JP2007070695A - Method for forming deposited film - Google Patents

Method for forming deposited film Download PDF

Info

Publication number
JP2007070695A
JP2007070695A JP2005259165A JP2005259165A JP2007070695A JP 2007070695 A JP2007070695 A JP 2007070695A JP 2005259165 A JP2005259165 A JP 2005259165A JP 2005259165 A JP2005259165 A JP 2005259165A JP 2007070695 A JP2007070695 A JP 2007070695A
Authority
JP
Japan
Prior art keywords
deposited film
reaction vessel
deposited
film
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005259165A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Hitoshi Murayama
仁 村山
Daisuke Tazawa
大介 田澤
Kunimasa Kawamura
邦正 河村
Takahisa Taniguchi
貴久 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005259165A priority Critical patent/JP2007070695A/en
Publication of JP2007070695A publication Critical patent/JP2007070695A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a deposited film, which is excellent in productivity and by which the generation of the exfoliation of a deposited film deposited on the inner wall of a dielectric material constituting a portion of a reaction vessel can be suppressed even when the dielectric material is used repeatedly by efficiently removing the deposited film deposited on the inner wall. <P>SOLUTION: In the method for forming the deposited film, comprising arranging a base body in the reaction vessel at least a portion of which is constituted of the dielectric material and which can be evacuated, and decomposing a raw material gas supplied into the reaction vessel by high-frequency power to form a deposited film containing a first layer comprising a non-single crystal film containing nitrogen atom or carbon atom in the matrix of silicon atom on the base body, the deposited film deposited on the part of the dielectric material of the reaction vessel is removed by liquid etching in a pre-treatment process and by liquid honing in a post-treatment process after completion of forming the deposited film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマCVD法により、半導体デバイス、電子写真用感光体、画像入力ラインセンサー、撮影デバイス、光起電力デバイス等の形成に用いる堆積膜形成方法に関する。   The present invention relates to a deposited film forming method used for forming a semiconductor device, an electrophotographic photoreceptor, an image input line sensor, a photographing device, a photovoltaic device, and the like by plasma CVD.

堆積膜形成方法の1つとして、低温プラズマを利用するCVD法が脚光を浴びている。この方法は、反応容器内を高真空に減圧し、原料ガスを反応容器内に導入した後、放電電力を印加しグロー放電によって原料ガスを分解し、反応容器内に配置された基体上に堆積膜を形成する方法であって、例えばアモルファスシリコン膜(a−Si膜)の形成に応用されている。   As one of the deposited film forming methods, a CVD method using low-temperature plasma has attracted attention. In this method, the inside of the reaction vessel is depressurized to a high vacuum, the source gas is introduced into the reaction vessel, the discharge power is applied, the source gas is decomposed by glow discharge, and deposited on a substrate disposed in the reaction vessel. A method for forming a film, which is applied to, for example, formation of an amorphous silicon film (a-Si film).

通常、反応容器内に設置した基体上に堆積膜を形成すると、反応容器の内壁や反応容器内に配置された部材に副生成物が付着する。一般にこの副生成物は容易に剥がれてしまい、基体上に付着して基体を汚染し、堆積膜に重大な欠陥を発生する場合もある。   Usually, when a deposited film is formed on a substrate placed in a reaction vessel, a by-product adheres to the inner wall of the reaction vessel or a member disposed in the reaction vessel. In general, this by-product easily peels off, adheres to the substrate, contaminates the substrate, and may cause a serious defect in the deposited film.

そこで、堆積膜を形成後、反応容器の内壁や反応容器内に配置された部材に付着した副生成物を除去してから、新規に基体を反応容器内に設置して、該基体上に堆積膜を形成するのが望ましい生産方法であり、該副生成物の除去に関する提案もなされている。   Therefore, after the deposited film is formed, by-products adhering to the inner wall of the reaction vessel and the members arranged in the reaction vessel are removed, and then a new substrate is placed in the reaction vessel and deposited on the substrate. Forming a film is a desirable production method, and proposals have been made regarding the removal of the by-products.

具体的には、堆積膜形成後の絶縁性部材から成る反応容器を取り外し更に基体を取り外した後に反応容器の内壁に付着した副生成物を液体ホーニング又は液体エッチングで除去する方法が開示されている(例えば、特許文献1参照)。   Specifically, a method is disclosed in which a reaction container made of an insulating member after the deposition film is formed is removed, and a by-product attached to the inner wall of the reaction container is removed by liquid honing or liquid etching after the substrate is removed. (For example, refer to Patent Document 1).

又、反応容器の一部を構成する絶縁性部材を堆積膜形成後に堆積膜形成装置から取り外し、該絶縁性部材に付着した副生成物を液体ホーニング又は液体エッチングで除去する工程後に絶縁性部材の破損検査を行う方法が開示されている(例えば、特許文献2参照)。   In addition, after forming the deposited film, the insulating member constituting a part of the reaction vessel is removed from the deposited film forming apparatus, and the by-product adhering to the insulating member is removed by liquid honing or liquid etching. A method of performing damage inspection is disclosed (for example, see Patent Document 2).

更に、堆積膜形成後の基体保持部品或は補助部品等に付着した堆積膜をエッチング工程で除去した後に洗浄工程、乾燥工程、冷却工程の順に各工程を経てエッチング工程の残留物を除去する方法が開示されている(例えば、特許文献3参照)。
特開2000−077339号公報 特開2002−317268号公報 特開2002−129333号公報
Further, after removing the deposited film adhering to the substrate holding part or auxiliary part after the deposited film is formed in the etching process, the residue in the etching process is removed through each process in the order of the cleaning process, the drying process, and the cooling process. Is disclosed (for example, see Patent Document 3).
JP 2000-077339 JP 2002-317268 A JP 2002-129333 A

近年、その普及が目覚しいデジタル電子写真装置やカラー電子写真装置においては、文字原稿のみならず、写真、絵、デザイン画等のコピーも頻繁に成されるため、従来以上に画像濃度むらの低減が求められるようになっている。又同時に、画像上に白点或は黒点等の画像欠陥を引き起こす球状突起等の構造欠陥についても、従来以上の低減が求められている。   In recent years, digital electrophotographic devices and color electrophotographic devices, which have been widely used, often make copies of not only text originals but also photographs, pictures, design drawings, etc., and thus image density unevenness can be reduced more than before. It has come to be required. At the same time, structural defects such as spherical protrusions that cause image defects such as white spots or black spots on the image are required to be reduced more than ever.

このような構造欠陥は、堆積膜形成前から基体上に付着したダスト等の異物を起源として堆積膜が異常成長したものがある。そのため、成膜前の基体は厳密に洗浄され、クリーンルーム等のダスト管理された環境で反応容器内に運搬することにより、基体にダストが付着することを極力避けるようにしてきた。   Such a structural defect is one in which the deposited film grows abnormally due to foreign matters such as dust adhering to the substrate before the deposited film is formed. For this reason, the substrate before film formation is strictly cleaned, and transported into a reaction vessel in a dust-controlled environment such as a clean room, so as to prevent dust from adhering to the substrate as much as possible.

又、反応容器内に設置した基体上に堆積膜を形成すると、反応容器の内壁にポリシランと呼ばれる粉体状の副生成物が付着する。この副生成物は容易に反応容器の壁面から剥れ、堆積膜形成途中の基体上に付着し異常成長する場合があった。   Further, when a deposited film is formed on a substrate placed in the reaction vessel, a powdery by-product called polysilane adheres to the inner wall of the reaction vessel. This by-product easily peeled off from the wall surface of the reaction vessel, and sometimes adhered to the substrate during the formation of the deposited film and abnormally grew.

このような、反応容器の壁面に付着する副生成物が粉状にならない堆積膜の形成方法としては、反応容器内を13.4Pa以下好適には10Pa以下に減圧し、50MHz以上250MHz以下の高周波電力を用いることにより該反応容器の内部に形成される副生成物を膜状に形成する技術がある。   As a method for forming such a deposited film in which the by-product attached to the wall of the reaction vessel does not become powdery, the inside of the reaction vessel is decompressed to 13.4 Pa or less, preferably 10 Pa or less, and a high frequency of 50 MHz to 250 MHz. There is a technique for forming a by-product formed in the reaction vessel into a film by using electric power.

しかし、少なくとも一部が誘電体材料で構成された反応容器を用いた堆積膜形成方法においては、堆積膜形成途中に反応容器内に形成された堆積膜に、膜中の内部応力により微小な膜剥れが発生し、放電空間内に膜片となって拡散、その一部が基体上に付着したものが起源として異常成長する場合がある。   However, in the method for forming a deposited film using a reaction vessel at least partially composed of a dielectric material, a minute film is formed on the deposited film formed in the reaction vessel during the formation of the deposited film due to internal stress in the film. In some cases, peeling occurs and diffuses as a film piece in the discharge space, and a part of the film adheres to the substrate and grows abnormally.

反応容器内に形成された堆積膜が剥れるのを防止するために、反応容器内壁や反応容器内の構成部品等の表面に対して、粗面化する処理や、表面エネルギーの大きいセラミック材で被覆する処理等を施してきた。   In order to prevent the deposited film formed in the reaction vessel from peeling off, the surface of the reaction vessel inner wall and the components in the reaction vessel are roughened with a ceramic material with a large surface energy. A coating process has been applied.

しかし、部材の粗面化処理は広範囲を均一に粗面化することが難しいため、部分的な膜剥れが発生する場合があった。更に、部材表面をセラミック材で被覆した場合、初期状態では膜の密着性は良好であるが耐久性に関しては繰り返しの使用により疲労し、セラミックス材自体が部材から剥れる場合があるため耐久性、コスト面で改善が望まれている。   However, since it is difficult to roughen a wide area uniformly in the roughening treatment of the member, partial film peeling may occur. Furthermore, when the surface of the member is coated with a ceramic material, the adhesion of the film is good in the initial state, but the durability is fatigued due to repeated use, and the ceramic material itself may peel off from the member. Improvement in cost is desired.

又、感光体の成膜前に反応容器内を密着層で被覆することにより堆積膜の膜剥れを防止する手段が用いられる。プラズマCVDで形成される密着層であればエッチング又はホーニングにより除去すれば堆積膜の成膜毎に密着層を設けられるため耐久性の心配もない。このような密着層としては、例えば窒化シリコンや炭化シリコンがプラズマCVDで容易に形成が可能で密着性の高い膜として知られており、感光体としても実績がある材料である。   In addition, means for preventing the film from peeling off by covering the inside of the reaction vessel with an adhesive layer before film formation of the photoreceptor is used. If the adhesion layer formed by plasma CVD is removed by etching or honing, the adhesion layer can be provided every time the deposited film is formed, so there is no concern about durability. As such an adhesion layer, for example, silicon nitride or silicon carbide can be easily formed by plasma CVD and is known as a film having high adhesion, and is a material that has a proven record as a photoreceptor.

しかし、該密着層は密着性が向上する反面、堆積膜形成後に反応容器の内壁や反応容器内に配置された部材に堆積した堆積膜の除去が十分に行われず、密着層の残留物が残ってしまう場合がある。   However, the adhesion layer improves the adhesion, but the deposited film deposited on the inner wall of the reaction vessel or the member disposed in the reaction vessel after the formation of the deposited film is not sufficiently removed, and the residue of the adhesion layer remains. May end up.

例えば、四フッ化炭素や三フッ化塩素等のハロゲン化合物で堆積膜をガス化して除去するドライエッチングの場合、反応容器内壁表面の細かい凹凸の凹部に粉状の残留物が残り、この粉状の残留物は洗浄しても完全には除去できない場合がある。   For example, in the case of dry etching in which the deposited film is gasified and removed with a halogen compound such as carbon tetrafluoride or chlorine trifluoride, a powdery residue remains in the concave and convex recesses on the inner wall surface of the reaction vessel. The residue may not be completely removed by washing.

又、化学溶液を用いた液体エッチングや研磨材を含む液体を噴射する液体ホーニングでは処理時間が長く、更に処理ムラが発生し、反応容器内壁表面の細かい凹凸の凹部に残留膜が存在する場合がある。   In addition, liquid etching using a chemical solution or liquid honing in which a liquid containing an abrasive is jetted has a long processing time, and further processing unevenness occurs, and a residual film may exist in the concave and convex recesses on the inner wall surface of the reaction vessel. is there.

上記凹部に残留する粉状の残留物及び残留膜は、堆積膜の密着性を阻害し、次回の堆積膜形成時に微小な膜剥れが発生する場合がある。   The powdery residue and the residual film remaining in the recesses impair the adhesion of the deposited film, and minute film peeling may occur when the deposited film is formed next time.

更に、化学溶液を用いた液体エッチングに関しては該残留膜の問題に加え、コンタミの影響が出ない程度に水洗するために長時間の処理が必要となり、生産性が低下する場合がある。   Furthermore, in the case of liquid etching using a chemical solution, in addition to the problem of the residual film, a long-time treatment is required to wash the water to such an extent that contamination does not occur, which may reduce productivity.

このような少なくとも一部が誘電体材料で構成された反応容器を用いた堆積膜形成の第1の層が例えば窒化シリコンや炭素化シリコンで構成された密着層であっても該反応容器内壁表面に堆積した密着層を含む堆積膜を効率良く除去することが可能な方法が求められている。   Even if the first layer for forming a deposited film using a reaction vessel at least partially made of a dielectric material is an adhesion layer made of, for example, silicon nitride or carbonized silicon, the inner wall surface of the reaction vessel Therefore, there is a demand for a method capable of efficiently removing the deposited film including the adhesion layer deposited on the substrate.

本発明は上記事情に鑑みてなされたもので、その目的とする処は、誘電体材料を繰り返し使用しても堆積膜の膜剥れが発生しない生産性に優れた堆積膜形成方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a deposited film forming method excellent in productivity that does not cause peeling of a deposited film even when a dielectric material is repeatedly used. There is.

上記目的を達成するため、本発明は、少なくとも一部が誘電体材料で構成された減圧可能な反応容器内に基体が設置され、該反応容器内に供給した原料ガスを高周波電力により分解し、該基体上に珪素原子を母体とし窒素原子又は炭素原子を含有する非単結晶膜で形成される第1の層を含む堆積膜を形成する堆積膜形成方法において、該堆積膜の形成が終了した後に該反応容器の誘電体材料部分に堆積した堆積膜を液体エッチングによる前処理工程と液体ホーニングによる後処理工程によって除去することを特徴とする。   In order to achieve the above object, the present invention has a base placed in a depressurizable reaction vessel at least partially made of a dielectric material, and decomposes the raw material gas supplied into the reaction vessel with high frequency power, In the deposited film forming method for forming a deposited film including a first layer formed of a non-single crystalline film containing a silicon atom as a base and containing a nitrogen atom or a carbon atom on the substrate, the formation of the deposited film is completed. The deposited film deposited on the dielectric material portion of the reaction vessel later is removed by a pretreatment step by liquid etching and a posttreatment step by liquid honing.

本発明者らは上記目的を達成すべく鋭意検討を行った結果、少なくとも一部が誘電体材料で構成された反応容器内壁に珪素原子を母体とし、窒素原子又は炭素原子を含有する非単結晶膜で形成される第1の層を含む堆積膜を形成後に該反応容器内壁の誘電体材料部分に堆積した堆積膜の除去方法として、液体エッチングによる前処理工程を施した後に液体ホーニングによる後処理工程を順次行うことにより効率良く除去することが可能であることを見出した。   As a result of intensive studies to achieve the above object, the present inventors have found that a non-single crystal containing a nitrogen atom or a carbon atom based on a silicon atom on the inner wall of a reaction vessel at least partially composed of a dielectric material As a method for removing the deposited film deposited on the dielectric material portion of the inner wall of the reaction vessel after forming the deposited film including the first layer formed by the film, post-processing by liquid honing after performing a pre-processing step by liquid etching It has been found that it can be efficiently removed by sequentially performing the steps.

堆積膜形成において、密着性向上の目的で第1層に珪素原子を母体とし窒素原子を10%以上30%以下又は炭素原子を20%以上40%以下含有する非単結晶膜を形成する場合がある。窒素原子及び炭素原子の含有量の好適な分析方法としてはESCA分析が挙げられる。   In the formation of a deposited film, there is a case where a non-single crystal film containing silicon atoms as a base and containing 10% to 30% nitrogen atoms or 20% to 40% carbon atoms is formed in the first layer for the purpose of improving adhesion. is there. As a suitable analysis method for the content of nitrogen atoms and carbon atoms, ESCA analysis can be mentioned.

上記第1の層は窒素原子を10原子%以上30原子%以下含有する窒化珪素又は炭素原子を20原子%以上40原子%以下含有する炭化珪素が好ましく、更に該窒化珪素及び該炭化珪素を積層しても密着層としての効果が得られる。   The first layer is preferably silicon nitride containing 10 atom% or more and 30 atom% or less of nitrogen atoms, or silicon carbide containing 20 atom% or more and 40 atom% or less of carbon atoms, and further laminating the silicon nitride and the silicon carbide. Even if the effect as an adhesion layer is acquired.

窒化珪素膜の窒素含有量が10原子%より少ないと密着性が十分に確保できない場合があり、30原子%を超えると残留電位が高くなり、良好な電子写真特性が得られない場合がある。   If the nitrogen content of the silicon nitride film is less than 10 atomic%, sufficient adhesion may not be ensured, and if it exceeds 30 atomic%, the residual potential may increase and good electrophotographic characteristics may not be obtained.

又、炭化珪素の炭素含有量が20原子%より少ないと密着性が十分に確保できない場合があり、40原子%を超えると残留電位が高くなり、良好な電子写真特性が得られない場合がある。   Also, if the carbon content of silicon carbide is less than 20 atomic%, sufficient adhesion may not be ensured, and if it exceeds 40 atomic%, the residual potential may increase and good electrophotographic characteristics may not be obtained. .

上記密着性に優れた窒化珪素膜又は炭化珪素膜又は該窒化珪素膜と炭化珪素膜の積層膜の何れかを第1層に使用し、一部を誘電体材料で構成した反応容器内壁に堆積した場合、密着性を向上させる反面、該堆積膜を効率的に除去することが難しくなる場合がある。   Either the silicon nitride film or the silicon carbide film having excellent adhesion or the laminated film of the silicon nitride film and the silicon carbide film is used for the first layer, and a part thereof is deposited on the inner wall of the reaction vessel made of a dielectric material. In this case, while improving the adhesion, it may be difficult to efficiently remove the deposited film.

堆積膜の効率的な除去方法を鋭意検討した結果、前処理工程として化学溶液を用いた液体エッチングで化学反応を利用した処理をすることにより、該堆積膜の大半を除去すると共に残留膜に関しても液体エッチングにより誘電体材料で構成された反応容器内壁から浮き上がった不安定な状態となり、密着性が低下し容易に剥離できる状態となる。   As a result of intensive investigations on an efficient removal method of the deposited film, as a pretreatment process, liquid etching using a chemical solution is used to remove the majority of the deposited film and to treat the remaining film as well. Liquid etching causes an unstable state floating from the inner wall of the reaction vessel made of a dielectric material, resulting in a state where adhesion is reduced and can be easily peeled off.

次いで、後処理工程で研磨材を含む液体を噴射する液体ホーニングの物理的作用よって液体ホーニングで容易に剥離され易い状態になった残留膜を除去することができる。   Next, the residual film that has been easily peeled off by liquid honing can be removed by the physical action of liquid honing that ejects the liquid containing the abrasive in the post-processing step.

更に、後処理を液体ホーニングで行うことにより、該液体エッチング工程後の洗浄でも完全に除去されない該反応容器に残留する該化学溶液に関しても確実に除去することが可能であり、次回の堆積膜形成においてコンタミのない堆積膜が形成可能となる。   Further, by performing post-processing by liquid honing, it is possible to reliably remove the chemical solution remaining in the reaction vessel that is not completely removed even by cleaning after the liquid etching step, and the next deposited film formation In this case, it is possible to form a deposited film without contamination.

つまり、液体エッチングによる前処理、次いで液体ホーニングによる後処理の順番で処理することにより短時間で均一に処理むらを発生させることなくコンタミの影響も受けない状態に効率良く処理することが可能となる。   In other words, by performing processing in the order of pre-processing by liquid etching and then post-processing by liquid honing, it becomes possible to efficiently perform processing in a state that is not affected by contamination without causing processing unevenness in a short time. .

本発明によれば、反応容器の一部を構成する誘電体材料の内壁に形成した堆積膜を効率良く除去することによって該誘電体材料を繰り返し使用しても堆積膜の膜剥れが発生しない生産性に優れた堆積膜形成方法を提供することができる。   According to the present invention, even if the dielectric material is repeatedly used by efficiently removing the deposited film formed on the inner wall of the dielectric material that constitutes a part of the reaction vessel, the deposited film does not peel off. A method for forming a deposited film having excellent productivity can be provided.

本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明により作製可能な電子写真感光体の層構成を説明するための模式的構成図である。   FIG. 1 is a schematic configuration diagram for explaining a layer configuration of an electrophotographic photosensitive member that can be produced by the present invention.

図1(a)は基体101の上に密着層を兼ねる電荷注入阻止層104、光導電層102、表面層103が順に積層された電子写真感光体である。光導電層102は、珪素原子を母体とし少なくとも水素を含む非単結晶材料で形成され、表面層103は、水素原子を含み少なくとも珪素原子と炭素原子の何れかを含む非単結晶材料で構成され、電子写真装置における顕像保持能力を有する。   FIG. 1A shows an electrophotographic photosensitive member in which a charge injection blocking layer 104 that also serves as an adhesion layer, a photoconductive layer 102, and a surface layer 103 are sequentially laminated on a substrate 101. The photoconductive layer 102 is formed of a non-single-crystal material containing silicon atoms as a base and containing at least hydrogen, and the surface layer 103 is formed of a non-single-crystal material containing hydrogen atoms and containing at least one of silicon atoms and carbon atoms. In addition, it has a capability of holding a visible image in an electrophotographic apparatus.

図1(b)は図1(a)の層構成に加えて密着層を兼ねる電荷注入阻止層104と、基体101の間に密着層105を設けた場合の層構成を示し、密着層105と密着層を兼ねる電荷注入阻止層104は、その組成変化を連続的に行っても良い。   FIG. 1B shows a layer structure in the case where the charge injection blocking layer 104 which also serves as an adhesion layer in addition to the layer structure of FIG. The charge injection blocking layer 104 also serving as the adhesion layer may be continuously changed in composition.

この密着層を兼ねる電荷注入阻止層104及び密着層105の材料として、例えば少なくともシリコン原子を含み、炭素、窒素、酸素、水素、フッ素、ボロン等を含む非単結晶材料、或は少なくとも炭素原子を骨格とし、窒素、酸素、水素、フッ素、ボロン等を含む非単結晶炭素材料、或は窒化ボロン、窒化アルミニウム等のIII-V 族化合物、Al23 、ZnO、InO2 等の金属酸化物等が挙げられるが、下地となる金属(アルミニウムやステンレス)と親和性が良く、且つ、光導電層とも親和性が良い材料が好ましい。 As a material for the charge injection blocking layer 104 and the adhesion layer 105 which also serve as the adhesion layer, for example, a non-single crystal material containing at least silicon atoms and containing carbon, nitrogen, oxygen, hydrogen, fluorine, boron, etc., or at least carbon atoms. Non-single crystal carbon material containing skeleton, nitrogen, oxygen, hydrogen, fluorine, boron, etc., or III-V group compounds such as boron nitride, aluminum nitride, metal oxides such as Al 2 O 3 , ZnO, InO 2 However, a material having good affinity with the metal (aluminum or stainless steel) as a base and having good affinity with the photoconductive layer is preferable.

特に、少なくとも珪素原子と炭素原子とを含む非単結晶炭化珪素膜や、少なくとも珪素原子と窒素原子とを含む非単結晶窒化珪素膜が好ましく、中でも非単結晶窒化珪素膜が最も好ましい。具体的には、非晶質窒化珪素(a−SiN)や水素化非晶質窒化珪素(a−SiN:H)、ハロゲンを含む水素化非晶質窒化珪素(a−SiN:H:X)が挙げられ、部分的に微結晶を含んでいても良い。   In particular, a non-single-crystal silicon carbide film containing at least silicon atoms and carbon atoms and a non-single-crystal silicon nitride film containing at least silicon atoms and nitrogen atoms are preferable, and a non-single-crystal silicon nitride film is most preferable. Specifically, amorphous silicon nitride (a-SiN), hydrogenated amorphous silicon nitride (a-SiN: H), hydrogenated amorphous silicon nitride containing halogen (a-SiN: H: X) And may partially contain microcrystals.

密着層を兼ねる電荷注入阻止層104及び密着層105を形成するのに有効に使用される原料ガスとしては、窒素原子を含むものとしては、窒素、窒化物、フッ素化窒素及びアジ化物等の窒素酸化物が挙げられる。具体的には、窒素(N2 )、アンモニア(NH3
)、ヒドラジン(H2 NNH2 )、三フッ化窒素(NF3 )、四フッ化窒素(N24 )、アジ化水素(HN3 )、アジ化アンモニウム(NH43 )等が挙げられる。又、シリコン原子を含むものとしては、SiH4 、Si26 、Si38 、Si410等のシラン類及びシラン類の水素をハロゲンで置換したハロゲン置換水素化珪素等が挙げられる。
The source gas that is effectively used to form the charge injection blocking layer 104 that also serves as the adhesion layer and the adhesion layer 105 includes nitrogen such as nitrogen, nitride, fluorinated nitrogen, and azide, including nitrogen atoms. An oxide is mentioned. Specifically, nitrogen (N 2 ), ammonia (NH 3
), Hydrazine (H 2 NNH 2 ), nitrogen trifluoride (NF 3 ), nitrogen tetrafluoride (N 2 F 4 ), hydrogen azide (HN 3 ), ammonium azide (NH 4 N 3 ), etc. Be Examples of those containing silicon atoms include silanes such as SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , and halogen-substituted silicon hydrides obtained by substituting hydrogen of silanes with halogen. .

又、これらのガスに加え、希釈ガスとして水素(H2 )、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)等を適宜混合しても良い。又、電気的な特性改善を目的として、ジボラン(B26 )やホスフィン(PH3 )等の価電子制御用ガスを微量添加しても構わない。 In addition to these gases, hydrogen (H 2 ), helium (He), neon (Ne), argon (Ar), or the like may be appropriately mixed as a diluent gas. For the purpose of improving electrical characteristics, a small amount of valence electron control gas such as diborane (B 2 H 6 ) or phosphine (PH 3 ) may be added.

これらのガスを用いて、所望の密着性を持つ膜が得られれば、どのような原料ガス、混合比を用いても構わない。   Any source gas and mixing ratio may be used as long as a film having desired adhesion can be obtained using these gases.

又、密着層を兼ねる電荷注入阻止層104及び密着層105作製時の圧力としては、所望の密着性が得られればどのような圧力を用いても構わないが、或る程度以上高い方が密着性の向上が得られ易い。原因は不明であるが、プラズマ中の活性種の挙動が変化し、堆積する膜の結合が変化するためと思われる。具体的な圧力の数値としては、厳密には周波数によって異なるが、50〜250MHzの高周波においては、好ましくは1.3Pa以上、より好ましくは2Pa以上とすることが望ましい。又、上限としては放電の安定性を考えると13.4Pa以下、より好ましくは10Pa以下が望ましい。   In addition, any pressure may be used as the pressure at the time of producing the charge injection blocking layer 104 and the adhesion layer 105 that also serve as the adhesion layer, as long as the desired adhesion can be obtained. It is easy to improve the property. The cause is unknown, but it is thought that the behavior of active species in the plasma changes and the bonding of the deposited film changes. Strictly speaking, the numerical value of the pressure varies depending on the frequency, but at a high frequency of 50 to 250 MHz, it is preferably 1.3 Pa or more, more preferably 2 Pa or more. Further, the upper limit is preferably 13.4 Pa or less, more preferably 10 Pa or less in view of discharge stability.

次に、図2に示した製造装置を用いた電子写真感光体の製造方法の概略を以下に説明する。   Next, an outline of a method for producing an electrophotographic photosensitive member using the production apparatus shown in FIG. 2 will be described below.

図2は本発明に適用可能な電子写真感光体製造装置の一例を示した概略図であり、6本の高周波電極204を反応容器202の外周に等間隔に設置し、反応容器202内に6本の円筒状基体201を設置する構成とした量産型の製造装置である。   FIG. 2 is a schematic view showing an example of an electrophotographic photoreceptor manufacturing apparatus applicable to the present invention. Six high-frequency electrodes 204 are installed on the outer periphery of the reaction vessel 202 at equal intervals, and 6 in the reaction vessel 202. This is a mass production type manufacturing apparatus in which a cylindrical base 201 is installed.

尚、図2(a)は概略断面図、図2(b)は図2(a)の切断線A−A’に沿う概略断面図である。   2A is a schematic cross-sectional view, and FIG. 2B is a schematic cross-sectional view taken along a cutting line A-A ′ in FIG.

円筒形の反応容器202の底面216には排気口207が設けられ、排気口207は、排気管217に接続され、該排気管217の他端は不図示の排気装置に接続されている。   An exhaust port 207 is provided on the bottom surface 216 of the cylindrical reaction vessel 202, the exhaust port 207 is connected to an exhaust pipe 217, and the other end of the exhaust pipe 217 is connected to an exhaust device (not shown).

反応容器202内に、堆積膜の形成される6本の円筒状基体201が基体支持体206に載置された状態で同一円周上に等間隔に配置されている。又、ガスを導入するガス導入管203が円筒状基体201配置円外の同一円周上に等間隔で6本設置されている。   In the reaction vessel 202, six cylindrical substrates 201 on which deposited films are formed are arranged at equal intervals on the same circumference in a state of being placed on the substrate support 206. In addition, six gas introduction pipes 203 for introducing gas are installed at equal intervals on the same circumference outside the circle where the cylindrical substrate 201 is arranged.

第1の高周波電源208及び第2の高周波電源209から高周波電力をマッチングボックス205を介した後、高周波電極204より反応容器202内に高周波電力を供給する構成となっている。   After the high frequency power is supplied from the first high frequency power source 208 and the second high frequency power source 209 through the matching box 205, the high frequency power is supplied into the reaction vessel 202 from the high frequency electrode 204.

電力分岐板213は、実質的に電磁波を閉じ込めるシールド214内にシールド214とは電気的に絶縁された状態で設置されている。即ち、絶縁体を介して、反応装置に固定されている構成となっている。更に、放電初期の真空処理安定性を向上するために、電力分岐板213と高周波電極204の接続にはコンデンサを介して接続しても良い。   The power branch plate 213 is installed in a shield 214 that substantially confines electromagnetic waves while being electrically insulated from the shield 214. That is, it has the structure fixed to the reaction apparatus through the insulator. Furthermore, in order to improve the vacuum processing stability in the initial stage of discharge, the power branch plate 213 and the high-frequency electrode 204 may be connected via a capacitor.

高周波電極204から放出される高周波電力を反応容器202に効率良く導入するために、円筒形の反応容器202の側壁には誘電体であるセラミックスが用いられている。具体的なセラミックス材料としては、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コージェライト、ジルコン−コージェライト、酸化珪素、酸化ベリリウムマイカ系セラミックス等が挙げられる。これらのうち、真空処理時の不純物混入抑制、耐熱性等の点からアルミナ、窒化アルミニウム、窒化ホウ素が好ましい。   In order to efficiently introduce the high-frequency power emitted from the high-frequency electrode 204 into the reaction vessel 202, ceramic which is a dielectric is used on the side wall of the cylindrical reaction vessel 202. Specific examples of the ceramic material include alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, cordierite, zircon cordierite, silicon oxide, and beryllium mica-based ceramics. Of these, alumina, aluminum nitride, and boron nitride are preferable from the viewpoint of suppression of impurity contamination during heat treatment and heat resistance.

図2の装置は、堆積膜の膜厚、膜質等のムラを改善する目的で複数の高周波電源を接続した構成としている。   The apparatus shown in FIG. 2 has a configuration in which a plurality of high-frequency power supplies are connected for the purpose of improving unevenness in the film thickness and film quality of the deposited film.

このように複数の周波数の高周波を同一電極に同方向から重畳させて供給することにより電極上ないしは導電性基体上の定在波を抑制することができる。   In this manner, standing waves on the electrode or the conductive substrate can be suppressed by supplying high frequencies having a plurality of frequencies superimposed on the same electrode from the same direction.

高周波電源208,209は、各々の発振周波数の関係が、例えば高周波電源208が第1の高周波(周波数f1、電力値P1)を供給する第1の高周波電源、209が第2の高周波(周波数f2、電力値P2)を供給する第2 の高周波電源とした場合、
50MHz≦f2<f1≦250MHz
0.1≦P2/(P1+P2)≦0.9
とすることで、堆積速度、特性、ムラ抑制の観点からバランスが最も好ましく、好適である。大面積で均一な膜堆積を高速に行うためには上述したような範囲の2つの高周波を重畳する技術を使用することが最も好ましい。
The high-frequency power sources 208 and 209 are related to each other in the oscillation frequency, for example, the high-frequency power source 208 supplies the first high-frequency power (frequency f1, power value P1), and 209 the second high-frequency power (frequency f2). , When the second high-frequency power source supplying power value P2) is used,
50 MHz ≦ f2 <f1 ≦ 250 MHz
0.1 ≦ P2 / (P1 + P2) ≦ 0.9
Therefore, the balance is most preferable and preferable from the viewpoint of deposition rate, characteristics, and unevenness suppression. In order to perform uniform film deposition with a large area at high speed, it is most preferable to use a technique of superimposing two high frequencies in the above-described range.

又、第1の高周波電源208にはf1よりも低く、f2よりも高いカットオフ周波数特性を持つハイパスフィルタを設けても良い。又、同様に第2の高周波電源209にはf2よりも高く、f1よりも低いカットオフ周波数特性を持つローパスフィルタを設けても良い。それらの周波数選択性は高い方が、それぞれの高周波電源に回り込む他方の電力が小さくできるので、より好ましい。   The first high frequency power supply 208 may be provided with a high pass filter having a cutoff frequency characteristic lower than f1 and higher than f2. Similarly, the second high frequency power supply 209 may be provided with a low pass filter having a cutoff frequency characteristic higher than f2 and lower than f1. Higher frequency selectivity is more preferable because the other power that wraps around each high-frequency power source can be reduced.

又、前記電力の範囲が
0.2≦P2/(P1+P2)≦0.7
の場合がより好ましい。
The power range is 0.2 ≦ P2 / (P1 + P2) ≦ 0.7.
Is more preferable.

次に、図2の装置を用いた電子写真感光体作製の概略を以下に説明する。   Next, an outline of production of an electrophotographic photoreceptor using the apparatus of FIG. 2 will be described below.

大気開放したセラミック材料から成る反応容器202内にアルミニウム材料から成る円筒状基体201を設置し、不図示の排気装置(例えば真空ポンプ)により、排気口207を介して大気を排気管217へ、排気が行われ反応容器202内を排気する。続いて、ガス導入管203から実質的に非成膜性の加熱用ガスを反応容器202に供給する。このときの反応容器202内部の圧力は排気配管217に設けられた圧力調整バルブ218により排気配管217の開口度を調整することにより行う。   A cylindrical substrate 201 made of an aluminum material is installed in a reaction vessel 202 made of a ceramic material that is opened to the atmosphere, and the air is exhausted to an exhaust pipe 217 via an exhaust port 207 by an exhaust device (not shown) (for example, a vacuum pump). And the inside of the reaction vessel 202 is exhausted. Subsequently, a substantially non-film-forming heating gas is supplied from the gas introduction pipe 203 to the reaction vessel 202. At this time, the pressure in the reaction vessel 202 is adjusted by adjusting the degree of opening of the exhaust pipe 217 by a pressure adjusting valve 218 provided in the exhaust pipe 217.

反応容器202内に供給される基体加熱用ガスの流量が所定の流量となり、且つ、反応容器202内の圧力が所定の値で安定した状態になったところでヒーター(不図示)により円筒状基体201を200℃〜300℃程度の所定の温度に加熱し、円筒状基体201が所定の温度で安定したのを確認する。   When the flow rate of the substrate heating gas supplied into the reaction vessel 202 reaches a predetermined flow rate and the pressure in the reaction vessel 202 becomes stable at a predetermined value, the cylindrical substrate 201 is heated by a heater (not shown). Is heated to a predetermined temperature of about 200 ° C. to 300 ° C., and it is confirmed that the cylindrical substrate 201 is stabilized at the predetermined temperature.

上記加熱工程での反応容器202内の圧力、ガスの種類等の条件は、基板加熱温度及び加熱時間等に応じて適宜選択すれば良い。   Conditions such as the pressure in the reaction vessel 202 and the type of gas in the heating step may be appropriately selected according to the substrate heating temperature, the heating time, and the like.

ガスの種類に関しては、取り扱いの容易さ、コスト、円筒状基体201へのダメージ等を考慮すると、H2 、He、Ar、N2 等のガスを用いることが望ましく、その場合、2つ以上の混合ガスを用いても良い。特に、これらのガスのうち、H2 、Heは熱伝導性に優れているため、望ましい。 Regarding the type of gas, considering the ease of handling, cost, damage to the cylindrical substrate 201, etc., it is desirable to use a gas such as H 2 , He, Ar, N 2 , in which case two or more gases are used. A mixed gas may be used. In particular, among these gases, H 2 and He are desirable because of their excellent thermal conductivity.

次に、加熱工程が所定の時間に達した時点で、加熱用ガスから堆積膜形成用原料ガスにガスの入れ替えを行う。   Next, when the heating process reaches a predetermined time, the gas is switched from the heating gas to the deposited film forming raw material gas.

堆積膜形成用原料ガスの流量が設定流量となり、又、反応容器202内の圧力が所望の圧力で安定したのを確認した後、高周波電力を高周波電源208,209よりマッチングボックス205を介して高周波電極204へ供給する。   After confirming that the flow rate of the deposition film forming raw material gas becomes the set flow rate and that the pressure in the reaction vessel 202 is stabilized at a desired pressure, high frequency power is supplied from the high frequency power sources 208 and 209 via the matching box 205 to the high frequency. Supply to electrode 204.

これにより、反応容器202の内に高周波電力が導入され、反応容器202内にグロー放電が生起し、原料ガスは励起解離して反応容器内部の全域及び円筒状基体201に密着層又は密着層を兼ねる電荷注入阻止層が形成される。   Thereby, high frequency power is introduced into the reaction vessel 202, glow discharge occurs in the reaction vessel 202, the source gas is excited and dissociated, and an adhesion layer or adhesion layer is formed on the entire region inside the reaction vessel and the cylindrical substrate 201. A charge injection blocking layer is also formed.

所望の膜厚の形成が行われた後、同様の操作を繰り返し、原料ガス及び高周波電力を連続的に切り換え、光導電層を順次、所望の膜厚になるまで形成した後、高周波電力の供給を止め、続いて原料ガスの供給を停止する。   After the formation of the desired film thickness, the same operation is repeated, the source gas and the high frequency power are continuously switched, and the photoconductive layer is sequentially formed until the desired film thickness is obtained, and then the high frequency power is supplied. Next, the supply of the raw material gas is stopped.

次に、表面層を以下の手順で形成する。   Next, the surface layer is formed by the following procedure.

反応容器202内を真空に引き上げ、表面層に必要な原料ガスを反応容器202内に導入する。原料ガスの流量が設定流量となり、又、反応容器202内の圧力が安定したのを確認した後、高周波電力を高周波電源208,209よりマッチングボックス205を介して高周波電極204へ供給する。   The inside of the reaction vessel 202 is evacuated, and the source gas necessary for the surface layer is introduced into the reaction vessel 202. After confirming that the flow rate of the source gas is the set flow rate and that the pressure in the reaction vessel 202 is stable, the high frequency power is supplied from the high frequency power sources 208 and 209 to the high frequency electrode 204 via the matching box 205.

これにより、反応容器202内に高周波電力が導入され、反応容器202内にプラズマが生起し、原料ガスを励起解離して表面層が所望の膜厚まで形成された後、高周波電力の供給を止め、続いて原料ガスの供給を停止する。   As a result, high frequency power is introduced into the reaction vessel 202, plasma is generated in the reaction vessel 202, the source gas is excited and dissociated to form a surface layer to a desired film thickness, and then the supply of high frequency power is stopped. Subsequently, the supply of the raw material gas is stopped.

堆積膜の形成中、回転軸210を介して円筒状基体201をモータ211により所定の速度で回転させることにより、円筒状基体201表面全周に渡って堆積膜が形成される。   During the formation of the deposited film, the cylindrical substrate 201 is rotated at a predetermined speed by the motor 211 via the rotating shaft 210, whereby the deposited film is formed over the entire surface of the cylindrical substrate 201.

次に、反応容器202内に残留する原料ガスを反応容器202内にArガスを供給し置換する。反応容器202内の温度が室温に達した段階でN2
ガス或はArガスで反応容器202内をベントし大気開放する。
Next, the source gas remaining in the reaction vessel 202 is replaced by supplying Ar gas into the reaction vessel 202. When the temperature in the reaction vessel 202 reaches room temperature, N2
The inside of the reaction vessel 202 is vented with gas or Ar gas to open the atmosphere.

更に、堆積膜を形成した円筒状基体201を取り出した後に反応容器202を真空処理装置200から取り外し、反応容器202内壁の堆積膜除去工程に進む。   Further, after the cylindrical substrate 201 on which the deposited film is formed is taken out, the reaction vessel 202 is removed from the vacuum processing apparatus 200, and the process proceeds to the deposited film removal step on the inner wall of the reaction vessel 202.

堆積膜除去工程は20%前後の濃度のアルカリ系溶液を60℃〜80℃の範囲に温度制御する。   In the deposited film removing step, the temperature of an alkaline solution having a concentration of about 20% is controlled in the range of 60 ° C to 80 ° C.

60℃〜80℃の範囲に温度制御されたアルカリ系溶液の入ったエッチング槽内にアルミナ材料で構成された反応容器を浸漬し、堆積膜のエッチング処理を1時間行った後、純水によりアルカリ溶液を洗浄し、液体エッチングによる前処理工程を終える。   A reaction vessel made of an alumina material is immersed in an etching bath containing an alkaline solution whose temperature is controlled in the range of 60 ° C. to 80 ° C., and after the deposited film is etched for 1 hour, the reaction is performed with pure water. The solution is washed and the pretreatment process by liquid etching is finished.

アルカリ溶液としては水酸化ナトリウム水溶液、水酸化カリウム水溶液等が好適である。   As the alkaline solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution or the like is suitable.

次に、液体エッチング工程を終えた反応容器内壁面に対し水と研磨材の割合が3:1〜5:1の割合で研磨材を含む液体を392.3kPa(4kgf/cm2 )〜784.5Pa(8kgf/cm2 )圧縮エアーで噴出する液体ホーニング工程により該液体エッチング工程の残留膜を完全に除去し、純水による洗浄工程及び乾燥工程を経て液体ホーニング工程を終了する。 Next, 392.3 kPa (4 kgf / cm 2 ) to 784. liquid containing abrasives in a ratio of water to abrasives of 3: 1 to 5: 1 with respect to the inner wall surface of the reaction vessel after the liquid etching step was completed. The liquid honing process of ejecting with 5 Pa (8 kgf / cm 2 ) compressed air completely removes the residual film of the liquid etching process, and the liquid honing process is completed through a cleaning process and a drying process with pure water.

研磨材はSiC、アルミナ等の多角形状の材料や鉄、SUS、ガラス等の球形の材料を用いることができるが、長期間、繰り返し使用することによる反応容器に与えるダメージ、反応容器壁面の摩耗ムラによる表面粗さの不均一性等を考慮すると反応容器を構成する材料よりも低硬度の材料が好ましい。又、研磨材の中心粒径に関しては研磨材の材料によって異なるが中心粒径30μm〜250μmの範囲で効果的な中心粒径を選択すれば良い。   The abrasive can be a polygonal material such as SiC or alumina, or a spherical material such as iron, SUS, or glass. However, damage to the reaction vessel caused by repeated use over a long period of time, uneven wear on the reaction vessel wall surface, etc. In view of non-uniformity of the surface roughness due to the above, a material having a low hardness is preferable to the material constituting the reaction vessel. Further, although the center particle size of the abrasive varies depending on the material of the abrasive, an effective center particle size may be selected in the range of the center particle size of 30 μm to 250 μm.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらによって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.

図2に示す真空処理装置200のアルミナセラミック材料から成る反応容器202内に直径80mm、長さ358mmの円筒状アルミニウムシリンダ201を設置した後、表1に示した作製条件で図1(a)の層構成で6本の電子写真感光体を作製した。   After the cylindrical aluminum cylinder 201 having a diameter of 80 mm and a length of 358 mm is installed in the reaction vessel 202 made of the alumina ceramic material of the vacuum processing apparatus 200 shown in FIG. 2, the production conditions shown in FIG. Six electrophotographic photoreceptors having a layer structure were prepared.

次いで、アルミナセラミック材料から成る反応容器202を真空処理装置200から取り外し、70℃に温度制御した24%濃度の水酸化ナトリウム溶液で液体エッチング及び純水による洗浄を順次行い前処理工程を終えた。   Next, the reaction vessel 202 made of alumina ceramic material was removed from the vacuum processing apparatus 200, and liquid etching and cleaning with pure water were sequentially performed with a 24% concentration sodium hydroxide solution whose temperature was controlled at 70 ° C. to complete the pretreatment process.

次に、前処理工程を終えたアルミナセラミック材料から成る反応容器22内壁面の残留膜を液体ホーニングにより除去し、純水洗浄及び乾燥を行い後処理工程を終えた。尚、液体ホーニングは中心粒径が200μmで球形のガラス材(東芝バロティーニ株式会社製GB−AC)を研磨材に用いた。又、水と研磨材の割合を3:1とし、噴出圧力は588.4kPa(6kgf/cm2 )とした。 Next, the residual film on the inner wall surface of the reaction vessel 22 made of the alumina ceramic material after the pretreatment process was removed by liquid honing, and the post-treatment process was completed by washing with pure water and drying. In addition, liquid honing used a spherical glass material (GB-AC manufactured by Toshiba Ballotini Co., Ltd.) having a center particle diameter of 200 μm as an abrasive. The ratio of water to abrasive was 3: 1, and the ejection pressure was 588.4 kPa (6 kgf / cm 2 ).

上記アルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、液体エッチング工程、純水洗浄工程、液体ホーニング工程、純水洗浄工程、乾燥工程を繰り返し、表1の条件で電子写真感光体を10ロット作製し、最後の1ロット(6本の電子写真感光体)に関して以下の評価を行った。   A deposition film forming process, a liquid etching process, a pure water cleaning process, a liquid honing process, a pure water cleaning process, and a drying process are repeated for the reaction vessel 202 made of the alumina ceramic material, and the electrophotographic photosensitive member is formed under the conditions shown in Table 1. Ten lots were produced, and the following evaluation was performed on the last lot (six electrophotographic photosensitive members).

作製した6本の電子写真感光体の表面を顕微鏡で観察した。周方向に90度間隔で4方向を任意に選び、軸方向に2cm間隔で17点、周方向4列の計68点を選び、50倍の視野にて直径が10μm以上の球状突起の数をカウントし、6本の電子写真感光体の平均値を球状突起数の値とした。   The surface of the produced six electrophotographic photosensitive members was observed with a microscope. Select 4 directions at 90 degree intervals in the circumferential direction, select 17 points at 2 cm intervals in the axial direction, 68 points in total in 4 rows in the circumferential direction, and count the number of spherical protrusions with a diameter of 10 μm or more in a 50 times field of view. Counting was performed, and the average value of the six electrophotographic photosensitive members was defined as the value of the number of spherical protrusions.

次に、6本の電子写真感光に対し残留電位の測定を行った。残留電位の測定は評価用に改造したキヤノン製iR5000を用い、現像器位置にセットした表面電位計(TREK社のModel 344)の電位センサーにより像露光を照射しない状態で電子写真感光体中央部の表面電位が400V(暗電位)になるように帯電器の電流値を調整した後、像露光(波長655nmの半導体レーザー)を1.0μJ/cm2 照射した時の表面電位(明電位)を測定し電子写真感光体6本の平均値を残留電位とした。 Next, the residual potential was measured for six electrophotographic photosensitive members. The residual potential was measured using a Canon iR5000 modified for evaluation, and the center of the electrophotographic photosensitive member was not irradiated with image exposure by a potential sensor of a surface potentiometer (Model 344 manufactured by TREK) set at the developer position. After adjusting the current value of the charger so that the surface potential is 400 V (dark potential), the surface potential (bright potential) when image exposure (semiconductor laser with a wavelength of 655 nm) is irradiated at 1.0 μJ / cm 2 is measured. The average value of the six electrophotographic photosensitive members was defined as the residual potential.

又、前記10ロットの電子写真感光体を作製後に、引き続き同様の工程で表1の密着層を兼ねる電荷注入阻止層104のみを堆積した6本の分析用電子写真感光体を作製し、この分析用電子写真感光体の中から1本を任意に選び、中央部を1cm×1cmサイズのサンプルに切り出し、密着層を兼ねる電荷注入阻止層104の窒素含有比率N/(Si+O+N)をESCA測定により評価した。   In addition, after producing the 10 lots of electrophotographic photoreceptors, 6 analytical electrophotographic photoreceptors were prepared in which only the charge injection blocking layer 104 serving also as the adhesion layer shown in Table 1 was deposited in the same process. One of the electrophotographic photoconductors is arbitrarily selected, the center is cut into a sample of 1 cm × 1 cm size, and the nitrogen content ratio N / (Si + O + N) of the charge injection blocking layer 104 also serving as the adhesion layer is evaluated by ESCA measurement did.

結果は比較例1と共に表2に示す。球状突起の評価は、比較例1のN2
流量50ml/min(Normal)で作製したロットの球状突起数を100とした相対比較である。従って、数値が小さいほど球状突起が少なく、良好であることを示す。
The results are shown in Table 2 together with Comparative Example 1. The evaluation of the spherical protrusion was N2 of Comparative Example 1.
This is a relative comparison with the number of spherical protrusions of a lot produced at a flow rate of 50 ml / min (Normal) as 100. Therefore, the smaller the numerical value, the fewer the spherical protrusions, and the better.

<比較例1>
図2の装置を用い、ホーニング工程は行わないこと以外は実施例1と同様の条件でアルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、液体エッチング工程、純水洗浄工程、乾燥工程を繰り返し、電子写真感光体を10ロット作製して最後の1ロット(6本の電子写真感光体)に関して評価を行った。
<Comparative Example 1>
A deposition film forming process, a liquid etching process, a pure water cleaning process, and a drying process are performed on the reaction vessel 202 made of an alumina ceramic material under the same conditions as in Example 1 except that the honing process is not performed using the apparatus of FIG. Then, 10 lots of electrophotographic photosensitive members were produced, and the last 1 lot (six electrophotographic photosensitive members) was evaluated.

作製した6本の電子写真感光体に対し実施例1と同様の方法で球状突起突起、残留電位の評価した。結果は実施例1と共に表2に示す。   The six produced electrophotographic photosensitive members were evaluated for spherical protrusions and residual potential in the same manner as in Example 1. The results are shown in Table 2 together with Example 1.

Figure 2007070695
※N2 ガスの流量は50,100,300,500,550[ml/min(normal)]の各流量パターンで作成。
Figure 2007070695
* N 2 gas flow rate is created with each flow rate pattern of 50, 100, 300, 500, 550 [ml / min (normal)].

Figure 2007070695
(球状突起数は窒素含有量が5原子%の比較例を10とした時の相対値)
以上の結果、何れの窒素含有量でもアルミナセラミック材料から成る反応容器内壁の堆積膜を水酸化ナトリウム溶液を使用した液体エッチングによる前処理及びガラス材の研磨材を用いた液体ホーニングによる後処理により除去することで密着性の良い表面性が維持でき球状突起を低減することが判明した。
Figure 2007070695
(The number of spherical protrusions is a relative value when the comparative example with a nitrogen content of 5 atomic% is 10)
As a result, regardless of the nitrogen content, the deposited film on the inner wall of the reaction vessel made of alumina ceramic material is removed by pre-treatment by liquid etching using sodium hydroxide solution and post-treatment by liquid honing using glass abrasives. As a result, it was found that the surface property with good adhesion can be maintained and the spherical protrusions are reduced.

特に窒化珪素膜から成る密着層を兼ねる電荷注入阻止層の窒素含有量が10原子%以上30原子%以下の範囲で球状突起の低減効果に優れており、より好ましいことが判明した。   In particular, it has been found that when the nitrogen content of the charge injection blocking layer also serving as an adhesion layer made of a silicon nitride film is in the range of 10 atomic% or more and 30 atomic% or less, the effect of reducing spherical protrusions is excellent, which is more preferable.

又、残留電位は実施例1と比較例1で同様の値となったが、窒化珪素膜から成る密着層を兼ねる電荷注入阻止層の窒素含有量が30%を超えると残留電位が増加するために、30%以内がより好ましい範囲であることが分かった。   The residual potential was the same in Example 1 and Comparative Example 1. However, the residual potential increases when the nitrogen content of the charge injection blocking layer that also serves as the adhesion layer made of the silicon nitride film exceeds 30%. Further, it was found that the range within 30% is a more preferable range.

図2に示す真空処理装置200のアルミナセラミック材料から成る反応容器202内に直径80mm、長さ358mmの円筒状アルミニウムシリンダ201を設置した後、表3に示した作製条件で図1(a)の層構成で6本の電子写真感光体を作製した。   After the cylindrical aluminum cylinder 201 having a diameter of 80 mm and a length of 358 mm is installed in the reaction vessel 202 made of the alumina ceramic material of the vacuum processing apparatus 200 shown in FIG. 2, the production conditions shown in FIG. Six electrophotographic photoreceptors having a layer structure were prepared.

次いでアルミナセラミック材料から成る反応容器202を真空処理装置200から取り外し、80℃に温度制御した24%濃度の水酸化カリウム溶液で液体エッチング及び純水による洗浄を順次行い前処理工程を終えた。   Next, the reaction vessel 202 made of an alumina ceramic material was removed from the vacuum processing apparatus 200, and liquid etching and cleaning with pure water were sequentially performed with a 24% strength potassium hydroxide solution whose temperature was controlled at 80 ° C. to complete the pretreatment process.

次に、前処理工程を終えたアルミナセラミック材料から成る反応容器202内壁面の残留膜を液体ホーニングにより除去し、純水洗浄及び乾燥を行い後処理工程を終えた。尚、液体ホーニングは中心粒径が35μmで球形のSUS材(伊藤機工株式会社製BPS300)を研磨材に用いた。又、水と研磨材の割合を5:1とし、噴出圧力は588.4kPa(6kgf/cm2
)とした。
Next, the residual film on the inner wall surface of the reaction vessel 202 made of the alumina ceramic material after the pretreatment process was removed by liquid honing, and the post-treatment process was completed by washing with pure water and drying. In addition, liquid honing used a spherical SUS material (BPS300 manufactured by Ito Kiko Co., Ltd.) having a center particle diameter of 35 μm as an abrasive. The ratio of water to abrasive was 5: 1, and the ejection pressure was 588.4 kPa (6 kgf / cm 2
).

上記アルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、液体エッチング工程、純水洗浄工程、液体ホーニング工程、純水洗浄工程、乾燥工程を繰り返し、表3の条件で電子写真感光体を10ロット作製し、最後の1ロット(6本の電子写真感光体)に関して実施例1と同様に球状突起及び残留電位の評価を行った。   A deposition film forming process, a liquid etching process, a pure water cleaning process, a liquid honing process, a pure water cleaning process, and a drying process are repeated for the reaction vessel 202 made of the alumina ceramic material, and the electrophotographic photosensitive member is formed under the conditions shown in Table 3. Ten lots were produced, and the last one lot (six electrophotographic photosensitive members) was evaluated for spherical protrusions and residual potential in the same manner as in Example 1.

次に、実施例1と同様の方法で密着層を兼ねる電荷注入阻止層104のみを堆積した分析用電子写真感光体を作製してESCA測定により炭素含有比率C/(Si+O+C)を求めた。   Next, an electrophotographic photoreceptor for analysis in which only the charge injection blocking layer 104 serving also as an adhesion layer was deposited by the same method as in Example 1 was prepared, and the carbon content ratio C / (Si + O + C) was determined by ESCA measurement.

結果は比較例2と共に表4に示す。球状突起の評価は、比較例2のCH4
流量50ml/min(normal)で作製したロットの球状突起数を100とした相対比較である。従って、数値が小さいほど球状突起が少なく、良好であることを示す。
The results are shown in Table 4 together with Comparative Example 2. The evaluation of the spherical protrusion is CH4 of Comparative Example 2.
This is a relative comparison with the number of spherical protrusions of a lot produced at a flow rate of 50 ml / min (normal) as 100. Therefore, the smaller the numerical value, the fewer the spherical protrusions, and the better.

<比較例2>
図2の装置を用い、液体エッチング工程は行わないこと以外は実施例2と同様の条件でアルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、液体ホーニング工程、純水洗浄工程、乾燥工程を繰り返し、表3の条件で電子写真感光体を10ロット作製し、最後の1ロット(6本の電子写真感光体)に関して実施例1と同様に球状突起、残留電位を評価した。
<Comparative example 2>
Using the apparatus shown in FIG. 2, a deposition film forming process, a liquid honing process, a pure water cleaning process, a drying process are performed on the reaction vessel 202 made of an alumina ceramic material under the same conditions as in Example 2 except that the liquid etching process is not performed. The process was repeated, 10 lots of electrophotographic photosensitive members were produced under the conditions shown in Table 3, and spherical projections and residual potential were evaluated in the same manner as in Example 1 for the last lot (six electrophotographic photosensitive members).

結果は実施例2と共に表4に示す。   The results are shown in Table 4 together with Example 2.

Figure 2007070695
※CH4 ガスの流量は50,100,300,500,550[ml/min(normal)]の各流量パターンで作成。
Figure 2007070695
* CH4 gas flow rate is created with each flow rate pattern of 50, 100, 300, 500, 550 [ml / min (normal)].

Figure 2007070695
(球状突起数は炭素含有量が15原子%の比較例を100とした時の相対値)
以上の結果、何れの炭素含有量においてもアルミナセラミック材料から成る反応容器内壁の堆積膜を水酸化カリウム溶液により液体エッチングする前処理及びSUS材の研磨材を使用した液体ホーニングによる後処理によって除去することで密着性の良い表面性が維持でき球状突起を低減することが判明した。
Figure 2007070695
(The number of spherical protrusions is a relative value when the carbon content is 15 atomic% and the comparative example is 100)
As a result, at any carbon content, the deposited film on the inner wall of the reaction vessel made of an alumina ceramic material is removed by pretreatment by liquid etching with a potassium hydroxide solution and by post-treatment by liquid honing using a SUS material abrasive. Thus, it was found that the surface property with good adhesion can be maintained and the spherical protrusions are reduced.

特に炭化珪素膜から成る密着層を兼ねる電荷注入阻止層の炭素含有量が20原子%以上40原子%以下の範囲で球状突起の低減効果に優れおり、より好ましいことが判明した。   In particular, it has been found that the effect of reducing spherical protrusions is excellent and more preferable when the carbon content of the charge injection blocking layer also serving as an adhesion layer made of a silicon carbide film is in the range of 20 atomic% to 40 atomic%.

又、残留電位は実施例2と比較例2で同様の値となったが、炭化珪素膜から成る密着層を兼ねる電荷注入阻止層の炭素含有量が40原子%を超えると残留電位が増加するために、40%以内がより好ましい範囲であることが判った。   The residual potential was the same in Example 2 and Comparative Example 2, but the residual potential increased when the carbon content of the charge injection blocking layer, which also serves as the adhesion layer made of the silicon carbide film, exceeded 40 atomic%. Therefore, it was found that the range within 40% is a more preferable range.

図2に示す真空処理装置200のアルミナセラミック材料から成る反応容器202内に直径80mm、長さ358mmの円筒状アルミニウムシリンダ201を設置した後、表5に示した作製条件で図1(b)の層構成で6本の電子写真感光体を作製した。   After the cylindrical aluminum cylinder 201 having a diameter of 80 mm and a length of 358 mm is installed in the reaction vessel 202 made of an alumina ceramic material of the vacuum processing apparatus 200 shown in FIG. 2, the production conditions shown in FIG. Six electrophotographic photoreceptors having a layer structure were prepared.

次いで、アルミナセラミック材料から成る反応容器202を真空処理装置200から取り外し、60℃に温度制御した24%濃度の水酸化ナトリウム溶液で液体エッチング及び純水による洗浄を順次行い前処理工程を終えた。   Next, the reaction vessel 202 made of an alumina ceramic material was removed from the vacuum processing apparatus 200, and liquid etching and cleaning with pure water were sequentially performed with a 24% concentration sodium hydroxide solution whose temperature was controlled at 60 ° C. to complete the pretreatment process.

次に、前処理工程を終えたアルミナセラミック材料から成る反応容器202内壁面の残留膜を液体ホーニングにより除去し、純水洗浄及び乾燥を行い後処理工程を終えた。尚、液体ホーニングは中心粒径が200μmで球形のガラス材(東芝バロティーニ株式会社製GB−AC)、中心粒径が35μmで球形のSUS材(伊藤機工株式会社製BPS300)及び中心粒径が130μmで多角形状のSiC材(株式会社不二精機製造所株製GC−10)、中心粒径が130μmで多角形状のアルミナ材(株式会社不二精機製造所株製FBR−10)の4種類の研磨材を用いた4パターンとした。何れも水と研磨材の割合を4:1とし、噴出圧力は588.4kPa(6gf/cm2 )で行った。 Next, the residual film on the inner wall surface of the reaction vessel 202 made of the alumina ceramic material after the pretreatment process was removed by liquid honing, and the post-treatment process was completed by washing with pure water and drying. Liquid honing is a spherical glass material (GB-AC manufactured by Toshiba Ballotini Co., Ltd.) with a center particle size of 200 μm, a spherical SUS material (BPS300 manufactured by Ito Kiko Co., Ltd.) with a center particle size of 130 μm. Polygonal SiC material (GC-10 manufactured by Fuji Seiki Seisakusho Co., Ltd.) and polygonal alumina material (FBR-10 manufactured by Fuji Seiki Seisakusho Co., Ltd.) with a center particle size of 130 μm. Four patterns were made using an abrasive. In all cases, the ratio of water and abrasive was 4: 1, and the ejection pressure was 588.4 kPa (6 gf / cm 2 ).

上記液体ホーニング工程での各研磨材毎に、上記アルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、液体エッチング工程、純水洗浄工程、液体ホーニング工程、純水洗浄工程、乾燥工程を繰り返し、表5の条件で電子写真感光体を10ロット作製し、最後の1ロット(6本の電子写真感光体)に関して実施例1と同様に球状突起の評価を行った。   For each abrasive in the liquid honing process, a deposition film forming process, a liquid etching process, a pure water cleaning process, a liquid honing process, a pure water cleaning process, and a drying process are performed on the reaction vessel 202 made of the alumina ceramic material. Repeatedly, 10 lots of electrophotographic photoreceptors were prepared under the conditions shown in Table 5, and the spherical projections were evaluated in the same manner as in Example 1 for the last 1 lot (6 electrophotographic photoreceptors).

次に、実施例1と同様の方法で密着層を兼ねる電荷注入阻止層104のみを堆積した分析用電子写真感光体を作製してESCA測定により窒素含有比率N/(Si+O+N)及び炭素含有比率C/(Si+O+C)を求めた。   Next, an analytical electrophotographic photosensitive member in which only the charge injection blocking layer 104 serving also as an adhesion layer is deposited by the same method as in Example 1 is prepared, and the nitrogen content ratio N / (Si + O + N) and the carbon content ratio C are determined by ESCA measurement. / (Si + O + C) was determined.

結果は比較例3と共に表6に示す。球状突起の評価は、比較例3の球状突起数を100とした相対比較である。従って、数値が小さいほど球状突起が少なく、良好であることを示す。   The results are shown in Table 6 together with Comparative Example 3. The evaluation of the spherical protrusions is a relative comparison with the number of spherical protrusions of Comparative Example 3 being 100. Therefore, the smaller the numerical value, the fewer the spherical protrusions, and the better.

<比較例3>
図2の装置を用い、ホーニング工程は行わずアルミナセラミック材料から成る反応容器202に対し堆積膜の形成工程、ClF3
ガスによるドライエッチング工程、純水洗浄工程、乾燥工程を繰り返し、表5の条件で電子写真感光体を1ロット作製し、最後の1ロット(6本の電子写真感光体)に関して実施例1と同様に球状突起を求めた。次に、実施例1と同様の方法で密着層を兼ねる電荷注入阻止層104のみを堆積した分析用電子写真感光体を作製してESCA測定により窒素含有比率N/(Si+O+N)及び炭素含有比率C/(Si+O+C)を求めた。
<Comparative Example 3>
The apparatus shown in FIG. 2 is used, and a honing process is not performed, and a deposition film forming process is performed on a reaction vessel 202 made of an alumina ceramic material.
The gas dry etching process, the pure water cleaning process, and the drying process were repeated to produce one lot of electrophotographic photosensitive members under the conditions shown in Table 5, and the last one lot (six electrophotographic photosensitive members) was the same as in Example 1. Spherical protrusions were obtained. Next, an analytical electrophotographic photosensitive member in which only the charge injection blocking layer 104 serving also as an adhesion layer is deposited by the same method as in Example 1 is prepared, and the nitrogen content ratio N / (Si + O + N) and the carbon content ratio C are determined by ESCA measurement. / (Si + O + C) was determined.

結果は実施例3と共に表6に示す。   The results are shown in Table 6 together with Example 3.

Figure 2007070695
Figure 2007070695

Figure 2007070695
以上の結果、アルミナセラミック材料から成る反応容器内壁の堆積膜をアルカリ溶液により液体エッチングする前処理及び研磨材を使用した液体ホーニングによる後処理において使用する研磨材はガラス材、SUS材、SiC材、アルミナ材何れを用いて除去した場合でも密着性の良い表面性が維持でき、球状突起を低減することが判明した。
Figure 2007070695
As a result of the above, the abrasive used in the pretreatment for liquid etching the deposited film on the inner wall of the reaction vessel made of an alumina ceramic material with an alkaline solution and the post treatment by liquid honing using an abrasive is glass material, SUS material, SiC material, It was found that the surface property with good adhesion can be maintained even when the alumina material is removed, and the spherical protrusions are reduced.

但し、アルミナセラミック材料よりも硬度高い研磨材料ほど液体ホーニングを繰り返すことでアルミナセラミック材料表面の粗さにムラが発生するため、液体ホーニングに用いる研磨材料としては液体ホーニングを行う対象物の硬度より低いガラスやSUS材料がより効果的であり耐久性の面からも望ましい。   However, the polishing material with higher hardness than the alumina ceramic material causes unevenness in the roughness of the surface of the alumina ceramic material by repeating liquid honing. Therefore, the polishing material used for liquid honing is lower than the hardness of the object to be liquid honed. Glass and SUS material are more effective and desirable from the viewpoint of durability.

本発明により作製可能な電子写真感光体の層構成の一例を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a layer configuration of an electrophotographic photosensitive member that can be produced by the present invention. 本発明に適用可能な電子写真感光体製造装置の一例を示す模式的構成図である。It is a typical block diagram which shows an example of the electrophotographic photoreceptor manufacturing apparatus applicable to this invention.

符号の説明Explanation of symbols

101 基体
102 光導電層
103 表面層
104 密着層を兼ねる電荷注入阻止層
105 密着層
200 真空処理装置
201 円筒状基体
202 反応容器
203 ガス導入管
204 高周波電極
205 マッチングボックス
206 基体支持体
207 排気口
208 第1の高周波電源
209 第2の高周波電源
210 回転軸
211 モータ
212 ギア
213 電力分岐部
214 シールド
215 蓋
216 底面
217 排気配管
218 圧力調整バルブ
DESCRIPTION OF SYMBOLS 101 Substrate 102 Photoconductive layer 103 Surface layer 104 Charge injection blocking layer also serving as an adhesion layer 105 Adhesion layer 200 Vacuum processing device 201 Cylindrical substrate 202 Reaction vessel 203 Gas introduction tube 204 High-frequency electrode 205 Matching box 206 Substrate support 207 Exhaust port 208 First high-frequency power source 209 Second high-frequency power source 210 Rotating shaft 211 Motor 212 Gear 213 Power branching portion 214 Shield 215 Cover 216 Bottom surface 217 Exhaust piping 218 Pressure adjustment valve

Claims (7)

少なくとも一部が誘電体材料で構成された減圧可能な反応容器内に基体が設置され該反応容器内に供給した原料ガスを高周波電力により分解し該基体上に珪素原子を母体とし窒素原子又は炭素原子を含有する非単結晶膜で形成される第1の層を含む堆積膜を形成する堆積膜形成方法において、
前記堆積膜の形成が終了した後に該反応容器の誘電体材料部分に堆積した堆積膜を液体エッチングによる前処理工程と液体ホーニングによる後処理工程によって除去することを特徴とする堆積膜形成方法。
A base is placed in a depressurizable reaction vessel at least partially made of a dielectric material, and the source gas supplied into the reaction vessel is decomposed by high-frequency power, and silicon atoms are used as a base on the substrate to form nitrogen atoms or carbon. In a deposited film forming method for forming a deposited film including a first layer formed of a non-single-crystal film containing atoms,
A method for forming a deposited film, comprising: removing the deposited film deposited on the dielectric material portion of the reaction vessel after the formation of the deposited film by a pre-processing step by liquid etching and a post-processing step by liquid honing.
前記窒素原子の含有量が構成元素に対し窒素原子を10原子%以上30原子%以下含有し、前記炭素原子の含有量が構成元素に対し炭素原子を20原子%以上40原子%以下含有することを特徴とする請求項1記載の堆積膜形成方法。   The nitrogen atom content is 10 atomic% to 30 atomic% with respect to the constituent elements, and the carbon atom content is 20 atomic% to 40 atomic% with respect to the constituent elements. The deposited film forming method according to claim 1. 前記誘電体材料がアルミナセラミックで構成されていることを特徴とする請求項1又は2記載の堆積膜形成方法。   3. The deposited film forming method according to claim 1, wherein the dielectric material is made of alumina ceramic. 前記液体エッチングがアルカリ系溶液を用いることを特徴とする請求項1〜3の何れかに記載の堆積膜形成方法。   The deposited film forming method according to claim 1, wherein the liquid etching uses an alkaline solution. 前記液体ホーニングが前記誘電体材料よりも硬度が低い材料から成る研磨材を用いることを特徴とする請求項1〜4の何れかにに記載の堆積膜形成方法。   The deposited film forming method according to claim 1, wherein the liquid honing uses an abrasive made of a material having a hardness lower than that of the dielectric material. 前記堆積膜の除去が液体エッチング工程と水洗工程と液体ホーニング工程と水洗工程と乾燥工程の工程順で処理することを特徴とする請求項1〜5の何れかに記載の堆積膜形成方法。   6. The method for forming a deposited film according to claim 1, wherein the removal of the deposited film is performed in the order of a liquid etching process, a water washing process, a liquid honing process, a water washing process, and a drying process. 前記高周波電力の周波数が50MHz以上250MHz以下であることを特徴とする請求項1〜6の何れかに記載の堆積膜形成方法。   The deposited film forming method according to claim 1, wherein a frequency of the high-frequency power is 50 MHz or more and 250 MHz or less.
JP2005259165A 2005-09-07 2005-09-07 Method for forming deposited film Withdrawn JP2007070695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259165A JP2007070695A (en) 2005-09-07 2005-09-07 Method for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259165A JP2007070695A (en) 2005-09-07 2005-09-07 Method for forming deposited film

Publications (1)

Publication Number Publication Date
JP2007070695A true JP2007070695A (en) 2007-03-22

Family

ID=37932408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259165A Withdrawn JP2007070695A (en) 2005-09-07 2005-09-07 Method for forming deposited film

Country Status (1)

Country Link
JP (1) JP2007070695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304627A (en) * 2018-12-11 2020-06-19 丰田自动车株式会社 Film forming apparatus and film forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304627A (en) * 2018-12-11 2020-06-19 丰田自动车株式会社 Film forming apparatus and film forming method
CN111304627B (en) * 2018-12-11 2023-06-06 株式会社电装 Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
TWI587748B (en) A method of reusing a consumable part for a plasma processing device
US7811409B2 (en) Bare aluminum baffles for resist stripping chambers
US7816272B2 (en) Process of cleaning a semiconductor manufacturing system and method of manufacturing a semiconductor device
US20110076401A1 (en) Method of Making Showerhead for Semiconductor Processing Apparatus
JP3658257B2 (en) Cleaning method, cleaning apparatus, electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member
KR100653217B1 (en) Cleaning method of apparatus for depositing metal containing film
JP3563789B2 (en) Method for producing electrophotographic photoreceptor and jig used in the method
JP3890153B2 (en) Method and apparatus for producing electrophotographic photosensitive member
JP2007070695A (en) Method for forming deposited film
KR101198243B1 (en) Cleaning method of apparatus for depositing carbon containing film
JPH11143103A (en) Production of electrophotographic photoreceptor
US6406554B1 (en) Method and apparatus for producing electrophotographic photosensitive member
JP2011197466A (en) Method for manufacturing cylindrical substrate for electrophotographic photoreceptor and method for manufacturing the electrophotographic photoreceptor
JP2008007861A (en) Surface-treating method for aluminum
JP2007056281A (en) Cleaning method
JP3154260B2 (en) Method for producing electrophotographic photoreceptor and method for treating substrate for electrophotographic photoreceptor
JP2005128366A (en) Apparatus and method for manufacturing electrophotographic photoreceptor
JPS62200361A (en) Production of electrophotographic sensitive body
JPS5987462A (en) Manufacture of amorphous photosensitive drum
JP2008214659A (en) Method for forming deposition film
JP2002184703A (en) Silicon member for semiconductor manufacturing process device and its manufacturing method
JPH11119447A (en) Production of electrophotographic photoreceptor
JP2000187339A (en) Cleaning method of object to be cleaned and production of electrophotographic photoreceptor
JP2005148374A (en) Method for manufacturing electrophotographic photoreceptor
JP2005002435A (en) Plasma treatment system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202