ペルチェ素子等が必要に応じて用いられ
る。
The cathode electrode 3111 may be provided with a cooling means if necessary. As a specific cooling medium, water, air, liquid nitrogen Peltier element or the like is used as needed.

【0062】本発明に用いる円筒状被成膜基体3112
は、使用目的に応じた材質や形状を有するものであれば
よい。例えば、形状に関しては、電子写真用感光体を製
造する場合には、円筒状が望ましいが、必要に応じて平
板状や、その他の形状であってもよい。材質は、銅、ア
ルミニウム、金、銀、白銀、鉛、ニッケル、コバルト、
鉄、クロム、モリブデン、チタン、ステンレス及びこれ
らの材料の2種類以上の複合材料、さらにはポリエステ
ル、ポリエチレン、ポリカーボネート、セルロースアセ
テート、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビ
ニリデン、ポリスチレン、ガラス、石英、セラミック
ス、紙などの絶縁材料に導電性を被覆したものなどが使
用できる。
The cylindrical substrate 3112 used in the present invention
May have any material or shape according to the purpose of use. For example, the shape is preferably cylindrical when an electrophotographic photoreceptor is manufactured, but may be flat or another shape if necessary. The material is copper, aluminum, gold, silver, silver, lead, nickel, cobalt,
Iron, chromium, molybdenum, titanium, stainless steel and composite materials of two or more of these materials, as well as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, glass, quartz, ceramics, An insulating material such as paper coated with conductivity can be used.

【0063】以下、図3の装置を用いた、光受容部材の
形成方法の手順の一例について説明する。
An example of a procedure of a method for forming a light receiving member using the apparatus shown in FIG. 3 will be described below.

【0064】反応容器3110内に円筒状被成膜基体3
112を設置し、不図示の排気装置(例えば真空ンプ)
により反応容器3110を排気する。続いて円筒状被成
膜基体加熱用ヒーター3113および不図示の制御装置
により円筒状被成膜基体3112の温度を20℃〜50
0℃の所定の温度に制御する。
In the reaction vessel 3110, the cylindrical film-forming substrate 3
112 is installed, and an exhaust device (not shown) (not shown)
To exhaust the reaction vessel 3110. Subsequently, the temperature of the cylindrical film-forming substrate 3112 is raised to 20 ° C. to 50 ° C. by the heater 3113 for heating the cylindrical film-forming substrate and a control device (not shown).
Control to a predetermined temperature of 0 ° C.

【0065】光受容部材形成用の原料ガスを反応容器3
110内に流入させるにはガスボンベのバルブ3231
〜3236、反応容器のリークバルブ3117が閉じら
れていることおよび流入バルブ3241〜3246、流
出バルブ3251〜3256、補助バルブ3260が開
かれていることを確認し、メインバルブ3118を開い
て反応容器3110及びガス供給配管3116内を排気
する。
The raw material gas for forming the light receiving member is supplied to the reaction vessel 3
To allow the gas to flow into 110, the valve 3231 of the gas cylinder is used.
3236, the leak valve 3117 of the reaction vessel is closed, and the inflow valves 3241 to 246, the outflow valves 3251 to 256, and the auxiliary valve 3260 are opened, and the main valve 3118 is opened to open the reaction vessel 3110. Then, the inside of the gas supply pipe 3116 is exhausted.

【0066】次に真空計3119の読みが0.7Paに
なった時点で補助バルブ3260、流出バルブ3251
〜3256を閉じる。その後ガスボンベ3221〜32
26より各ガスをバルブ3231〜3236を開いて導
入し圧力調整器3261〜3266により各ガス圧を2
kg/cm2に調整する。次に流入バルブ3241〜3
246を徐々に開けて各ガスをマスフローコントローラ
ー3211〜3216内に導入する。以上の手順によっ
て成膜準備を完了した後、円筒状被成膜基体3112上
に光導電層の形成を行う。
Next, when the reading of the vacuum gauge 3119 becomes 0.7 Pa, the auxiliary valve 3260 and the outflow valve 3251
Close ~ 3256. Then gas cylinders 3221-32
26, each gas is introduced by opening valves 3231 to 236, and each gas pressure is adjusted to 2 by pressure regulators 3261 to 3266.
Adjust to kg / cm 2 . Next, the inflow valves 3241 to 3241
246 is gradually opened to introduce each gas into the mass flow controllers 3211 to 3216. After the preparation for film formation is completed by the above procedure, a photoconductive layer is formed on the cylindrical film-formed substrate 3112.

【0067】円筒状被成膜基体3112が所定の温度に
なったところで、各流出バルブ3251〜3256のう
ちの必要なものと補助バルブ3260とを徐々に開き、
各ガスボンベ3221〜3226から所定の原料ガスを
ガス導入管3114を介して反応容器3110内に導入
する。次に、各マスフローコントローラー3211〜3
216によって、各原料ガスが所定の流量になるように
調整する。その際、反応容器3110内が133Pa以
下の所定の圧力になるように、真空計3119を見なが
らメインバルブ3118の開口を調整する。内圧が安定
したところで、高周波電源3120を所望の電力、例え
ば周波数1MHz〜450MHzの高周波電力に設定し
てそれを高周波マッチングボックス3115を通じてカ
ソード電極3111に供給し高周波グロー放電を生起さ
せる。この放電エネルギーにって反応容器3110内に
導入された各原料ガスが分解され、円筒状被成膜基体3
112上に所定のシリコン原子を主成分とする堆積膜が
形成される。所望の膜厚の形成が行われた後、高周波電
力の供給を止め、各流出バルブ3251〜3256を閉
じて反応容器3110ヘの各原料ガスの流入を止め、堆
積膜の形成を終える。
When the temperature of the cylindrical substrate 3112 reaches a predetermined temperature, a necessary one of the outflow valves 3251 to 256 and the auxiliary valve 3260 are gradually opened.
A predetermined source gas is introduced from each of the gas cylinders 3221 to 226 into the reaction vessel 3110 via the gas introduction pipe 3114. Next, each of the mass flow controllers 3211 to 3211
In step 216, each source gas is adjusted to have a predetermined flow rate. At this time, the opening of the main valve 3118 is adjusted while watching the vacuum gauge 3119 so that the inside of the reaction vessel 3110 has a predetermined pressure of 133 Pa or less. When the internal pressure is stabilized, the high frequency power supply 3120 is set to a desired power, for example, a high frequency power of a frequency of 1 MHz to 450 MHz, and supplied to the cathode electrode 3111 through the high frequency matching box 3115 to generate a high frequency glow discharge. The respective source gases introduced into the reaction vessel 3110 are decomposed by the discharge energy, and the cylindrical substrate 3
A deposited film mainly containing predetermined silicon atoms is formed on 112. After the formation of the desired film thickness, the supply of the high-frequency power is stopped, the outflow valves 3251 to 256 are closed to stop the flow of the source gases into the reaction vessel 3110, and the formation of the deposited film is completed.

【0068】又、本発明の表面層を形成する場含も基本
的には上記の操作を繰り返せばよい。具体的には各流出
バルブ3251〜3256のうちの必要なものと補助バ
ルブ3260とを徐々に開き、各ガスボンベ3221〜
3226から表面層に必要な原料ガスをガス導入管31
14を介して反応容器3110内に導入する。次に、各
マスフローコントローラー3211〜3216によっ
て、各原料ガスが所定の流量になるように調整する。そ
の際、反応容器3110内が133Pa以下の所定の圧
力になるように、真空計3119を見ながらメインバル
ブ3118の開口を調整する。内圧が安定したところ
で、高周波電源3120を所望の電力例えば周波数1M
Hz〜450MHzの高周波電力に設定して高周波マッ
チングボックス3115を通じてカソード電極3111
に供給し高周波グロー放電を生起させる。この放電エネ
ルギーによって反応容器3110内に導入された各原料
ガスが分解され、表面層が形成される。所望の膜厚の形
成が行われた後、高周波電力の供給を止め、各流出バル
ブ3251〜3256を閉じて反応容器3110ヘの各
原料ガスの流入を止め、表面層の形成を終える。
In addition, when the surface layer of the present invention is formed, the above operation may be basically repeated. Specifically, a necessary one of the outflow valves 3251 to 256 and the auxiliary valve 3260 are gradually opened, and each gas cylinder 3221 to
The raw material gas necessary for the surface layer is supplied from
Introduced into the reaction vessel 3110 via. Next, each of the mass flow controllers 3211 to 216 adjusts each of the raw material gases to a predetermined flow rate. At this time, the opening of the main valve 3118 is adjusted while watching the vacuum gauge 3119 so that the inside of the reaction vessel 3110 has a predetermined pressure of 133 Pa or less. When the internal pressure is stabilized, the high frequency power supply 3120 is switched to a desired power, for example, a frequency of 1M.
And the high-frequency power is set to about 450 to 450 MHz, and the cathode electrode 3111 is passed through the high-frequency matching box 3115.
To generate high-frequency glow discharge. Each source gas introduced into the reaction vessel 3110 is decomposed by the discharge energy, and a surface layer is formed. After the formation of the desired film thickness, the supply of the high-frequency power is stopped, the outflow valves 3251 to 256 are closed to stop the flow of the source gases into the reaction vessel 3110, and the formation of the surface layer is completed.

【0069】なお、膜形成を行っている間は円筒状被成
膜基体3112を駆動装置(不図示)によって所定の速
度で回転させてもよい。
During the film formation, the cylindrical substrate 3112 may be rotated at a predetermined speed by a driving device (not shown).

【0070】図4は電子写真装置の画像形成プロセスの
一例を説明するための電子写真装置の一例を示す概略図
であって、光受容部材401は内側に設けられた面状ヒ
ーター423によって温度コントロール可能とされ、必
要に応じて矢印X方向に回転する。光受容部材401の
周辺には、主帯電器402、静電潜像形成部位403、
現像器404、転写材供給系405、転写帯電器40
6、分離帯電器407、クリーナー425、搬送系40
8、除電光源409等が必要に応じて配設されている。
FIG. 4 is a schematic view showing an example of an electrophotographic apparatus for explaining an example of an image forming process of the electrophotographic apparatus. The light receiving member 401 is controlled in temperature by a sheet heater 423 provided inside. It is enabled and rotates in the direction of arrow X as needed. Around the light receiving member 401, a main charger 402, an electrostatic latent image forming portion 403,
Developing device 404, transfer material supply system 405, transfer charger 40
6, separation charger 407, cleaner 425, transport system 40
8, a static elimination light source 409 and the like are provided as needed.

【0071】次に具体的に画像形成プロセスの一例を説
明する。光受容部材401は+6〜8kvの高電圧を印
加した主帯電器402により一様に帯電される。これに
静電潜像部位に、ランプ410から発した光が原稿台ガ
ラス411上に置かれた原稿412に反射し、ミラー4
13、414、415を経由し、レンズユニット417
のレンズ418によって結像され、ミラー416を経由
した導かれ、情報を担った光として投影され、光受容部
材401上に静電潜像が形成される。この潜像に現像器
404からネガ極性の現像剤が供給されて現像剤像が形
成される。この露光は原稿412からの反射によらず、
LEDアレーやレーザービーム、もしくは液晶シャッタ
ー等を用いて情報を担った光を走査露光するようにして
もよい。
Next, an example of the image forming process will be specifically described. The light receiving member 401 is uniformly charged by the main charger 402 to which a high voltage of +6 to 8 kv is applied. The light emitted from the lamp 410 is reflected on the document 412 placed on the platen glass 411 at the portion of the electrostatic latent image,
13, 414, 415, and the lens unit 417
An image is formed by the lens 418, guided through the mirror 416, projected as light carrying information, and an electrostatic latent image is formed on the light receiving member 401. A developer having a negative polarity is supplied to the latent image from the developing device 404 to form a developer image. This exposure does not depend on the reflection from the original 412,
Light carrying information may be scanned and exposed using an LED array, a laser beam, a liquid crystal shutter, or the like.

【0072】一方、紙等の転写材Pは転写材供給系40
5を通って、レジストローラー422によって先端供給
タイミングを調整され、光受容部材401方向に供給さ
れる。転写材Pは+7〜8kvの高電圧を印加した転写
帯電器406と光受容部材401の間隙において背面か
ら、背面から、現像剤とは逆極性の正電界を与えられ、
これによって光受容部材表面のネガ極性の現像剤像は転
写材Pに転写される。次いで、12〜14kVp−p、
300〜600Hzの高圧AC電圧を印加した分離帯電
器407により、光受容部材401から分離される。続
いて転写材Pは転写搬送系408を通って定着装置42
4に至り、現像剤像が定着されて装置外に搬出される。
On the other hand, a transfer material P such as paper is supplied to a transfer material supply system 40.
5, the leading end supply timing is adjusted by the registration roller 422, and the leading end is supplied toward the light receiving member 401. The transfer material P is provided with a positive electric field having a polarity opposite to that of the developer from the back surface to the back surface in the gap between the transfer charger 406 to which the high voltage of +7 to 8 kv is applied and the light receiving member 401.
As a result, the negative polarity developer image on the surface of the light receiving member is transferred to the transfer material P. Then, 12-14 kVp-p,
It is separated from the light receiving member 401 by a separation charger 407 to which a high AC voltage of 300 to 600 Hz is applied. Subsequently, the transfer material P passes through the transfer conveyance system 408 and is fixed to the fixing device 42.
Then, the developer image is fixed and is carried out of the apparatus.

【0073】光受容部材401上に残留する現像剤はク
リーナー425のシリコーンゴムやウレタンゴム等の弾
性材料からなるクリーニンブレード421によって回収
され、残留する静電潜像は除電光源409によって消去
される。
The developer remaining on the light receiving member 401 is collected by a cleaner blade 421 made of an elastic material such as silicone rubber or urethane rubber of the cleaner 425, and the remaining electrostatic latent image is erased by the charge removing light source 409.

【0074】なお、420はブランク露光LEDで光受
容部材401の転写材Pの幅を越える部分及び余白部分
等の非画像部領域に不要な現像剤が付着しないように必
要に応じて光受容部材401を露光するために設けられ
る。
Reference numeral 420 denotes a blank exposure LED, which is a light-receiving member as necessary so that unnecessary developer does not adhere to a non-image area such as a portion of the light-receiving member 401 exceeding the width of the transfer material P and a blank portion. It is provided for exposing 401.

【0075】以下、本発明を実施例を用いて具体的に説
明するが、本発明はこれらによりなんら限定されるもの
ではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0076】[0076]

【実施例】実施例1 図2に記載のプラズマCVD装置を用いて表1の条件に
より円筒状導電性基体上に下部阻止層、光導電層を積層
した後、表2の条件で表面層を0.5μm堆積し光受容
部材を製造した。
Example 1 A lower blocking layer and a photoconductive layer were laminated on a cylindrical conductive substrate under the conditions shown in Table 1 using the plasma CVD apparatus shown in FIG. A light receiving member was manufactured by depositing 0.5 μm.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 さらに表面層の弗素含有量を測定するためのサンプルと
して7059ガラス基板上にも表2の条件で表面層を
0.5μm堆積しA〜Cのa−C:F表面層サンプルを
作成した。
[Table 2] Further, as a sample for measuring the fluorine content of the surface layer, a surface layer of 0.5 μm was deposited on a 7059 glass substrate under the conditions shown in Table 2 to prepare AC to F aC: F surface layer samples.

【0079】このA〜Cの表面層サンプルについて、E
SCA分析による弗素量F/(C+F)の測定を行った
後、島津製作所社製ダイナミック超微小硬度計(DUH
−201)によりダイナミック硬さを測定した。但し、
ダイナミック硬さ測定に用いた圧子は、稜間角115゜
の三角すい圧子(先端曲率半径0.1μm以下)を使用
して0.1gf荷重になるまで圧子を押し込んだ時の値
である。
For the surface layer samples A to C, E
After measuring the fluorine content F / (C + F) by SCA analysis, a dynamic ultra-fine hardness tester (DUH manufactured by Shimadzu Corporation) was used.
-201) was used to measure the dynamic hardness. However,
The indenter used for the dynamic hardness measurement is a value when the indenter is pushed down to a load of 0.1 gf using a triangular cone indenter with a 115 ° edge-to-edge angle (radius of curvature of the tip is 0.1 μm or less).

【0080】その結果、光受容部材A〜Cに積層した表
面層の弗素量及びダイナミック硬度は、表3に示した値
であった。
As a result, the fluorine content and the dynamic hardness of the surface layers laminated on the light receiving members A to C were the values shown in Table 3.

【0081】[0081]

【表3】 次いで、光受容部材をA〜Cをキヤノン製複写機NP-
6085の改造機に搭載し光受容部材の移動速度を30
0mm/secでA4版の連続通紙耐久を10万枚行い
クリーニング性の評価を行った。なお、弾性ゴムブレー
ド421は反発弾性10%のウレタンゴムブレードを使
用した。使用する現像剤に関しては、現像剤の粒径が小
さい程、融着が発生し易いことから粒径が6.5μmの
ものを使用した。さらに光受容部材の表面温度を60℃
にコントロールすることにより融着が発生し易い条件と
した。耐久後の表面層の摩耗量を表3に示す。この表面
層の摩耗量は耐久前の表面層膜厚を反射分光式干渉計に
より測定し、この値から表面層の膜厚変化量を1万枚当
りの摩耗量に換算したものである。
[Table 3] Next, the light receiving members A to C were copied by a Canon copier NP-
6085 and the moving speed of the light receiving member is 30
100,000 sheets of A4 size continuous paper were passed at 0 mm / sec, and the cleaning performance was evaluated. The elastic rubber blade 421 used was a urethane rubber blade having a rebound resilience of 10%. The developer used had a particle size of 6.5 μm because the smaller the particle size of the developer, the easier the fusion was to occur. Further, the surface temperature of the light receiving member is set to 60 ° C.
The conditions were set such that fusing easily occurred. Table 3 shows the amount of wear of the surface layer after durability. The amount of wear of the surface layer is obtained by measuring the thickness of the surface layer before the endurance using a reflection spectroscopic interferometer, and converting the change in the thickness of the surface layer into the amount of wear per 10,000 sheets from this value.

【0082】更にA〜Cの光受容部材を加温手段を設け
ずに、35℃相対温度90%の環境下で10万枚の耐久
を行い、画像流れの評価を行った。但し弾性ゴムブレー
ド421は反発弾性10%のウレタンゴムブレードを使
用し、ブレードの押し圧を通常の80%の圧力でスクレ
ープクリーニングを行うようにセッティングした。
Further, 100,000 sheets of the photoreceptors A to C were durable in an environment of 35 ° C. and a relative temperature of 90% without providing a heating means, and the image deletion was evaluated. However, a urethane rubber blade having a rebound resilience of 10% was used as the elastic rubber blade 421, and the blade was set so as to perform scrape cleaning at a pressure of 80% of a normal pressure.

【0083】以上の評価で得られた結果を表4に示す。Table 4 shows the results obtained in the above evaluation.

【0084】[0084]

【表4】 次にムラ削れ評価方法、融着評価方法およびクリーニン
グ不良評価方法について、それぞれ図4を用いて説明す
る。 (ムラ削れ評価方法)現像器404位置における暗部電
位が400vになるように主帯電器402の帯電電流量
を調整し、原稿台411にベタ黒の縦ラインを設けた原
稿412を置き、光受容部材表面の母線方向において常
に現像剤で摺擦される部分と摺擦されない部分を設け耐
久を行った後、現像器404位置における暗部電位が4
00vになるように主帯電器402の帯電電流量を調整
し、原稿台411にベタ白原稿412を置き、明部電位
が50vになるようにハロゲンランプ410の点灯電圧
を調整した後、反射濃度が0.3の原稿412を置く。
この時の電位ムラを測定し、正常部分の電位に対するム
ラ削れした部分の電位が何%変化しているかで評価す
る。 ○.........感度ムラがなく良好な画像。 △.........2.5%以下の電位ムラがあるが画像は実用
上問題のないレベル。 ×.........2.5%を越える電位ムラが発生し画像にス
ジ状の濃度ムラが発生。 (融着評価方法)現像器404位置における暗部電位が
400vになるように主帯電器402の帯電電流量を調
整し、原稿台411にベタ白の原稿412を置き、明部
電位が50vになるようにハロゲンランプ410の点灯
電圧を調整し、A3版のベタ白画像を作成する。この画
像によって現像剤の融着により発生する黒ポチを観察
し、さらに顕微鏡により光受容部材表面を観察する。 ○.........融着がなく良好な画像。 △.........画像には黒ポチは発生しないが顕微鏡観察
で10μm以下の微小な融着が認められる(実用上問題
なし)。 ×.........画像上に黒ポチとして発生。 (クリーニング不良評価方法)現像器404位置におけ
る暗部電位が400vになるように主帯電器402の帯
電電流量を調整し、原稿台411に反射濃度が0.3の
原稿412を置き、明部電位が200vになるようにハ
ロゲンランプ410の点灯電圧を調整し、A3版のハー
フトーン画像を作成する。この画像によってスジ状に発
生するクリーニング不良を評価する。 ○.........クリーニング不良がない良好な画像。 △.........幅1mm長さ1cm以内のクリーニング不
良が2個所以下あるが実用上問題のないレベル。 ×.........幅1mm長さ1cm以内のクリーニング不
良が3個所以上発生。又は、幅1mm長さ1cmを越え
るクリーニング不良が発生。
[Table 4] Next, a method for evaluating unevenness scraping, a method for evaluating fusion, and a method for evaluating defective cleaning will be described with reference to FIG. (Method of Evaluating Uneven Sharpness) The charging current amount of the main charger 402 is adjusted so that the dark portion potential at the position of the developing device 404 becomes 400 V, the document 412 provided with a solid black vertical line is placed on the document table 411, After providing a portion that is constantly rubbed with the developer and a portion that is not rubbed in the generatrix direction on the member surface to perform durability, the dark portion potential at the position of the developing device 404 becomes 4
After adjusting the charging current amount of the main charger 402 so as to be 00 V, placing the solid white original 412 on the document table 411 and adjusting the lighting voltage of the halogen lamp 410 so that the bright portion potential becomes 50 V, the reflection density was adjusted. Puts the original 412 of 0.3.
The potential unevenness at this time is measured, and the percentage of the potential of the portion where unevenness is reduced with respect to the potential of the normal portion is evaluated. ......: Good image without sensitivity unevenness. Δ: There is potential unevenness of 2.5% or less, but the image is at a level that does not cause any practical problem. X: Potential unevenness exceeding 2.5% occurred, and streak-like density unevenness occurred in the image. (Fusing evaluation method) The amount of charging current of the main charger 402 is adjusted so that the potential of the dark portion at the position of the developing device 404 becomes 400 V, the solid white document 412 is placed on the platen 411, and the potential of the bright portion becomes 50 V. The lighting voltage of the halogen lamp 410 is adjusted as described above to create an A3-size solid white image. The image is used to observe black spots generated by the fusion of the developer, and the surface of the light receiving member is observed using a microscope. ......: Good image without fusing. Δ: No black spots appear on the image, but microscopic fusion of 10 μm or less is observed by microscopic observation (no problem in practical use). × ......... Black spots appear on the image. (Cleaning defect evaluation method) The amount of charging current of the main charger 402 is adjusted so that the potential of the dark portion at the position of the developing device 404 becomes 400 V, the document 412 having a reflection density of 0.3 is placed on the platen 411, and the potential of the bright portion is The lighting voltage of the halogen lamp 410 is adjusted so that the value becomes 200 V, and an A3-size halftone image is created. This image is used to evaluate a cleaning defect that occurs in the form of a stripe. ......: Good image with no poor cleaning. Δ: No cleaning failure within 1 mm in width and 1 cm in length, but no problem in practical use. ×: Three or more cleaning defects within 1 mm in width and 1 cm in length occurred. Or, a cleaning failure exceeding 1 mm in width and 1 cm in length occurs.

【0085】以上の評価で得られた結果を表5に示す。Table 5 shows the results obtained by the above evaluations.

【0086】[0086]

【表5】 表5によればA、B、C何れの光受容部材においても1
0万枚の耐久後でもムラ削れによって発生する黒スジ状
の画像欠陥は全くなく、クリーニング不良や融着等の画
像欠陥も全く発生しなかった。さらに、画像流れに関し
ても光受容部材の加温手段を設けずとも、良好な画像特
性が得られた。
[Table 5] According to Table 5, 1 was obtained for each of the light receiving members A, B, and C.
Even after the endurance of 100,000 sheets, there were no black streak-like image defects caused by uneven scraping, and no image defects such as poor cleaning and fusion occurred. Further, with respect to image deletion, good image characteristics were obtained without providing a heating means for the light receiving member.

【0087】比較例1 実施例1と同様に、図2に記載のプラズマCVD装置を
用いて表1の条件で円筒状導電性基体上に下部阻止層、
光導電層を積層した後、表6の条件で表面層を0.5μ
m堆積しA’〜C’の光受容部材を製造した。
Comparative Example 1 In the same manner as in Example 1, a lower blocking layer was formed on a cylindrical conductive substrate using the plasma CVD apparatus shown in FIG.
After laminating the photoconductive layer, the surface layer was 0.5 μm thick under the conditions shown in Table 6.
Thus, light receiving members A ′ to C ′ were manufactured.

【0088】[0088]

【表6】 さらに、7059ガラス基板上にも表6の条件でA’〜
C’のa−C:F表面層サンプルを作成し、実施例1と
同様の方法によりA’〜C’の表面層の弗素量及びダイ
ナミック硬度を測定した。
[Table 6] In addition, A ′ ~ on the 7059 glass substrate under the conditions shown in Table 6.
An aC: F surface layer sample of C ′ was prepared, and the fluorine content and dynamic hardness of the surface layers of A ′ to C ′ were measured in the same manner as in Example 1.

【0089】その結果、光受容部材A’〜C’の表面層
の弗素量及びダイナミック硬度は、表7に示した値であ
った。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members A ′ to C ′ were the values shown in Table 7.

【0090】[0090]

【表7】 次いで、この光受容部材A’〜C’をキヤノン製複写機
NP−6085の改造機に搭載し、実施例1と同様の条
件で耐久評価を行った。但し、光受容部材の移動速度を
300mm/secとしブレード421は反発弾性8%
のウレタンゴムブレードを使用した。この耐久後の表面
層の摩耗量を表7に示す。
[Table 7] Next, the light receiving members A ′ to C ′ were mounted on a modified copy machine NP-6085 manufactured by Canon Inc., and the durability was evaluated under the same conditions as in Example 1. However, the moving speed of the light receiving member is 300 mm / sec, and the blade 421 has a rebound resilience of 8%.
A urethane rubber blade was used. Table 7 shows the wear amount of the surface layer after the durability.

【0091】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表8に、画像流れを
評価を表9に示す。
Further, Table 8 shows the evaluation results of uneven shaving, fusion, and cleaning failure described in Example 1, and Table 9 shows the evaluation of image deletion.

【0092】これらの表に示すように、10万枚耐久に
よってムラ削れによるスジ状の画像欠陥が発生した。さ
らに、画像流れに関しても光受容部材の加温手段を設け
ない条件での耐久では、画像流れが発生する場合があっ
た。
As shown in these tables, streak-like image defects due to uneven scraping were generated during the durability of 100,000 sheets. Further, with respect to image deletion, there is a case where image deletion occurs in durability under the condition that the heating means of the light receiving member is not provided.

【0093】[0093]

【表8】 [Table 8]

【0094】[0094]

【表9】 実施例2 実施例1と同様に、図2に記載のプラズマCVD装置を
用いて表1の条件で円筒状導電性基体上に下部阻止層、
光導電層を積層した後、表10の条件で表面層を0.5
μm堆積しD〜Fの光受容部材を製造した。
[Table 9] Example 2 Similarly to Example 1, a lower blocking layer was formed on a cylindrical conductive substrate by using the plasma CVD apparatus shown in FIG.
After laminating the photoconductive layer, the surface layer was 0.5
The light receiving members of DF were manufactured by depositing μm.

【0095】[0095]

【表10】 さらに、7059ガラス基板上にも表10の条件でD〜
Fのa−C:F表面層サンプルを作成し、実施例1と同
様の方法によりD〜Fの表面層の弗素量及びダイナミッ
ク硬度を測定した。
[Table 10] Further, on a 7059 glass substrate, D ~
An a-C: F surface layer sample of F was prepared, and the fluorine content and the dynamic hardness of the D-F surface layer were measured in the same manner as in Example 1.

【0096】その結果、光受容部材D〜Fの表面層の弗
素量及びダイナミック硬度は、表11に示した値であっ
た。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members DF were the values shown in Table 11.

【0097】[0097]

【表11】 次いで、この光受容部材D〜Fをキヤノン製複写機NP
-6085の改造機に搭載し、実施例1と同様の条件で
耐久評価を行った。但し、光受容部材の移動速度を40
0mm/secとしブレード421は反発弾性25%の
ウレタンゴムブレードを使用した。この耐久後の表面層
の磨耗量を表11に示す。
[Table 11] Next, the light receiving members DF are connected to a Canon copier NP.
This was mounted on a modified model of -6085, and the durability was evaluated under the same conditions as in Example 1. However, the moving speed of the light receiving member is 40
The blade 421 was a urethane rubber blade having a rebound resilience of 25% at 0 mm / sec. Table 11 shows the amount of wear of the surface layer after the durability.

【0098】さらにD〜Fの光受容部材を加温手段を設
けずに、35℃相対湿度90%の環境下で10万枚の耐
久を行い、画像流れの評価を行った。但し、ブレードの
押し圧を通常の80%の圧力でスクレープクリーニング
を行うようにセッティングした。以上の評価で得られた
結果を表4に示す。
Further, 100,000 sheets of the light receiving members D to F were subjected to endurance in an environment of 35 ° C. and 90% relative humidity without providing a heating means, and the image deletion was evaluated. However, the setting was made so that the scrape cleaning was performed at a pressure of 80% of the normal pressure of the blade. Table 4 shows the results obtained by the above evaluation.

【0099】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表5に示した。
Further, Table 5 shows the results of the evaluations of uneven scraping, fusion, and defective cleaning described in Example 1.

【0100】上記表4および5によれば、光受容部材D
〜Fいずれの光受容部材においても10万枚の耐久後で
もムラ削れによって発生するスジ状の画像欠陥は全くな
く、クリーニング不良や融着等の画像欠陥も全く発生し
なかった。さらに、画像流れに関しても光受容部材の加
温手段を設けずとも、良好な画像特性が得られた。
According to Tables 4 and 5, the light receiving member D
In any of the light receiving members of Examples F to F, no streak-like image defects caused by uneven shaving were found even after 100,000 sheets had been used, and no image defects such as poor cleaning and fusion occurred. Further, with respect to image deletion, good image characteristics were obtained without providing a heating means for the light receiving member.

【0101】比較例2 実施例1と同様に、図2に記載のプラズマCVD装置を
用いて表1の条件で円筒状導電性基体上に下部阻止層、
光導電層を積層した後、表12の条件で表面層を0.5
μm堆積しD’〜F’の光受容部材を製造した。
Comparative Example 2 In the same manner as in Example 1, a lower blocking layer was formed on a cylindrical conductive substrate using the plasma CVD apparatus shown in FIG.
After laminating the photoconductive layer, the surface layer was 0.5
The light receiving members of D ′ to F ′ were manufactured by depositing μm.

【0102】[0102]

【表12】 さらに、7059ガラス基板上にも表12の条件でD’
〜F’のa−C:F表面層サンプルを作成し、実施例1
と同様の方法によりD’〜F’の表面層の弗素量及びダ
イナミック硬度を測定した。
[Table 12] Furthermore, D ′ was also applied on a 7059 glass substrate under the conditions shown in Table 12.
AC: F surface layer samples of F to F ′ were prepared, and
The amount of fluorine and the dynamic hardness of the surface layers D ′ to F ′ were measured in the same manner as described above.

【0103】その結果、光受容部材D’〜F’の表面層
の弗素量及びダイナミック硬度は、表13に示した値で
あった。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members D ′ to F ′ were as shown in Table 13.

【0104】[0104]

【表13】 次いで、この光受容部材D’〜F’をキヤノン製複写機
NP−6085の改造機に搭載し、実施例1と同様の条
件で耐久評価を行った。但し、光受容部材の移動速度を
400mm/secとしブレード421は反発弾性5%
のウレタンゴムブレードを使用した。この耐久後の表面
層の磨耗量を表13に示す。
[Table 13] Next, the light receiving members D ′ to F ′ were mounted on a modified copy machine NP-6085 made by Canon, and durability evaluation was performed under the same conditions as in Example 1. However, the moving speed of the light receiving member is 400 mm / sec, and the blade 421 has a rebound resilience of 5%.
A urethane rubber blade was used. Table 13 shows the wear amount of the surface layer after the durability.

【0105】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表8に、画像流れの
評価を表9に示した。
Further, Table 8 shows the evaluation results of uneven shaving, fusing and cleaning failure described in Example 1, and Table 9 shows the evaluation of image deletion.

【0106】これらの表に示すように、融着及び画像流
れに関しては実用上問題のないレベルであったが、10
万枚耐久によって摺擦傷及びムラ削れによるスジ状の画
像欠陥が発生する場合があった。
As shown in these tables, there was no practical problem with respect to fusing and image deletion.
In some cases, streak-like image defects due to abrasion and uneven scraping may occur due to the durability of all sheets.

【0107】実施例3 実施例1と同様の方法で、図3に記載のプラズマCVD
装置を用いて表14の条件で円筒状導電性基体上に下部
阻止層、電荷輸送層および電荷発生層を積層した後、表
15の条件で表面層を0.5μm堆積しG〜Iの光受容
部材を製造した。さらに、7059ガラス基板上にも表
15の条件でG〜Iのa−C:F表面層サンプルを作成
し、実施例1と同様の方法によりG〜Iの表面層の弗素
量及びダイナミック硬度を測定した。
Example 3 In the same manner as in Example 1, the plasma CVD shown in FIG.
After the lower blocking layer, the charge transport layer and the charge generation layer were laminated on the cylindrical conductive substrate under the conditions shown in Table 14 using the apparatus, a surface layer was deposited at a thickness of 0.5 μm under the conditions shown in Table 15 and the light of G to I was applied. A receiving member was manufactured. Further, aC: F surface layer samples of GI were prepared on a 7059 glass substrate under the conditions shown in Table 15, and the fluorine content and the dynamic hardness of the GI surface layer were determined in the same manner as in Example 1. It was measured.

【0108】[0108]

【表14】 [Table 14]

【0109】[0109]

【表15】 その結果、光受容部材G〜Iの表面層の弗素量及びダイ
ナミック硬度は、表16に示した値であった。
[Table 15] As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members GI were the values shown in Table 16.

【0110】[0110]

【表16】 次いで、この光受容部材G〜Iをキヤノン製複写機NP
−6085の改造機に搭載し、実施例1と同様の条件で
耐久評価を行った。但し、光受容部材の移動速度を20
0mm/secとしブレード421は反発弾性35%の
シリコンゴムブレードを使用した。この耐久後の表面層
の磨耗量を表16に示す。
[Table 16] Next, the light receiving members G to I are connected to a Canon copier NP.
It was mounted on a remodeled machine of -6085, and the durability was evaluated under the same conditions as in Example 1. However, the moving speed of the light receiving member is 20
The blade 421 was a silicon rubber blade having a rebound resilience of 35% at 0 mm / sec. Table 16 shows the amount of wear of the surface layer after the durability.

【0111】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を17に、画像流れの
評価を表18に示す。
Further, the evaluation results of uneven scraping, fusion, and cleaning failure described in Example 1 are shown in Table 17, and the evaluation of image deletion is shown in Table 18.

【0112】[0112]

【表17】 [Table 17]

【0113】[0113]

【表18】 これらの表が示すように、光受容部材G〜Iいずれの光
受容部材においても10万枚の耐久後でもムラ削れによ
って発生するスジ状の画像欠陥は全くなく、クリーニン
グ不良や融着等の画像欠陥も全く発生しなかった。さら
に、画像流れに関しても光受容部材の加温手段を設けず
とも、良好な画像特性が得られた。
[Table 18] As shown in these tables, none of the light-receiving members G to I had any streak-like image defects caused by uneven shaving even after the durability of 100,000 sheets. No defects occurred. Further, with respect to image deletion, good image characteristics were obtained without providing a heating means for the light receiving member.

【0114】比較例3 実施例3と同様に、図3に記載のプラズマCVD装置を
用いて表14の条件で円筒状導電性基体上に下部阻止
層、電荷輸送層および電荷発生層を積層した後、表19
の条件で表面層を0.5μm堆積しG’〜I’の光受容
部材を製造した。
Comparative Example 3 In the same manner as in Example 3, the lower blocking layer, the charge transport layer and the charge generation layer were laminated on the cylindrical conductive substrate under the conditions shown in Table 14 using the plasma CVD apparatus shown in FIG. Later, Table 19
Under the conditions described above, a surface layer was deposited to a thickness of 0.5 μm to produce light receiving members G ′ to I ′.

【0115】[0115]

【表19】 さらに、7059ガラス基板上にも表19の条件でG’
〜I’のa−C:F表面層サンプルを作成し、実施例1
と同様の方法によりG’〜I’の表面層の弗素量及びダ
イナミック硬度を測定した。
[Table 19] Further, G ′ was also placed on a 7059 glass substrate under the conditions shown in Table 19.
AC: F surface layer samples of ~ I 'were prepared, and
The amount of fluorine and the dynamic hardness of the surface layers G ′ to I ′ were measured in the same manner as described above.

【0116】その結果、光受容部材D’〜F’の表面層
の弗素量及びダイナミック硬度は、表20に示した値で
あった。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members D ′ to F ′ were as shown in Table 20.

【0117】[0117]

【表20】 次いで、この光受容部材G’〜I’をキヤノン製複写機
NP−6085の改造機に搭載し、実施例1と同様の条
件で耐久評価を行った。但し、光受容部材の移動度速度
を200mm/secとしブレード421は反発弾性8
%のシリコンゴムブレードを使用した。この耐久後の表
面層の摩耗量を表20に示す。
[Table 20] Next, the light receiving members G ′ to I ′ were mounted on a modified copy machine NP-6085 manufactured by Canon Inc., and the durability was evaluated under the same conditions as in Example 1. However, the mobility speed of the light receiving member is 200 mm / sec, and the blade 421 has a rebound resilience of 8 mm.
% Silicone rubber blade was used. Table 20 shows the abrasion loss of the surface layer after the durability.

【0118】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表21に、画像流れ
の評価を表22に示す。
Further, Table 21 shows the evaluation results of uneven shaving, fusion, and cleaning failure described in Example 1, and Table 22 shows the evaluation of image deletion.

【0119】[0119]

【表21】 [Table 21]

【0120】[0120]

【表22】 これらの表が示すように、磨耗量が100Å/1万枚よ
りも大きい値を示すa−C:F膜では、10万枚耐久後
の融着、さらに画像流れは実用上問題のないレベルであ
ったが、機械的強度が低く、ムラ削れや、白スジ状の摺
擦傷が画像欠陥として発生する場合があった。
[Table 22] As shown in these tables, in the aC: F film in which the abrasion amount is a value larger than 100 ° / 10,000 sheets, the fusion after 100,000 sheets of durability, and furthermore, the image deletion is at a level at which there is no practical problem. However, the mechanical strength was low, and uneven scraping or white streaks were sometimes generated as image defects.

【0121】実施例4 実施例3と同様に、図3に記載のプラズマCVD装置を
用いて表14の条件で円筒状導電性基体上に下部阻止
層、電荷輸送層および電荷発生層を積層した後、表23
の条件で表面層を0.5μm堆積しJ〜Lの光受容部材
を製造した。
Example 4 In the same manner as in Example 3, a lower blocking layer, a charge transport layer and a charge generation layer were laminated on a cylindrical conductive substrate under the conditions shown in Table 14 using the plasma CVD apparatus shown in FIG. Later, Table 23
Under the conditions described above, a surface layer was deposited to a thickness of 0.5 μm to produce light-receiving members J to L.

【0122】[0122]

【表23】 さらに、7059ガラス基板上にも表23の条件でJ〜
Lのa−C:F表面層サンプルを作成し、実施例1と同
様の方法によりJ〜Lの表面層の弗素量及びダイナミッ
ク硬度を測定した。
[Table 23] Further, J to J on the 7059 glass substrate under the conditions shown in Table 23.
Samples of the L aC: F surface layer were prepared, and the fluorine content and the dynamic hardness of the surface layers J to L were measured in the same manner as in Example 1.

【0123】その結果、光受容部材J〜Lの表面層の弗
素量及びダイナミック硬度は、表24に示した値であっ
た。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members J to L were as shown in Table 24.

【0124】[0124]

【表24】 次いで、この光受容部材J〜Lをキヤノン製複写機NP
-6085の改造機に搭載し、実施例1と同様の条件で
耐久評価を行った。但し、光受容部材の移動速度は50
0mm/secとしブレード421は反発弾性50%の
シリコンゴムブレードを使用した。この耐久後の表面層
の摩耗量を表24に示す。
[Table 24] Next, the light receiving members J to L are connected to a Canon copier NP.
This was mounted on a modified model of -6085, and the durability was evaluated under the same conditions as in Example 1. However, the moving speed of the light receiving member is 50
The blade 421 was a silicon rubber blade having a rebound resilience of 50% at 0 mm / sec. Table 24 shows the abrasion loss of the surface layer after the durability.

【0125】さらに実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表17に、画像流れ
の評価を表18に示した。
Further, Table 17 shows the evaluation results of uneven shaving, fusion, and cleaning failure described in Example 1, and Table 18 shows the evaluation of image deletion.

【0126】これらの表が示すように、光受容部材J〜
Lいずれの光受容部材においても10万枚の耐久後でも
ムラ削れによって発生するスジ状の画像欠陥は全くな
く、クリーニング不良や融着等の画像欠陥も全く発生し
なかった。さらに、画像流れに関しても光受容部材の加
温手段を設けずとも、良好な画像特性が得られた。
As shown in these tables, the light receiving members J to
In each of the light receiving members L, even after 100,000 sheets had been used, no streak-like image defects occurred due to uneven shaving, and no image defects such as poor cleaning and fusion occurred. Further, with respect to image deletion, good image characteristics were obtained without providing a heating means for the light receiving member.

【0127】比較例4 実施例3と同様に、図3に記載のプラズマCVD装置を
用いて表14の条件で円筒状導電製基体上に下部阻止
層、電荷輸送層および電荷発生層を積層した後、表25
の条件で表面層を0.5μm堆積しJ’〜L’の光受容
部材を製造した。
Comparative Example 4 In the same manner as in Example 3, a lower blocking layer, a charge transport layer and a charge generation layer were laminated on a cylindrical conductive substrate under the conditions shown in Table 14 using the plasma CVD apparatus shown in FIG. Later, Table 25
Under the conditions described above, a surface layer was deposited to a thickness of 0.5 μm to produce light receiving members J ′ to L ′.

【0128】[0128]

【表25】 さらに、7059ガラス基板上にも表25の条件でJ’
〜L’のa−C:F表面層サンプルを作成した。実施例
1と同様の方法によりJ’〜L’の表面層の弗素量及び
ダイナミック硬度を測定した。
[Table 25] Further, J ′ was also applied on a 7059 glass substrate under the conditions shown in Table 25.
~ L 'aC: F surface layer samples were prepared. The amount of fluorine and the dynamic hardness of the surface layers J ′ to L ′ were measured in the same manner as in Example 1.

【0129】その結果、光受容部材J’〜L’の表面層
の弗素量及びダイナミック硬度は、表26に示した値で
あった。
As a result, the fluorine content and the dynamic hardness of the surface layers of the light receiving members J ′ to L ′ were as shown in Table 26.

【0130】[0130]

【表26】 次いで、この光受容部材J’〜L’をキヤノン製複写機
NP−6085の改造機に搭載し、実施例1と同様の条
件で耐久評価を行った。但し、光受容部材の移動速度を
500mm/secとしブレード421は反発弾性55
%のシリコンゴムブレードを使用した。この耐久後の表
面層の摩耗量を表26に示す。
[Table 26] Next, the light receiving members J ′ to L ′ were mounted on a modified copy machine NP-6085 made by Canon, and durability evaluation was performed under the same conditions as in Example 1. However, the moving speed of the light receiving member is 500 mm / sec, and the blade 421 has a rebound resilience of 55 mm.
% Silicone rubber blade was used. Table 26 shows the abrasion loss of the surface layer after the durability.

【0131】さらに、実施例1に記載したムラ削れ、融
着、クリーニング不良の評価結果を表21に、画像流れ
の評価を表22に示した。
Further, Table 21 shows the evaluation results of uneven shaving, fusion, and cleaning failure described in Example 1, and Table 22 shows the evaluation of image deletion.

【0132】これらの表に示すように、1万枚の摩耗量
が、1Åよりも小さい値を示すa−C:F膜では、10
万枚耐久によって融着、画像流れが発生する場合がある
ことが判明した。
As shown in these tables, in the aC: F film in which the abrasion loss of 10,000 sheets shows a value smaller than 1 °, 10
It has been found that fusing and image deletion may occur due to the endurance of 10,000 sheets.

【0133】[0133]

【発明の効果】以上詳述したように本発明は、平均粒径
5〜8μmの現像剤を反発弾性10%以上50%以下の
弾性ゴムブレードでスクレープクリーニングする構成を
有する電子写真において、A4版の複写工程を1万枚の
転写紙に行った後の磨耗量が0.1Å以上100Å以下
であり、且つ、弗素含有量が5原子%以上50原子%以
下であり、さらにダイナミック硬度が10〜500kg
f/mm2 の範囲である非単結晶質弗素化炭素膜で表面
層を構成する光受容部材を用いることにより、この表面
層を均一に磨耗することが可能であり、ムラ削れにより
発生する画像濃度ムラ、及び現像剤の融着を防止するこ
とが可能になった。
As described above in detail, the present invention relates to an electrophotographic apparatus having a constitution in which a developer having an average particle size of 5 to 8 μm is scraped and cleaned with an elastic rubber blade having a rebound resilience of 10% or more and 50% or less. The amount of wear after performing the copying process on 10,000 sheets of transfer paper is 0.1% to 100%, the fluorine content is 5% to 50% by atom, and the dynamic hardness is 10% to 50%. 500kg
By using a light receiving member constituting a surface layer with a non-single crystalline fluorinated carbon film having a range of f / mm 2, the surface layer can be uniformly worn, and an image generated by uneven shaving can be obtained. It is possible to prevent density unevenness and fusion of the developer.

【0134】加えて、表面層を均一に上記の範囲で磨耗
させることにより、いかなる環境下でも光受容部材表面
を直接加温する手段を設けることなく、画像流れのよう
な画像欠陥を効果的に防止することが可能である。
In addition, by uniformly abrading the surface layer in the above range, image defects such as image deletion can be effectively prevented without providing a means for directly heating the surface of the light receiving member under any environment. It is possible to prevent.

【0135】さらに、使用できる現像剤の種類及び電子
写真装置のコンパクト化、コストダウン等の電子写真装
置設計のラチチュードを大幅に広げることが可能となっ
た。
Furthermore, the type of developer that can be used and the latitude in designing an electrophotographic apparatus, such as downsizing of the electrophotographic apparatus and cost reduction, can be greatly expanded.

【0136】なお、本発明はその主旨の範囲内で適宜、
変形組合せを行うことができ、上記した各実施例に限定
されないことは言うまでもない。
[0136] The present invention can be appropriately performed within the scope of the gist.
It goes without saying that a modified combination can be made, and the present invention is not limited to the above embodiments.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光受容部材の一例を示す模式的断
面図である。
FIG. 1 is a schematic sectional view showing an example of a light receiving member according to the present invention.

【図2】本発明に適用可能なPCVD法により光受容部
材を製造するために用いられる堆積装置の一例を示す模
式的構成図である。
FIG. 2 is a schematic configuration diagram illustrating an example of a deposition apparatus used for manufacturing a light receiving member by a PCVD method applicable to the present invention.

【図3】本発明に適用可能なPCVD法により光受容部
材を製造するために用いられる堆積装置の他の例を示す
模式的構成図である。
FIG. 3 is a schematic configuration diagram showing another example of a deposition apparatus used for manufacturing a light receiving member by a PCVD method applicable to the present invention.

【図4】電子写真装置の一例を説明する模式的断面図で
ある。
FIG. 4 is a schematic sectional view illustrating an example of an electrophotographic apparatus.

【符号の説明】[Explanation of symbols]

101 導電性基体 102 電荷注入阻止層 103 光導電層 104 表面層 105 電荷発生層 106 電荷輸送層 2100,3100 堆積装置 2110,3110 反応容器 2111,3111 カソード電極 2112,3112 導電性基体 2113,3113 基体加熱用ヒーター 2114,3114 ガス導入管 2115,3115 高周波マッチングボックス 2116,3116 ガス配管 2117,3117 リークバルブ 2118,3118 メインバルブ 2119,3119 真空計 2120,3119 高周波電源 2121,3121 絶縁材料 3122 絶縁シールド板 2123,3123 受け台 2200,3200 ガス供給装置 2211〜2216,3211〜3216 マスフロ
ーコントローラー 2221〜2226,3221〜3226 ボンベ 2231〜2236,3231〜3236 バルブ 2241〜2246,3241〜3246 流入バル
ブ 2251〜2256,3251〜3256 流出バル
ブ 2260,3260 補助バル
ブ 2261〜2266,3261〜3266 圧力調整
器 401 光受容部材 402 主帯電器 403 静電潜像形成部位 404 現像器 405 転写紙供給系 406 転写帯電器 407 分離帯電器 408 搬送系 409 除電光源 410 ハロゲンランプ 411 原稿台 412 原稿 413 ミラー 414 ミラー 415 ミラー 416 ミラー 417 レンズユニット 418 レンズ 419 給紙ガイド 420 ブランク露光LED 421 クリーニングブレード 422 レジストローラー 423 面状ヒーター 424 定着器 425 クリーナー
Reference Signs List 101 conductive substrate 102 charge injection blocking layer 103 photoconductive layer 104 surface layer 105 charge generation layer 106 charge transport layer 2100, 3100 deposition device 2110, 3110 reaction vessel 2111, 3111 cathode electrode 2112, 3112 conductive substrate 2113, 3113 substrate heating Heater 2114, 3114 Gas inlet pipe 2115, 3115 High frequency matching box 2116, 3116 Gas pipe 2117, 3117 Leak valve 2118, 3118 Main valve 2119, 3119 Vacuum gauge 2120, 3119 High frequency power supply 2121, 3121 Insulating material 3122 Insulating shield plate 2123 3123 Receiver 2200, 3200 Gas supply device 2211-2216, 3211-216 Mass flow controller 2221-2226, 32 21-2226 Cylinders 2231-2236, 3231-2236 Valves 2241-2246, 3241-3246 Inflow valve 2251-2256, 3251-256 Outflow valve 2260, 3260 Auxiliary valve 2261-2266, 3261-3266 Pressure regulator 401 Light receiving member 402 Main charger 403 Electrostatic latent image forming portion 404 Developing device 405 Transfer paper supply system 406 Transfer charger 407 Separator charger 408 Transport system 409 Static elimination light source 410 Halogen lamp 411 Document table 412 Document 413 Mirror 414 Mirror 415 Mirror 416 Mirror 417 Lens Unit 418 Lens 419 Paper feed guide 420 Blank exposure LED 421 Cleaning blade 422 Registration roller 423 Planar heater 424 Fixer 425 Clear Ner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03G 9/08 G03G 9/08 (72)発明者 岡村 竜次 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2H005 AA00 EA05 2H068 DA04 DA05 DA23 DA43 DA44 DA51 EA24 FA01 FA03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03G 9/08 G03G 9/08 (72) Inventor Ryuji Okamura 3-30-2 Shimomaruko, Ota-ku, Tokyo Non-corp. F term (reference) 2H005 AA00 EA05 2H068 DA04 DA05 DA23 DA43 DA44 DA51 EA24 FA01 FA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光受容部材を回転させ、帯電、露光、現
像、転写、クリーニングを順次繰り返す電子写真装置に
おいて、該光受容部材が、平均粒径5〜8μmの現象剤
を該光受容部に現像、転写材へ転写し、現像剤が転写さ
れた後の光受容部材表面を反発弾性10%以上50%以
下の弾性ゴムブレードでスクレープクリーニングする電
子写真装置でA4版の複写工程を転写紙1万枚に行った
後の磨耗量が0.1Å以上100Å以下である、非単結
晶質弗素化炭素膜で表面層が構成されていることを特徴
とする電子写真装置。
1. An electrophotographic apparatus in which a light receiving member is rotated and charging, exposure, development, transfer and cleaning are sequentially repeated, wherein the light receiving member applies a phenomenon agent having an average particle size of 5 to 8 μm to the light receiving portion. The copying process of the A4 plate is performed by an electrophotographic apparatus in which the photoreceptor member surface after development and transfer to a transfer material and the developer is transferred is scraped and cleaned with an elastic rubber blade having a rebound resilience of 10% to 50%. An electrophotographic apparatus comprising a non-single-crystalline fluorinated carbon film having a surface layer having a wear amount of not less than 0.1 ° and not more than 100 ° after being subjected to every 10,000 sheets.
【請求項2】 前記光受容部材が導電性基体状にシリコ
ン原子を母体とする非単結晶材料で構成された光導電層
及び非単結晶材料で構成された表面層からなることを特
徴とする請求項1に記載の電子写真装置。
2. The light-receiving member comprises a photoconductive layer formed of a non-single-crystal material mainly composed of silicon atoms and a surface layer formed of a non-single-crystal material on a conductive substrate. The electrophotographic apparatus according to claim 1.
【請求項3】 前記表面層のダイナミック硬度が10〜
500kgf/mm 2 であることを特徴とする請求項1
または2に記載の電子写真装置。
3. The dynamic hardness of the surface layer is 10 to 3.
500kgf / mm Two 2. The method according to claim 1, wherein
Or the electrophotographic apparatus according to 2.
【請求項4】 前記、非単結晶質弗素化炭素膜の弗素量
((F/(C+F))が5〜50原子%であることを特徴
とする請求項1ないし3に記載の電子写真装置。
4. The electrophotographic apparatus according to claim 1, wherein the amount of fluorine ((F / (C + F)) of the non-single crystalline fluorinated carbon film is 5 to 50 atomic%. .
【請求項5】 前記表面層が、少なくとも炭化水素系及
び又は弗素系のガスを1〜450MHzの高周波を用い
たプラズマCDV法によって分解することによって堆積
成膜することを特徴とする請求項1ないし4に記載の電
子写真装置。
5. The method according to claim 1, wherein the surface layer is formed by decomposing at least a hydrocarbon-based gas and / or a fluorine-based gas by a plasma CDV method using a high frequency of 1 to 450 MHz. 5. The electrophotographic apparatus according to 4.
【請求項6】 前記光受容部材が、電荷注入阻止層、光
導電層および表面層の3層で構成されていることを特徴
とする請求項1ないし5に記載の電子写真装置。
6. An electrophotographic apparatus according to claim 1, wherein said light receiving member is composed of a charge injection blocking layer, a photoconductive layer and a surface layer.
【請求項7】 前記光受容部材が、電荷輸送層、電荷発
生層および表面層の3層で構成されていることを特徴と
する請求項1ないし6に記載の電子写真装置。
7. The electrophotographic apparatus according to claim 1, wherein the light receiving member is composed of three layers: a charge transport layer, a charge generation layer, and a surface layer.
JP33793898A 1998-11-27 1998-11-27 Electrophotographic device Pending JP2000162800A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33793898A JP2000162800A (en) 1998-11-27 1998-11-27 Electrophotographic device
US09/449,678 US6218064B1 (en) 1998-11-27 1999-11-24 Electrophotographic apparatus and electrophotographic light receiving member
DE69926326T DE69926326T2 (en) 1998-11-27 1999-11-26 Electrophotographic apparatus and electrophotographic photosensitive member
EP99123572A EP1004945B1 (en) 1998-11-27 1999-11-26 Electrophotographic apparatus and electrophotographic light receiving member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33793898A JP2000162800A (en) 1998-11-27 1998-11-27 Electrophotographic device

Publications (1)

Publication Number Publication Date
JP2000162800A true JP2000162800A (en) 2000-06-16

Family

ID=18313422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33793898A Pending JP2000162800A (en) 1998-11-27 1998-11-27 Electrophotographic device

Country Status (1)

Country Link
JP (1) JP2000162800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057862A (en) * 2005-08-25 2007-03-08 Canon Inc Image forming method
JP2007094240A (en) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd Toner and image forming method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057862A (en) * 2005-08-25 2007-03-08 Canon Inc Image forming method
JP4630762B2 (en) * 2005-08-25 2011-02-09 キヤノン株式会社 Image forming method
JP2007094240A (en) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd Toner and image forming method using the same

Similar Documents

Publication Publication Date Title
JP3507322B2 (en) Electrophotographic equipment
JP3530667B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPH1083091A (en) Electrophotographic photoreceptor and its production
JPH112912A (en) Light receiving member, image forming device provided therewith and image forming method using it
JP2000003055A (en) Electrophotographic device
JP3530676B2 (en) Method for manufacturing light receiving member, light receiving member, electrophotographic apparatus having light receiving member, and electrophotographic process using light receiving member
US6055404A (en) Cleaning device for electrophotographic apparatus, electrophotographic apparatus, method for cleaning light receiving member of electrophotographic apparatus, and electrophotographic process comprising the cleaning method
EP0962838B1 (en) Image-forming apparatus and image-forming method
JP2004133397A (en) Electrophotographic photoreceptor
JP2000162800A (en) Electrophotographic device
JP3710304B2 (en) Electrophotographic equipment
JP2000162802A (en) Electrophotographic device
JP2001337474A (en) Method for manufacturing light-accepting member, light- accepting member and electrophotographic device
JP3571917B2 (en) Electrophotographic equipment
EP1004945B1 (en) Electrophotographic apparatus and electrophotographic light receiving member
JPH10288852A (en) Electrophotographic photoreceptor
JP2000010313A (en) Electrophotographic device
JPH11249328A (en) Light accepting member
JP2001330977A (en) Electrophotographic device
JPH11249523A (en) Electrophotographic system
JPH11133638A (en) Electrophotographic device
JP2002023401A (en) Photoreception member and electrophotographic device using the same
JP3647311B2 (en) Electrophotographic apparatus cleaning apparatus, electrophotographic apparatus, photoreceptive member cleaning method of electrophotographic apparatus, and electrophotographic method having the cleaning method
JP2002268252A (en) Electrophotographic method, electrophotographic photoreceptor and electrophotographic device
JP2007072177A (en) Electrophotographic method and electrophotographic apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060322

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060414