JP2004028370A - Refrigerator-freezer - Google Patents

Refrigerator-freezer Download PDF

Info

Publication number
JP2004028370A
JP2004028370A JP2002181572A JP2002181572A JP2004028370A JP 2004028370 A JP2004028370 A JP 2004028370A JP 2002181572 A JP2002181572 A JP 2002181572A JP 2002181572 A JP2002181572 A JP 2002181572A JP 2004028370 A JP2004028370 A JP 2004028370A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator
refrigerant
compartment
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002181572A
Other languages
Japanese (ja)
Inventor
Akihiro Noguchi
野口 明裕
Takashi Doi
土井 隆司
Koji Kashima
鹿島 弘次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002181572A priority Critical patent/JP2004028370A/en
Publication of JP2004028370A publication Critical patent/JP2004028370A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make coolant flow selecting both at the same time or either one of an evaporator for a refrigerating chamber and an evaporator for a freezing chamber. <P>SOLUTION: In this refrigerator-freezer comprising a freezing cycle running through the evaporator 17 for the refrigerating chamber and the evaporator 25 for the freezing chamber, the coolant is made flow selecting, by a switch means 11, both at the same time or either one of the evaporator 17 for the refrigerating chamber and the evaporator 25 for the freezing chamber. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵室用冷凍サイクルと冷凍室用冷凍サイクルを備えた冷凍冷蔵庫に関する。
【0002】
【従来の技術】
近年の冷凍冷蔵庫は、冷蔵室を始めとして専用の野菜室、冷凍室を備えるようになっている。冷凍室は、冷蔵室・野菜室に比べて一段と低い庫内温度が求められるため、冷蔵室・野菜室は冷蔵室用冷凍サイクルによる温度設定領域で、冷凍室は冷凍室用冷凍サイクルによる温度設定領域でそれぞれ独立した温度管理が行なわれるようになっている。
【0003】
【発明が解決しようとする課題】
冷蔵室用冷凍サイクルと冷凍室用冷凍サイクルを構成する圧縮機は、2段圧縮機となっていて、低圧側吸込口からの冷媒を中間圧まで加圧する機能と、中間圧まで加圧した冷媒と中間圧側吸込口からの冷媒とを合流、混合し高圧まで加圧し、吐出口から吐出する機能を備えている。
【0004】
したがって、冷凍室用冷凍サイクルは、2段圧縮機の吐出口から吐出された冷媒が、凝縮器、キャピラリチューブ、冷凍室用蒸発器を通り、再び2段圧縮機の低圧側吸込口へ戻ることで、連続した冷凍室の庫内冷却が得られる。
【0005】
冷蔵室用冷凍サイクルは、2段圧縮機の吐出口から吐出された冷媒が、凝縮器、キャピラリチューブ、冷蔵室用蒸発器を通り、再び、2段圧縮機の中間圧側吸込口へ戻ることで、連続した冷蔵室の庫内冷却が得られるようになっている。
【0006】
この場合、冷凍室は冷凍室用ファンの回転数によって、ある程度の庫内温度の温度幅の制御が可能となる。同様に冷蔵室も、冷蔵室用ファンの回転数によって、ある程度の庫内温度の温度幅の制御が可能となるが、例えば、食料品を新たに詰め込む等の条件によって、冷凍室又は冷蔵室のいずれか一方の庫内負荷が大きく異なった時、ファンの回転数による制御では対応できず、一方の庫内では冷却不足が、他方の庫内では冷えすぎとなる不具合を招く。
【0007】
そこで、この発明は、各庫内負荷が大きく異なった場合でも、冷却不足、あるいは、冷えすぎを起こすことのない冷凍冷蔵庫を提供することを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、この発明の請求項1にあっては、低圧側吸込口からの冷媒を中間圧まで加圧した冷媒と中間圧側吸込口からの冷媒と合流、混合し高圧まで加圧する2段圧縮機を有し、2段圧縮機から吐出された冷媒が少なくとも凝縮器、冷蔵室用蒸発器、冷凍室用蒸発器を通る冷凍サイクルを備えた冷凍冷蔵庫において、
前記冷蔵室用蒸発器と冷凍室用蒸発器両方同時に冷媒を流す回路と、冷蔵室用蒸発器又は冷凍室用蒸発器のいずれか一方を選択して冷媒を流す回路に切換制御する切換手段を備えていることを特徴とする。
【0009】
これにより、切換手段による切換制御によって、例えば、冷蔵室用蒸発器と冷凍室用蒸発器の両方を通る冷凍サイクルにより、それぞれ連続する冷蔵室の庫内冷却と冷凍室の庫内冷却が行なえるようになる。
【0010】
次に、例えば、冷凍食品を入れることで冷凍室の庫内負荷が大となる一方、冷蔵室の庫内負荷が小の場合には、切換手段による切換制御によって、冷凍室用蒸発器のみ冷媒が流れるよう切換制御する。この結果、冷凍室の庫内負荷に対応した庫内温度が得られるようになり、冷却不足を招くことはない。
【0011】
一方、冷蔵室用蒸発器にあっては、庫内負荷が小さいため、冷媒が流れなくても庫内冷却に何等支障は起きない。この場合、この時間を利用して、例えば、ファンを回転させることで、冷蔵室用蒸発器の除霜運転が可能となる。
【0012】
また、切換手段による切換制御によって、例えば、冷蔵室用蒸発器のみ冷媒が流れるよう切換制御することで、冷蔵室の庫内負荷に対応する庫内温度が得られるようになる。
【0013】
また、この発明の請求項2にあっては、低圧側吸込口からの冷媒を中間圧まで加圧した冷媒と中間圧側吸込口からの冷媒と合流、混合し高圧まで加圧する2段圧縮機を有し、2段圧縮機から吐出された冷媒が少なくとも凝縮器、自然対流式冷蔵室用蒸発器、強制対流式冷蔵室用蒸発器、冷凍室用蒸発器を通る冷凍サイクルを備えた冷凍冷蔵庫において、
前記自然対流式冷蔵室用蒸発器と強制対流式冷蔵室用蒸発器は、切換手段により両方同時に、又は、一方の強制対流式冷蔵室用蒸発器のみ冷媒が流れるよう切換制御可能となっていることを特徴とする。
【0014】
これにより、例えば、自然対流式冷蔵室用蒸発器と強制対流式冷蔵室用蒸発器の両方に冷媒が流れることで自然対流式冷蔵室用蒸発器の庫内冷却と、強制対流式冷蔵室用蒸発器の庫内冷却がそれぞれ同時に行なえるようになる。この場合、自然対流式冷蔵室用蒸発器の庫内にあっては、庫内湿度を低下させることなく、即ち、乾燥を招くことなく庫内冷却が行なえる。
【0015】
一方、自然対流式冷蔵室用蒸発器の運転中に、その庫内壁面に結露が発生した際には、自然対流式冷蔵室用蒸発器への冷媒の流れを停止し、強制対流式冷蔵室用蒸発器へのみ冷媒を流す運転を行なうことで、自然対流式冷蔵室用蒸発器の庫内壁面に発生した結露を効率よく蒸発させることが可能となる。
【0016】
また、この発明の請求項3にあっては、各庫内空気温度が設定温度域を越えた時に、切換手段を切換えることを特徴とする。
【0017】
これにより、庫内へ食料品等を多量に詰め込み庫内負荷が増えた時に、その庫内温度を正確に把握管理し、庫内負荷の大きい蒸発器側へ冷媒を流すことが可能となる。
【0018】
また、この発明の請求項4にあっては、冷媒に、炭化水素系冷媒を用いることを特徴とする。
【0019】
これにより、二酸化炭素の発生が抑えられ、地球温暖化防止に大きく貢献できるようになる。
【0020】
【発明の実施の形態】
以下、図1乃至図4の図面を参照しながらこの発明の第1の実施形態について具体的に説明する。
【0021】
図1はこの発明にかかる冷凍冷蔵庫の冷凍サイクルを構成する冷媒回路を示している。この冷媒回路には冷蔵室用冷凍サイクル及び冷凍室用冷凍サイクルをそれぞれ構成する2段圧縮機を有し、冷媒にはR600aのような炭化水素系の自然冷媒が用いられている。2段圧縮機1は、低圧側吸込口3と中間圧側吸込口5と吐出口7とを備え、低圧側吸込口3からの冷媒は中間圧まで加圧されるようになっている。中間圧側吸込口5からの冷媒は、前記中間圧まで加圧された冷媒と合流、混合して高圧まで加圧され、高圧まで加圧された冷媒は吐出口7から吐出されるようになっている。
【0022】
2段圧縮機1の吐出口7から吐出された冷媒は、凝縮器9を通過した後、切換手段11となる三方式切換弁13の切換制御により第1ポートBと第2ポートAとに切換可能となっている。
【0023】
第1ポートBから吐出された冷媒は、絞り手段となる第1のキャピラリチューブ15、冷蔵室用蒸発器17、気液分離器19に入ることでガス冷媒と液冷媒とに分離される。
【0024】
分離された一方のガス冷媒は、サクションパイプ21を介して再び2段圧縮機1の中間圧側吸込口5へ戻る冷蔵室用冷凍サイクル(実線矢印)が構成されるようになっている。気液分離器19で分離された他方の液冷媒は、第2キャピラリチューブ3、冷凍室用蒸発器25を通り、サクションパイプ27を介して、再び、2段圧縮機1の低圧側吸込口3へ戻る冷凍室用冷凍サイクル(破線矢印)が構成されるようになっている。
【0025】
一方、三方式切換弁13の第2ポートAから吐出された冷媒は、バイパスキャピラリチューブ29、冷凍室用蒸発器25を通り、前記したサクションパイプ27を介して再び、2段圧縮機1の低圧側吸込口3へ戻る冷凍室用冷凍サイクルを構成するようになっている。
【0026】
第1のキャピラリチューブ15は、気液分離器19のガス冷媒出口側のサクションパイプ21と、バイパスキャピラリチューブ29は冷凍室用蒸発器25の出口側のサクションパイプ27との間で対向流となるよう接近し合う並列配置となっていて、この並列配置領域はサクションパイプ21,27との間で熱交換が行なわれる熱交換領域31となっている。
【0027】
第2のキャピラリチューブ23は、冷凍室用蒸発器25の出口側のサクションパイプ27との間で対向流となるよう接近し合う並列配置となっていて、この並列配置領域はサクションパイプ27との間で熱交換が行なわれる熱交換領域33となっている。
【0028】
三方式切換弁13は、冷蔵室用蒸発器17の冷蔵室17aの庫内温度を検知する第1の温度センサ35と冷凍室用蒸発器25の冷凍室25aの庫内温度を検知する第2の温度センサ37からの検知信号に基づいて第1ポートBと第2ポートAの切換制御が可能となっている。
【0029】
第1,第2の温度センサ35,37からの検知信号は制御部39に入力される。制御部39は、第1、第2の温度センサ35、37からの検知信号に基づき、第1ポートB、第2ポートAを同時に開としたり、あるいは、いずれか一方のポートAを開、他方のポートBを閉にそれぞれ切換制御可能となっている。
【0030】
制御部39は、前記した三方式切換弁13の外に、2段圧縮機1の回転数と、図示していないが冷蔵室用蒸発器17、冷凍室用蒸発器25の各ファンを回転制御するようになっている。
【0031】
図3は冷蔵室17aと冷凍室25aの庫内温度と設定温度との温度差に基づく三方式切換弁13の制御側と2段圧縮機1の回転数の具体的な制御例を示している。図3において、Kは庫内温度と設定温度との温度差を示し、「2K〜」とあるのは温度差が2度以上あることを示している。「〜−2K」とあるのは温度差がマイナス2度まであることを示している。回転数とあるのは2段圧縮機1の回転数を、Bとあるのは第1ポート、Aとあるのは第2ポートであることをそれぞれ示している。
【0032】
見方としては、冷凍室25aの温度差を横移動し、冷蔵室17aの温度差を下方へ移動し、その交わった所が三方式切換弁13と回転数の制御状態であることを示している。
【0033】
一例として、例えば、冷凍室25aの温度差が「2K〜」、冷蔵室17aの温度差が「〜−2K」であると仮定した場合、その交わった所をみると、三方式切換弁13はBにある時、B→Aに、Aにある時、A→A(この場合変更なし)となり、すべてAに切換わる。
【0034】
一方、回転数はUPとなり、各温度差に基づく三方式切換弁13の制御と回転数の制御は図3に基づき行なわれるようになっている。
【0035】
このように構成された冷凍冷蔵庫において、三方式切換弁13の第1ポートBを開、第2ポートAを閉とすることで、2段圧縮機1の吐出口7から吐出された冷媒は、凝縮器9、第1のキャピラリチューブ15、冷蔵室用蒸発器17を通り、気液分離器19に入る。気液分離器19においてガス冷媒と液冷媒とに分離され、一方のガス冷媒はサクションパイプ21を介して再び、2段圧縮機1の中間圧側吸込口5に戻る連続した冷蔵室用冷凍サイクルを構成し、冷蔵室17aの所定の庫内温度が得られるようになる。
【0036】
一方、気液分離器19において他方の液冷媒は、冷凍室用蒸発器25を通り、サクションパイプ27を介して、再び、2段圧縮機1の低圧側吸込口3へ戻る連続した冷凍室用冷凍サイクルを構成し、冷凍室25aの所定の庫内温度が得られるようになる。
【0037】
次に、三方式切換弁13の第1ポートBを閉、第2ポートAを開とすることで、図2に示すように2段圧縮機1から吐出された冷媒は、凝縮器9、バイパスキャピラリチューブ29、冷凍室用蒸発器25を通り、再び、2段圧縮機1の低圧側吸込口3へ戻る連続した冷凍室用冷凍サイクルを構成し、冷凍室25aの所定の庫内温度が得られるようになる。この結果、例えば、冷蔵室17aに対し冷凍室25aの冷凍負荷が増えた場合でも、冷却不足を起こすことなく十分対応可能となる。この時の冷蔵室温度と冷凍室温度の制御パターンを図4に示す。この制御パターンにおいて、冷蔵室温度の右下がりの下降領域は、冷蔵室用蒸発器17への冷媒の流れが停止していることを示している。
【0038】
この右下がりの下降領域の時、冷蔵室用ファン(図示していない)を回転させることで、効率のよい除霜運転が行なえるようになる。
【0039】
図5は、冷蔵室用蒸発器17にかわって自然対流式冷蔵室用蒸発器41と強制対流式冷蔵室用蒸発器43とを備えた第2の実施形態を示したものである。
【0040】
なお、第1の実施形態と同一のものは同一符号を符して説明する。
【0041】
即ち、切換手段11となる第1、第2、第3ポートA、B、Cを有する四方弁45によって切換え制御される自然対流式冷蔵室用蒸発器41と強制対流式冷蔵室用蒸発器43とを並列配置とし、四方弁45が第1ポートAに切換わった時、2段圧縮機1の吐出口7から吐出された冷媒は、凝縮器9、絞り手段となる第1のキャピラリチューブ15、自然対流式冷蔵室用蒸発器41、強制対流式冷蔵室用蒸発器43、気液分離器19に入るようになっている。気液分離器19でガス冷媒と液冷媒とに分離された一方のガス冷媒は、サクションパイプ21を介して再び2段圧縮機1の中間圧側吸込口5へ戻る冷蔵室用冷凍サイクルが構成されるようになっている。気液分離器19で分離された他方の液冷媒は、第2のキャピラリチューブ23、冷凍室用蒸発器25を通り、サクションパイプ27を介して再び、2段圧縮機1の低圧側吸込口3へ戻る冷凍室用冷凍サイクルが構成され、自然対流式冷蔵室用蒸発器41、強制対流式冷蔵室用蒸発器43、冷凍室用蒸発器25全てに冷媒が流れるようになっている。
【0042】
また、四方弁45が第2ポートBに切換わった時、2段圧縮機1の吐出口7から吐出された冷媒は、凝縮器9、バイパスキャピラリチューブ29、冷凍室用蒸発器25、サクションパイプ27を介して再び、2段圧縮機1の低圧側吸込口3へ戻る冷凍室用冷凍サイクルが構成され、冷凍室用蒸発器25のみ冷媒が流れるようになっている。
【0043】
また、四方弁45が第3ポートCに切換わった時、2段圧縮機1の吐出口7から吐出された冷媒は、凝縮器9、バイパスキャピラリチューブ47、強制対流式冷蔵室用蒸発器43、気液分離器19に入るようになっている。気液分離器19でガス冷媒と液冷媒とに分離された一方のガス冷媒は、サクションパイプ21を介して再び2段圧縮機1の中間圧側吸込口5へ戻る冷蔵室用冷凍サイクルが構成されるようになっている。気液分離器19で分離された他方の液冷媒は、第2のキャピラリチューブ23、冷凍室用蒸発器25を通り、サクションパイプ27を介して再び、2段圧縮機1の低圧側吸込口3へ戻る冷凍室用冷凍サイクルが構成され、強制対流式冷蔵室用蒸発器43と冷凍室用蒸発器25に冷媒が流れるようになっている。
【0044】
四方弁45の各ポートA、B、Cの切換え制御は、自然対流式冷蔵室用蒸発器41の庫内41aと強制対流式冷蔵室用蒸発器43の庫内43aと冷凍室用蒸発器25の庫内25aにそれぞれ設けられた各温度センサ51からの情報が制御部39に入力されることで、その温度情報に基づき切換え制御が行なわれるようになっている。庫内温度と設定温度との温度差に基づく四方弁45と2段圧縮機1の回転数の具体的な制御例を図6に示す。なお、具体的な見方は図3と同様である。
【0045】
したがって、この第2の実施形態によれば、例えば、自然対流式冷蔵室用蒸発器41と強制対流式冷蔵室用蒸発器43の両方に冷媒が流れることで、自然対流式冷蔵室用蒸発器41の庫内冷却と、強制対流式冷蔵室用蒸発器43の庫内冷却がそれぞれ同時に行なえるようになる。この運転時、自然対流式冷蔵室用蒸発器41の庫内41aにあっては、庫内湿度を低下させることなく、即ち、乾燥を招くことなく庫内冷却が行なえる。
【0046】
一方、自然対流式冷蔵室用蒸発器41の運転中に、その庫内壁面に結露が発生した際には、自然対流式冷蔵室用蒸発器41への冷媒の流れを停止し、強制対流式冷蔵室用蒸発器43へ冷媒を流す運転を行なうことで、自然対流式冷蔵室用蒸発器41の壁内壁面に発生した結露を効率よく迅速に蒸発させることが可能となる。
【0047】
図7は、図1の冷媒回路から気液分離器を省略した第3の実施形態を示したものである。
【0048】
即ち、切換手段11となる三方式切換弁13の第1ポートAにキャピラリチューブ15を介し冷蔵室用蒸発器17を、第2ポートBにキャピラリチューブ29を介して冷凍室用蒸発器25をそれぞれ接続し、冷蔵室用蒸発器17の戻り用のサクションパイプ21は2段圧縮機1の中間圧側吸込口5と、冷凍室用蒸発器25の戻り用のサクションパイプ27は2段圧縮機1の低圧側吸込口3とそれぞれ接続し合う構造となっている。
【0049】
三方式切換弁13と2段圧縮機1の回転数は、庫内温度と設定温度との温度差に基づき切換え制御されるもので、その具体的な制御例を図8に示す。見方は図3と同様である。
【0050】
なお、他の構成要素は第1の実施形態と同一のため、同一符号を符して詳細な説明を省略する。
【0051】
したがって、この第3の実施形態によれば、例えば、第1ポートA、第2ポートBが開となることで、冷蔵室用蒸発器17と冷凍室用蒸発器25の両方に冷媒が流れる。この結果、冷蔵室用蒸発器17の庫内冷却と、冷凍室用蒸発器25の庫内冷却がそれぞれ同時に行なえるようになる。
【0052】
一方、第1ポートA又は第2ポートBのいずれか一方を選択して開とすることで、冷蔵室用蒸発器17又は冷凍室用蒸発器25のいずれか一方に冷媒が流れ、冷蔵室用蒸発器17の庫内冷却、又は、冷凍室用蒸発器25の庫内冷却が行なえるようになる。
【0053】
したがって、庫内負荷に対応する蒸発器側へ冷媒を流すことが可能となり、一方の庫内が冷却不足を、あるいは、他方の庫内が過冷却を起こす等の不具合いがなくなり安定した庫内温度が得られるようになる。
【0054】
なお、運転中に万一冷媒漏れが起きたとしても、自然冷媒を用いているため、地球環境に悪影響を与えることはない。
【0055】
【発明の効果】
以上、説明したように、この発明の請求項1によれば、連続する冷蔵室の庫内冷却と冷凍室の庫内冷却を同時に行なうことができる。
【0056】
また、例えば冷凍室の庫内負荷が大で、冷蔵室の庫内負荷が小の時には、冷凍室用蒸発器側に冷媒を流すことができるため、庫内負荷に対応した庫内冷却が効率よく行なえるようになる。
【0057】
また、この発明の請求項2によれば、自然対流式冷蔵室用蒸発器の庫内冷却と強制対流式冷蔵室用蒸発器の庫内冷却が同時に行なうことができると共に、自然対流式冷蔵室用蒸発器にあっては庫内冷却を低下させることなく、即ち、乾燥を招くことなく庫内冷却が行なえる。
【0058】
また、運転中に自然対流式冷蔵室用蒸発器の庫内壁面に結露が発生した際には、自然対流式冷蔵室用蒸発器への冷媒の流れを停止し、強制対流式冷蔵室用蒸発器へ冷媒を流す運転を行なうことができるため、自然対流式冷蔵室用蒸発器の庫内壁面に発生した結露を効率よく迅速に蒸発させることができる。
【0059】
また、この発明の請求項3によれば、庫内へ食料品等を多量に詰め込み庫内負荷が増えた時に、その庫内負荷を正確に把握管理し、庫内負荷の大きい蒸発器側へ冷媒を流すことができる。
【0060】
また、この発明の請求項4にあっては、二酸化炭素の発生を抑えることが可能となり地球温暖化防止に大きく貢献することができる。
【図面の簡単な説明】
【図1】この発明にかかる冷凍冷蔵庫の第1の実施形態を示した冷媒回路図。
【図2】三方式切換弁により、冷凍室用蒸発器側にのみ冷媒が流れた状態を示す図1と同様の冷媒回路図。
【図3】冷凍室と冷蔵室の庫内温度を設定温度の温度差に基づく三方式切換弁と2段圧縮機の回転数の具体的な制御例の説明図。
【図4】三方式切換弁の制御時の冷蔵室温度と冷凍室温度の動作説明図。
【図5】第2の実施形態を示した図1と同様の冷媒回路図。
【図6】第2の実施形態による庫内温度と設定温度の温度差に基づく四方弁と2段圧縮機の回転数の具体的な制御例の説明図。
【図7】第3の実施形態を示した図1と同様の冷媒回路図。
【図8】第3の実施形態による庫内温度と設定温度の温度差に基づく三方式切換弁と2段圧縮機の回転数の具体的な制御例を示した説明図。
【符号の説明】
1 2段圧縮機
3 低圧側吸込口
5 中間圧側吸込口
7 吐出口
9 凝縮器
11 切換手段
17 冷蔵室用蒸発器
19 気液分離器
25 冷凍室用蒸発器
41 自然対流式冷蔵室用蒸発器
43 強制対流式冷蔵室用蒸発器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating refrigerator having a refrigerating cycle for a refrigerator and a refrigerating cycle for a refrigerating compartment.
[0002]
[Prior art]
Recent freezer refrigerators have been equipped with a dedicated vegetable room, a freezer room, a freezer room, and the like. The freezer compartment requires a much lower internal temperature than the refrigerator compartment / vegetable compartment.Therefore, the refrigerator compartment / vegetable compartment is the temperature setting area by the refrigerator compartment refrigeration cycle, and the freezer compartment is the temperature setting by the freezer compartment refrigeration cycle. Independent temperature management is performed in each area.
[0003]
[Problems to be solved by the invention]
The refrigerating compartment refrigeration cycle and the compressor constituting the refrigerating compartment refrigeration cycle are two-stage compressors, a function of pressurizing the refrigerant from the low-pressure side suction port to an intermediate pressure, and a function of pressurizing the refrigerant to the intermediate pressure. And the refrigerant from the intermediate pressure side suction port are combined, mixed, pressurized to a high pressure, and discharged from the discharge port.
[0004]
Therefore, in the freezing room refrigeration cycle, the refrigerant discharged from the discharge port of the two-stage compressor passes through the condenser, the capillary tube, and the evaporator for the freezer room, and returns to the low-pressure side suction port of the two-stage compressor again. Thus, continuous cooling in the refrigerator compartment is obtained.
[0005]
In the refrigerating room refrigeration cycle, the refrigerant discharged from the discharge port of the two-stage compressor passes through the condenser, the capillary tube, and the evaporator for the refrigerator compartment, and returns to the intermediate pressure side suction port of the two-stage compressor again. Thus, continuous cooling in the refrigerator compartment can be obtained.
[0006]
In this case, the temperature range of the internal temperature of the freezer compartment can be controlled to some extent by the rotation speed of the freezer fan. Similarly, in the refrigerating compartment, it is possible to control the temperature range of the internal temperature to some extent by the number of revolutions of the refrigerating compartment fan. When the load in one of the compartments is greatly different, control by the rotation speed of the fan cannot be used, and a problem occurs in that one compartment has insufficient cooling and the other compartment has excessive cooling.
[0007]
Accordingly, an object of the present invention is to provide a refrigerator-freezer that does not cause insufficient cooling or excessive cooling even when the loads in the refrigerators are greatly different.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1 of the present invention, the refrigerant from the low pressure side suction port is combined with the refrigerant pressurized to the intermediate pressure and the refrigerant from the intermediate pressure side suction port, mixed and added to the high pressure. A refrigerator having a refrigerating cycle having a two-stage compressor for compressing and having a refrigerant discharged from the two-stage compressor at least a condenser, a refrigerator evaporator, and a freezer evaporator.
A circuit for flowing the refrigerant at the same time for both the refrigerating room evaporator and the freezing room evaporator, and a switching means for switching and controlling a circuit for selecting one of the refrigerating room evaporator and the freezing room evaporator and flowing the refrigerant. It is characterized by having.
[0009]
Thereby, by the switching control by the switching means, for example, a refrigeration cycle passing through both the refrigerator-room evaporator and the freezer-room evaporator can perform continuous cooling in the refrigerator and cooling in the refrigerator, respectively. Become like
[0010]
Next, for example, when the load in the freezer compartment becomes large by putting the frozen food, while the load in the refrigerator compartment is small, the switching control by the switching means causes only the refrigerant in the freezer evaporator to change. Is controlled to flow. As a result, the inside temperature corresponding to the inside load of the freezing room can be obtained, and there is no possibility of insufficient cooling.
[0011]
On the other hand, in the refrigerating room evaporator, since the load in the refrigerator is small, there is no problem in cooling the refrigerator even if the refrigerant does not flow. In this case, by using this time, for example, by rotating a fan, the defrosting operation of the evaporator for a refrigerator can be performed.
[0012]
In addition, by the switching control by the switching means, for example, by performing switching control so that the refrigerant flows only in the refrigerator compartment evaporator, the inside temperature corresponding to the inside load of the refrigerator compartment can be obtained.
[0013]
According to a second aspect of the present invention, there is provided a two-stage compressor that combines and mixes a refrigerant obtained by pressurizing a refrigerant from a low pressure side suction port to an intermediate pressure and a refrigerant from an intermediate pressure side suction port and pressurizes the refrigerant to a high pressure. Wherein the refrigerant discharged from the two-stage compressor has a refrigerating cycle including at least a condenser, a natural convection type refrigerator evaporator, a forced convection type refrigerator evaporator, and a freezing room evaporator. ,
The natural convection refrigeration compartment evaporator and the forced convection refrigeration compartment evaporator can be switched and controlled by switching means so that the refrigerant flows only at the same time or only one forced convection refrigeration compartment evaporator. It is characterized by the following.
[0014]
Thus, for example, the refrigerant flows through both the natural convection type refrigerator compartment evaporator and the forced convection type refrigerator compartment evaporator, thereby cooling the inside of the natural convection type refrigerator compartment evaporator and the forced convection type refrigerator compartment. Cooling of the inside of the evaporator can be performed at the same time. In this case, in the refrigerator of the natural convection type refrigerator evaporator, the refrigerator can be cooled without lowering the humidity in the refrigerator, that is, without causing drying.
[0015]
On the other hand, during the operation of the natural convection refrigeration compartment evaporator, if dew condensation occurs on the inner wall surface of the refrigerator, the flow of the refrigerant to the natural convection refrigeration compartment evaporator is stopped, and the forced convection refrigeration compartment is stopped. By performing the operation of flowing the refrigerant only to the evaporator for use, it is possible to efficiently evaporate the dew condensation generated on the inner wall surface of the evaporator for the natural convection type refrigerator.
[0016]
Further, according to a third aspect of the present invention, the switching means is switched when each in-compartment air temperature exceeds a set temperature range.
[0017]
Thus, when a large amount of foodstuffs or the like is packed in the refrigerator and the load in the refrigerator increases, it is possible to accurately grasp and manage the temperature in the refrigerator and to flow the refrigerant to the evaporator side having a large load in the refrigerator.
[0018]
According to a fourth aspect of the present invention, a hydrocarbon-based refrigerant is used as the refrigerant.
[0019]
As a result, the generation of carbon dioxide can be suppressed, and can greatly contribute to the prevention of global warming.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIGS.
[0021]
FIG. 1 shows a refrigerant circuit constituting a refrigeration cycle of a refrigerator according to the present invention. This refrigerant circuit has a refrigerating cycle for the refrigerator compartment and a two-stage compressor which respectively constitutes a refrigerating cycle for the freezer compartment, and a natural hydrocarbon-based refrigerant such as R600a is used as the refrigerant. The two-stage compressor 1 includes a low pressure side suction port 3, an intermediate pressure side suction port 5, and a discharge port 7, and the refrigerant from the low pressure side suction port 3 is pressurized to an intermediate pressure. The refrigerant from the intermediate pressure side suction port 5 joins and mixes with the refrigerant pressurized to the intermediate pressure and is pressurized to a high pressure. The refrigerant pressurized to the high pressure is discharged from the discharge port 7. I have.
[0022]
After passing through the condenser 9, the refrigerant discharged from the discharge port 7 of the two-stage compressor 1 is switched between the first port B and the second port A by the switching control of the three-system switching valve 13 serving as the switching means 11. It is possible.
[0023]
The refrigerant discharged from the first port B enters the first capillary tube 15 serving as a throttle means, the evaporator 17 for a refrigerator, and the gas-liquid separator 19 and is separated into a gas refrigerant and a liquid refrigerant.
[0024]
One of the separated gas refrigerants returns to the intermediate pressure side suction port 5 of the two-stage compressor 1 again through the suction pipe 21 to form a refrigerating room refrigeration cycle (solid line arrow). The other liquid refrigerant separated by the gas-liquid separator 19 passes through the second capillary tube 3 and the freezer evaporator 25, passes through the suction pipe 27, and returns to the low-pressure side suction port 3 of the two-stage compressor 1. A refrigeration cycle for the freezer compartment (broken arrow) is configured.
[0025]
On the other hand, the refrigerant discharged from the second port A of the three-way switching valve 13 passes through the bypass capillary tube 29 and the evaporator 25 for the freezing room, passes through the suction pipe 27 again, and returns to the low pressure of the two-stage compressor 1. The refrigeration cycle for the freezer compartment returning to the side suction port 3 is constituted.
[0026]
The first capillary tube 15 has a counterflow between the suction pipe 21 on the gas refrigerant outlet side of the gas-liquid separator 19, and the bypass capillary tube 29 has a counterflow between the suction pipe 27 on the outlet side of the freezer evaporator 25. The juxtaposed arrangement is such that the parallel arrangement region is a heat exchange region 31 in which heat exchange is performed between the suction pipes 21 and 27.
[0027]
The second capillary tube 23 is arranged in parallel to approach the suction pipe 27 on the outlet side of the freezer evaporator 25 so as to form a counterflow. A heat exchange area 33 where heat exchange is performed between the two.
[0028]
The three-system switching valve 13 includes a first temperature sensor 35 for detecting the temperature in the refrigerator 17a of the refrigerator evaporator 17 and a second temperature for detecting the temperature in the refrigerator 25a of the evaporator 25. The switching control between the first port B and the second port A can be performed based on the detection signal from the temperature sensor 37.
[0029]
The detection signals from the first and second temperature sensors 35 and 37 are input to the control unit 39. Based on the detection signals from the first and second temperature sensors 35 and 37, the control unit 39 opens the first port B and the second port A at the same time, or opens one of the ports A and the other. Can be controlled to close each of the ports B.
[0030]
The control unit 39 controls the rotation speed of the two-stage compressor 1 and the fans of the refrigerating room evaporator 17 and the freezing room evaporator 25 (not shown) in addition to the three-way switching valve 13. It is supposed to.
[0031]
FIG. 3 shows a specific control example of the control side of the three-system switching valve 13 and the rotation speed of the two-stage compressor 1 based on the temperature difference between the internal temperature of the refrigerator compartment 17a and the freezer compartment 25a and the set temperature. . In FIG. 3, K indicates a temperature difference between the inside temperature and the set temperature, and “2K or more” indicates that the temperature difference is 2 degrees or more. "~ -2K" indicates that the temperature difference is up to minus 2 degrees. The number of rotations indicates the number of rotations of the two-stage compressor 1, B indicates that it is the first port, and A indicates that it is the second port.
[0032]
From a viewpoint, the temperature difference in the freezer compartment 25a is laterally moved, the temperature difference in the refrigerator compartment 17a is moved downward, and the intersection is a control state of the three-way switching valve 13 and the rotation speed. .
[0033]
As an example, for example, assuming that the temperature difference of the freezer compartment 25a is “2K〜” and the temperature difference of the refrigerating compartment 17a is “〜-2K”, the three-way switching valve 13 is located at the intersection. When it is at B, it becomes B → A, and when it is at A, it becomes A → A (in this case, there is no change), and all are switched to A.
[0034]
On the other hand, the rotation speed is UP, and the control of the three-system switching valve 13 and the control of the rotation speed based on each temperature difference are performed based on FIG.
[0035]
In the refrigerator configured as described above, by opening the first port B and closing the second port A of the three-way switching valve 13, the refrigerant discharged from the discharge port 7 of the two-stage compressor 1 becomes: After passing through the condenser 9, the first capillary tube 15, and the evaporator 17 for the refrigerator, it enters the gas-liquid separator 19. The gas refrigerant and the liquid refrigerant are separated in the gas-liquid separator 19, and one of the gas refrigerants is returned to the intermediate-pressure side suction port 5 of the two-stage compressor 1 again through the suction pipe 21. With this configuration, a predetermined internal temperature of the refrigerator compartment 17a can be obtained.
[0036]
On the other hand, in the gas-liquid separator 19, the other liquid refrigerant passes through the freezer evaporator 25, passes through the suction pipe 27, and returns to the low-pressure side suction port 3 of the two-stage compressor 1 again. A refrigeration cycle is constituted, and a predetermined internal temperature of the freezing room 25a can be obtained.
[0037]
Next, by closing the first port B and opening the second port A of the three-way switching valve 13, the refrigerant discharged from the two-stage compressor 1 as shown in FIG. A continuous refrigeration cycle for the freezer compartment is configured to return to the low-pressure side suction port 3 of the two-stage compressor 1 through the capillary tube 29 and the evaporator 25 for the freezer compartment, and to obtain a predetermined temperature in the freezer compartment 25a. Will be able to As a result, for example, even when the refrigerating load of the freezing room 25a is increased with respect to the refrigerating room 17a, it is possible to sufficiently cope with the shortage of cooling. FIG. 4 shows a control pattern of the refrigerator compartment temperature and the freezer compartment temperature at this time. In this control pattern, the falling area of the refrigerator compartment temperature falling to the right indicates that the flow of the refrigerant to the refrigerator compartment evaporator 17 is stopped.
[0038]
By rotating the refrigerating compartment fan (not shown) in the downward-sloping region, an efficient defrosting operation can be performed.
[0039]
FIG. 5 shows a second embodiment provided with a natural convection type refrigerator evaporator 41 and a forced convection type refrigerator evaporator 43 in place of the refrigerator room evaporator 17.
[0040]
The same components as those of the first embodiment are denoted by the same reference numerals.
[0041]
That is, the natural convection type refrigerator evaporator 41 and the forced convection type refrigerator refrigerator evaporator 43, which are switched and controlled by the four-way valve 45 having the first, second, and third ports A, B, and C serving as the switching means 11. Are arranged in parallel, and when the four-way valve 45 is switched to the first port A, the refrigerant discharged from the discharge port 7 of the two-stage compressor 1 is supplied to the condenser 9 and the first capillary tube 15 serving as a throttle means. , A natural convection type refrigerator evaporator 41, a forced convection type refrigerator refrigerator evaporator 43, and a gas-liquid separator 19. One of the gas refrigerants separated into the gas refrigerant and the liquid refrigerant by the gas-liquid separator 19 returns to the intermediate pressure side suction port 5 of the two-stage compressor 1 again through the suction pipe 21 to form a refrigerating room refrigeration cycle. It has become so. The other liquid refrigerant separated by the gas-liquid separator 19 passes through the second capillary tube 23 and the freezer evaporator 25, passes through the suction pipe 27, and returns to the low-pressure side suction port 3 of the two-stage compressor 1. The refrigeration cycle for the freezer compartment is configured so that the refrigerant flows through all of the natural convection type refrigerator evaporator 41, the forced convection type refrigerator compartment evaporator 43, and the freezer compartment evaporator 25.
[0042]
When the four-way valve 45 is switched to the second port B, the refrigerant discharged from the discharge port 7 of the two-stage compressor 1 is supplied to the condenser 9, the bypass capillary tube 29, the freezer evaporator 25, and the suction pipe. A refrigerating room refrigerating cycle is configured to return to the low-pressure side suction port 3 of the two-stage compressor 1 again via 27, and the refrigerant flows only through the freezing room evaporator 25.
[0043]
When the four-way valve 45 is switched to the third port C, the refrigerant discharged from the discharge port 7 of the two-stage compressor 1 is supplied to the condenser 9, the bypass capillary tube 47, the forced convection type refrigerator evaporator 43. , Into the gas-liquid separator 19. One of the gas refrigerants separated into the gas refrigerant and the liquid refrigerant by the gas-liquid separator 19 returns to the intermediate pressure side suction port 5 of the two-stage compressor 1 again through the suction pipe 21 to form a refrigerating room refrigeration cycle. It has become so. The other liquid refrigerant separated by the gas-liquid separator 19 passes through the second capillary tube 23 and the freezer evaporator 25, passes through the suction pipe 27, and returns to the low-pressure side suction port 3 of the two-stage compressor 1. The refrigerating room refrigerating cycle is configured so that the refrigerant flows through the forced convection type refrigerator compartment evaporator 43 and the freezer compartment evaporator 25.
[0044]
The switching control of each of the ports A, B, and C of the four-way valve 45 is performed by controlling the inside 41a of the natural convection type refrigerator evaporator 41, the inside of the forced convection type refrigerator evaporator 43a, and the freezer evaporator 25. When information from each temperature sensor 51 provided in each of the insides 25a is input to the control unit 39, switching control is performed based on the temperature information. FIG. 6 shows a specific control example of the rotational speeds of the four-way valve 45 and the two-stage compressor 1 based on the temperature difference between the inside temperature and the set temperature. The specific viewpoint is the same as in FIG.
[0045]
Therefore, according to the second embodiment, for example, the refrigerant flows through both the natural convection type refrigerator compartment evaporator 41 and the forced convection type refrigerator compartment evaporator 43, so that the natural convection type refrigerator evaporator is provided. The internal cooling of the refrigerator 41 and the internal cooling of the forced convection type refrigerator evaporator 43 can be simultaneously performed. During this operation, in the inside 41a of the natural convection type refrigerator evaporator 41, the inside can be cooled without lowering the inside humidity, that is, without causing drying.
[0046]
On the other hand, during the operation of the natural convection type refrigerator compartment evaporator 41, when dew condensation occurs on the inner wall surface of the refrigerator, the flow of the refrigerant to the natural convection type refrigerator compartment evaporator 41 is stopped, and the forced convection type evaporator 41 is stopped. By performing the operation of flowing the refrigerant to the refrigerator compartment evaporator 43, it is possible to efficiently and quickly evaporate the dew condensation generated on the inner wall surface of the natural convection refrigerator compartment evaporator 41.
[0047]
FIG. 7 shows a third embodiment in which the gas-liquid separator is omitted from the refrigerant circuit of FIG.
[0048]
That is, the evaporator 17 for the refrigerator compartment is connected to the first port A of the three-way switching valve 13 serving as the switching means 11 via the capillary tube 15, and the evaporator 25 for the freezer compartment is connected to the second port B via the capillary tube 29. The return suction pipe 21 of the refrigerator compartment evaporator 17 is connected to the intermediate pressure side suction port 5 of the two-stage compressor 1, and the return suction pipe 27 of the freezer compartment evaporator 25 is connected to the two-stage compressor 1. The low pressure side suction port 3 is connected to each other.
[0049]
The number of rotations of the three-system switching valve 13 and the two-stage compressor 1 is switched and controlled based on the temperature difference between the internal temperature and the set temperature, and a specific control example is shown in FIG. The viewpoint is the same as in FIG.
[0050]
The other components are the same as those in the first embodiment, and thus the same reference numerals are used and detailed description is omitted.
[0051]
Therefore, according to the third embodiment, for example, when the first port A and the second port B are opened, the refrigerant flows through both the refrigerator compartment evaporator 17 and the freezer compartment evaporator 25. As a result, cooling in the refrigerator evaporator 17 and cooling in the freezer evaporator 25 can be simultaneously performed.
[0052]
On the other hand, by selecting and opening one of the first port A and the second port B, the refrigerant flows into one of the refrigerator compartment evaporator 17 and the freezer compartment evaporator 25, and Cooling of the inside of the evaporator 17 or cooling of the inside of the freezer evaporator 25 can be performed.
[0053]
Therefore, it is possible to flow the refrigerant to the evaporator side corresponding to the load in the refrigerator, and there is no trouble such as insufficient cooling in one refrigerator or excessive cooling in the other refrigerator, and a stable refrigerator Temperature can be obtained.
[0054]
Note that even if a refrigerant leak occurs during operation, the natural environment is used, so that there is no adverse effect on the global environment.
[0055]
【The invention's effect】
As described above, according to the first aspect of the present invention, it is possible to simultaneously perform continuous cooling in the refrigerator compartment and cooling in the freezer compartment.
[0056]
In addition, for example, when the load in the freezer compartment is large and the load in the refrigerator compartment is small, the refrigerant can flow to the freezer evaporator side, so that the cooling in the compartment corresponding to the load in the refrigerator is efficient. You can do well.
[0057]
In addition, according to the second aspect of the present invention, the internal cooling of the evaporator for the natural convection type refrigerator compartment and the internal cooling of the evaporator for the forced convection type refrigerator compartment can be performed simultaneously, and the natural convection type refrigerator compartment is provided. In the evaporator for use, cooling in the refrigerator can be performed without lowering the cooling in the refrigerator, that is, without causing drying.
[0058]
If condensation forms on the inner wall of the natural convection refrigerator compartment evaporator during operation, the flow of the refrigerant to the natural convection refrigerator refrigerator evaporator is stopped, and the forced convection refrigerator refrigerator evaporator is stopped. Since the operation of flowing the refrigerant into the refrigerator can be performed, the dew condensation generated on the inner wall surface of the natural convection type refrigerator evaporator can be quickly and efficiently evaporated.
[0059]
According to the third aspect of the present invention, when a large amount of foodstuffs is packed in the refrigerator and the load in the refrigerator increases, the load in the refrigerator is accurately grasped and managed, and the evaporator having a large load in the refrigerator is controlled. Refrigerant can flow.
[0060]
Further, according to claim 4 of the present invention, it is possible to suppress the generation of carbon dioxide, which can greatly contribute to prevention of global warming.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing a first embodiment of a refrigerator-freezer according to the present invention.
FIG. 2 is a refrigerant circuit diagram similar to FIG. 1 showing a state in which refrigerant flows only to the freezer evaporator side by a three-way switching valve.
FIG. 3 is an explanatory diagram of a specific control example of the rotation speed of a three-way switching valve and a two-stage compressor based on a temperature difference between a set temperature and a temperature inside a refrigerator room and a refrigerator room.
FIG. 4 is an explanatory diagram of the operation of the refrigerator compartment temperature and the freezer compartment temperature when controlling the three-way switching valve.
FIG. 5 is a refrigerant circuit diagram similar to FIG. 1 showing a second embodiment.
FIG. 6 is an explanatory diagram of a specific control example of the rotation speed of the four-way valve and the two-stage compressor based on the temperature difference between the inside temperature and the set temperature according to the second embodiment.
FIG. 7 is a refrigerant circuit diagram similar to FIG. 1 showing a third embodiment.
FIG. 8 is an explanatory diagram showing a specific control example of the rotation speed of the three-system switching valve and the two-stage compressor based on the temperature difference between the internal temperature and the set temperature according to the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 2 stage compressor 3 Low pressure side suction port 5 Intermediate pressure side suction port 7 Discharge port 9 Condenser 11 Switching means 17 Cold room evaporator 19 Gas-liquid separator 25 Freezing room evaporator 41 Natural convection type cold room evaporator 43 Evaporator for forced convection refrigerator

Claims (4)

低圧側吸込口からの冷媒を中間圧まで加圧した冷媒と中間圧側吸込口からの冷媒と合流、混合し高圧まで加圧する2段圧縮機を有し、2段圧縮機から吐出された冷媒が少なくとも凝縮器、冷蔵室用蒸発器、冷凍室用蒸発器を通る冷凍サイクルを備えた冷凍冷蔵庫において、
前記冷蔵室用蒸発器と冷凍室用蒸発器両方同時に冷媒を流す回路と、冷蔵室用蒸発器又は冷凍室用蒸発器のいずれか一方を選択して冷媒を流す回路に切換制御する切換手段を備えていることを特徴とする冷凍冷蔵庫。
It has a two-stage compressor that joins, mixes, and pressurizes the refrigerant from the low-pressure side suction port to the intermediate pressure and the refrigerant from the intermediate-pressure side suction port, and pressurizes the refrigerant from the two-stage compressor to the high pressure. At least a condenser, a refrigerator refrigerator evaporator, a refrigerator having a refrigerating cycle passing through the freezer evaporator,
A circuit for flowing the refrigerant at the same time for both the refrigerating room evaporator and the freezing room evaporator, and a switching means for switching and controlling a circuit for selecting one of the refrigerating room evaporator and the freezing room evaporator and flowing the refrigerant. A refrigerator comprising: a refrigerator;
低圧側吸込口からの冷媒を中間圧まで加圧した冷媒と中間圧側吸込口からの冷媒と合流、混合し高圧まで加圧する2段圧縮機を有し、2段圧縮機から吐出された冷媒が少なくとも凝縮器、自然対流式冷蔵室用蒸発器、強制対流式冷蔵室用蒸発器、冷凍室用蒸発器を通る冷凍サイクルを備えた冷凍冷蔵庫において、
前記自然対流式冷蔵室用蒸発器と強制対流式冷蔵室用蒸発器は、切換手段により両方同時に、又は、一方の強制対流式冷蔵室用蒸発器のみ冷媒が流れるよう切換制御可能となっていることを特徴とする冷凍冷蔵庫。
It has a two-stage compressor that joins, mixes, and pressurizes the refrigerant from the low-pressure side suction port to the intermediate pressure and the refrigerant from the intermediate-pressure side suction port, and pressurizes the refrigerant from the two-stage compressor to the high pressure. At least a condenser, a natural convection type cold room evaporator, a forced convection type cold room evaporator, a refrigerator having a refrigeration cycle through a freezing room evaporator,
The natural convection refrigeration compartment evaporator and the forced convection refrigeration compartment evaporator can be switched and controlled by switching means so that the refrigerant flows only at the same time or only one forced convection refrigeration compartment evaporator. A refrigerator-freezer comprising:
切換手段は、各庫内空気温度が設定温度域を越えた時に、切換えることを特徴とする請求項1又は2記載の冷凍冷蔵庫。3. The refrigerator according to claim 1, wherein the switching means switches when the air temperature in each refrigerator exceeds a set temperature range. 冷媒は、炭化水素系冷媒が用いられていることを特徴とする請求項1又は2記載の冷凍冷蔵庫。The refrigerator according to claim 1 or 2, wherein the refrigerant is a hydrocarbon-based refrigerant.
JP2002181572A 2002-06-21 2002-06-21 Refrigerator-freezer Withdrawn JP2004028370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181572A JP2004028370A (en) 2002-06-21 2002-06-21 Refrigerator-freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181572A JP2004028370A (en) 2002-06-21 2002-06-21 Refrigerator-freezer

Publications (1)

Publication Number Publication Date
JP2004028370A true JP2004028370A (en) 2004-01-29

Family

ID=31178372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181572A Withdrawn JP2004028370A (en) 2002-06-21 2002-06-21 Refrigerator-freezer

Country Status (1)

Country Link
JP (1) JP2004028370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071178A (en) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd Refrigerator
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage
US8474280B2 (en) 2007-02-26 2013-07-02 Hoshizaki Denki Kabushiki Kaishi Refrigerating storage cabinet and control method for compressor thereof
EP3067646A1 (en) * 2015-03-11 2016-09-14 Samsung Electronics Co., Ltd. Refrigerator
CN106766526A (en) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 Connection in series-parallel Dual-evaporator refrigeration system, the refrigerator with the system and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071178A (en) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd Refrigerator
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor
US8474280B2 (en) 2007-02-26 2013-07-02 Hoshizaki Denki Kabushiki Kaishi Refrigerating storage cabinet and control method for compressor thereof
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage
EP3067646A1 (en) * 2015-03-11 2016-09-14 Samsung Electronics Co., Ltd. Refrigerator
CN105972904A (en) * 2015-03-11 2016-09-28 三星电子株式会社 Refrigerator
US10077932B2 (en) 2015-03-11 2018-09-18 Samsung Electronics Co., Ltd. Refrigerator
CN106766526A (en) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 Connection in series-parallel Dual-evaporator refrigeration system, the refrigerator with the system and control method
WO2018121425A1 (en) * 2016-12-26 2018-07-05 青岛海尔股份有限公司 Refrigeration system utilizing parallel and serial-connected dual evaporators, and control method thereof

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
WO2005061970A1 (en) Refrigerator
KR20000014024A (en) Freezing cycle device for refrigerator
CN106461305A (en) Refrigerator and method of controlling same
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
WO2004005811A1 (en) Refrigeration equipment
US6758053B2 (en) Cooling apparatus
JP2011012885A (en) Refrigerator
JP2000121178A (en) Cooling cycle and refrigerator
JP2002081817A (en) Refrigerator
JP2000230767A (en) Refrigerator
JP2004028370A (en) Refrigerator-freezer
JP2002195725A (en) Freezing cold room and its operating method
JP2004053055A (en) Refrigerator
JP2004085105A (en) Refrigerator
JP2000346526A5 (en)
JP2001108345A (en) Two stage compression freezer/refrigerator
JP5931329B2 (en) refrigerator
JP2003106693A (en) Refrigerator
JP2005180719A (en) Refrigerator
JP4169080B2 (en) Freezer refrigerator
JP2004132618A (en) Refrigerator
JP2002267317A (en) Refrigerator
JP2012082985A (en) Refrigerator
JP2009115336A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A761 Written withdrawal of application

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A761