JP2007071520A - Cooling storage box, and control method for its compressor - Google Patents

Cooling storage box, and control method for its compressor Download PDF

Info

Publication number
JP2007071520A
JP2007071520A JP2005262486A JP2005262486A JP2007071520A JP 2007071520 A JP2007071520 A JP 2007071520A JP 2005262486 A JP2005262486 A JP 2005262486A JP 2005262486 A JP2005262486 A JP 2005262486A JP 2007071520 A JP2007071520 A JP 2007071520A
Authority
JP
Japan
Prior art keywords
target temperature
temperature
storage
deviation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262486A
Other languages
Japanese (ja)
Other versions
JP4934302B2 (en
Inventor
Naoshi Kondo
直志 近藤
Akihiko Hirano
明彦 平野
Shinichi Kaga
進一 加賀
Masahide Yatori
雅秀 矢取
Hideyuki Tashiro
秀行 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2005262486A priority Critical patent/JP4934302B2/en
Priority to TW96107699A priority patent/TWI391618B/en
Publication of JP2007071520A publication Critical patent/JP2007071520A/en
Application granted granted Critical
Publication of JP4934302B2 publication Critical patent/JP4934302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B40/32

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out operation with higher efficiency by preventing responding with unnecessary sensitiveness with respect to sudden change of an internal temperature. <P>SOLUTION: A deviation calculating means 42 calculates a deviation between the internal temperature detected by a temperature sensor 35, and a target temperature provided from a target temperature setting means 41 at every predetermined time. The deviations are integrated by a deviation integrating means 46, and under a condition that the integrated value exceeds a predetermined reference value, a rotational frequency of an inverter motor driving the compressor is increased. By this, for example, even if a door is temporarily opened, outside air flows into a storage chamber interior, and the internal temperature temporarily rises, there is no sudden change in the integrated value of the temperature deviations. Thus, the rotational frequency of the compressor will not suddenly become fast due to sensitive response, and control is stabilized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インバータモータにより圧縮機を駆動する冷却貯蔵庫及びその圧縮機の制御方法に関する。   The present invention relates to a cooling storage for driving a compressor by an inverter motor and a method for controlling the compressor.

近年、例えば業務用の冷蔵庫では、速度制御が可能なインバータ圧縮機を備えたものが普及しつつある(例えば、特許文献1参照)。   In recent years, for example, in commercial refrigerators, those equipped with an inverter compressor capable of speed control are becoming widespread (for example, see Patent Document 1).

インバータ圧縮機を備えることの利点は種々あるが、一例としてコントロール冷却運転時における高効率化が挙げられる。これは、庫内を設定された目標温度に維持するコントロール冷却運転を行う場合、庫内温度が目標温度に近付いたときには、それに応じてインバータ圧縮機の速度(回転数)を段階的に落とすように制御するものである。この制御方式を採ると、圧縮機の連続オン時間が圧倒的に長くなり、言い換えるとオンオフの切り替え回数が大幅に減少して高効率化、省エネルギ化が図られる。
特開2002−195719公報
Although there are various advantages provided with the inverter compressor, an example is an increase in efficiency during the control cooling operation. This is because when the control cooling operation is performed to maintain the inside of the chamber at the set target temperature, when the chamber temperature approaches the target temperature, the speed (rotation speed) of the inverter compressor is decreased step by step accordingly. To control. When this control method is adopted, the continuous on-time of the compressor is overwhelmingly long. In other words, the number of on / off switching operations is greatly reduced, and high efficiency and energy saving are achieved.
JP 2002-195719 A

しかしながら、従来の制御方法は、一定時間毎に庫内温度と目標温度との偏差を求め、その偏差が大きい場合には回転数を高め、偏差が小さくなると回転数を低くするようにしていたため、インバータ圧縮機の回転数変動が不必要に大きくなるという問題があった。例えば、庫内が食品を冷却するに適する目標温度近くに維持されているコントロール冷却運転時に、一時的に繰り返し扉を開閉させると、庫内温度が一時的に急上昇するため、庫内温度と目標温度との偏差が一時的に大きくなる時期が出現する。このような場合、庫内温度は急上昇するとしても、庫内に収容されている食材は熱容量が大きいため、さほど昇温してはいないのであるが、従来の制御方法によれば、インバータ圧縮機の回転数は庫内温度と目標温度との偏差の大きさに依存して決定されるため、直ちに回転数が高められる。   However, the conventional control method obtains the deviation between the internal temperature and the target temperature at regular intervals, and when the deviation is large, the rotational speed is increased, and when the deviation is small, the rotational speed is decreased. There was a problem that the rotational speed fluctuation of the inverter compressor became unnecessarily large. For example, if the door is repeatedly opened and closed temporarily during controlled cooling operation where the interior is maintained near the target temperature suitable for cooling the food, the interior temperature will suddenly rise rapidly. There appears a time when the deviation from the temperature temporarily increases. In such a case, even if the internal temperature suddenly rises, the food contained in the internal storage has a large heat capacity, so the temperature has not increased so much, but according to the conventional control method, the inverter compressor Is determined depending on the magnitude of the deviation between the internal temperature and the target temperature, so that the rotational speed is immediately increased.

ところが、この場合でも扉が閉じられてある程度の時間が経過すれば、庫内温度は急速に低下するから、再び回転数は低く抑えられるとはいうものの、一時的な温度上昇に不必要に応答して回転数を高めてしまうから、効率の面からは好ましくない。   However, even in this case, if the door is closed and a certain amount of time has passed, the internal temperature drops rapidly, and although the rotational speed can be kept low again, it responds unnecessarily to a temporary rise in temperature. As a result, the rotational speed is increased, which is not preferable from the viewpoint of efficiency.

本発明は上記のような事情に基づいて完成されたものであって、庫内温度の急変に対して不必要な過敏さで応答することを防止でき、より高い効率で運転することができる冷却貯蔵庫及びその圧縮機の制御方法を提供することを目的とする。   The present invention has been completed based on the above situation, and can prevent a response with an unnecessary sensitivity to a sudden change in the internal temperature, and can be operated with higher efficiency. It aims at providing the control method of a storage and its compressor.

上記の目的を達成するための手段として、請求項1の発明は、インバータモータが駆動する圧縮機によって冷媒を圧縮し、その冷媒を凝縮器及び絞り装置を通して冷却器に供給し、この冷却器により生成された冷気によって貯蔵室内を冷却する冷却貯蔵庫における前記圧縮機の制御方法であって、前記貯蔵室内の目標温度を設定するための目標温度設定手段と、前記貯蔵室内の庫内温度を検出する温度センサとを備え、前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を所定時間毎に算出して積算し、その積算値と所定の基準値との比較に基づいて前記インバータモータの回転数を変化させるようにするところに特徴を有する。   As means for achieving the above object, the invention of claim 1 compresses a refrigerant by a compressor driven by an inverter motor, and supplies the refrigerant to a cooler through a condenser and a throttle device. A method for controlling the compressor in a cooling storage that cools the storage chamber with the generated cold air, the target temperature setting means for setting the target temperature in the storage chamber, and the internal temperature in the storage chamber is detected A temperature sensor, and calculates and integrates a deviation between the target temperature set in the target temperature setting means and the internal temperature detected by the temperature sensor every predetermined time, and the integrated value and a predetermined reference The present invention is characterized in that the rotational speed of the inverter motor is changed based on the comparison with the value.

請求項2の発明にかかる冷却貯蔵庫は、インバータモータにより駆動される圧縮機と、この圧縮機が圧縮した冷媒から放熱させる凝縮器と、この凝縮器からの冷媒が絞り装置を通して供給される冷却器と、この冷却器により生成された冷気によって貯蔵室内が冷却される断熱貯蔵庫と、この断熱貯蔵庫の貯蔵室内の目標温度を設定するための目標温度設定手段と、前記貯蔵室内の庫内温度を検出する温度センサと、所定時間毎に前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を算出する偏差算出手段と、この偏差算出手段により算出された所定回数の偏差の和を積算する偏差積算手段と、この偏差積算手段により積算された積算値を基準値と比較して前記インバータモータの回転数を変化させる回転数制御手段とを備えるところに特徴を有する。   The cooling storage according to the invention of claim 2 is a compressor driven by an inverter motor, a condenser that radiates heat from a refrigerant compressed by the compressor, and a cooler that is supplied with refrigerant from the condenser through a throttling device. And a heat-insulated storage in which the storage chamber is cooled by the cool air generated by the cooler, target temperature setting means for setting a target temperature in the storage chamber of the heat-insulating storage, and the temperature in the storage chamber is detected Calculated by the temperature sensor, a deviation calculating means for calculating a deviation between the target temperature set in the target temperature setting means every predetermined time and the internal temperature detected by the temperature sensor, and calculated by the deviation calculating means. Deviation integration means for integrating the sum of the predetermined number of deviations, and the integrated value integrated by the deviation integration means is compared with a reference value to change the rotation speed of the inverter motor. Characterized in place and a rotational speed control means for.

請求項3の発明にかかる冷却貯蔵庫は、インバータモータにより駆動される圧縮機と、この圧縮機が圧縮した冷媒から放熱させる凝縮器と、この凝縮器からの冷媒を第1及び第2の流路に選択的に切り替える弁装置と、前記第1及び第2の流路に夫々個別に設けられて前記冷媒が選択的に供給される第1及び第2の冷却器と、これらの第1及び第2の冷却器への冷媒入口側と前記凝縮器との間に設けられた絞り装置と、第1及び第2の貯蔵室を有しそれらの貯蔵室が前記各冷却器により生成された冷気によって冷却される断熱貯蔵庫と、前記第1及び第2の貯蔵室内の目標温度を設定するための目標温度設定手段と、前記第1及び第2の各貯蔵室内の庫内温度を検出する温度センサと、所定時間毎に前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を算出する偏差算出手段と、この偏差算出手段により算出された所定回数の偏差の和を積算する偏差積算手段と、この偏差積算手段により積算された積算値を基準値と比較して前記インバータモータの回転数を変化させる回転数制御手段とを備えてなるところに特徴を有する。   The cooling storage according to the invention of claim 3 is a compressor driven by an inverter motor, a condenser for radiating heat from a refrigerant compressed by the compressor, and first and second flow paths for the refrigerant from the condenser. A valve device that selectively switches to the first and second flow paths, first and second coolers that are individually provided in the first and second flow paths and that are selectively supplied with the refrigerant, and the first and second A throttling device provided between the refrigerant inlet side to the second cooler and the condenser, and first and second storage chambers, and these storage chambers are formed by the cold air generated by the respective coolers. A heat-insulated storage to be cooled; target temperature setting means for setting a target temperature in the first and second storage chambers; and a temperature sensor for detecting the internal temperature in each of the first and second storage chambers. The eye set in the target temperature setting means every predetermined time Deviation calculating means for calculating the deviation between the temperature and the internal temperature detected by the temperature sensor, deviation integrating means for integrating the sum of the predetermined number of deviations calculated by the deviation calculating means, and this deviation integrating means The present invention is characterized in that it comprises rotation speed control means for changing the rotation speed of the inverter motor by comparing the integrated integrated value with a reference value.

請求項4の発明は、請求項2又は請求項3のいずれかの発明において、目標温度設定手段を、時間の経過と共に異なる目標温度を順次出力する構成としたところに特徴を有する。   The invention of claim 4 is characterized in that, in the invention of either claim 2 or claim 3, the target temperature setting means is configured to sequentially output different target temperatures as time passes.

請求項5の発明は、前記目標温度設定手段を、目標温度の経時的変化態様を表した関数を記憶する記憶手段と、この記憶手段に記憶された関数を読み出して時間の経過に合わせて目標温度を算出する目標温度算出手段とを備えた構成に特徴を有する。   According to a fifth aspect of the present invention, the target temperature setting means stores, in the storage means, a function representing a temporal change mode of the target temperature, and reads out the function stored in the storage means so that the target temperature is set as time passes. It has a feature in a configuration including target temperature calculation means for calculating temperature.

請求項6の発明は、前記目標温度設定手段を、目標温度の経時的変化態様を温度と経過時間とを対照させた参照テーブルとして記憶する記憶手段と、時間の経過に合わせて前記記憶手段における目標温度を読み出すテーブル読み出し手段とを備える構成としたところに特徴を有する。   The invention according to claim 6 is characterized in that the target temperature setting means is stored as a reference table in which the temporal change mode of the target temperature is compared with the temperature and the elapsed time, and in the storage means as time passes. It is characterized in that it is configured to include table reading means for reading the target temperature.

本発明の制御方法によれば、目標温度設定手段に設定された目標温度と温度センサにより検出された庫内温度との偏差を所定時間毎に算出して積算し、その積算値と所定の基準値との比較に基づいて圧縮機を駆動するインバータモータの回転数を変化させるから、例えば扉が一時的に開放されて、貯蔵室内に外気が流入することにより庫内温度が一時的に上昇したとしても、温度偏差の積算値の急変はないから、圧縮機の回転数が過敏に反応して急速に高速になったりすることがなく制御が安定し、ひいては省電力化に寄与する。   According to the control method of the present invention, the deviation between the target temperature set in the target temperature setting means and the internal temperature detected by the temperature sensor is calculated and integrated every predetermined time, and the integrated value and the predetermined reference Since the rotation speed of the inverter motor that drives the compressor is changed based on the comparison with the value, for example, the door is temporarily opened, and the inside temperature temporarily rises due to the outside air flowing into the storage chamber. However, since there is no sudden change in the integrated value of the temperature deviation, the speed of the compressor does not react rapidly and the speed does not increase rapidly, so that the control is stable, which contributes to power saving.

<実施形態1>
本発明の実施形態1を図1ないし図8によって説明する。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.

この実施形態では業務用の縦型冷蔵庫に適用した場合を例示しており、まず図1により全体構造を説明する。この冷蔵庫は前面開口の縦長の断熱貯蔵庫10から構成されており、下面の四隅に立てられた脚11によって支持され、内部が貯蔵室である冷蔵室12とされている。冷蔵室12の前面開口は、仕切枠13によって上下2つの開口部14に仕切られ、各開口部14には断熱扉15が水平方向に揺動開閉可能に装着されている。   In this embodiment, the case where it applies to the vertical refrigerator for business is illustrated, First, FIG. 1 demonstrates the whole structure. This refrigerator is composed of a vertically insulated heat storage 10 with a front opening, and is supported by legs 11 standing at the four corners of the lower surface, and the inside is a refrigeration room 12 which is a storage room. A front opening of the refrigerator compartment 12 is partitioned into two upper and lower openings 14 by a partition frame 13, and a heat insulating door 15 is attached to each opening 14 so as to be swingable in a horizontal direction.

断熱貯蔵庫10の上面には、パネル17により囲って機械室18が設けられ、その中に基台19上に設置した冷凍ユニット20が収容されている。冷凍ユニット20は、図2に示すように、インバータモータ21に駆動されて冷媒を圧縮する圧縮機22、凝縮器ファン23により冷却される凝縮器24、ドライヤ25、絞り装置に相当するキャピラリチューブ26、キャピラリチューブ26を通過した冷媒を蒸発させる冷却器27、そしてアキュムレータ28を冷媒配管29によって循環接続して構成されており、基台19が冷蔵室12の天井壁に形成した窓孔16を塞ぐようにして取り付けられている。   On the upper surface of the heat insulating storage 10, a machine room 18 is provided surrounded by a panel 17, and a refrigeration unit 20 installed on a base 19 is accommodated therein. As shown in FIG. 2, the refrigeration unit 20 includes a compressor 22 driven by an inverter motor 21 to compress refrigerant, a condenser 24 cooled by a condenser fan 23, a dryer 25, and a capillary tube 26 corresponding to an expansion device. A cooler 27 for evaporating the refrigerant that has passed through the capillary tube 26 and an accumulator 28 are connected by circulation through a refrigerant pipe 29, and the base 19 closes the window hole 16 formed in the ceiling wall of the refrigerator compartment 12. It is attached in this way.

冷蔵室12の天井部分における窓孔16の下面側には、エアダクトを兼ねたドレンパン30が張設され、その上方に冷却器室31が形成されている。ドレンパン30の底面は奥縁(図1の左側)に向けて下り勾配となるように形成され、奥縁側には吹出口33が切り欠き形成されている。また、ドレンパン30の手前側の領域には吸込口32が開口され、そのドレンパン30の手前側上部に設けたファン34により冷蔵室12内の空気を吸引して冷却器27により冷却して吹出口33から冷蔵室12内に戻すようになっている。なお、冷却器室31内には吸込口32から流入した庫内空気が触れる位置に冷蔵室12内の庫内温度を検出するための温度センサ35が設けられている。   A drain pan 30 that also serves as an air duct is stretched on the lower surface side of the window hole 16 in the ceiling portion of the refrigerator compartment 12, and a cooler chamber 31 is formed above the drain pan 30. The bottom surface of the drain pan 30 is formed to have a downward slope toward the rear edge (left side in FIG. 1), and a blowout port 33 is cut out on the rear edge side. In addition, a suction port 32 is opened in a region on the front side of the drain pan 30, and the air in the refrigerator compartment 12 is sucked by a fan 34 provided on the upper side of the drain pan 30 and cooled by a cooler 27 to be blown out. 33 is returned to the refrigerator compartment 12. In the cooler chamber 31, a temperature sensor 35 for detecting the internal temperature in the refrigerator compartment 12 is provided at a position where the internal air flowing in from the suction port 32 comes into contact.

さて、上記インバータモータ21は可変周波数の交流電力を出力するインバータ駆動回路36により駆動されるが、その出力周波数はコントローラ40によって決定される。図2を参照しつつ、コントローラ40について詳述すると、これは冷蔵室12内の目標温度を設定するための目標温度設定手段41と、この目標温度設定手段41によって設定された目標温度Taと前記温度センサ35により検出された庫内温度Tとの偏差(T−Ta)を算出する偏差算出手段42とを備える。   The inverter motor 21 is driven by an inverter drive circuit 36 that outputs AC power having a variable frequency, and the output frequency is determined by the controller 40. The controller 40 will be described in detail with reference to FIG. 2. This is a target temperature setting means 41 for setting a target temperature in the refrigerator compartment 12, a target temperature Ta set by the target temperature setting means 41, and the target temperature Ta. Deviation calculating means 42 for calculating a deviation (T-Ta) from the internal temperature T detected by the temperature sensor 35 is provided.

上記目標温度設定手段41は本実施形態では図3の構成であり、目標温度Taは、その経時的な変化態様(すなわち時間tと共に目標温度Taを変化させる様子)として与えられる。また、その目標温度の変化態様としては、食品等の貯蔵物をユーザーにより設定された設定温度に冷却するコントロール運転時における目標温度の変化態様と、例えば冷蔵庫を設置して始めて電源を投入したときのように、コントロール運転時の設定温度よりも相当に高い温度からコントロール運転時の温度域まで冷却するいわゆるプルダウン冷却運転時における目標温度の変化態様との2種類がある。本実施形態では、いずれの変化態様も、時間tを変数とした関数f(t)によって表しておき、その関数が例えばEPROM等により構成した記憶手段43に記憶されている。例えばプルダウン冷却運転時の目標温度Taの変化態様を算出するための関数f(t)としては、図4に示したグラフで表されるものを例示できる。   The target temperature setting means 41 has the configuration shown in FIG. 3 in the present embodiment, and the target temperature Ta is given as its temporal change mode (that is, the state in which the target temperature Ta is changed with time t). The target temperature change mode includes a target temperature change mode at the time of control operation in which stored items such as foods are cooled to a set temperature set by the user, for example, when the power is turned on for the first time after installing a refrigerator. As described above, there are two types of target temperature change modes during so-called pull-down cooling operation in which cooling is performed from a temperature considerably higher than the set temperature during control operation to a temperature range during control operation. In this embodiment, each change mode is represented by a function f (t) with the time t as a variable, and the function is stored in the storage means 43 constituted by, for example, EPROM. For example, as the function f (t) for calculating the change mode of the target temperature Ta during the pull-down cooling operation, the function represented by the graph shown in FIG. 4 can be exemplified.

一方、目標温度設定手段41には、例えば図示しないパルス発振回路とカウンタとによって構成した周知の計時手段44が備えられ、ここから時間経過に応じた計時信号が出力される。その計時信号は目標温度算出手段45に与えられ、ここで所定時間毎に目標温度Taを算出する。より具体的には、まず、コントローラ40の起動時(電源投入時)に温度センサ35から庫内温度T0を読み込み、その値に基づき式t0=f−1(T0)から時間初期値t0を算出する(図5参照)。これにより、起動時からの経過時間をtとすると、目標温度TaはTa=f(t+t0)という常数を含んだ関数で表すことができるようになる(図6参照)。そこで、目標温度算出手段45は、計時手段44からの計時信号(tの値を示す)に基づき例えば5秒の所定時間毎に記憶手段43から上記関数を読み出し、時間初期値t0及びtの値を代入して目標温度Taを算出するのである。 On the other hand, the target temperature setting means 41 is provided with a well-known time measuring means 44 constituted by, for example, a pulse oscillation circuit and a counter (not shown), from which a time measuring signal corresponding to the passage of time is output. The time measurement signal is given to the target temperature calculation means 45, where the target temperature Ta is calculated every predetermined time. More specifically, first, the internal temperature T0 is read from the temperature sensor 35 when the controller 40 is started (when the power is turned on), and the initial time value t0 is calculated from the equation t0 = f −1 (T0) based on the value. (See FIG. 5). Thus, when the elapsed time from the start is t, the target temperature Ta can be expressed by a function including a constant number Ta = f (t + t0) (see FIG. 6). Therefore, the target temperature calculation means 45 reads the above function from the storage means 43 at predetermined time intervals of 5 seconds, for example, based on the time measurement signal (indicating the value of t) from the time measurement means 44, and sets the initial time values t0 and t. Is substituted for the target temperature Ta.

上記のように目標温度算出手段45からの目標温度Taは、温度センサ35から得られる庫内温度Tとともに偏差算出手段42に与えられ、ここで偏差(T−Ta)が算出される。そして、その偏差の値は次段の偏差積算手段46に与えられ、ここで例えば2分〜10分の間(この実施形態では5分間、すなわち5*60/5=60回分)の偏差を順次積算し、その積算値Aを回転数制御手段47に与える。回転数制御手段47では、偏差の積算値Aを所定の基準値(下限値及び上限値)と比較し、積算値Aが上限値L_UPよりも大きいときにはインバータモータ31の回転数を上昇させるべくインバータ駆動回路36への周波数指令信号Sfを変化させ、積算値ΣAが下限値L_DOWNよりも小さいときには、インバータモータ31の回転数を下降させるべくインバータ駆動回路36への周波数指令信号Sfを変化させるようになっている。なお、この回転数制御手段47の機能はCPUによって実行されるソフトウエアにより実現され、そのソフトウエアの処理手順を示せば図7の通りとなる。   As described above, the target temperature Ta from the target temperature calculating means 45 is given to the deviation calculating means 42 together with the internal temperature T obtained from the temperature sensor 35, and here the deviation (T-Ta) is calculated. Then, the value of the deviation is given to the deviation integrating means 46 in the next stage. Here, for example, the deviation for 2 minutes to 10 minutes (in this embodiment, 5 minutes, that is, 5 * 60/5 = 60 times) is sequentially applied. The accumulated value A is given to the rotational speed control means 47. The rotation speed control means 47 compares the deviation accumulated value A with a predetermined reference value (lower limit value and upper limit value), and when the accumulated value A is larger than the upper limit value L_UP, the inverter motor 31 increases the rotation speed of the inverter motor 31. When the frequency command signal Sf to the drive circuit 36 is changed and the integrated value ΣA is smaller than the lower limit value L_DOWN, the frequency command signal Sf to the inverter drive circuit 36 is changed so as to decrease the rotation speed of the inverter motor 31. It has become. The function of the rotational speed control means 47 is realized by software executed by the CPU, and the processing procedure of the software is as shown in FIG.

図7を参照してそのソフトウエア的構成を説明する。CPUによって圧縮器回転制御開始ルーチンが開始されると(ステップS1)、まず積算値Aを例えば0に初期化する(ステップS2)。次いで、上述の通りに目標温度設定手段41が目標温度Taを算出し(ステップS3)、庫内温度Tとの偏差Aが算出してこれを積算する(偏差算出手段42及び偏差積算手段46の機能:ステップS4)。そして、ステップS5に至って積算値を上限値L_UP及び下限値L_DOWNと比較して、インバータモータ31の回転数を増減させるのである(回転数制御手段47の機能:ステップS5〜S7)。   The software configuration will be described with reference to FIG. When the compressor rotation control start routine is started by the CPU (step S1), the integrated value A is first initialized to, for example, 0 (step S2). Next, as described above, the target temperature setting means 41 calculates the target temperature Ta (step S3), and the deviation A from the internal temperature T is calculated and integrated (the deviation calculating means 42 and the deviation integrating means 46). Function: Step S4). In step S5, the integrated value is compared with the upper limit value L_UP and the lower limit value L_DOWN, and the rotational speed of the inverter motor 31 is increased or decreased (function of the rotational speed control means 47: steps S5 to S7).

このような本実施形態によれば、例えばプルダウン冷却運転時の目標温度の時間的変化態様が図8の一点鎖線で示すグラフのように設定されたとし、実線のように実際の庫内温度が変化したとすると、冷却運転の開始当初は目標温度に比べて庫内温度がより低く冷却されているから、温度偏差はマイナスになり、積算値Aもマイナスになる。ここで、積算値Aのグラフが鋸歯状波形になるのは、インバータモータ31の回転数を変化させるたびに積算値Aが初期化されているためである(図7ステップS8)。そして、積算値Aがマイナスとなって下限値L_DOWNを下回ると、インバータ周波数は徐々に低下され(時間帯t1参照)、その結果、圧縮機回転数が段階的に低下して冷却能力が抑えられるため、庫内温度は目標温度の低下度合いに近付く。   According to this embodiment, for example, assuming that the temporal change mode of the target temperature during the pull-down cooling operation is set as shown in the graph shown by the one-dot chain line in FIG. 8, the actual internal temperature is as shown by the solid line. If it has changed, since the internal temperature is cooled lower than the target temperature at the beginning of the cooling operation, the temperature deviation becomes negative and the integrated value A also becomes negative. Here, the graph of the integrated value A has a sawtooth waveform because the integrated value A is initialized every time the rotational speed of the inverter motor 31 is changed (step S8 in FIG. 7). When the integrated value A becomes negative and falls below the lower limit value L_DOWN, the inverter frequency is gradually decreased (see time zone t1). As a result, the compressor rotational speed is decreased stepwise to suppress the cooling capacity. For this reason, the internal temperature approaches the degree of decrease in the target temperature.

冷却能力が低下した結果、庫内温度が目標温度を上回ることになると(時間帯t2)、温度偏差及びその積算値Aはプラスに推移し、積算値Aが上限値L_UPを上回ったところで圧縮機回転数が上昇されて冷却能力が高くなり、再び庫内温度は目標温度の低下度合いに近付くことになる。以下、このような制御が繰り返えされることで、庫内温度は設定された目標温度の時間的変化態様にしたがって低下して行くことになる。   As a result of the reduced cooling capacity, if the internal temperature exceeds the target temperature (time zone t2), the temperature deviation and its integrated value A change to positive, and the compressor is located when the integrated value A exceeds the upper limit value L_UP. The number of revolutions is increased, the cooling capacity is increased, and the internal temperature again approaches the degree of decrease in the target temperature. Hereinafter, by repeating such control, the internal temperature decreases in accordance with the temporal change mode of the set target temperature.

そして、上述のようなプルダウン冷却運転時に途中で例えば断熱貯蔵庫10の断熱扉15が一時的に開放されて、外気が流入することにより庫内温度が一時的に上昇したとしても、その温度上昇は断熱扉15が閉じられることで急速に復元して行くから、温度偏差の積算値として観察している限り、その積算値の急変はない。このため、コントローラ40が過敏に反応して圧縮機22の回転数を急速に高めたりすることがなく制御が安定し、ひいては省電力化に寄与する。   And even if the heat insulation door 15 of the heat insulation storage 10 is temporarily opened in the middle of the pull-down cooling operation as described above and the inside temperature temporarily rises due to the flow of outside air, the temperature rise is Since the heat insulating door 15 is quickly restored by being closed, there is no sudden change in the integrated value as long as the integrated value of the temperature deviation is observed. For this reason, the controller 40 does not react sensitively and does not rapidly increase the rotation speed of the compressor 22, so that the control is stabilized, thereby contributing to power saving.

なお、以上の説明ではプルダウン冷却運転時について述べたが、食品等の貯蔵物をユーザーにより設定された設定温度に冷却するコントロール運転時においても、設定温度を挟んだ上下に上限値及び下限値を決定し、上限値から下限値に向かって庫内温度を時間的にどのように変化させるべきかを示す目標温度の変化態様が関数化されて記憶手段43に記憶され、プルダウン冷却運転と同様にして圧縮機の回転数が制御される。したがって、コントロール運転時においても断熱扉15の開閉等による一時的な庫内温度の急変に対しては過敏に反応することがなく、省電力化を達成できる。また、記憶されている目標温度の変化態様にならうように圧縮機22を制御するものであるから、圧縮機22の運転停止時間を適宜に確実に取ることができ、冷却器27で一種の除霜機能を発揮させて、大量に着霜することを防止できる。   In the above description, the pull-down cooling operation is described. However, the upper and lower limits are set above and below the set temperature even in the control operation for cooling the stored product such as food to the set temperature set by the user. The change mode of the target temperature indicating how to change the internal temperature from the upper limit value to the lower limit value in terms of time is functionalized and stored in the storage means 43, as in the pull-down cooling operation. Thus, the rotation speed of the compressor is controlled. Therefore, even during the control operation, it does not react sensitively to a temporary sudden change in the internal temperature due to the opening and closing of the heat insulating door 15, and power saving can be achieved. In addition, since the compressor 22 is controlled so as to follow the stored target temperature change mode, the operation stop time of the compressor 22 can be appropriately ensured. A defrosting function can be demonstrated and it can prevent frost formation in large quantities.

また、業務用の冷蔵庫では、上述したプルダウン冷却運転が必要になる事態は、冷蔵庫の初期設置時に限らず、電源を切って数時間経過した後の再運転、多量の食材を搬入する際の長時間の扉開放、調理直後の高温食材を多量に投入した場合等にも必要となり、その冷却特性は極めて重要である。その点に鑑み、本実施形態では、プルダウン冷却運転時の冷却特性を、単なる温度の最終目標値として与えるのではなく、目標温度の経時的な変化態様として与えるようにしているから、異なる仕様の断熱貯蔵庫に対して共通の冷凍ユニット20を使用することができるようになる。   In commercial refrigerators, the above-mentioned pull-down cooling operation is not limited to the initial installation of the refrigerator, but is a rerun after a few hours have passed since turning off the power, and a long time when carrying a large amount of food. This is necessary even when the door is opened for a long time or when a large amount of high-temperature food is put in immediately after cooking, and its cooling characteristics are extremely important. In view of that point, in the present embodiment, the cooling characteristics during the pull-down cooling operation are not simply given as the final target value of the temperature, but are given as a change with time of the target temperature. A common refrigeration unit 20 can be used for the insulated storage.

なお、特にこの実施形態では、目標温度の変化態様を関数化して記憶手段43に記憶させているから、これをテーブル化して記憶するものに比べて記憶容量が小さくて済むという利点がある。   In particular, in this embodiment, since the change mode of the target temperature is converted into a function and stored in the storage unit 43, there is an advantage that the storage capacity can be smaller than that stored in a table.

<実施形態2>
次に、本発明の実施形態2を図9ないし図13を参照して説明する。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.

この実施形態では業務用の横型(テーブル型)に冷凍冷蔵庫に適用した場合を例示しており、まず図9により全体構造を説明する。符号50は断熱貯蔵庫であって、前面に開口した横長の断熱箱体により構成され、底面の四隅に設けられた脚51によって支持されている。断熱貯蔵庫50の内部は、後付けされる断熱性の仕切壁52によって内部が左右に仕切られ、左の相対的に狭い側が第1の貯蔵室に相当する冷凍室53F、右の広い側が第2の貯蔵室に相当する冷蔵室53Rとなっている。なお、図示はしないが冷凍室53F、冷蔵室53Rの前面の開口には揺動式の断熱扉が開閉可能に装着されている。   In this embodiment, the case where it is applied to a commercial refrigerator (table type) in a refrigerator is illustrated. First, the overall structure will be described with reference to FIG. Reference numeral 50 denotes a heat insulating storage, which is configured by a horizontally long heat insulating box that opens to the front surface, and is supported by legs 51 provided at the four corners of the bottom surface. The inside of the heat insulating storage 50 is partitioned into left and right by a heat insulating partition wall 52 to be attached later, the left relatively narrow side is a freezer compartment 53F corresponding to the first storage room, the right wide side is the second It is a refrigerating room 53R corresponding to a storage room. Although not shown, a swing-type heat insulating door is attached to the opening in front of the freezer compartment 53F and the refrigerator compartment 53R so as to be opened and closed.

断熱貯蔵庫50の正面から見た左側部には、機械室58が設けられている。機械室58内の上部の奥側には、冷凍室53Fと連通した断熱性の冷却器室60が張り出し形成されているとともに、その下方には、後記する冷凍ユニット70が出し入れ可能に収納されている。また仕切壁52の冷蔵室53R側の面には、ダクト63を張ることで別の冷却器室64が形成されている。   A machine room 58 is provided on the left side of the heat insulating storage 50 as viewed from the front. A heat-insulating cooler chamber 60 communicated with the freezer compartment 53F is formed on the back side of the upper part in the machine room 58, and a freezing unit 70 described later is accommodated in the lower part thereof so that it can be taken in and out. Yes. Further, another cooler chamber 64 is formed on the surface of the partition wall 52 on the refrigerator compartment 53R side by stretching a duct 63.

上記冷凍ユニット70は、図10に示すように、インバータモータ71に駆動されて冷媒を圧縮する圧縮機72を備え、その圧縮機72の冷媒吐出側が凝縮器ファン73により冷却される凝縮器74及びドライヤ75を通して、弁装置である三方弁76の入口側に接続されている。三方弁76の一方の出口は、絞り装置に相当するキャピラリチューブ77Fを介して冷凍室53F側の冷却器室60内に収容した第1の冷却器78Fに連なる。三方弁76の他方の出口は、やはり絞り装置であるキャピラリチューブ77Rを介して冷蔵室53R側の冷却器室64内に収容した第2の冷却器78Rに連なる。第1の冷却器78Fの冷媒出口はアキュムレータ79F及び逆止弁80を順に連ねた上で、第2の冷却器78Rの冷媒出口はアキュムレータ79Rを連ねた上で合流し、最終的に圧縮機72の吸入側に連なっている。これにより、三方弁76を切り替えると、凝縮器74からの冷媒を、キャピラリチューブ77F,第1の冷却器78F,アキュムレータ79F及び逆止弁80を順に介して圧縮機72に戻る第1の流路82Fと、キャピラリチューブ77R,第2の冷却器78R,及びアキュムレータ79Rを順に介して圧縮機72に戻る第2の流路82Rとに選択的に切り替え、冷媒を第1及び第2の冷却器78F,78Rに選択的に供給できるようになっている。   As shown in FIG. 10, the refrigeration unit 70 includes a compressor 72 that is driven by an inverter motor 71 to compress a refrigerant, and a refrigerant discharge side of the compressor 72 is cooled by a condenser fan 73 and a condenser 74. The dryer 75 is connected to the inlet side of a three-way valve 76 that is a valve device. One outlet of the three-way valve 76 is connected to a first cooler 78F accommodated in the cooler chamber 60 on the freezing chamber 53F side via a capillary tube 77F corresponding to a throttling device. The other outlet of the three-way valve 76 is connected to the second cooler 78R accommodated in the cooler chamber 64 on the refrigerating chamber 53R side via a capillary tube 77R that is also a throttling device. The refrigerant outlet of the first cooler 78F is connected with the accumulator 79F and the check valve 80 in order, and the refrigerant outlet of the second cooler 78R is joined with the accumulator 79R, and finally the compressor 72 is joined. It is connected to the inhalation side. Thereby, when the three-way valve 76 is switched, the refrigerant from the condenser 74 returns to the compressor 72 via the capillary tube 77F, the first cooler 78F, the accumulator 79F, and the check valve 80 in this order. 82F, and a capillary tube 77R, a second cooler 78R, and an accumulator 79R are selectively switched to a second flow path 82R that returns to the compressor 72 in order, and the refrigerant is switched to the first and second coolers 78F. , 78R can be selectively supplied.

なお、この三方弁76は、圧縮機72が駆動されている期間において、所定時間毎に第1及び第2の各流路82F,82Rを交互に有効化するように切り替えられるようになっている。また、各冷却器室60,64には庫内空気が触れる位置に冷凍室53F及び冷蔵室53Rの庫内温度を検出するための温度センサ83F,83Rが夫々設けられている。   The three-way valve 76 is switched so as to alternately activate the first and second flow paths 82F and 82R every predetermined time during the period in which the compressor 72 is driven. . Each of the cooler chambers 60 and 64 is provided with temperature sensors 83F and 83R for detecting the internal temperatures of the freezing chamber 53F and the refrigerating chamber 53R at positions where the internal air is in contact.

さて、上記インバータモータ71は、前記実施形態1と同様に、可変周波数の交流電力を出力するインバータ駆動回路86により駆動され、その出力周波数はコントローラ90によって決定される。図10を参照しつつ、コントローラ40について詳述すると、これは冷凍室53F及び冷蔵室53R内の目標温度を設定するための目標温度設定手段91と、この目標温度設定手段91によって設定された目標温度を前記2つの温度センサ83F,83Rにより検出された実際の庫内温度との偏差を算出する偏差算出手段92とを備える。ここで、冷凍室53Fの目標温度をTFa、実際の庫内温度をTF とし、冷蔵室53Rの目標温度をTRa、実際の庫内温度をTR とすると、上記偏差は(TF−TFa)及び(TR−TRa)と定義される。   As in the first embodiment, the inverter motor 71 is driven by an inverter drive circuit 86 that outputs AC power of variable frequency, and the output frequency is determined by the controller 90. The controller 40 will be described in detail with reference to FIG. 10. This is a target temperature setting means 91 for setting target temperatures in the freezer compartment 53F and the refrigerator compartment 53R, and a target set by the target temperature setting means 91. Deviation calculating means 92 is provided for calculating a deviation of the temperature from the actual internal temperature detected by the two temperature sensors 83F and 83R. Here, when the target temperature of the freezer compartment 53F is TFa, the actual internal temperature is TF, the target temperature of the refrigerator compartment 53R is TRa, and the actual internal temperature is TR, the above deviation is (TF-TFa) and ( TR-TRA)).

上記目標温度設定手段91は本実施形態2では図3に示した実施形態1と同様であり、冷凍室53F及び冷蔵室53R用の2つの目標温度TFa,TRaを出力する点が相違するだけである。すなわち、冷凍室53F及び冷蔵室53Rの各目標温度は、その経時的な変化態様(すなわち時間tと共に目標温度を変化させる様子)として与えられており、その目標温度の変化態様としては、食品等の貯蔵物をユーザーにより設定された設定温度に冷却するコントロール運転時における目標温度の変化態様と、例えば冷凍冷蔵庫を設置して始めて電源を投入したときのように、コントロール運転時の設定温度よりも相当に高い温度からコントロール運転時の温度域まで冷却するいわゆるプルダウン冷却運転時における目標温度の変化態様との2種類があり、いずれの変化態様も、時間tを変数とした関数によって表しておき、その関数が例えばEPROM等により構成した記憶手段に記憶されている。例えばプルダウン冷却運転時の冷凍庫53F及び冷凍庫53Rの各目標温度TFa、TRaの変化態様を示す関数TFa=fF(t)、TRa=fR(t)としては、図11に示したグラフで表されるものを例示できる。   The target temperature setting means 91 is the same as that of the first embodiment shown in FIG. 3 in the second embodiment, except that the two target temperatures TFa and TRa for the freezer compartment 53F and the refrigerator compartment 53R are output. is there. That is, each target temperature of the freezer compartment 53F and the refrigerator compartment 53R is given as a change mode with time (that is, a state in which the target temperature is changed with the time t). Of the target temperature during control operation to cool the stored items to the set temperature set by the user, and for example, when the power is turned on for the first time after installing the refrigerator-freezer, There are two types of change modes of the target temperature in the so-called pull-down cooling operation in which cooling is performed from a considerably high temperature to the temperature range during the control operation, and each change mode is expressed by a function with the time t as a variable, The function is stored in a storage means constituted by, for example, EPROM. For example, the functions TFa = fF (t) and TRa = fR (t) indicating the change modes of the target temperatures TFa and TRa of the freezer 53F and the freezer 53R during the pull-down cooling operation are represented by the graph shown in FIG. The thing can be illustrated.

目標温度設定手段91からの2つの目標温度TFa,TRaは、各温度センサ83F,83Rから得られる2つの庫内温度TF,TRとともに偏差算出手段2に与えられ、ここで夫々の偏差(TF−TFa)及び(TR−TRa)が算出される。そして、その各偏差の値は次段の偏差積算手段96に与えられ、ここで例えば2分〜10分の間(この実施形態では5分間)の偏差を冷蔵室53R側及び冷凍室53F側の双方を合算して積算し、その値を回転数制御手段97に与える。回転数制御手段97では、その偏差の積算値を、所定の基準値(下限値及び上限値)と比較し、いずれかの積算値が上限値L_UPよりも大きいときにはインバータモータ71の回転数を上昇させるべくインバータ駆動回路86への周波数指令信号Sfを変化させ、いずれかの積算値が下限値L_DOWNよりも小さいときには、インバータモータ71の回転数を下降させるべくインバータ駆動回路86への周波数指令信号Sfを変化させるようになっている。なお、この回転数制御手段47の機能はCPUによって実行されるソフトウエアにより実現され、そのソフトウエアの処理手順を示せば図12の通りとなる。   The two target temperatures TFa and TRa from the target temperature setting means 91 are given to the deviation calculating means 2 together with the two internal temperatures TF and TR obtained from the temperature sensors 83F and 83R. Here, the respective deviations (TF− TFa) and (TR-TRA) are calculated. Then, the value of each deviation is given to the deviation integrating means 96 at the next stage, and here, for example, the deviation for 2 minutes to 10 minutes (5 minutes in this embodiment) is calculated on the refrigerator compartment 53R side and the freezer compartment 53F side. Both are added together and integrated, and the value is given to the rotational speed control means 97. The rotation speed control means 97 compares the integrated value of the deviation with a predetermined reference value (lower limit value and upper limit value), and increases the rotation speed of the inverter motor 71 when any of the integrated values is larger than the upper limit value L_UP. When the frequency command signal Sf to the inverter drive circuit 86 is changed so that one of the integrated values is smaller than the lower limit value L_DOWN, the frequency command signal Sf to the inverter drive circuit 86 is decreased to decrease the rotation speed of the inverter motor 71. Is to change. The function of the rotation speed control means 47 is realized by software executed by the CPU, and the processing procedure of the software is as shown in FIG.

その図12を参照してそのソフトウエア的構成を説明する。CPUによって圧縮器回転制御開始ルーチンが開始されると(ステップS1)、まず積算値Aを例えば0に初期化する(ステップS2)。次いで、上述の通りに目標温度設定手段91が冷蔵室53R及び冷凍室53Fの各目標温度TRa、TFaをそれぞれ算出すると共に(ステップS3,S4)、それらの目標温度TRa、TFaと実際の庫内温度TR、TFとの偏差Aを算出してこれを積算する(偏差算出手段92及び偏差積算手段96の機能:ステップS5)。そして、ステップS6に至って積算値を上限値L_UP及び下限値L_DOWNと比較して、インバータモータ71の回転数を増減させるのである(回転数制御手段97の機能:ステップS6〜S8)。   The software configuration will be described with reference to FIG. When the compressor rotation control start routine is started by the CPU (step S1), the integrated value A is first initialized to, for example, 0 (step S2). Next, as described above, the target temperature setting means 91 calculates the respective target temperatures TRa and TFa of the refrigerator compartment 53R and the freezer compartment 53F (steps S3 and S4), and the target temperatures TRa and TFa and the actual interior temperature Deviation A between temperatures TR and TF is calculated and integrated (functions of deviation calculating means 92 and deviation integrating means 96: step S5). In step S6, the integrated value is compared with the upper limit value L_UP and the lower limit value L_DOWN, and the rotational speed of the inverter motor 71 is increased or decreased (function of the rotational speed control means 97: steps S6 to S8).

このような本実施形態2によれば、例えばプルダウン冷却運転時における冷蔵室53R及び冷凍室53Fの各目標温度TFa、TRaの時間的変化態様が図13の一点鎖線で示すグラフのように設定されたとし、実線のように冷蔵室53R及び冷凍室53Fの実際の庫内温度TF、TRが変化したとすると、例えば冷蔵室53R側では冷却運転の開始当初は目標温度TRaに比べて庫内温度TR がより低くなるように冷却され、冷凍室53F側では庫内温度TF が目標温度TFaとほぼ同等になるように冷却ているから、総合的な温度偏差はマイナスになり、積算値Aもマイナスになる。ここで、積算値Aのグラフが鋸歯状波形になるのは、積算値Aが所定時間毎に初期化されているためである(図12 ステップS9)。そして、積算値Aがマイナスとなって下限値L_DOWNを下回るから、当初はインバータ周波数が徐々に低下され、その結果、圧縮機回転数が段階的に低下して冷却能力が抑えられるため、庫内温度は目標温度の低下度合いに近付く。   According to the second embodiment as described above, for example, the temporal change modes of the respective target temperatures TFa and TRa of the refrigerator compartment 53R and the freezer compartment 53F during the pull-down cooling operation are set as shown by a dashed line in FIG. Assuming that the actual storage temperatures TF and TR of the refrigerator compartment 53R and the freezer compartment 53F change as indicated by the solid line, for example, at the beginning of the cooling operation on the refrigerator compartment 53R side, the internal temperature compared to the target temperature TRa. Cooling is performed so that TR is lower, and on the freezer compartment 53F side, cooling is performed so that the internal temperature TF is substantially equal to the target temperature TFa. Therefore, the overall temperature deviation is negative, and the integrated value A is also negative. become. Here, the reason why the graph of the integrated value A has a sawtooth waveform is that the integrated value A is initialized every predetermined time (step S9 in FIG. 12). Since the integrated value A becomes negative and falls below the lower limit value L_DOWN, the inverter frequency is gradually lowered at the beginning. As a result, the compressor speed is lowered step by step, and the cooling capacity is suppressed. The temperature approaches the degree of decrease in the target temperature.

冷却能力が低下した結果、庫内温度が目標温度を上回ることになると、冷凍室53F 及び冷蔵室53Rの各温度偏差及びその積算値Aはプラスに推移し、総合の積算値Aが上限値L_UPを上回ったところで圧縮機回転数が上昇されて冷却能力が高くなり、再び庫内温度は目標温度の低下度合いに近付くことになる。以下、このような制御が繰り返えされることで、庫内温度は設定された目標温度の時間的変化態様にしたがって低下して行くことになる。   If the internal temperature exceeds the target temperature as a result of the decrease in cooling capacity, the temperature deviations of the freezing room 53F and the refrigerating room 53R and their integrated values A change to positive, and the integrated integrated value A becomes the upper limit value L_UP. When the pressure exceeds the value, the compressor rotational speed is increased to increase the cooling capacity, and the internal temperature again approaches the degree of decrease in the target temperature. Hereinafter, by repeating such control, the internal temperature decreases in accordance with the temporal change mode of the set target temperature.

そして、上述のようなプルダウン冷却運転時に途中で例えば冷蔵庫断熱貯蔵庫10の断熱扉15が一時的に開放されて、外気が流入することにより庫内温度が一時的に上昇したとしても、その温度上昇は断熱扉が閉じられることで急速に復元して行くから、温度偏差の積算値として観察している限り、その積算値の急変はない。このため、コントローラ90が過敏に反応して圧縮機72の回転数を急速に高めたりすることがなく制御が安定し、ひいては省電力化に寄与する。   And even if the heat insulation door 15 of the refrigerator heat insulation storage 10 is temporarily opened during the pull-down cooling operation as described above and the inside temperature temporarily rises due to the flow of outside air, the temperature rises. Is rapidly restored by closing the heat insulating door, so as long as it is observed as an integrated value of temperature deviation, there is no sudden change in the integrated value. For this reason, the controller 90 does not react sensitively and does not rapidly increase the rotation speed of the compressor 72, so that the control is stabilized, which contributes to power saving.

なお、以上の説明ではプルダウン冷却運転時について述べたが、食品等の貯蔵物をユーザーにより設定された設定温度に冷却するコントロール運転時においても、設定温度を挟んだ上下に上限値及び下限値を決定し、上限値から下限値に向かって庫内温度を時間的にどのように変化させるべきかを示す目標温度の変化態様が関数化されて記憶手段に記憶され、プルダウン冷却運転と同様にして圧縮機の回転数が制御される。したがって、コントロール運転時においても断熱扉の開閉等による一時的な庫内温度の急変に対しては過敏に反応することがなく、省電力化を達成できる。また、記憶されている目標温度の変化態様にならうように圧縮機72を制御するものであるから、圧縮機72の運転停止時間を適宜に確実に取ることができ、各冷却器78F,78Rで一種の除霜機能を発揮させて、大量に着霜することを防止できる。   In the above description, the pull-down cooling operation is described. However, the upper and lower limits are set above and below the set temperature even in the control operation for cooling the stored product such as food to the set temperature set by the user. The change mode of the target temperature indicating how to change the internal temperature from the upper limit value to the lower limit value in terms of time is functionalized and stored in the storage means, in the same manner as in the pull-down cooling operation. The rotational speed of the compressor is controlled. Therefore, even during the control operation, it does not react sensitively to a temporary sudden change in the internal temperature due to the opening and closing of the heat insulating door, and power saving can be achieved. Further, since the compressor 72 is controlled so as to follow the stored target temperature change mode, the operation stop time of the compressor 72 can be appropriately ensured, and each of the coolers 78F and 78R. It is possible to prevent a large amount of frost from being exhibited by exhibiting a kind of defrosting function.

また、業務用の冷蔵庫では、上述したプルダウン冷却運転が必要になる事態は、冷蔵庫の初期設置時に限らず、電源を切って数時間経過した後の再運転、多量の食材を搬入する際の長時間の扉開放、調理直後の高温食材を多量に投入した場合等にも必要となり、その冷却特性は極めて重要である。その点に鑑み、本実施形態では、プルダウン冷却運転時の冷却特性を、単なる温度の最終目標値として与えるのではなく、目標温度の経時的な変化態様として与えるようにしているから、異なる仕様の断熱貯蔵庫に対して共通の冷凍ユニット70を使用することができるようになる。   In commercial refrigerators, the above-mentioned pull-down cooling operation is not limited to the initial installation of the refrigerator, but is a rerun after a few hours have passed since turning off the power, and a long time when carrying a large amount of food. This is necessary even when the door is opened for a long time or when a large amount of high-temperature food is put in immediately after cooking, and its cooling characteristics are extremely important. In view of that point, in the present embodiment, the cooling characteristics during the pull-down cooling operation are not simply given as the final target value of the temperature, but are given as a change with time of the target temperature. A common refrigeration unit 70 can be used for the insulated storage.

しかも、本実施形態では、目標温度を経時的な変化態様として与えるに当たり、所定時間毎の目標温度として与えるようにしているから、例えば所定時間毎の温度の変化率として与える場合に比べて、1台の圧縮機72からの冷媒を2つの冷却器78F,78Rに交互に供給して二室を冷却するタイプの冷却貯蔵庫に適合するという利点がある。すなわち、仮に所定時間毎の温度の変化率として冷却目標を与え、その変化率に近付くように圧縮機72の回転数を制御する構成とした場合には、交互に冷却するタイプでは一方が冷却されている間に例えば他方の貯蔵室の扉が一時的に開放されて庫内温度が上昇したとき、扉が閉められてその貯蔵室の冷却の番になれば直ちに庫内温度が低下するから、冷却運転が目標とする変化率は達成される。このため、実際には庫内温度が少し上昇しているにも関わらず圧縮機72の回転数が低下されるという事態になり、このような事態が返されると、庫内温度を期待した通りに低下させることができなくなる。   In addition, in the present embodiment, since the target temperature is given as the target temperature for every predetermined time when the target temperature is given as the change mode with time, for example, compared with the case where the target temperature is given as the rate of change in temperature every predetermined time, 1 There is an advantage in that the refrigerant from the compressor 72 of the stand is supplied to the two coolers 78F and 78R alternately to be adapted to a cooling storage type of cooling the two chambers. That is, if the cooling target is given as the rate of change in temperature every predetermined time and the rotation speed of the compressor 72 is controlled so as to approach the rate of change, one of the types in which cooling is performed alternately is cooled. While the door of the other storage room is temporarily opened and the internal temperature rises, for example, the internal temperature decreases as soon as the door is closed and the storage room is cooled. The target rate of change for the cooling operation is achieved. For this reason, although the internal temperature actually rises slightly, the rotational speed of the compressor 72 is reduced, and when such a situation is returned, the internal temperature is expected. Can not be lowered.

これに対して、本実施形態では、目標温度の経時的変化態様を所定時間毎に異なる(徐々に低くなる)目標温度として与えるようにしているから、一時的な庫内温度の上昇があった場合に、その時点で目標温度に到達できなければ圧縮機72の回転数を上昇させて冷却能力が高められるから、庫内温度を設定通りに確実に低下させることができる。   On the other hand, in this embodiment, since the temporal change mode of the target temperature is given as a target temperature that is different (slowly decreases) every predetermined time, there is a temporary rise in the internal temperature. In this case, if the target temperature cannot be reached at that time, the number of revolutions of the compressor 72 is increased and the cooling capacity is increased, so that the internal temperature can be reliably lowered as set.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)上記各実施形態では、目標温度と庫内温度との偏差を所定時間毎に算出して積算し、その積算値が所定の基準値を越えた場合に、直ちに圧縮機の回転数を高めるようにしたが、圧縮機の回転数を決定するに際してさらに他の条件を加味してもよい。   (1) In each of the above embodiments, the deviation between the target temperature and the internal temperature is calculated and integrated every predetermined time, and when the integrated value exceeds a predetermined reference value, the rotational speed of the compressor is immediately set. However, other conditions may be taken into account when determining the rotational speed of the compressor.

(2)上記各実施形態では、目標温度設定手段を図3に示すように、目標温度の経時的変化態様を表した関数を記憶手段43に記憶させ、この記憶手段43に記憶させた関数を読み出して時間の経過に合わせて目標温度を算出する構成としたが、これに限らず、例えば図14に示すように、目標温度の経時的変化態様を温度と経過時間とを対照させた参照テーブルを予め作成しておき、この参照テーブルを記憶手段100に記憶しておき、計時手段102からの信号に応じて、テーブル読み出し手段101によって時間の経過に合わせてその記憶手段100における目標温度を読み出す構成としてもよい。   (2) In each of the above embodiments, as shown in FIG. 3, the target temperature setting means stores a function representing a temporal change mode of the target temperature in the storage means 43, and the function stored in the storage means 43 is stored in the function. The target temperature is calculated in accordance with the passage of time by reading out. However, the present invention is not limited to this. For example, as shown in FIG. 14, a reference table in which the temporal change mode of the target temperature is compared with the elapsed time. Is created in advance, this reference table is stored in the storage means 100, and the target temperature in the storage means 100 is read by the table reading means 101 according to the signal from the timing means 102 as time passes. It is good also as a structure.

本発明の実施形態1を示す全体の断面図1 is an overall cross-sectional view showing Embodiment 1 of the present invention. 実施形態1の冷凍サイクル構成図Refrigeration cycle configuration diagram of Embodiment 1 実施形態1の目標温度設定手段の構成を示すブロック図The block diagram which shows the structure of the target temperature setting means of Embodiment 1. 実施形態1における目標温度の経時的変化態様を示すグラフThe graph which shows the time-dependent change aspect of the target temperature in Embodiment 1. 実施形態1における初期値の算出過程を示すグラフThe graph which shows the calculation process of the initial value in Embodiment 1. 実施形態1において決定された目標温度の経時的変化態様を示すグラフThe graph which shows the time-dependent change aspect of the target temperature determined in Embodiment 1. 実施形態1における圧縮機回転数の制御手順を示すフローチャートThe flowchart which shows the control procedure of the compressor rotation speed in Embodiment 1. FIG. 実施形態1におけるプルダウン冷却運転時の庫内温度の変化態様と圧縮機回転数との関係を示すグラフThe graph which shows the relationship between the change aspect of the chamber temperature at the time of the pull-down cooling operation in Embodiment 1, and a compressor rotation speed 本発明の実施形態2を示す全体の断面図Whole sectional drawing which shows Embodiment 2 of this invention 実施形態2の冷凍サイクル構成図Refrigeration cycle configuration diagram of Embodiment 2 実施形態2における冷凍室及び冷蔵室の目標温度の経時的変化態様を示すグラフThe graph which shows the time-dependent change aspect of the target temperature of the freezer compartment and refrigerator compartment in Embodiment 2. 実施形態2における圧縮機回転数の制御手順を示すフローチャートFlowchart showing the control procedure of the compressor rotation speed in the second embodiment. 実施形態2におけるプルダウン冷却運転時の庫内温度の変化態様と圧縮機回転数との関係を示すグラフThe graph which shows the relationship between the change mode of the internal temperature at the time of the pull-down cooling operation in Embodiment 2, and a compressor rotation speed 目標温度設定手段を異ならせた他の実施形態を示すブロック図The block diagram which shows other embodiment which varied the target temperature setting means

符号の説明Explanation of symbols

10…断熱貯蔵庫 12…冷蔵室 22…圧縮機 26…キャピラリチューブ(絞り装置) 27…冷却器 35…温度センサ 41…目標温度設定手段 42…偏差算出手段 46…偏差積算手段 47…回転数制御手段 50…断熱貯蔵庫 51…目標温度算出手段 53F…冷凍室(第1の貯蔵室) 53R…冷蔵室(第2の貯蔵室) 72…圧縮機 76…三方弁(弁装置) 77F,77R…キャピラリチューブ(絞り装置) 78F…第1の冷却器 78R…第2の冷却器 82F…第1の流路 82R…第2の流路 91…目標温度設定手段 92…偏差算出手段 96…偏差積算手段 97…回転数制御手段   DESCRIPTION OF SYMBOLS 10 ... Thermal insulation storage 12 ... Refrigeration room 22 ... Compressor 26 ... Capillary tube (throttle device) 27 ... Cooler 35 ... Temperature sensor 41 ... Target temperature setting means 42 ... Deviation calculation means 46 ... Deviation integration means 47 ... Speed control means DESCRIPTION OF SYMBOLS 50 ... Thermal insulation storage 51 ... Target temperature calculation means 53F ... Freezing room (1st storage room) 53R ... Refrigeration room (2nd storage room) 72 ... Compressor 76 ... Three-way valve (valve apparatus) 77F, 77R ... Capillary tube (Throttle device) 78F ... first cooler 78R ... second cooler 82F ... first flow path 82R ... second flow path 91 ... target temperature setting means 92 ... deviation calculating means 96 ... deviation integrating means 97 ... Speed control means

Claims (6)

インバータモータが駆動する圧縮機によって冷媒を圧縮し、その冷媒を凝縮器及び絞り装置を通して冷却器に供給し、この冷却器により生成された冷気によって貯蔵室内を冷却する冷却貯蔵庫における前記圧縮機の制御方法であって、
前記貯蔵室内の目標温度を設定するための目標温度設定手段と、前記貯蔵室内の庫内温度を検出する温度センサとを備え、
前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を所定時間毎に算出して積算し、その積算値と所定の基準値との比較に基づいて前記インバータモータの回転数を変化させることを特徴とする冷却貯蔵庫における圧縮機の制御方法。
Control of the compressor in the cooling storage that compresses the refrigerant by the compressor driven by the inverter motor, supplies the refrigerant to the cooler through the condenser and the expansion device, and cools the storage chamber by the cold air generated by the cooler. A method,
A target temperature setting means for setting a target temperature in the storage chamber; and a temperature sensor for detecting an internal temperature in the storage chamber;
The deviation between the target temperature set in the target temperature setting means and the internal temperature detected by the temperature sensor is calculated and integrated every predetermined time, and based on a comparison between the integrated value and a predetermined reference value A method for controlling a compressor in a cooling storage, wherein the rotational speed of the inverter motor is changed.
インバータモータにより駆動される圧縮機と、この圧縮機が圧縮した冷媒から放熱させる凝縮器と、この凝縮器からの冷媒が絞り装置を通して供給される冷却器と、この冷却器により生成された冷気によって貯蔵室内が冷却される断熱貯蔵庫と、この断熱貯蔵庫の貯蔵室内の目標温度を設定するための目標温度設定手段と、前記貯蔵室内の庫内温度を検出する温度センサと、所定時間毎に前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を算出する偏差算出手段と、この偏差算出手段により算出された所定回数の偏差の和を積算する偏差積算手段と、この偏差積算手段により積算された積算値を基準値と比較して前記インバータモータの回転数を変化させる回転数制御手段とを備えてなる冷却貯蔵庫。 A compressor driven by an inverter motor, a condenser that dissipates heat from the refrigerant compressed by the compressor, a cooler to which the refrigerant from the condenser is supplied through a throttling device, and cold air generated by the cooler An insulated storage room in which the storage room is cooled, target temperature setting means for setting a target temperature in the storage room of the insulated storage room, a temperature sensor for detecting the internal temperature of the storage room, and the target at predetermined time intervals Deviation calculating means for calculating a deviation between the target temperature set in the temperature setting means and the internal temperature detected by the temperature sensor, and a deviation for integrating the sum of the predetermined number of deviations calculated by the deviation calculating means An integrating means; and a rotational speed control means for comparing the integrated value integrated by the deviation integrating means with a reference value to change the rotational speed of the inverter motor. Retirement reservoir. インバータモータにより駆動される圧縮機と、この圧縮機が圧縮した冷媒から放熱させる凝縮器と、この凝縮器からの冷媒を第1及び第2の流路に選択的に切り替える弁装置と、前記第1及び第2の流路に夫々個別に設けられて前記冷媒が選択的に供給される第1及び第2の冷却器と、これらの第1及び第2の冷却器への冷媒入口側と前記凝縮器との間に設けられた絞り装置と、第1及び第2の貯蔵室を有しそれらの貯蔵室が前記各冷却器により生成された冷気によって冷却される断熱貯蔵庫と、前記第1及び第2の貯蔵室内の目標温度を設定するための目標温度設定手段と、前記第1及び第2の各貯蔵室内の庫内温度を検出する温度センサと、所定時間毎に前記目標温度設定手段に設定された前記目標温度と前記温度センサにより検出された庫内温度との偏差を算出する偏差算出手段と、この偏差算出手段により算出された所定回数の偏差の和を積算する偏差積算手段と、この偏差積算手段により積算された積算値を基準値と比較して前記インバータモータの回転数を変化させる回転数制御手段とを備えてなる冷却貯蔵庫。 A compressor driven by an inverter motor; a condenser for radiating heat from the refrigerant compressed by the compressor; a valve device for selectively switching the refrigerant from the condenser to the first and second flow paths; First and second coolers that are individually provided in the first and second flow paths and to which the refrigerant is selectively supplied, the refrigerant inlet side to the first and second coolers, and the A throttle device provided between the condenser, first and second storage chambers, and the storage chambers cooled by the cold air generated by each of the coolers; Target temperature setting means for setting a target temperature in the second storage chamber, a temperature sensor for detecting the internal temperature in each of the first and second storage chambers, and the target temperature setting means at predetermined time intervals Detected by the set target temperature and the temperature sensor Deviation calculating means for calculating the deviation from the internal temperature, deviation integrating means for integrating the sum of the predetermined number of deviations calculated by the deviation calculating means, and the integrated value integrated by the deviation integrating means as a reference value A cooling storage comprising a rotation speed control means for changing the rotation speed of the inverter motor in comparison. 前記目標温度設定手段は、時間の経過と共に異なる目標温度を順次出力する構成であることを特徴とする請求項2又は3記載の冷却貯蔵庫。 4. The cooling storage according to claim 2, wherein the target temperature setting means is configured to sequentially output different target temperatures as time passes. 前記目標温度設定手段は、目標温度の経時的変化態様を表した関数を記憶する記憶手段と、この記憶手段に記憶された関数を読み出して時間の経過に合わせて目標温度を算出する目標温度算出手段とを備える請求項2ないし4記載の冷却貯蔵庫。 The target temperature setting means is a storage means for storing a function representing a temporal change mode of the target temperature, and a target temperature calculation for reading the function stored in the storage means and calculating the target temperature as time passes. 5. A cold storage according to claim 2, comprising means. 前記目標温度設定手段は、目標温度の経時的変化態様を温度と経過時間とを対照させた参照テーブルとして記憶する記憶手段と、時間の経過に合わせて前記記憶手段における目標温度を読み出すテーブル読み出し手段とを備える請求項2ないし4記載の冷却貯蔵庫。 The target temperature setting means stores storage means as a reference table in which the temporal change mode of the target temperature is contrasted between temperature and elapsed time, and table reading means for reading out the target temperature in the storage means as time elapses The cooling storage of Claim 2 thru | or 4 provided with these.
JP2005262486A 2005-09-09 2005-09-09 Cooling storage Active JP4934302B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005262486A JP4934302B2 (en) 2005-09-09 2005-09-09 Cooling storage
TW96107699A TWI391618B (en) 2005-09-09 2007-03-06 Control method of cooling storage and its compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262486A JP4934302B2 (en) 2005-09-09 2005-09-09 Cooling storage

Publications (2)

Publication Number Publication Date
JP2007071520A true JP2007071520A (en) 2007-03-22
JP4934302B2 JP4934302B2 (en) 2012-05-16

Family

ID=37933106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262486A Active JP4934302B2 (en) 2005-09-09 2005-09-09 Cooling storage

Country Status (2)

Country Link
JP (1) JP4934302B2 (en)
TW (1) TWI391618B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105055A1 (en) * 2007-02-26 2008-09-04 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method for controlling compressor for the cooling storage
WO2008111162A1 (en) * 2007-03-13 2008-09-18 Hoshizaki Denki Kabushiki Kaisha Cooling storage chamber and method for operating the same
JP2008286474A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Cooling storage and its operation method
JP2009250538A (en) * 2008-04-07 2009-10-29 Hoshizaki Electric Co Ltd Temperature display method and device for cooling storage cabinet
JP2010190510A (en) * 2009-02-19 2010-09-02 Nakano Refrigerators Co Ltd Control method of refrigerating machine
WO2013128898A1 (en) * 2012-03-01 2013-09-06 ダイヤモンド電機株式会社 Compressor control device for cooler
JP2015075310A (en) * 2013-10-10 2015-04-20 富士電機株式会社 Cooling device and show case
JP2016061520A (en) * 2014-09-19 2016-04-25 ホシザキ電機株式会社 Refrigeration storage house and method for controlling the number of rotation of compressor
CN114279070A (en) * 2021-12-20 2022-04-05 珠海格力电器股份有限公司 Control method and device of air conditioning system and air conditioning system
WO2023006489A1 (en) * 2021-07-29 2023-02-02 BSH Hausgeräte GmbH Refrigerator and method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065571A (en) * 1983-08-02 1985-04-15 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Semiconductor device
JPS63217175A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Cooling storage shed
JPH01212880A (en) * 1988-02-19 1989-08-25 Nippon Kentetsu Co Ltd Temperature control method for cold insulating chamber
JPH05126454A (en) * 1991-11-07 1993-05-21 Sanyo Electric Co Ltd High-humidity cooling and storing device
JPH0674544A (en) * 1992-08-31 1994-03-15 Sharp Corp Air-conditioner
JPH0772901A (en) * 1993-09-03 1995-03-17 Toshiba Corp Two degree-of-freedom pid adjusting device
JP2000230766A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Cooling cycle and refrigerator
JP2000346520A (en) * 1999-06-02 2000-12-15 Toshiba Corp Refrigerator
JP2001272114A (en) * 2000-03-29 2001-10-05 Sharp Corp Control for refrigerant of multi-chamber type air conditioner
JP2002162144A (en) * 2000-11-20 2002-06-07 Toshiba Corp Refrigerator
JP2004028370A (en) * 2002-06-21 2004-01-29 Toshiba Corp Refrigerator-freezer
JP2005098549A (en) * 2003-09-22 2005-04-14 Toshiba Corp Refrigerator
JP2005121341A (en) * 2003-10-20 2005-05-12 Hoshizaki Electric Co Ltd Cooling storage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538021B2 (en) * 1998-04-24 2004-06-14 株式会社東芝 Refrigerator cooling operation control device
JP2001082850A (en) * 1999-09-08 2001-03-30 Toshiba Corp Refrigerator
JP2002195719A (en) * 2000-12-27 2002-07-10 Fuji Electric Co Ltd Control device and method of compressor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065571A (en) * 1983-08-02 1985-04-15 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Semiconductor device
JPS63217175A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Cooling storage shed
JPH01212880A (en) * 1988-02-19 1989-08-25 Nippon Kentetsu Co Ltd Temperature control method for cold insulating chamber
JPH05126454A (en) * 1991-11-07 1993-05-21 Sanyo Electric Co Ltd High-humidity cooling and storing device
JPH0674544A (en) * 1992-08-31 1994-03-15 Sharp Corp Air-conditioner
JPH0772901A (en) * 1993-09-03 1995-03-17 Toshiba Corp Two degree-of-freedom pid adjusting device
JP2000230766A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Cooling cycle and refrigerator
JP2000346520A (en) * 1999-06-02 2000-12-15 Toshiba Corp Refrigerator
JP2001272114A (en) * 2000-03-29 2001-10-05 Sharp Corp Control for refrigerant of multi-chamber type air conditioner
JP2002162144A (en) * 2000-11-20 2002-06-07 Toshiba Corp Refrigerator
JP2004028370A (en) * 2002-06-21 2004-01-29 Toshiba Corp Refrigerator-freezer
JP2005098549A (en) * 2003-09-22 2005-04-14 Toshiba Corp Refrigerator
JP2005121341A (en) * 2003-10-20 2005-05-12 Hoshizaki Electric Co Ltd Cooling storage

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105055A1 (en) * 2007-02-26 2008-09-04 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method for controlling compressor for the cooling storage
US8474280B2 (en) 2007-02-26 2013-07-02 Hoshizaki Denki Kabushiki Kaishi Refrigerating storage cabinet and control method for compressor thereof
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
WO2008111162A1 (en) * 2007-03-13 2008-09-18 Hoshizaki Denki Kabushiki Kaisha Cooling storage chamber and method for operating the same
JP2008286474A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Cooling storage and its operation method
JP2009250538A (en) * 2008-04-07 2009-10-29 Hoshizaki Electric Co Ltd Temperature display method and device for cooling storage cabinet
JP2010190510A (en) * 2009-02-19 2010-09-02 Nakano Refrigerators Co Ltd Control method of refrigerating machine
WO2013128898A1 (en) * 2012-03-01 2013-09-06 ダイヤモンド電機株式会社 Compressor control device for cooler
JP2013181702A (en) * 2012-03-01 2013-09-12 Diamond Electric Mfg Co Ltd Cooler compressor control device
JP2015075310A (en) * 2013-10-10 2015-04-20 富士電機株式会社 Cooling device and show case
JP2016061520A (en) * 2014-09-19 2016-04-25 ホシザキ電機株式会社 Refrigeration storage house and method for controlling the number of rotation of compressor
WO2023006489A1 (en) * 2021-07-29 2023-02-02 BSH Hausgeräte GmbH Refrigerator and method therefor
CN114279070A (en) * 2021-12-20 2022-04-05 珠海格力电器股份有限公司 Control method and device of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JP4934302B2 (en) 2012-05-16
TWI391618B (en) 2013-04-01
TW200837318A (en) 2008-09-16

Similar Documents

Publication Publication Date Title
KR101130638B1 (en) Refrigerating storage cabinet and control method for compressor thereof
JP4934302B2 (en) Cooling storage
US7908039B2 (en) Cooling storage cabinet and method of operating the same
JP4954484B2 (en) Cooling storage
KR101324041B1 (en) Cooling storage and method of operating the same
KR100687933B1 (en) Refrigerator and its operation control method
KR101684054B1 (en) A refrigerator and a method controlling the same
EP3779333A1 (en) Refrigerator and method for controlling same
JP2007303796A (en) Cooling storage and operation method for it
JP4584107B2 (en) Cooling storage
US11835291B2 (en) Refrigerator and method for controlling the same
WO2005038365A1 (en) Cooling storage
KR101517248B1 (en) Control method for refrigerator
JP2008286474A (en) Cooling storage and its operation method
JP2008138915A (en) Refrigerating device
JP3515920B2 (en) refrigerator
KR101652523B1 (en) A refrigerator and a control method the same
KR20170071301A (en) Method for controlling a refrigerator
JP5008440B2 (en) Cooling storage
JP6099423B2 (en) Freezer refrigerator
KR102126890B1 (en) Method of controlling a refrigerator
JP5262244B2 (en) refrigerator
KR100805673B1 (en) Defrost method for cooling room directly or indirectly refrigerator
JP2003287344A (en) Refrigerator
JP2022134908A (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Ref document number: 4934302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350