JP2003287344A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003287344A
JP2003287344A JP2002093576A JP2002093576A JP2003287344A JP 2003287344 A JP2003287344 A JP 2003287344A JP 2002093576 A JP2002093576 A JP 2002093576A JP 2002093576 A JP2002093576 A JP 2002093576A JP 2003287344 A JP2003287344 A JP 2003287344A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
temperature
coolers
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093576A
Other languages
Japanese (ja)
Inventor
Shinjiro Asakura
新二郎 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002093576A priority Critical patent/JP2003287344A/en
Publication of JP2003287344A publication Critical patent/JP2003287344A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling means such as a refrigerator for keeping cooling capacity in a storage without deteriorating heat exchange efficiency of coolers. <P>SOLUTION: For preventing the deterioration in the cooling capacity of the respective coolers 10 and 11, a passing wind speed for passing through the inside of the coolers 10 and 11 is varied according to a lowering speed of a storage inside temperature by frosting to the respective coolers 10 and 11 until defrosting time of the coolers 10 and 11 comes. For varying the passing wind speed in the respective coolers 10 and 11, a rotating speed of respective air blowers 20 and 21 is controlled, or a valve 29 (such as a damper) is arranged in a duct for constituting the cold air circulation of a cooler room 40, a refrigerating room 7, and a vegetable room 8, or a valve 36 (such as a damper) is arranged in a duct for constituting the cold air circulation of a cooler room 41 and a freezing room 9, and an opening-closing angle of the valves 29 and 36 is controlled. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷蔵庫に係わり、よ
り詳細には、冷却器に付着する霜による冷却能力低下防
止の手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to a means for preventing deterioration of cooling capacity due to frost adhering to a cooler.

【0002】[0002]

【従来の技術】従来の冷蔵庫は、例えば図1(説明符号
のみを対象)で示すように、外箱2と内箱3と発泡断熱
材4とからなる断熱箱体1の内部を断熱仕切体5、6に
より冷蔵室7と、野菜室8と、冷凍室9とに区画すると
ともに、前記野菜室8の後方に組み付けられる前記冷蔵
室7および野菜室8用の冷却器室40を設け、同冷却器
室40内に温度センサ25を有する第一冷却器10およ
び第一送風機20が配置され、また、前記冷凍室9の後
方に組み付けられる冷凍室9用の冷却器室41を設け、
同冷却器室41内に温度センサ26を有する第二冷却器
11および第二送風機21が配置されており、前記両冷
却器10、11間を連結パイプ12で連結していた。
2. Description of the Related Art In a conventional refrigerator, for example, as shown in FIG. 1 (only reference numerals are shown), an inside of a heat insulating box 1 composed of an outer box 2, an inner box 3 and a foamed heat insulating material 4 is a heat insulating partition. The refrigerator compartment 7, the vegetable compartment 8 and the freezer compartment 9 are divided by 5 and 6, and the cooler compartment 40 for the refrigerator compartment 7 and the vegetable compartment 8 which is assembled behind the vegetable compartment 8 is provided. A first cooler 10 having a temperature sensor 25 and a first blower 20 are arranged in a cooler chamber 40, and a cooler chamber 41 for the freezing chamber 9 which is assembled behind the freezing chamber 9 is provided,
A second cooler 11 having a temperature sensor 26 and a second blower 21 are arranged in the same cooler chamber 41, and the coolers 10 and 11 are connected by a connecting pipe 12.

【0003】また、前記両冷却器10、11は、所定間
隔で横方向に積層された多数のフイン23と、この同フ
イン23に直交させた複数の伝熱管24からなってお
り、前記両冷却器10、11の上方に冷気強制循環用の
前記各送風機20、21を設ける一方、下方に各除霜ヒ
ータ13、14を配設し、前記両冷却器10、11に着
霜した霜を溶かすようにしていた。また、前記断熱箱体
1の下部後方の機械室27内に圧縮機16を配設してい
た。
The coolers 10 and 11 each include a large number of fins 23 laterally stacked at a predetermined interval and a plurality of heat transfer tubes 24 orthogonal to the fins 23. The blowers 20 and 21 for forced circulation of the cool air are provided above the coolers 10 and 11, while the defrost heaters 13 and 14 are provided below the coolers 10 and 11 to melt the frost formed on the coolers 10 and 11. Was doing. Further, the compressor 16 is arranged in the machine room 27 at the lower rear of the heat insulating box 1.

【0004】また、前記各室7、9内および前記断熱箱
体1の庫外に温度センサ30、31、32を配置し、各
庫内温度を各庫内の温度センサ30、31により検知
し、検知した温度が所定の冷却温度より高くなると、前
記圧縮機16や前記各送風機20、21を制御し、検知
した側の庫内を冷却するようになっていた。
Further, temperature sensors 30, 31, 32 are arranged inside the chambers 7, 9 and outside the heat insulating box 1, and the temperature inside each chamber is detected by the temperature sensors 30, 31 inside each chamber. When the detected temperature becomes higher than a predetermined cooling temperature, the compressor 16 and the blowers 20 and 21 are controlled to cool the inside of the storage on the detected side.

【0005】図2は、その冷凍サイクルであり、図2の
A回路に示すように、圧縮機16から吐出された冷媒
が、凝縮器15→第一キャピラリチューブ18→第一冷
却器10→第二冷却器11→アキュムレータ17を通り
前記圧縮機16に戻る、或いはB回路に示すように、前
記圧縮機16から吐出された冷媒が、凝縮器15→第二
キャピラリチューブ19→第二冷却器11→アキュムレ
ータ17を通り前記圧縮機16に戻るという冷凍サイク
ルを構成している。ここで、AとBの回路の切換えは切
換弁22によって行われ、同切換弁22を交互に切換え
て、前記第一冷却器10で前記冷蔵室7と前記野菜室8
を冷却し、前記第二冷却器11で前記冷凍室9のみを冷
却していた。
FIG. 2 shows the refrigerating cycle. As shown in the circuit A of FIG. 2, the refrigerant discharged from the compressor 16 is the condenser 15 → first capillary tube 18 → first cooler 10 → first The second cooler 11 → returns to the compressor 16 through the accumulator 17, or as shown in the circuit B, the refrigerant discharged from the compressor 16 is the condenser 15 → the second capillary tube 19 → the second cooler 11 -> A refrigerating cycle in which the gas passes through the accumulator 17 and returns to the compressor 16 is configured. Here, the switching of the circuits A and B is performed by the switching valve 22, and the switching valve 22 is switched alternately so that the refrigerating chamber 7 and the vegetable chamber 8 can be operated by the first cooler 10.
And only the freezer compartment 9 was cooled by the second cooler 11.

【0006】また、複数の冷却器を有する冷蔵庫の前記
各冷却器10、11の除霜は、図5で示すように、同各
冷却器10、11が休止中に、前記各除霜ヒータ13、
14または前記各送風機20、21によって除霜してお
り、扉の開閉回数による除霜開始時間の変化や前記各冷
却器10、11に付設された前記温度センサ25、26
で、除霜制御を行っていた。
Further, as shown in FIG. 5, the defrosting of the respective coolers 10, 11 of the refrigerator having a plurality of coolers is carried out while the respective coolers 10, 11 are at rest, as shown in FIG. ,
14 or each of the blowers 20 and 21 is used for defrosting, and changes in the defrosting start time depending on the number of times the door is opened and closed, and the temperature sensors 25 and 26 attached to the coolers 10 and 11, respectively.
Then, defrost control was performed.

【0007】しかしながら、図6で示すように、通常運
転中の前記各送風機20、21の回転数は初期稼動時か
ら一定の回転数を継続しているため、前記各冷却器1
0、11の着霜量が徐々に増えるに伴い、前記各冷却器
10、11の冷却能力も徐々に冷却サイクル毎に低下し
てくるため、従って、庫内温度の温度低下速度tも、時
間経過とともに冷却サイクル毎の温度低下速度t1、t
2、t3は、t1<t2<t3と徐々に長引くこととな
り、そこで、通常運転中の能力低下分は、冷却器(圧縮
機)の運転時間を延長することにより補っており、これ
らは電力を消費し、庫内へ熱を流入させる恐れのある問
題を有していた。
However, as shown in FIG. 6, the rotation speed of each of the blowers 20 and 21 during the normal operation has continued to be a constant rotation speed since the initial operation, so that each of the coolers 1
Since the cooling capacity of each of the coolers 10 and 11 gradually decreases with each cooling cycle as the frost formation amount of 0 and 11 gradually increases. With the passage of time, the temperature decrease rates t1 and t for each cooling cycle
2 and t3 are gradually lengthened as t1 <t2 <t3, and therefore, the decrease in capacity during normal operation is compensated for by extending the operating time of the cooler (compressor), and these increase the power. There is a problem that it may be consumed and heat may flow into the refrigerator.

【0008】[0008]

【発明が解決しようとする課題】本発明においては、上
記の問題点に鑑み、冷却器の熱交換効率を低下させず、
庫内の冷却能力を保てるようにした冷蔵庫等の冷却手段
を提供することを目的としている。
In view of the above problems, the present invention does not reduce the heat exchange efficiency of the cooler,
An object of the present invention is to provide a cooling means such as a refrigerator capable of maintaining the cooling capacity in the refrigerator.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題点を
解決するため、貯蔵室と、庫内背面に冷却器室と、同冷
却器室内に冷気を生成する冷却器と、生成した冷気を強
制循環する送風機を配設するとともに、圧縮機、凝縮
器、前記冷却器が冷媒管によって順次連結されて冷媒回
路を構成してなる冷蔵庫において、前記冷却器の除霜時
間がくるまでの間に、前記冷却器への着霜による庫内温
度の低下速度に応じて、前記冷却器内を通過する通過風
速を可変させた構成となっている。
In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems by providing a storage chamber, a cooler chamber on the back surface of the refrigerator, a cooler for generating cool air in the cooler chamber, and a cool air generated. In a refrigerator having a blower for forced circulation of the compressor, a condenser, and the cooler, which are sequentially connected by a refrigerant pipe to form a refrigerant circuit, until the defrosting time of the cooler comes. In addition, the speed of the passing wind passing through the inside of the cooler is varied according to the rate of decrease in the temperature inside the refrigerator due to frost formation on the cooler.

【0010】前記冷却器内の通過風速を可変させるため
に、前記送風機の回転数を制御した構成となっている。
In order to change the passing air velocity in the cooler, the rotation speed of the blower is controlled.

【0011】前記冷却器室と前記貯蔵室との冷気循環を
構成するダクト内に弁を設け、前記冷却器内の通過風速
を可変させるために、前記弁の開閉角度を制御した構成
となっている。
A valve is provided in a duct that forms a cold air circulation between the cooler chamber and the storage chamber, and the opening / closing angle of the valve is controlled in order to change the passing wind speed in the cooler. There is.

【0012】前記冷却器の除霜時間がくるまでの間に、
前記冷却器への着霜による庫内温度の低下速度に応じ
て、前記冷却器内を通過する通過風速を可変させるとと
もに、前記冷却器の蒸発温度を可変させた構成となって
いる。
By the time the defrosting time of the cooler comes,
According to the rate of decrease of the temperature inside the refrigerator due to frost formation on the cooler, the flow velocity of air passing through the cooler is varied, and the evaporation temperature of the cooler is varied.

【0013】前記冷却器の蒸発温度を可変させるため
に、前記圧縮機の回転数を制御した構成となっている。
In order to change the evaporation temperature of the cooler, the rotational speed of the compressor is controlled.

【0014】前記冷却器への冷媒の流量を調整する調整
弁を設け、前記冷却器の蒸発温度を可変させるために、
前記調整弁の開閉角度を制御した構成となっている。
An adjusting valve for adjusting the flow rate of the refrigerant to the cooler is provided, and in order to change the evaporation temperature of the cooler,
It has a configuration in which the opening / closing angle of the adjusting valve is controlled.

【0015】前記冷却器内を通過する通過風速もしくは
前記冷却器の蒸発温度を可変させるための検知手段とし
て、前記圧縮機の運転積算時間とした構成となってい
る。
As a detecting means for varying the passing wind speed passing through the inside of the cooler or the evaporation temperature of the cooler, the operating cumulative time of the compressor is set.

【0016】前記検知手段として、前記圧縮機の圧縮機
運転率とした構成となっている。
As the detection means, the compressor operating rate of the compressor is used.

【0017】前記検知手段として、前記冷却器の運転積
算時間とした構成となっている。
As the detection means, the operation cumulative time of the cooler is set.

【0018】前記検知手段として、前記冷却器の冷却器
運転率とした構成となっている。
As the detecting means, the cooler operating rate of the cooler is adopted.

【0019】前記冷却器および前記冷却器室内に温度セ
ンサをそれぞれ設け、前記検知手段として、前記冷却器
の温度センサの検出した温度値と、前記冷却器室内の温
度センサの検出した戻り冷気の温度値との温度差とした
構成となっている。
Temperature sensors are provided in the cooler and the cooler chamber, respectively, and the temperature value detected by the temperature sensor of the cooler and the temperature of the returned cool air detected by the temperature sensor in the cooler chamber are used as the detecting means. It is configured as a temperature difference from the value.

【0020】前記貯蔵室に扉を設け、前記検知手段とし
て、前記扉の扉開閉頻度とした構成となっている。
A door is provided in the storage chamber, and the detection means has a frequency of opening and closing the door.

【0021】前記検知手段として、前記冷却器の前除霜
時間とした構成となっている。
As the detection means, the pre-defrosting time of the cooler is set.

【0022】前記検知手段として、前記冷却器の前除霜
水量とした構成となっている。
As the detecting means, the amount of defrosting water before the cooler is set.

【0023】前記検知手段として、前記圧縮機への入力
電流値とした構成となっている。
As the detection means, the input current value to the compressor is used.

【0024】前記検知手段として、前記送風機への入力
電流値とした構成となっている。
As the detection means, the input current value to the blower is set.

【0025】前記凝縮器に温度センサを設け、前記検知
手段として、前記温度センサの検出した温度値とした構
成となっている。
A temperature sensor is provided in the condenser, and the temperature value detected by the temperature sensor is used as the detection means.

【0026】前記各貯蔵室内に温度センサを設け、前記
検知手段として、前記各温度センサの検出した庫内温度
値の勾配とした構成となっている。
A temperature sensor is provided in each of the storage chambers, and the detecting means has a gradient of the temperature value in the refrigerator detected by each of the temperature sensors.

【0027】外箱と内箱間に発泡断熱材を充填してなる
断熱箱体の庫外に温度センサを設け、前記検知手段とし
て、前記温度センサの検出した外気温度値とした構成と
なっている。
A temperature sensor is provided outside the heat-insulating box body in which a foam insulation material is filled between the outer box and the inner box, and the detecting means has the outside air temperature value detected by the temperature sensor. There is.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいた実施例として説明する。図1は本発明
の冷蔵庫本体の内部構成の概略を示す側断面図(A)
と、正面図(B)であり、図2は本発明の冷蔵庫の冷凍
サイクルを示す構成図であり、図3は本発明に係わる冷
蔵庫の制御系統図(A)および弁の構成を説明する要部
拡大側断面図(B)であり、図4は本発明に係わる冷蔵
庫の制御ブロック図である。なお、従来と同じ部分の符
号は同一とする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below as examples based on the accompanying drawings. FIG. 1 is a side sectional view (A) showing an outline of an internal configuration of a refrigerator main body of the present invention.
And FIG. 2 is a front view (B), FIG. 2 is a configuration diagram showing a refrigeration cycle of the refrigerator of the present invention, and FIG. 3 is a control system diagram (A) of the refrigerator and a configuration of valves according to the present invention. FIG. 4 is an enlarged side sectional view (B), and FIG. 4 is a control block diagram of the refrigerator according to the present invention. In addition, the same parts as those in the related art are denoted by the same reference numerals.

【0029】図において、図1は冷蔵庫本体の概略構成
を示したもので、1は鋼板製の外箱2と、合成樹脂製の
内箱3と、発泡断熱材4等からなる断熱箱体で、その内
部は二つの断熱仕切体5、6により、上から順に冷蔵室
7と、野菜室8と、冷凍室9とに区画されている。
In the figure, FIG. 1 shows a schematic structure of a refrigerator main body, in which 1 is a heat-insulating box body comprising an outer box 2 made of a steel plate, an inner box 3 made of synthetic resin, a foamed heat insulating material 4 and the like. The inside thereof is divided into a refrigerating compartment 7, a vegetable compartment 8 and a freezing compartment 9 in this order from the top by two heat insulating partition bodies 5 and 6.

【0030】前記野菜室8の後方に組付けられる前記冷
蔵室7および野菜室8用の温度センサ33を有する冷却
器室40を設け、同冷却器室40内に温度センサ25を
有し冷気を生成する第一冷却器10と、生成した冷気を
強制循環する第一送風機20が配置され、また、前記冷
凍室9の後方に組み付けられる冷凍室9用の温度センサ
34を有する冷却器室41を設け、同冷却器室41内に
温度センサ26を有し冷気を生成する第二冷却器11
と、生成した冷気を強制循環する第二送風機21が配置
されており、前記両冷却器10、11間を連結パイプ1
2で連結している。
A cooler chamber 40 having a temperature sensor 33 for the refrigerating room 7 and the vegetable room 8 assembled behind the vegetable room 8 is provided, and a cooler chamber 40 is provided with a temperature sensor 25 to cool air. A first cooler 10 for generating and a first blower 20 for forcibly circulating the generated cool air are arranged, and a cooler chamber 41 having a temperature sensor 34 for the freezing chamber 9 mounted behind the freezing chamber 9 is provided. The second cooler 11 which is provided and has the temperature sensor 26 in the same cooler chamber 41 to generate cold air
And a second blower 21 for forcibly circulating the generated cool air, and a connecting pipe 1 between the both coolers 10 and 11.
Connected with 2.

【0031】また、前記両冷却器10、11は、所定間
隔で横方向に積層された多数のフイン23と、この同フ
イン23に直交させた複数の伝熱管24からなってお
り、前記両冷却器10、11の上方に冷気強制循環用の
前記各送風機20、21を設ける一方、下方に各除霜ヒ
ータ13、14を配設し、前記両冷却器10、11に着
霜した霜を溶かすようにしている。また、前記断熱箱体
1の下部後方の機械室27内に、冷媒を循環させるため
の圧縮機16を配設している。
The both coolers 10 and 11 are composed of a large number of fins 23 laterally laminated at a predetermined interval and a plurality of heat transfer tubes 24 orthogonal to the fins 23. The blowers 20 and 21 for forced circulation of the cool air are provided above the coolers 10 and 11, while the defrost heaters 13 and 14 are provided below the coolers 10 and 11 to melt the frost formed on the coolers 10 and 11. I am trying. Further, a compressor 16 for circulating a refrigerant is arranged in a machine room 27 at the lower rear of the heat insulating box 1.

【0032】また、前記各室7、9内および前記断熱箱
体1の庫外に温度センサ30、31、32を配置し、各
庫内温度を各庫内の温度センサ30、31により検知
し、検知した温度が所定の冷却温度より高くなると、前
記圧縮機16や前記各送風機20、21を制御し、検知
した側の庫内を冷却するようになっている。
Further, temperature sensors 30, 31, 32 are arranged inside the chambers 7, 9 and outside the heat insulating box 1, and the temperature inside each chamber is detected by the temperature sensors 30, 31 in each chamber. When the detected temperature becomes higher than a predetermined cooling temperature, the compressor 16 and the blowers 20 and 21 are controlled to cool the inside of the refrigerator on the detected side.

【0033】図2は、その冷凍サイクルであり、図2の
A回路に示すように、圧縮機16から吐出された冷媒
が、温度センサ35を有する凝縮器15→第一キャピラ
リチューブ18→第一冷却器10→第二冷却器11→ア
キュムレータ17を通り前記圧縮機16に戻る、或いは
B回路に示すように、前記圧縮機16から吐出された冷
媒が、温度センサ35を有する凝縮器15→第二キャピ
ラリチューブ19→第二冷却器11→アキュムレータ1
7を通り前記圧縮機16に戻るという冷凍サイクルを構
成している。ここで、AとBの回路の切換えは切換弁2
2によって行われ、同切換弁22を交互に切換えて、前
記第一冷却器10で前記冷蔵室7と前記野菜室8を冷却
し、前記第二冷却器11で前記冷凍室9のみを冷却して
いる。
FIG. 2 shows the refrigerating cycle. As shown in the circuit A of FIG. 2, the refrigerant discharged from the compressor 16 is a condenser 15 having a temperature sensor 35.fwdarw.first capillary tube 18.fwdarw.first. Cooler 10-> 2nd cooler 11-> It returns to the said compressor 16 through the accumulator 17, or the refrigerant discharged from the said compressor 16 is the condenser 15 which has the temperature sensor 35-> Two-capillary tube 19-> second cooler 11-> accumulator 1
A refrigerating cycle of passing through 7 and returning to the compressor 16 is configured. Here, the switching of the A and B circuits is performed by the switching valve 2
2, the switching valve 22 is alternately switched to cool the refrigerating compartment 7 and the vegetable compartment 8 by the first cooler 10, and cool only the freezing compartment 9 by the second cooler 11. ing.

【0034】図6で示したように、通常運転中の前記各
送風機20、21の回転数は初期稼動時から一定の回転
数を継続しているため、前記各冷却器10、11の着霜
量が徐々に増えるに伴い、前記各冷却器10、11の冷
却能力も徐々に冷却サイクル毎に低下してくるため、従
って、庫内温度の温度低下速度tも、時間経過とともに
冷却サイクル毎の温度低下速度t1、t2、t3は、t
1<t2<t3と徐々に長引くこととなる。そこで、庫
内温度の温度低下速度tを長引かせることもなく、前記
各冷却器10、11の冷却能力の初期冷却サイクルの温
度低下速度t1を維持することにより、前記各冷却器1
0、11の冷却能力低下を防ぐ必要がある。
As shown in FIG. 6, since the rotation speed of each of the blowers 20 and 21 during the normal operation continues to be a constant rotation speed from the initial operation, the frost formation of each of the coolers 10 and 11 is caused. As the amount gradually increases, the cooling capacity of each of the coolers 10 and 11 also gradually decreases with each cooling cycle. Therefore, the temperature decrease rate t of the internal cold storage temperature also changes with time in each cooling cycle. The temperature decrease rates t1, t2, and t3 are t
It becomes 1 <t2 <t3, and it will be prolonged gradually. Therefore, by maintaining the temperature decrease rate t1 of the initial cooling cycle of the cooling capacity of each of the coolers 10 and 11 without prolonging the temperature decrease rate t of the inside temperature, each cooler 1
It is necessary to prevent the cooling ability of 0 and 11 from decreasing.

【0035】また、前記各冷却器10、11へ霜が着霜
する着霜速度は、冷却器への戻り冷気との温度差が大き
い程、或いは通過風速が大きい程、早く、そのため、着
霜の初期段階では、冷却器の蒸発温度を高く(例えば、
除霜直後の蒸発温度を−25℃→20℃に設定)、通過
風速を小さく(例えば、送風機の回転数を遅く)すれ
ば、着霜速度を遅らせることができ、熱交換効率もよい
ため、冷却能力も確保できる。その後、着霜が進行して
も、冷却器の蒸発温度を低く、通過風速を大きくすれ
ば、冷却能力(熱交換効率)を維持できることが判って
いる。
Further, the frost formation speed at which the frost forms on the respective coolers 10 and 11 is faster as the temperature difference between the cooler and the returning cool air to the cooler is larger or the passing wind speed is higher, and therefore the frost formation is caused. In the early stage of, increase the evaporation temperature of the cooler (for example,
If the evaporation temperature immediately after defrosting is set to -25 ° C → 20 ° C) and the passing air velocity is low (for example, the rotation speed of the blower is slow), the frost formation speed can be delayed and the heat exchange efficiency is also good. Cooling capacity can also be secured. After that, even if frost is formed, it is known that the cooling capacity (heat exchange efficiency) can be maintained by lowering the evaporation temperature of the cooler and increasing the passing air velocity.

【0036】そこで、図3の制御系統図で示すように、
本発明は、前記各冷却器10、11の冷却能力低下を防
ぐために、前記各冷却器10、11の除霜時間がくるま
での間に、前記各冷却器10、11への着霜による庫内
温度の低下速度に応じて、前記冷却器10、11内を通
過する通過風速を可変させるか、もしくは前記冷却器1
0、11内を通過する通過風速を可変させるとともに、
前記各冷却器10、11の蒸発温度を可変させるもの
で、それにより前記各冷却器10、11の冷却能力を低
下させないようにしている。
Therefore, as shown in the control system diagram of FIG.
In order to prevent the cooling capacity of each of the coolers 10 and 11 from deteriorating, the present invention stores the frost on the coolers 10 and 11 before the defrosting time of each of the coolers 10 and 11 comes. Depending on the rate of decrease of the internal temperature, the speed of the passing wind passing through the inside of the coolers 10 and 11 is changed, or the cooler 1
While varying the passing wind speed passing through 0 and 11,
The evaporation temperature of each of the coolers 10 and 11 is made variable, so that the cooling capacity of each of the coolers 10 and 11 is not lowered.

【0037】そして、前記各冷却器10、11内の通過
風速を可変させるために、前記各送風機20、21の回
転数を制御するか、もしくは、前記冷却器室40と前記
冷蔵室7および野菜室8との冷気循環を構成するダクト
内に弁29(ダンパ等)を設けるか(図3(B)を参照
のこと)、前記冷却器室41と前記冷凍室9との冷気循
環を構成するダクト内に弁36(ダンパ等)を設け、同
弁29、36の開閉角度を制御するようにし、前記弁2
9、36(ダンパ等)を開くことにより通過風速を遅く
し、閉じることにより通過風速を早くする。
Then, in order to change the passing air velocity in each of the coolers 10 and 11, the number of rotations of each of the blowers 20 and 21 is controlled, or the cooler chamber 40, the refrigerating chamber 7 and the vegetables are controlled. A valve 29 (damper or the like) is provided in the duct that forms the cold air circulation with the chamber 8 (see FIG. 3B), or the cold air circulation between the cooler chamber 41 and the freezing chamber 9 is formed. A valve 36 (damper or the like) is provided in the duct to control the opening and closing angles of the valves 29 and 36.
By opening 9, 36 (damper etc.), the passing wind speed is slowed, and by closing it, the passing wind speed is raised.

【0038】また、前記各冷却器10、11の蒸発温度
を可変させるために、前記圧縮機16の回転数を制御す
るか、もしくは、前記各冷却器10、11への冷媒の流
量を調整する調整弁37、38(流量調整弁等)をそれ
ぞれ冷媒回路に設け、同調整弁37、38の開閉角度を
制御するようにする。
Further, in order to change the evaporation temperature of each of the coolers 10 and 11, the rotation speed of the compressor 16 is controlled, or the flow rate of the refrigerant to each of the coolers 10 and 11 is adjusted. The adjusting valves 37 and 38 (flow rate adjusting valves and the like) are provided in the refrigerant circuit, respectively, and the opening and closing angles of the adjusting valves 37 and 38 are controlled.

【0039】図4は本発明に係わる制御ブロック図を示
したもので、前記断熱箱体1(冷蔵庫本体)に設けられ
たマイコン等から構成される制御装置28には、前記冷
却器10、11内を通過する通過風速、もしくは蒸発温
度を可変させる検知手段TKとして、前記各温度センサ
25、26、30、31、32、33、34、35の信
号、前記圧縮機16のオンオフAd、運転積算時間At、運
転率Ar、入力電流値Aiの信号、前記各冷却器10、11
の運転積算時間Rt、運転率Rr、除霜時間Rj、除霜水量Rs
の信号、扉開閉頻度Thの信号、前記各送風機20、21
の入力電流値Siの信号が入力され、これらの信号に基づ
いて、前記各送風機20、21の回転数Skと、前記圧縮
機16の回転数Ak、前記弁29、36(ダンパ等)の開
閉角度Dk、前記調整弁37、38の開閉角度Kkを制御す
るようになっている。
FIG. 4 shows a control block diagram according to the present invention. The cooling device 10, 11 is provided in the control device 28 including a microcomputer provided in the heat insulating box 1 (refrigerator main body). As the detection means TK for varying the passing air velocity passing through the inside or the evaporation temperature, signals of the temperature sensors 25, 26, 30, 31, 32, 33, 34, 35, ON / OFF Ad of the compressor 16, and operation totalization Signals of time At, operating rate Ar, and input current value Ai, the respective coolers 10 and 11
Accumulated operating time Rt, operating rate Rr, defrosting time Rj, defrosting water amount Rs
Signal, door opening / closing frequency Th signal, the blowers 20, 21
Input current value Si signals are input, and based on these signals, the rotation speed Sk of each of the blowers 20 and 21, the rotation speed Ak of the compressor 16, and the opening and closing of the valves 29 and 36 (dampers, etc.). The angle Dk and the opening / closing angle Kk of the adjusting valves 37 and 38 are controlled.

【0040】次に、図4の制御ブロック図に基づいて、
前記冷却器10、11内を通過する通過風速、もしくは
蒸発温度を可変させる前記検知手段TKについて述べ
る。前記各冷却器10、11の運転時間増に伴い着霜量
が増すために、前記検知手段TKとして、前記圧縮機1
6の運転積算時間Atもしくは前記各冷却器10、11の
運転積算時間Rtとするか、もしくは前記各冷却器10、
11の運転時間増に伴い運転率が上昇するために、前記
検知手段TKとして、圧縮機運転率Arもしくは冷却器運
転率Rrとしてもよい。
Next, based on the control block diagram of FIG.
The detection means TK for varying the passing air velocity passing through the inside of the coolers 10 and 11 or the evaporation temperature will be described. Since the amount of frost increases as the operating time of each of the coolers 10 and 11 increases, the compressor 1 is used as the detection unit TK.
The operation integrated time At of 6 or the operation integrated time Rt of each of the coolers 10 and 11 is used, or the cooler 10 and
Since the operating rate increases as the operating time of 11 increases, the detecting means TK may be the compressor operating rate Ar or the cooler operating rate Rr.

【0041】また、前記各冷却器10、11の着霜量増
に伴い温度差が増すために、前記検知手段TKとして、
前記冷却器温度センサ25、26の検出した温度値と、
前記冷却器室温度センサ33、34の検出した戻り冷気
の温度値との温度差とするか、もしくは前記断熱箱体1
の扉の開閉頻度Thとしてもよい。
Further, since the temperature difference increases as the amount of frost formed on each of the coolers 10 and 11 increases, the detecting means TK is
A temperature value detected by the cooler temperature sensors 25 and 26;
The temperature difference from the temperature value of the returned cool air detected by the cooler room temperature sensors 33 and 34 is set, or the heat insulating box 1
The door opening / closing frequency Th may be set.

【0042】また、前記各冷却器10、11の着霜量増
に伴い除霜時間が増すために、前記検知手段TKとし
て、前記各冷却器10、11の前の除霜時間Rjとする
か、もしくは前記各冷却器10、11の着霜量増に伴い
除霜水量が増すために、前記各冷却器10、11の前の
除霜水量Rsとしてもよい。
Since the defrosting time increases as the amount of frost formed on each of the coolers 10 and 11 increases, is the defrosting time Rj before the coolers 10 and 11 used as the detection means TK? Alternatively, since the defrosting water amount increases as the frosting amount of the cooling devices 10 and 11 increases, the defrosting water amount Rs before the cooling devices 10 and 11 may be used.

【0043】また、前記各冷却器10、11の着霜量増
に伴い圧縮機入力が増すために、前記検知手段TKとし
て、前記圧縮機16への入力電流値Aiとするか、もしく
は前記各冷却器10、11の着霜量増に伴い送風機入力
が増すために、前記各送風機20、21への入力電流値
Siとしてもよい。
Further, since the compressor input increases as the amount of frost formed on each of the coolers 10 and 11 increases, the detection means TK is set to the input current value Ai to the compressor 16, or Since the blower input increases as the amount of frost on the coolers 10 and 11 increases, the input current value to each of the blowers 20 and 21.
It may be Si.

【0044】また、前記各冷却器10、11の着霜量増
に伴い前記凝縮器15の温度が上昇するために、前記検
知手段TKとして、前記凝縮器温度センサ35の検出し
た温度値とするか、もしくは前記検知手段TKとして、
前記各室温度センサ30、31の検出した庫内温度値の
勾配とするか、もしくは前記検知手段TKとして、前記
断熱箱体1の庫外温度センサ32の検出した外気温度値
としてもよい。
Further, since the temperature of the condenser 15 rises as the amount of frost formed on each of the coolers 10 and 11 increases, the temperature value detected by the condenser temperature sensor 35 is used as the detecting means TK. Or, as the detection means TK,
It may be a gradient of the inside temperature value detected by each of the room temperature sensors 30 and 31, or the outside air temperature value detected by the outside temperature sensor 32 of the heat insulating box 1 as the detection means TK.

【0045】更に、上記実施例では、前記冷却器10、
11内を通過する通過風速、もしくは蒸発温度を可変さ
せる前記検知手段TKを、個別に用いた実施例とした
が、それぞれを必要に応じて組み合わせて実施すること
により、より効果が期待できるようになる。
Further, in the above embodiment, the cooler 10,
Although the detection means TK for varying the passing wind speed or the evaporation temperature passing through the inside of the reference numeral 11 is individually used in the embodiment, it is possible to expect more effect by combining the detection means TK as necessary. Become.

【0046】なお、上記実施例では、前記野菜室8の後
方に第一冷却器10を配置したが、前記冷蔵室7の後方
に第一冷却器10を配置してもよい。(図示せず)
Although the first cooler 10 is arranged behind the vegetable compartment 8 in the above embodiment, the first cooler 10 may be arranged behind the refrigerating compartment 7. (Not shown)

【0047】上記構成において、前記各冷却器10、1
1内を通過する通過風速を可変させるか、もしくは前記
各冷却器10、11内を通過する通過風速を可変させる
とともに、前記各冷却器10、11の蒸発温度を可変さ
せることにより、前記各冷却器10、11の着霜量が徐
々に増えるに伴い、前記各冷却器10、11の冷却能力
が徐々に低下していく冷却能力低下分を補うことがで
き、冷却器(圧縮機)の運転時間を延長することもな
く、電力を消費し、庫内へ熱を流入させる恐れのある問
題をなくすことができる。
In the above structure, the respective coolers 10, 1
1 by varying the passing air velocity passing through the inside of the cooling device 10, or varying the passing air velocity passing through the inside of the cooling devices 10 and 11 and varying the evaporation temperature of the cooling devices 10 and 11. As the amount of frost on the coolers 10 and 11 gradually increases, it is possible to compensate for the decrease in the cooling capacity of the coolers 10 and 11 that gradually decreases, and to operate the cooler (compressor). It is possible to eliminate the problem that consumes electric power and may cause heat to flow into the refrigerator without extending the time.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
冷却器の熱交換効率を低下させず、庫内の冷却能力を保
てるようにした冷蔵庫等の冷却手段となる。
As described above, according to the present invention,
It becomes a cooling means for a refrigerator or the like that can maintain the cooling capacity in the refrigerator without lowering the heat exchange efficiency of the cooler.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷蔵庫本体の内部構成の概略を示す側
断面図(A)と、正面図(B)である。
FIG. 1 is a side sectional view (A) and a front view (B) showing an outline of an internal configuration of a refrigerator main body of the present invention.

【図2】本発明の冷蔵庫の冷凍サイクルを示す構成図で
ある。
FIG. 2 is a configuration diagram showing a refrigeration cycle of the refrigerator of the present invention.

【図3】本発明に係わる冷蔵庫の制御系統図(A)であ
り、弁の構成を説明する要部拡大側断面図(B)であ
る。
FIG. 3 is a control system diagram (A) of the refrigerator according to the present invention, and is an enlarged side sectional view (B) of a main part for explaining the configuration of the valve.

【図4】本発明に係わる冷蔵庫の制御ブロック図であ
る。
FIG. 4 is a control block diagram of the refrigerator according to the present invention.

【図5】従来例に係わる冷蔵庫の制御ブロック図であ
る。
FIG. 5 is a control block diagram of a refrigerator according to a conventional example.

【図6】従来例に係わる冷蔵庫の庫内温度変化を時系列
に表した説明図である。
FIG. 6 is a time-series explanatory diagram showing changes in the internal temperature of the refrigerator according to the conventional example.

【符号の説明】[Explanation of symbols]

1 断熱箱体 2 外箱 3 内箱 4 発泡断熱材 5、6 断熱仕切体 7 冷蔵室 8 野菜室 9 冷凍室 10 第一冷却器 11 第二冷却器 12 連結パイプ 13 第一除霜ヒータ 14 第二除霜ヒータ 15 凝縮器 16 圧縮機 17 アキュムレータ 18 第一キャピラリチューブ 19 第二キャピラリチューブ 20 第一送風機 21 第二送風機 22 切換弁 23 フイン 24 伝熱管 25、26 温度センサ(冷却器) 27 機械室 28 制御装置 29、36 弁( ダンパ) 30、31 温度センサ(室内) 32 温度センサ(外気温) 33、34 温度センサ(冷却器室) 35 温度センサ(凝縮器) 37、38 調整弁 40、41 冷却器室 1 Insulation box 2 outer box 3 inner box 4 foam insulation 5, 6 Insulation partition 7 Refrigerator 8 vegetable room 9 Freezer 10 First cooler 11 Second cooler 12 Connection pipe 13 First defrost heater 14 Second defrost heater 15 condenser 16 compressor 17 Accumulator 18 First capillary tube 19 Second capillary tube 20 First blower 21 second blower 22 Switching valve 23 Fine 24 heat transfer tube 25, 26 Temperature sensor (cooler) 27 Machine room 28 Controller 29, 36 valves (damper) 30, 31 Temperature sensor (indoor) 32 Temperature sensor (outside temperature) 33, 34 Temperature sensor (cooler room) 35 Temperature sensor (condenser) 37, 38 Regulator 40, 41 Cooler room

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 貯蔵室と、庫内背面に冷却器室と、同冷
却器室内に冷気を生成する冷却器と、生成した冷気を強
制循環する送風機を配設するとともに、圧縮機、凝縮
器、前記冷却器が冷媒管によって順次連結されて冷媒回
路を構成してなる冷蔵庫において、 前記冷却器の除霜時間がくるまでの間に、前記冷却器へ
の着霜による庫内温度の低下速度に応じて、前記冷却器
内を通過する通過風速を可変させてなることを特徴とす
る冷蔵庫。
1. A storage chamber, a cooler chamber on the back of the inside of the refrigerator, a cooler for generating cool air in the cooler chamber, and a blower for forcedly circulating the generated cool air, and a compressor and a condenser. In the refrigerator in which the coolers are sequentially connected by a refrigerant pipe to form a refrigerant circuit, in the refrigerator until the defrosting time comes, the rate of decrease of the internal temperature due to frost on the cooler According to the above, the refrigerator is configured such that a passing wind speed passing through the inside of the cooler is changed.
【請求項2】 前記冷却器内の通過風速を可変させるた
めに、前記送風機の回転数を制御してなることを特徴と
する請求項1記載の冷蔵庫。
2. The refrigerator according to claim 1, wherein the number of rotations of the blower is controlled in order to change the passing wind speed in the cooler.
【請求項3】 前記冷却器室と前記貯蔵室との冷気循環
を構成するダクト内に弁を設け、前記冷却器内の通過風
速を可変させるために、前記弁の開閉角度を制御してな
ることを特徴とする請求項1記載の冷蔵庫。
3. A valve is provided in a duct that constitutes cold air circulation between the cooler chamber and the storage chamber, and an opening / closing angle of the valve is controlled in order to change a passing wind speed in the cooler. The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
【請求項4】 前記冷却器の除霜時間がくるまでの間
に、前記冷却器への着霜による庫内温度の低下速度に応
じて、前記冷却器内を通過する通過風速を可変させると
ともに、前記冷却器の蒸発温度を可変させてなることを
特徴とする請求項1記載の冷蔵庫。
4. The wind velocity passing through the inside of the cooler is varied according to the rate of decrease of the temperature inside the refrigerator due to the frost formation on the cooler until the defrosting time of the cooler comes. The refrigerator according to claim 1, wherein the evaporation temperature of the cooler is variable.
【請求項5】 前記冷却器の蒸発温度を可変させるため
に、前記圧縮機の回転数を制御してなることを特徴とす
る請求項4記載の冷蔵庫。
5. The refrigerator according to claim 4, wherein the number of revolutions of the compressor is controlled in order to change the evaporation temperature of the cooler.
【請求項6】 前記冷却器への冷媒の流量を調整する調
整弁を設け、前記冷却器の蒸発温度を可変させるため
に、前記調整弁の開閉角度を制御してなることを特徴と
する請求項4記載の冷蔵庫。
6. An adjusting valve for adjusting the flow rate of the refrigerant to the cooler is provided, and the opening / closing angle of the adjusting valve is controlled in order to change the evaporation temperature of the cooler. Item 4. The refrigerator according to item 4.
【請求項7】 前記冷却器内を通過する通過風速もしく
は前記冷却器の蒸発温度を可変させるための検知手段と
して、前記圧縮機の運転積算時間としてなることを特徴
とする請求項1または4記載の冷蔵庫。
7. The operation cumulative time of the compressor is used as a detection means for varying the passing air velocity passing through the inside of the cooler or the evaporation temperature of the cooler. Refrigerator.
【請求項8】 前記検知手段として、前記圧縮機の圧縮
機運転率としてなることを特徴とする請求項1または4
記載の冷蔵庫。
8. The compressor operating rate of the compressor is used as the detection means.
Refrigerator described.
【請求項9】 前記検知手段として、前記冷却器の運転
積算時間としてなることを特徴とする請求項1または4
記載の冷蔵庫。
9. The method according to claim 1, wherein the detection means is an integrated operation time of the cooler.
Refrigerator described.
【請求項10】 前記検知手段として、前記冷却器の冷
却器運転率としてなることを特徴とする請求項1または
4記載の冷蔵庫。
10. The refrigerator according to claim 1, wherein the detecting means is a cooler operating rate of the cooler.
【請求項11】 前記冷却器および前記冷却器室内に温
度センサをそれぞれ設け、前記検知手段として、前記冷
却器の温度センサの検出した温度値と、前記冷却器室内
の温度センサの検出した戻り冷気の温度値との温度差と
してなることを特徴とする請求項1または4記載の冷蔵
庫。
11. A temperature sensor is provided in each of the cooler and the cooler chamber, and the temperature value detected by the temperature sensor of the cooler and the return cool air detected by the temperature sensor in the cooler chamber serve as the detection means. 5. The refrigerator according to claim 1, wherein the refrigerator has a temperature difference from the temperature value of.
【請求項12】 前記貯蔵室に扉を設け、前記検知手段
として、前記扉の扉開閉頻度としてなることを特徴とす
る請求項1または4記載の冷蔵庫。
12. The refrigerator according to claim 1 or 4, wherein a door is provided in the storage room, and the detection means has a door opening / closing frequency.
【請求項13】 前記検知手段として、前記冷却器の前
除霜時間としてなることを特徴とする請求項1または4
記載の冷蔵庫。
13. The detecting means is a pre-defrosting time of the cooler.
Refrigerator described.
【請求項14】 前記検知手段として、前記冷却器の前
除霜水量としてなることを特徴とする請求項1または4
記載の冷蔵庫。
14. The amount of pre-defrost water of the cooler is used as the detection means.
Refrigerator described.
【請求項15】 前記検知手段として、前記圧縮機への
入力電流値としてなることを特徴とする請求項1または
4記載の冷蔵庫。
15. The refrigerator according to claim 1, wherein the detection means is an input current value to the compressor.
【請求項16】 前記検知手段として、前記送風機への
入力電流値としてなることを特徴とする請求項1または
4記載の冷蔵庫。
16. The refrigerator according to claim 1, wherein the detection means is an input current value to the blower.
【請求項17】 前記凝縮器に温度センサを設け、前記
検知手段として、前記温度センサの検出した温度値とし
てなることを特徴とする請求項1または4記載の冷蔵
庫。
17. The refrigerator according to claim 1, wherein the condenser is provided with a temperature sensor, and the temperature value detected by the temperature sensor is used as the detection means.
【請求項18】 前記各貯蔵室内に温度センサを設け、
前記検知手段として、前記各温度センサの検出した庫内
温度値の勾配としてなることを特徴とする請求項1また
は4記載の冷蔵庫。
18. A temperature sensor is provided in each of the storage chambers,
The refrigerator according to claim 1 or 4, wherein the detecting means is a gradient of a temperature value in the refrigerator detected by each of the temperature sensors.
【請求項19】 外箱と内箱間に発泡断熱材を充填して
なる断熱箱体の庫外に温度センサを設け、前記検知手段
として、前記温度センサの検出した外気温度値としてな
ることを特徴とする請求項1または4記載の冷蔵庫。
19. A temperature sensor is provided outside a heat-insulating box body filled with a foamed heat insulating material between the outer box and the inner box, and the detecting means is an outside air temperature value detected by the temperature sensor. The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
JP2002093576A 2002-03-29 2002-03-29 Refrigerator Pending JP2003287344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093576A JP2003287344A (en) 2002-03-29 2002-03-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093576A JP2003287344A (en) 2002-03-29 2002-03-29 Refrigerator

Publications (1)

Publication Number Publication Date
JP2003287344A true JP2003287344A (en) 2003-10-10

Family

ID=29237969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093576A Pending JP2003287344A (en) 2002-03-29 2002-03-29 Refrigerator

Country Status (1)

Country Link
JP (1) JP2003287344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187412A (en) * 2006-01-16 2007-07-26 Sharp Corp Ice making device
CN103604276A (en) * 2013-12-05 2014-02-26 合肥美的电冰箱有限公司 Refrigerator as well as temperature control device and temperature control method thereof
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator
WO2016135812A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187412A (en) * 2006-01-16 2007-07-26 Sharp Corp Ice making device
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator
CN103604276A (en) * 2013-12-05 2014-02-26 合肥美的电冰箱有限公司 Refrigerator as well as temperature control device and temperature control method thereof
WO2016135812A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Refrigerator
JPWO2016135812A1 (en) * 2015-02-23 2017-09-28 三菱電機株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP3636602B2 (en) refrigerator
KR0160435B1 (en) Refrigerator having high efficient cooling cycle and control method thereof
JP5530852B2 (en) refrigerator
JP6074596B2 (en) refrigerator
CN106568269B (en) Refrigerator
JP4934302B2 (en) Cooling storage
JP2001082850A (en) Refrigerator
CN106679323A (en) Air cooling refrigerator and running control method thereof
JP2012017920A (en) Refrigerator
JP2018071874A (en) refrigerator
JP4206792B2 (en) refrigerator
JP2006090663A (en) Refrigerator
JP2005076922A (en) Refrigerator
JP2000230765A (en) Cooling device and showcase equipped with cooling device
JP2003287344A (en) Refrigerator
JP2007132571A (en) Refrigerator
JP2013068388A (en) Refrigerator
JP2019027649A (en) refrigerator
JP3497759B2 (en) refrigerator
JP2005180719A (en) Refrigerator
JP2007309530A (en) Refrigerator
JP2000283626A (en) Refrigerator
JP2012082985A (en) Refrigerator
JP2001255050A (en) Refrigerator
JPH10122719A (en) Refrigerator