JP2005002435A - Plasma treatment system - Google Patents

Plasma treatment system Download PDF

Info

Publication number
JP2005002435A
JP2005002435A JP2003168717A JP2003168717A JP2005002435A JP 2005002435 A JP2005002435 A JP 2005002435A JP 2003168717 A JP2003168717 A JP 2003168717A JP 2003168717 A JP2003168717 A JP 2003168717A JP 2005002435 A JP2005002435 A JP 2005002435A
Authority
JP
Japan
Prior art keywords
plasma
reaction vessel
processing apparatus
leakage prevention
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003168717A
Other languages
Japanese (ja)
Inventor
Yukihiro Abe
幸裕 阿部
Tetsuya Karaki
哲也 唐木
Kunimasa Kawamura
邦正 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003168717A priority Critical patent/JP2005002435A/en
Publication of JP2005002435A publication Critical patent/JP2005002435A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the stability of a plasma and to reduce the influence of the dust generated near an air exit on an object to be treated. <P>SOLUTION: The air exit of a reaction vessel of the plasma treatment system is provided with a plasma leakage preventer and the leakage of an electric discharge to an exhaust piping side can be prevented by forming the plasma leakage preventer to a shape convex to the electric discharge side of the reaction vessel. The stability of the plasma can be improved by suppressing the unstable electric discharge in the exhaust piping. Further, the influence that the dust generated near the aperture of the plasma leakage preventer exerts on the object to be treated can be remarkably suppressed by forming the plasma leakage preventer to a shape that puts its aperture at a dead angle from the object to be treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は半導体デバイス、電子写真用感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等を作製するプラズマ処理装置に関する。
【0002】
【従来の技術】
従来、半導体デバイス、電子写真用感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等を作製する真空処理方法として、プラズマCVD法、反応性スパッタ法、熱CVD法、光CVD法等の処理方法が知られており、多くの装置・方法が実用化されている。
【0003】
例えば、プラズマCVD法を用いたプラズマ処理装置を用いることによって、原料ガスをグロー放電中で分解し、基体上に堆積膜を形成するいことができる。例えば、原料ガスにSiHを用いることで水素化アモルファスシリコン(a−Si:H)堆積膜を形成することが可能である。プラズマ処理装置では、プラズマの均一性・安定性・再現性が処理の均一性・再現性を決定する要素である。一般的に、プラズマCVD法では、原料ガスを供給しながら排気を行い、反応容器内の雰囲気条件を保持しながら、原料ガスのプラズマを生成して被処理体に処理を施す。したがって、ガスの供給方法・排気方法がプラズマの均一性・安定性・再現性に大いに影響することになる。
【0004】
例えば、反応容器に附設された排気口付近にプラズマ漏れ防止手段を設け、前記プラズマ漏れ防止手段がカソード電極および対向電極の双方から死角になる位置に設置されたプラズマCVDによる堆積膜形成装置が開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2001−335948号公報
【0006】
【発明が解決しようとする課題】
上記方法によって、プラズマの均一性・長時間安定性が向上でき、同時にプラズマ生成中にプラズマ漏れ防止体に付着した膜が剥がれて被処理体に直接的に飛散し、被処理物に付着することが無くなり欠陥を低減することは可能になってきている。
【0007】
しかしながら、近年、例えば、電子写真装置に対する市場の要求レベルは日々高まっており、印刷並の高画質を実現していくためには、これまで問題とならなかったレベルの膜質むらや微小な球状突起に起因する画像欠陥ならびにその他の電気的特性を向上していく必要があり、それらを実現させるためには、従来に比べて幅広いプラズマ処理条件に対しても、プラズマの安定化を図る必要が出てきた。
【0008】
したがって、排気口近傍にプラズマ漏れ防止体を設け、被処理物から死角にしただけの装置では、プラズマ処理条件によって、放電空間側の排気配管内に強いプラズマが形成され、プラズマの安定性が維持できない場合があった。この様にプラズマの安定性が低い状態でプラズマ処理を施した場合、処理の均一性・再現性が低下すると同時に、プラズマの不安定性が急激な炉内状態の変化を引き起こし、炉内の部品に付着した堆積膜の剥がれが生じて、空間中に浮遊したダストが電界の変化に応じて被処理物に付着し易くする状況が起こりうると考えられる。その結果、ダストが被処理物表面に付着した状況で、処理が継続されると、被処理体にダストに起因する欠陥を生じてしまう場合があった。
【0009】
例えば、a−Si:Hを母材とする電子写真感光体を形成する場合、こうした膜の欠陥は感光体表面に突起形状となって画像欠陥の原因となってしまう。
【0010】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意検討を行った結果、プラズマ処理装置の反応容器に附設された排気口にプラズマ漏れ防止体を設ける際に、その形状によって幅広いプラズマ処理条件において、プラズマの安定性が向上すると共に、排気口付近で発生するダストによる被処理物への影響を減らすことが可能で、被処理体上に発生する欠陥を低減できることを見出した。
【0011】
すなわち、プラズマ処理装置は少なくとも減圧可能な反応容器と、反応容器内に被処理物を保持する被処理物保持手段と、反応容器内に原料ガスを導入する原料ガス導入手段と、反応容器に附設される排気口に接続され反応容器内を排気する排気手段と、原料ガスをプラズマに励起するためのガス励起手段からなるプラズマ処理装置において、反応容器の排気口にプラズマ漏れ防止体が設けられ、このプラズマ漏れ防止体は反応容器の放電空間側に凸の形状であって、プラズマ漏れ防止体の開口部が被処理物から死角になる形状とすることによって、処理の均一性・安定性・再現性が向上できる。
【0012】
上記の装置構成によって、排気口にプラズマ漏れ防止体を設け、そのプラズマ防止体の形状が放電空間側に凸の形状にすることによって、排気配管側への放電漏れが防止でき、排気配管内での不安定な放電を抑制してプラズマの安定性が向上する。さらに、プラズマ防止体の開口部を被処理体から死角になる形状とすることによって、プラズマ漏れ防止体の開口部付近で発生するダストの被処理体への影響を極めて高く抑制できる。
【0013】
さらに、プラズマ漏れ防止体を導電性の材質とし、接地することによって放電電力の遮蔽能力が向上し、プラズマ漏れ防止能力を向上することができる。
【0014】
さらに開口形状や開口率の均一性が良いほど、プラズマ漏れ防止能力および排気能力の均一性の点で好ましく、プラズマ漏れ防止体の開口部をパンチングメタル、または、金属メッシュで形成することが好ましい。ここで言うパンチングメタルとは、金属製の板に一定のピッチで開口部が形成された物であり、その開口部は丸穴、菱形などの各種模様を打ち抜いたものである。
【0015】
なお、プラズマ漏れ防止体の開口部をパンチングメタルで形成する場合には、プラズマの漏れ防止能力と排気能力を両立させ、均一性の高い処理を施すために、パンチングメタルの開口穴は等間隔に配列され、各穴の面積が0.8mm以上80mm以下であり、開口率が20%以上80%以下の範囲から選択することが望ましい。また、プラズマ漏れ防止体の開口部を金属メッシュで形成した場合には、同様の理由から金属メッシュは、MESH2.5以上、MESH60以下の範囲であり、その線径が0.14mm以上2.0mm以下の範囲から選択することが望ましい。なお、MESHとは1インチ(25.4mm)一辺当たりの縦線の目数を意味する。
【0016】
さらにプラズマ処理装置内の反応容器の放電空間は、被処理体に対する対称性が良いほど被処理体を均一性に処理できる。したがって、被処理体が円筒状または円盤形の場合には反応容器が円筒状であって、排気口が反応容器の底面および/または上面に附設され、プラズマ漏れ防止体が開口部を有する筒部と、筒部の端面に配置された開口部を有さない平面部を備え、平面部の面積が前記筒部の端面の面積よりも広い形状にすることが好ましい。
【0017】
また、複数の被処理体を同時に処理するプラズマ処理装置においては、反応容器の放電空間が各被処理体に対して対称性が高いほど各被処理体に対する処理の均一性を高めることができる。したがって、反応容器が円筒状であって、被処理物保持手段が反応容器内の底面または上面の同一円周上等間隔に複数設置した形態とすることが好ましい。
【0018】
ガス励起手段として高周波電力を用いる場合に、高周波電力の周波数は特に制限は無いが、発明者の実験によれば、周波数が50MHz未満の場合には周波数を下げると共に、高真空(低圧力)での放電が難しくなり、放電を安定させるために反応圧力を高くして処理を施すと反応容器内にポリシランなどのパーティクルが副生し易くなり、プラズマ漏れ防止手段の開口部に詰まりを起こして安定した処理を施せなくなる場合があった。一方、450MHzを越えた高い周波数帯では、条件によって、高周波電力の伝送特性が悪化し、それに伴って、プラズマの不均一性を生じる場合がある。従って、高周波電力の発振周波数は50MHzから450MHzの範囲を適用することが好ましい。
【0019】
【発明の実施の形態】
本発明のプラズマ処理装置の一例として、a−Si:H系電子写真感光体形成装置を以下に説明する。
【0020】
図1は、同時に6本のa−Si:H系感光体を形成できるプラズマ処理装置の縦断面図を示している。図2は図1のプラズマ処理装置のA−B横断面図を示している。図1の装置は、大まかに、プラズマ処理装置100、ガス供給システム102、高周波電源103、真空ポンプ104から構成されている。
【0021】
プラズマ処理装置100は、減圧可能な反応容器101、反応容器101内同心円上等間隔に設置された基体支持体106、駆動装置114の駆動力を伝達し基体支持体106を自転させる回転軸シャフト107、反応容器101に加熱ガスや原料ガスを導入するガス導入ポート109、反応容器101内を減圧するために真空ポンプ104を接続するための排気配管118および排気口119、排気配管側へのプラズマ漏れを防止するプラズマ漏れ防止体120、反応容器101内へ導入した原料ガスのプラズマを生成するために高周波電力を印加する高周波電極112、高周波電極112から放出される電磁波を遮蔽するシールド容器108等から構成されている。
【0022】
図1に示す装置の反応容器101は円筒状で、反応容器101の上面および下面は基本的に平面で閉塞された構造になっている。なお、平面の材質には高周波電力を遮蔽するために、導電性の材質であることが好ましく、特に制限は無いが、加工性、耐久性、コストの面から、アルミニウム合金あるいはステンレスが好適な材料として挙げられる。一方、側面部は少なくとも一部が誘電体で構成され、その材質にはアルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コンジェラート、ジルコン−コンジェラート、酸化珪素酸化ベリリウムマイカ系セラミック等を用いることが好ましい。中でも加工性、耐久性に加え、高周波電力の吸収がより少ないという点からアルミナがより好適な材料である。
【0023】
なお、反応容器101のプラズマに接触する内面は堆積膜の密着性を向上させるために、堆積膜が付着する面をJIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)が10nm以上100nm以下の範囲とすることが好ましい。
【0024】
また、反応容器101の下面中央部には、排気口119が附設され、排気口119には反応容器101の内側、すなわち放電空間側に凸形状であって、その開口部が被処理体の円筒状基体106から死角を成す形状のプラズマ漏れ防止体120が設置されている。このプラズマ漏れ防止体120は、プラズマ漏れ防止能力と排気能力を両立し、上記形状であれば特に制限はないが、より好ましい形態について、後で詳しく説明する。
【0025】
続いて、ガス供給システム102は、処理に用いる加熱ガスや原料ガス、例えばSiH、GeH、H、B、PH、CH、NO、Ar、He、N等をマスフローコントローラー等により所定流量で供給可能な構成であって、ガス供給ポート109を通じて反応容器101内へ供給される構成である。
【0026】
高周波電源103から出力された高周波電力は、整合回路111、電力分岐板110を介して反応容器101外に複数設置された棒状の高周波電極112に供給する構成である。そして、電力分岐板110、高周波電極112ならびに反応容器101はシールド容器108内に収納された構成である。
【0027】
反応容器101内は真空ポンプ104によって所望の圧力まで真空引きと、ガス供給システム102より所望のガスを所定流量で供給し、コンダクタンスバルブ113によって、真空ポンプ104の排気速度を調整することによって所望の圧力に調整することが可能な構成になっている。
【0028】
図1の装置に設置可能なプラズマ漏れ防止体120の形態について、図1、図3および図4を参照しながら説明する。図3および図4は本発明の装置に用いるプラズマ漏れ防止体の一例の斜投影図である。プラズマ漏れ防止体120は、排気口119の反応容器101内側、すなわち放電空間側に凸形状であって、その開口部が被処理体である円筒状基体106から死角になる形状となっている。より具体的には、図3および図4に示すように、排気口119とほぼ同じ直径の開口部を有する円筒状の筒部122と筒部122の上端に筒部122の端面よりも面積の広い円形の平面部121から構成されている。さらに好ましい形態として、放電電力の遮蔽効果を高めるために、導電性の材質で形成されていることが好ましく、Al、Cu、Cr、Mo、Au、In、Nb、Te、V、Ti、Pt、Pd、Fe等の金属、およびこれらの合金、例えばアルミニウム合金、ステンレスが好適な材質として挙げられる。
【0029】
さらに、プラズマ漏れ防止体120を接地することによって、プラズマの安定性が向上する。プラズマの接地方法は、接地された反応容器101の下面に機械的に接触させれば良く、例えば、反応容器101の下面とプラズマ漏れ防止体120の間に弾性金属部材123を介して機械的に接触させる方法が挙げられる。弾性金属部材123の具体例として、Spira Shield Gasket(SPIRA Manufacturing Corp.製)等が挙げられる。また、プラズマ漏れ防止体120の開口部を有する筒部122は、排気能力およびプラズマ漏れ防止能力の両立の点から、図3に示すようにパンチングメタルまたは、図4に示すように金属メッシュを用いると良い。パンチングメタルを用いる場合には、パンチングメタルの各穴の形状は円形、楕円形、長方形、正方形、菱形、十字型等、特に制限されるものはないが、通常、円形が好ましい。なお、放電漏れ防止能力の点から、各穴の面積は0.8〜80mmの範囲に選択され、排気コンダクタンスの点から開口率は20〜80%の範囲に選択すると好ましい。また、パンチングメタルを製造する工程で生じる各穴のバリを取り除くか、バリのある面を排気口119側に向けることによって、上記バリによって誘発されるスパークを抑制し、より安定性したプラズマを生成することができる。一方、金属メッシュを用いる場合には、放電漏れ防止能力および排気抵抗の両立から、MESH2.5〜60の範囲に選択され、その線径が0.14から2.0mmの範囲に選択すると好ましい。
【0030】
図3のプラズマ漏れ防止体の筒部122は一重のパンチングメタルで形成されているが、十分な排気能力が得られれば、筒部のパンチングメタルを2重構造、あるいは、各穴がよりアスペクト比が高いパンチングメタルを用いることによって、プラズマ漏れ防止能力を高めることができる。また、筒部122の断面形状は円形には限定されず、被処理体の数・配置状況、プラズマ処理均一性・安定性等に合わせて形状を自由に決めることができ、その断面を多角形等の形状にしても構わない。
【0031】
また、平面部121は筒部122から被処理体である円筒状基体105が死角になる形状で、十分な排気能力を満たし、反応容器101内の他の部材、例えば基体支持体106との干渉によって異常放電を起こさない範囲であれば形状・面積に制限はなく、より広い面積の方が開口部付近で発生するダストの影響を少なくするのに効果的である。
【0032】
プラズマ処理装置によって堆積膜を形成する場合、プラズマ漏れ防止体には堆積膜が付着する。特に連続した長時間の処理や一度のクリーニング工程に対し複数回の処理を施すような場合には反応容器101内に付着した堆積膜が各部材からはがれて、反応容器101内にダストを発生する可能性が高くなる。特にプラズマ漏れ防止体に比較的厚く膜が付着する場合があり、部材と堆積膜の密着性を向上することが必要である。堆積膜の密着性は付着面の微細な表面形状に依存するため、堆積膜が付着する面JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)が10nm以上100nm以下の範囲とすることが好ましい。
【0033】
プラズマ漏れ防止体の表面粗さを上記規定値にする方法として、ブラスト加工、溶射加工等が挙げられる。溶射加工を施す場合には、溶射材として、アルミニウム、ステンレス、ニッケル、アルミナ、二酸化チタンいずれか、あるいは、その混合物の溶射で被覆することが好ましい。
【0034】
次に、図1の装置で作製可能なa−Si:H系感光体の模式断面図の一例を図7に示す。図7のa−Si:H系感光体は、基体である導電性の基体201上に密着性の良い第1層として電荷注入阻止層202、第2層として光導電層203、第3層として表面層204の順に積層し、第1層と第2層の間にキャリアの移動性や機械的な密着性を向上する目的で電荷注入阻止層の変化領域205を設けている。
【0035】
さらに、図7には示していないが、第2層の光導電層203と第3層の表面層204の間にキャリアの移動性、光の透過性や機械的な密着性を改善する目的として表面層の変化領域を設けても良い。また、他のa−Si:H系感光体の層構成の例として、光導電層203を電荷発生層と電荷輸送層の2層に機能分離したものや、光導電層203と表面層404の間に上部電荷注入阻止層を積層し、負帯電極性を持たせた感光体等が挙げられる。
【0036】
図1のプラズマ処理装置を用いて図7に示すa−Si:H系感光体を作製する手順を以下に説明する。a−Si:H系感光体の作製は、大まかに、基体の切削・洗浄を行う前処理工程、基体を堆積膜形成装置に投入する搬入工程、基体を加熱する加熱工程、基体上に堆積膜を形成する堆積膜形成工程、堆積膜形成後、基体を取り出す搬出工程、堆積膜形成装置のクリーニングを行う後処理工程の順に行われるが、投入工程から搬出工程について以下に説明する。
【0037】
初めに、投入工程では円筒状基体105を反応容器101内の基体支持体106に設置し、真空ポンプ104により反応容器101内を排気する。円筒状基体105設置後、真空ポンプ104によって所望の圧力まで排気するが、排気によって反応容器101内のダストを巻き上げないように、通常よりも遅い排気速度で所定圧力まで減圧した後、通常の排気速度で所望圧力まで排気する。排気速度の調整は、コンダクタンスバルブ113による排気コンダクタンス調整、真空ポンプの切り替え、真空ポンプの回転周波数の変更等が挙げられる。
【0038】
続く加熱工程では、ガス供給システム102よりガス供給ポート109を通じて加熱ガスを反応容器101内に導入し、円筒状基体105、あるいは、基体支持体106内側の空間にも加熱ガスを導入する。なお、加熱ガスは反応性が低く、円筒状基体105や反応容器101内の部品に悪影響を及ぼさず、加熱工程終了後の堆積膜形成工程へ影響をしないガス種であることが必要である。そして、加熱ガスは熱伝導率が高く、コスト的に安価なガスであることが好ましいので、H、He、N、Arを用いることが好ましい。
【0039】
加熱ガスが所定流量になったら、コンダクタンスバルブ113の開度を調整して反応容器101内を所定圧力に設定する。あるいは、真空ポンプ104の排気速度を調整して、反応容器101内を所定圧力に設定する。所定圧力は、発熱体115の発熱量、加熱ガス種、加熱設定温度等によって最適化することが好ましいが、ガス雰囲気の熱伝導率は数百Paから数MPaの範囲で圧力にほとんど依存しないので、数kPa以下の圧力に設定すれば、十分な熱伝導率を得られる。また、発熱体115により円筒状基体105を第1加熱工程の設定温度まで加熱・制御する。発熱体115は円筒状基体105、基体支持体106を加熱可能なものならば特に制限はなく、例えば、シース状ヒータの巻き付けヒータ、板状ヒータ、セラミックヒータ等の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱輻射ランプ発熱体、液体、基体等を媒体とした熱交換手段による発熱体が挙げられる。本例ではシース状の巻き付けヒータを用いている。
【0040】
円筒状基体105が所望温度に加熱・制御できたら、加熱ガスの供給を停止し、真空ポンプ104によって、反応容器101内のArガスを十分排気する。加熱ガスの排気が終了したら、続いて、ガス供給システム102よりガス供給ポート109を通じて電荷注入阻止層形成に用いるガス種を所定流量で反応容器101内に供給し、コンダクタンスバルブ113の開度を調整して反応容器101内を所定圧力に設定する。
【0041】
反応容器101内の圧力が安定したら、高周波電源103より整合回路111、電力分岐板110を介して複数の高周波電極112に高周波電力を印加して反応容器101内に原料ガスのプラズマを生成し、円筒状基体105上に電荷注入阻止層を形成する。電荷注入阻止層形成中、基体温度は所定温度範囲に制御する。電荷注入阻止層形成時の基板温度は150〜300℃の範囲が好ましく、より好ましくは150〜250℃の範囲が好ましい。
【0042】
電荷注入阻止層が所望の膜厚に到達したら、ガス種、ガス流量、印加電力、反応圧力等を光導電層形成条件まで、同時または別々に、変化して電荷注入阻止層の変化領域を形成する。変化は各々連続的であっても良いし、段階的不連続な変化であっても良い。
【0043】
反応容器101内が光導電層形成条件に設定できたら光導電層の形成を続けて行い、光導電層が所望の膜厚に到達したら、高周波電力の供給を停止し、光導電層の形成を終了する。光導電層形成中、基板温度は所定温度範囲に制御する。光導電層形成時の基板温度は、150〜300℃の範囲、より好ましくは、200〜300℃の範囲が好ましい。
【0044】
その後、反応容器101内を、表面層形成条件にして、高周波電源103より整合回路111を介して高周波電極112に高周波電力を印加して原料ガスのプラズマを生成し、光導電層上に表面層を形成する。表面層が所望の膜厚に到達したら、高周波電力の供給を停止し、原料ガスの供給も停止してa−Si:H系感光体の形成を終了する。図1の電子写真感光体は光導電層と表面層の間に界面があるが、電荷注入阻止層と光導電層を変化領域で形成したように変化領域を設けて、連続的な形成を行っても良い。
【0045】
a−Si:H系感光体形成終了後、ガス供給システム102よりガス供給ポート109を通じてパージガス導入と真空ポンプ104による真空引きによって、反応容器101内を複数回パージし、冷却ガス用の不活性ガス例えばHeガスを反応容器101内に所定圧力で詰めて冷却を行う。円筒状基体105の温度が十分冷えたら冷却ガスを真空ポンプ104で排気した後、ガス供給ポート109よりベントガスを導入して反応容器101内を大気圧にして、反応容器101から円筒状基体105を取り出す。
【0046】
【実施例】
以下に、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に何ら制限されるものではない。
【0047】
(実施例1)
本実施例では図1の装置を用い、図7に示す層構成のa−Si:H系感光体の作製を行った。本実施例では図3に示したプラズマ漏れ防止体120を排気口119に設置した。図3のプラズマ漏れ防止体120の開口部122は、7.1mmの面積の丸穴が50.9%の開口率で開口した厚さ1.0mmのステンレス製パンチングメタル(穴径3.0mm、ピッチ4.0mm)を使用した。また、プラズマ漏れ防止体120の表面はブラスト処理によって、JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)を10nm以上20nm以下の範囲にした。なお、十点平均粗さRz(JIS)の測定はサーフテストSJ−400(株式会社ミツトヨ製)を用い、カットオフを2.5mm、測定長さを12.5mmとして測定した。また、高周波電源103の発信周波数は105MHzを選択した。
【0048】
a−Si:H系感光体の作製手順を以下に説明する。まず、搬入工程において、切削・脱脂洗浄した直径80mm、長さ358mmのアルミニウムを主原料とする円筒状基体105を基体支持体106に積載し、真空ポンプ104によって50Pa以下まで真空引きを行った。
【0049】
加熱工程では、駆動装置114により回転軸シャフト107を介して基体支持体106及び基体支持体106に積載された円筒状基体105を1rpmで自転させながら、120分で200℃に加熱・制御した。
【0050】
加熱工程終了後、成膜工程では加熱ガスの供給を停止し、反応容器101内を1Pa以下まで減圧した後、反応容器101内を表1の電荷注入阻止層条件として電荷注入阻止層を成膜した後、電荷注入層の変化領域、光導電層、表面層の順に堆積膜を順じ形成して、a−Si:H系感光体を作製した。
【0051】
なお、a−Si:H系感光体の作製時、光度計126によってプラズマ発光強度の測定を行い、光度計126には、EG&G製 MODEL550−1 Radiometer/Photometerを使用した。
【0052】
【表1】

Figure 2005002435
【0053】
注)流量の単位はml/min.(nomal)
搬出工程では、反応容器101内を1Pa以下まで一旦減圧した後、ガス供給ポート109よりArガスを供給して複数回パージを行った後、ガス供給ポート109より冷却ガスとしてHeガスを反応容器101内に供給し反応容器101の内圧を1×10Paとして円筒状基体105を自然冷却した。円筒状基体105の温度が十分下がったら、冷却用のHeガスを一旦排気した後、ガス供給ポート109よりNガスを供給し、反応容器101を大気圧に戻し反応容器101より円筒状基体105を取り出した。
【0054】
(比較例1)
本比較例では、図8に示す装置を用いて、実施例1と同様の手順、同じ層構成のa−Si:H系感光体を作製した。なお、図8に示す装置は、図9に示すプラズマ漏れ防止体120を被処理体である円筒状基体106から死角になる様に排気管118内に設置した点が実施例1とは異なる。なお、開口部125は7.1mmの面積の丸穴が50.9%の開口率で開口した厚さ1.0mmのステンレス製パンチングメタル(穴径3.0mm、ピッチ4.0mm)を使用した。また、プラズマ漏れ防止体120の表面はブラスト処理によって、JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)を10nm以上20nm以下の範囲にした。
【0055】
なお、本比較例でも、a−Si:H系感光体の作製時、光度計126によってプラズマ発光強度の測定を行い、光度計126には、EG&G製 MODEL550−1 Radiometer/Photometerを使用した。
【0056】
実施例1および比較例1で作製したa−Si:H系感光体について「球状突起」、「画像欠陥」、「帯電能の母線むら」と、a−Si:H系感光体作製時における「プラズマの安定性」について、以下の具体的方法および基準で評価を行った。
【0057】
「球状突起」
電子写真感光体の表面を顕微鏡で観察し、直径10μm以上の球状突起数を数える。したがって、数値が小さいほど良好である。
【0058】
こうして求められた球状突起を、比較例1で作製した電子写真感光体の球状突起数を基準として、120%以上の場合を×、90%以上120%未満の場合を△、50%以上90%未満の場合を○、50%未満の場合を◎として評価を行った。
【0059】
「画像欠陥」
電子写真感光体をキヤノン製の複写機iR5000に設置し、キヤノン製全面黒チャート(部品番号:FY9−9073)を原稿台に置き、コピーした時に得られたコピー画像の同一面積内のある直径0.1mm以上の白点の数を数える。したがって、数値が小さいほど良好である。
【0060】
こうして求められた画像欠陥を、比較例1で作製した電子写真感光体の画像欠陥の数を基準として、120%以上の場合を×、90%以上120%未満の場合を△、50%以上90%未満の場合を○、50%未満の場合を◎として評価を行った。
【0061】
「帯電能の母線むら」
電子写真感光体の特性むらは帯電能により評価を行った。帯電能は、電子写真感光体を本テスト用に改造されたキヤノン製の複写機iR5000に設置し、上記複写機の主帯電器に一定電流を流した時の現像器位置での感光体表面の暗部電位を測定する。帯電能測定は感光体母線方向全領域にわたって行い、感光体母線方向全領域における最高暗部電位と最低暗部電位の差を求め、この値から帯電能の母線むらの評価を行った。
こうして求められた帯電能の母線むらを、比較例1で作製した電子写真感光体の帯電能の母線むらを基準として、120%以上の場合を×、90%以上120%未満の場合を△、50%以上90%未満の場合を○、50%未満の場合を◎として評価を行った。
【0062】
「プラズマの安定性」
a−Si:H系感光体の作製時に、光度計126によってプラズマの発光強度を測定し、電化注入阻止層の変化領域において、印加電力変化とプラズマ発光強度変化の関係を求め、プラズマの安定性を評価した。印加電力に対してプラズマ発光強度をプロットし、最小二乗法で近似直線を求め、全てのデータと近似直線と誤差が20%未満の場合を◎、20%以上50%未満の場合を○、50%以上100%未満の場合を△、100%以上の場合を×として評価を行った。
【0063】
【表2】
Figure 2005002435
【0064】
評価の結果、プラズマ漏れ防止体を設置しなかった比較例1に比べ、プラズマ漏れ防止体を設置した実施例1の感光体は全ての項目で最良の結果が得られ、作製時における「プラズマの安定性」も良好で、本発明の優れた効果が確認された。
【0065】
(実施例2および比較例2)
本実施例では、図1の装置を用いて、実施例1と同様の手順、同じ層構成のa−Si:H系感光体を作製した。ただし、プラズマ漏れ防止体の開口部に用いるパンチングメタルを種々変更して行った(表3参照)。また、プラズマ漏れ防止体120の表面はステンレス溶射処理によって、JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)を15nm以上30nm以下の範囲にした。
【0066】
作製した電子写真感光体の「球状突起」、「画像欠陥」、「帯電能の母線むら」について、実施例1と同様の基準・方法で評価を行った。また、「プラズマの安定性」についても実施例1と同様の基準・方法で評価を行った。結果を表3に示す。
【0067】
【表3】
Figure 2005002435
【0068】
実施例2−1〜実施例2−5の装置では、全ての項目で良好な結果が得られており、本発明の優れた効果が確認された。一方、比較例2−1は開口部の各穴の面積が狭すぎて十分な排気能力が得られず、同条件で、処理を施すことができなかった。また、比較例2−2、比較例2−3では、プラズマ漏れ防止能力が不十分であり、若干プラズマの不安定性があり、十分な効果は得られなかった。
【0069】
(実施例3および比較例3)
本実施例では、図1の装置を用いて、実施例1と同様の手順で、同じ層構成のa−Si:H系感光体を作製した。ただし、プラズマ漏れ防止体の開口部に用いる金属メッシュの種類を種々変更して行った(表4参照)。また、プラズマ漏れ防止体120の表面はニッケル溶射処理によって、JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)を15nm以上30nm以下の範囲にした。
【0070】
作製した電子写真感光体の「球状突起」、「画像欠陥」、「帯電能の母線むら」について、実施例1と同様の基準・方法で評価を行った。また、「プラズマの安定性」についても実施例1と同様の基準・方法で評価を行った。結果を表4に示す。
【0071】
【表4】
Figure 2005002435
【0072】
実施例3−1〜実施例3−5の装置では、全ての項目で良好な結果が得られており、本発明の優れた効果が確認された。一方、比較例3−1は、金属メッシュが粗すぎたため、プラズマ漏れ防止能力が不十分であり、若干のプラズマの不安定性から、本発明の十分な効果は得られなかった。また、また、比較例3−2、比較例3−3の装置では、金属メッシュが細かすぎて十分な排気能力が得られず、同条件で、処理を施すことができなかった。
【0073】
(実施例4)
本実施例では、図1の装置において、プラズマ漏れ防止体の筒部断面形状と上面の平板の形状を種々変更し、実施例1と同じ層構成のa−Si:H系感光体を作製した。各々のプラズマ漏れ防止体を図1の装置に設置した時の装置A−B断面図を図5、6に示す。なお、筒部断面は、上部の平面部の相似形で、その面積を上面の平面部に対して80%の断面積とした。プラズマ漏れ防止体の開口部は、7.07mmの面積の丸穴が50.9%の開口率で開口した厚さ1.0mmのステンレス製パンチングメタル(穴径3.0mm、ピッチ4.0mm)を使用した。いずれのプラズマ漏れ防止体120の表面もアルミニウム溶射処理によって、JIS B0601(1994)に準じて測定される十点平均粗さRz(JIS)を20nm以上40nm以下の範囲にした。
【0074】
作製した電子写真感光体の「球状突起」、「画像欠陥」、「帯電能の母線むら」について、実施例1と同様の基準・方法で評価を行った。また、「プラズマの安定性」についても実施例1と同様の基準・方法で評価を行った。結果を表5に示す。
【0075】
【表5】
Figure 2005002435
【0076】
プラズマ漏れ防止体の形状によらず全ての装置で、本発明の優れた効果が確認された。特に、プラズマ漏れ防止体の上面の面積を広くした図6の装置では、プラズマの安定性向上に伴って、球状突起、画像欠陥の改善が見られた。
【0077】
【発明の効果】
以上説明したように、本発明は、プラズマ処理装置の反応容器の排気口にプラズマ漏れ防止体を設け、このプラズマ漏れ防止体が反応容器の放電空間側に凸の形状にすることによって、排気配管側への放電漏れが防止でき、排気配管内での不安定な放電を抑制してプラズマの安定性が向上することができる。さらに、プラズマ漏れ防止体の開口部が被処理物から死角になる形状とすることによって、プラズマ漏れ防止体の開口部付近で発生するダストが被処理体に及ぼす影響を極めて抑制できる。
【図面の簡単な説明】
【図1】a−Si:H系感光体を形成可能な本発明のプラズマ処理装置の縦断面図
【図2】a−Si:H系感光体を形成可能な本発明のプラズマ処理装置の横断面図
【図3】本発明のプラズマ漏れ防止体の一例
【図4】本発明のプラズマ漏れ防止体の一例
【図5】別のプラズマ漏れ防止体を使用した本発明のプラズマ処理装置の横断面図
【図6】別のプラズマ漏れ防止体を使用した本発明のプラズマ処理装置の横断面図
【図7】a−Si:H系感光体の層構成断面の模式図
【図8】a−Si:H系感光体を形成可能な従来のプラズマ処理装置の縦断面図
【図9】従来のプラズマ漏れ防止体の一例
【符号の説明】
100 プラズマ処理装置
101 反応容器
102 ガス供給システム
103 高周波電源
104 真空ポンプ
105 円筒状基体
106 基体支持体
107 回転軸シャフト
108 シールド容器
109 ガス供給ポート
110 電力分岐板
111 整合回路
112 高周波電極
113 コンダクタンスバルブ
114 回転駆動装置
115 発熱体
116 減速ギヤ
117 同軸ケーブル
118 排気配管
119 排気口
120 プラズマ漏れ防止体
121 平面部
122 筒部(開口部)
123 弾性金属部材
124 固定ネジ
125 開口部
126 光度計
201 基体
202 電荷注入阻止層
203 光導電層
204 表面層
205 電荷注入阻止層の変化領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus for manufacturing a semiconductor device, an electrophotographic photoreceptor, an image input line sensor, a photographing device, a photovoltaic device, and the like.
[0002]
[Prior art]
Conventionally, as a vacuum processing method for producing a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, etc., a plasma CVD method, a reactive sputtering method, a thermal CVD method, a photo CVD method, etc. This processing method is known, and many apparatuses and methods have been put into practical use.
[0003]
For example, by using a plasma processing apparatus using a plasma CVD method, the source gas can be decomposed in glow discharge to form a deposited film on the substrate. For example, the source gas is SiH 4 Can be used to form a hydrogenated amorphous silicon (a-Si: H) deposited film. In a plasma processing apparatus, plasma uniformity, stability, and reproducibility are factors that determine processing uniformity and reproducibility. In general, in the plasma CVD method, exhaust is performed while supplying a raw material gas, and plasma of the raw material gas is generated and the object to be processed is processed while maintaining the atmospheric conditions in the reaction vessel. Therefore, the gas supply method / exhaust method greatly affects the uniformity, stability, and reproducibility of the plasma.
[0004]
For example, there is disclosed a deposition film forming apparatus by plasma CVD in which plasma leakage prevention means is provided near an exhaust port attached to a reaction vessel, and the plasma leakage prevention means is installed at a position where it becomes a blind spot from both a cathode electrode and a counter electrode. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
JP 2001-335948 A
[0006]
[Problems to be solved by the invention]
By the above method, plasma uniformity and long-term stability can be improved, and at the same time, the film adhering to the plasma leakage prevention body is peeled off during plasma generation and directly scattered on the object to be processed, and adheres to the object to be processed. It is becoming possible to eliminate defects and reduce defects.
[0007]
However, in recent years, for example, the required level of the market for electrophotographic apparatuses has been increasing day by day, and in order to achieve high image quality comparable to printing, film quality unevenness and minute spherical protrusions that have not been a problem until now Therefore, it is necessary to improve image defects and other electrical characteristics caused by the phenomenon, and in order to realize them, it is necessary to stabilize the plasma under a wider range of plasma processing conditions than before. I came.
[0008]
Therefore, in a device in which a plasma leakage prevention body is provided near the exhaust port and the object to be processed is simply blinded, strong plasma is formed in the exhaust pipe on the discharge space side depending on the plasma processing conditions, and plasma stability is maintained. There were cases where it was not possible. When plasma treatment is performed in such a low plasma stability state, the uniformity and reproducibility of the treatment deteriorates, and at the same time, the instability of the plasma causes a sudden change in the in-furnace state. It is considered that a situation may occur in which the attached deposited film is peeled off and the dust floating in the space easily adheres to the object to be processed according to the change in the electric field. As a result, when processing is continued in a situation where dust adheres to the surface of the object to be processed, defects due to the dust may occur on the object to be processed.
[0009]
For example, when an electrophotographic photosensitive member using a-Si: H as a base material is formed, such a film defect forms a protrusion on the surface of the photosensitive member and causes image defects.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor found that when a plasma leakage prevention body is provided at the exhaust port attached to the reaction vessel of the plasma processing apparatus, the plasma is produced under a wide range of plasma processing conditions depending on its shape. It has been found that the stability can be improved, the influence of dust generated near the exhaust port on the object to be processed can be reduced, and defects generated on the object to be processed can be reduced.
[0011]
That is, the plasma processing apparatus is provided at least in a reaction vessel that can be depressurized, a workpiece holding means that holds a workpiece in the reaction vessel, a source gas introduction means that introduces a source gas into the reaction vessel, and a reaction vessel. In the plasma processing apparatus comprising the exhaust means connected to the exhaust outlet and exhausting the inside of the reaction vessel, and the gas excitation means for exciting the source gas into plasma, a plasma leakage prevention body is provided at the exhaust outlet of the reaction vessel, This plasma leakage prevention body has a convex shape on the discharge space side of the reaction vessel, and the opening of the plasma leakage prevention body becomes a blind spot from the object to be processed, so that processing uniformity, stability and reproduction are achieved. Can be improved.
[0012]
With the above device configuration, a plasma leakage prevention body is provided at the exhaust port, and the shape of the plasma prevention body is convex to the discharge space side, thereby preventing discharge leakage to the exhaust pipe side. The plasma stability is improved by suppressing the unstable discharge. Furthermore, by making the opening of the plasma preventive body into a blind spot from the object to be processed, the influence of dust generated near the opening of the plasma leak preventer on the object to be processed can be suppressed extremely high.
[0013]
Furthermore, the plasma leakage prevention body is made of a conductive material and grounded, whereby the discharge power shielding ability is improved and the plasma leakage prevention ability can be improved.
[0014]
Furthermore, the better the uniformity of the opening shape and the opening ratio, the better from the viewpoint of the uniformity of the plasma leakage prevention capability and the exhaust capability, and the opening of the plasma leakage prevention body is preferably formed of a punching metal or a metal mesh. The punching metal referred to here is a metal plate in which openings are formed at a constant pitch, and the openings are obtained by punching various patterns such as round holes and diamonds.
[0015]
When the opening of the plasma leakage prevention body is formed of punching metal, the opening holes of the punching metal are equidistant in order to achieve both plasma leakage prevention capability and exhaust capability and to perform highly uniform processing. Arranged, the area of each hole is 0.8mm 2 80mm or more 2 The aperture ratio is preferably selected from the range of 20% to 80%. Moreover, when the opening part of a plasma leak prevention body is formed with a metal mesh, for the same reason, the metal mesh has a range of MESH 2.5 or more and MESH 60 or less, and its wire diameter is 0.14 mm or more and 2.0 mm. It is desirable to select from the following range. Note that MESH means the number of vertical lines per side of 1 inch (25.4 mm).
[0016]
Furthermore, the discharge space of the reaction vessel in the plasma processing apparatus can treat the object to be processed more uniformly as the symmetry with respect to the object to be processed is better. Therefore, when the object to be processed is cylindrical or disk-shaped, the reaction vessel is cylindrical, the exhaust port is attached to the bottom surface and / or the top surface of the reaction vessel, and the plasma leakage preventing body has an opening. In addition, it is preferable to provide a flat portion that does not have an opening disposed on the end surface of the cylindrical portion, and that the area of the flat portion is wider than the area of the end surface of the cylindrical portion.
[0017]
Further, in a plasma processing apparatus that processes a plurality of objects to be processed at the same time, the higher the symmetry of the discharge space of the reaction vessel with respect to each object to be processed, the higher the uniformity of processing for each object to be processed. Therefore, it is preferable that the reaction container is cylindrical and a plurality of workpiece holding means are installed at equal intervals on the same circumference of the bottom surface or top surface of the reaction container.
[0018]
When high-frequency power is used as the gas excitation means, the frequency of the high-frequency power is not particularly limited. However, according to the inventors' experiment, when the frequency is less than 50 MHz, the frequency is lowered and the vacuum is high (low pressure). When the treatment is performed at a high reaction pressure to stabilize the discharge, particles such as polysilane are easily generated as a by-product in the reaction vessel, and the opening of the plasma leakage prevention means is clogged and stabilized. In some cases, the treatment could not be performed. On the other hand, in a high frequency band exceeding 450 MHz, the transmission characteristics of high-frequency power may be deteriorated depending on conditions, and accordingly, plasma non-uniformity may occur. Therefore, it is preferable to apply a range of 50 MHz to 450 MHz as the oscillation frequency of the high frequency power.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As an example of the plasma processing apparatus of the present invention, an a-Si: H-based electrophotographic photosensitive member forming apparatus will be described below.
[0020]
FIG. 1 is a longitudinal sectional view of a plasma processing apparatus capable of simultaneously forming six a-Si: H photoconductors. FIG. 2 is a cross-sectional view taken along the line AB of the plasma processing apparatus of FIG. The apparatus shown in FIG. 1 generally includes a plasma processing apparatus 100, a gas supply system 102, a high frequency power supply 103, and a vacuum pump 104.
[0021]
The plasma processing apparatus 100 includes a reaction vessel 101 that can be depressurized, a substrate support 106 that is installed on a concentric circle in the reaction vessel 101 at equal intervals, and a rotary shaft 107 that transmits the driving force of the drive device 114 and rotates the substrate support 106. , A gas introduction port 109 for introducing a heating gas or a raw material gas into the reaction vessel 101, an exhaust pipe 118 and an exhaust port 119 for connecting the vacuum pump 104 to depressurize the inside of the reaction vessel 101, and plasma leakage to the exhaust pipe side From a plasma leakage prevention body 120 for preventing the plasma, a high frequency electrode 112 for applying high frequency power to generate plasma of the raw material gas introduced into the reaction vessel 101, a shield vessel 108 for shielding electromagnetic waves emitted from the high frequency electrode 112, and the like. It is configured.
[0022]
The reaction vessel 101 of the apparatus shown in FIG. 1 has a cylindrical shape, and the upper and lower surfaces of the reaction vessel 101 are basically closed with a flat surface. The flat material is preferably a conductive material for shielding high-frequency power, and is not particularly limited. However, from the viewpoint of workability, durability, and cost, aluminum alloy or stainless steel is a suitable material. As mentioned. On the other hand, at least a part of the side surface portion is made of a dielectric, and the material is alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, congelate, zircon-congelate, silicon oxide beryllium oxide mica ceramic or the like. It is preferable. Among these, alumina is a more preferred material in terms of workability and durability, and less absorption of high-frequency power.
[0023]
In order to improve the adhesion of the deposited film on the inner surface of the reaction vessel 101 that contacts the plasma, the surface to which the deposited film adheres is measured in accordance with JIS B0601 (1994). Ten-point average roughness Rz (JIS) Is preferably in the range of 10 nm to 100 nm.
[0024]
In addition, an exhaust port 119 is attached to the center of the lower surface of the reaction vessel 101. The exhaust port 119 has a convex shape on the inside of the reaction vessel 101, that is, on the discharge space side, and its opening is a cylinder of the object to be processed. A plasma leakage prevention body 120 having a blind spot formed from the substrate 106 is installed. The plasma leakage prevention body 120 has both a plasma leakage prevention capability and an exhaust capability, and is not particularly limited as long as it has the above shape, but a more preferable embodiment will be described in detail later.
[0025]
Subsequently, the gas supply system 102 uses a heating gas or a raw material gas used for processing, such as SiH. 4 , GeH 4 , H 2 , B 2 H 6 , PH 3 , CH 4 , NO, Ar, He, N 2 And the like can be supplied at a predetermined flow rate by a mass flow controller or the like, and supplied into the reaction vessel 101 through the gas supply port 109.
[0026]
The high-frequency power output from the high-frequency power source 103 is supplied to a rod-shaped high-frequency electrode 112 installed outside the reaction vessel 101 via the matching circuit 111 and the power branch plate 110. The power branch plate 110, the high-frequency electrode 112, and the reaction vessel 101 are housed in a shield vessel 108.
[0027]
The reaction vessel 101 is evacuated to a desired pressure by the vacuum pump 104, a desired gas is supplied from the gas supply system 102 at a predetermined flow rate, and the evacuation speed of the vacuum pump 104 is adjusted by the conductance valve 113. The pressure can be adjusted.
[0028]
The form of the plasma leakage preventing body 120 that can be installed in the apparatus shown in FIG. 1 will be described with reference to FIGS. 1, 3, and 4. 3 and 4 are oblique projections of an example of a plasma leakage prevention body used in the apparatus of the present invention. The plasma leakage prevention body 120 has a convex shape on the inside of the reaction vessel 101 of the exhaust port 119, that is, on the discharge space side, and has an opening that forms a blind spot from the cylindrical substrate 106 that is the object to be processed. More specifically, as shown in FIG. 3 and FIG. 4, a cylindrical tube portion 122 having an opening having substantially the same diameter as the exhaust port 119 and an upper end of the tube portion 122 having an area larger than that of the end surface of the tube portion 122. It is composed of a wide circular plane part 121. As a more preferable form, in order to enhance the shielding effect of discharge power, it is preferably formed of a conductive material, such as Al, Cu, Cr, Mo, Au, In, Nb, Te, V, Ti, Pt, Suitable materials include metals such as Pd and Fe, and alloys thereof, such as aluminum alloys and stainless steel.
[0029]
Furthermore, the plasma stability is improved by grounding the plasma leakage prevention body 120. The plasma may be grounded by mechanically contacting the lower surface of the grounded reaction vessel 101, for example, mechanically via an elastic metal member 123 between the lower surface of the reaction vessel 101 and the plasma leakage prevention body 120. The method of making it contact is mentioned. Specific examples of the elastic metal member 123 include Spira Shield Gasket (manufactured by SPIRA Manufacturing Corp.). Moreover, the cylindrical part 122 which has the opening part of the plasma leak prevention body 120 uses a punching metal as shown in FIG. 3, or a metal mesh as shown in FIG. 4 from the point of coexistence of exhaust capability and plasma leak prevention capability. And good. In the case of using a punching metal, the shape of each hole of the punching metal is not particularly limited, such as a circle, an ellipse, a rectangle, a square, a rhombus, and a cross shape, but a circle is usually preferable. In addition, the area of each hole is 0.8 to 80 mm from the point of discharge leakage prevention capability. 2 From the viewpoint of exhaust conductance, the aperture ratio is preferably selected in the range of 20 to 80%. In addition, by removing burrs from each hole generated in the punching metal manufacturing process or by directing the burr-facing surface toward the exhaust port 119, the sparks induced by the burrs are suppressed, and more stable plasma is generated. can do. On the other hand, when a metal mesh is used, it is preferable that the range is selected from the range of MSH 2.5 to 60 and the wire diameter thereof is selected from the range of 0.14 to 2.0 mm in view of both the discharge leakage prevention capability and the exhaust resistance.
[0030]
The cylindrical portion 122 of the plasma leakage prevention body of FIG. 3 is formed of a single punching metal, but if sufficient exhaust capacity is obtained, the cylindrical portion of the cylindrical portion has a double structure, or each hole has a higher aspect ratio. By using a high punching metal, the ability to prevent plasma leakage can be enhanced. In addition, the cross-sectional shape of the cylindrical portion 122 is not limited to a circular shape, and the shape can be freely determined according to the number and arrangement of objects to be processed, plasma processing uniformity and stability, and the cross-section is polygonal. You may make it the shape of these.
[0031]
In addition, the planar portion 121 has a shape in which the cylindrical substrate 105 as the object to be processed becomes a blind spot from the cylindrical portion 122, satisfies a sufficient exhaust capability, and interferes with other members in the reaction vessel 101, for example, the substrate support 106. As long as it does not cause abnormal discharge, there is no limitation on the shape and area, and a wider area is more effective in reducing the influence of dust generated near the opening.
[0032]
When the deposited film is formed by the plasma processing apparatus, the deposited film adheres to the plasma leakage prevention body. In particular, when a plurality of treatments are performed for a long continuous process or a single cleaning process, the deposited film adhered in the reaction vessel 101 is peeled off from each member, and dust is generated in the reaction vessel 101. The possibility increases. In particular, a relatively thick film may adhere to the plasma leakage prevention body, and it is necessary to improve the adhesion between the member and the deposited film. Since the adhesion of the deposited film depends on the fine surface shape of the adhesion surface, the ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) to which the deposition film adheres is 10 nm or more and 100 nm or less. It is preferable to be in the range.
[0033]
Examples of a method for setting the surface roughness of the plasma leakage preventing body to the specified value include blasting and thermal spraying. In the case of performing thermal spraying, it is preferable to coat the thermal spraying material by spraying aluminum, stainless steel, nickel, alumina, titanium dioxide, or a mixture thereof.
[0034]
Next, FIG. 7 shows an example of a schematic cross-sectional view of an a-Si: H photoconductor that can be produced by the apparatus of FIG. The a-Si: H photoconductor shown in FIG. 7 has a charge injection blocking layer 202 as a first layer having good adhesion, a photoconductive layer 203 as a second layer, and a third layer on a conductive substrate 201 as a substrate. The surface layer 204 is laminated in this order, and a charge injection blocking layer changing region 205 is provided between the first layer and the second layer for the purpose of improving carrier mobility and mechanical adhesion.
[0035]
Further, although not shown in FIG. 7, the purpose is to improve carrier mobility, light transmission and mechanical adhesion between the second photoconductive layer 203 and the third surface layer 204. A change region of the surface layer may be provided. As another example of the layer configuration of the a-Si: H photoconductor, the photoconductive layer 203 is functionally separated into two layers of a charge generation layer and a charge transport layer, or the photoconductive layer 203 and the surface layer 404 are separated. Examples thereof include a photoreceptor having an upper charge injection blocking layer interposed therebetween and having a negatively charged polarity.
[0036]
A procedure for manufacturing the a-Si: H photoconductor shown in FIG. 7 using the plasma processing apparatus of FIG. 1 will be described below. The a-Si: H photoconductor is roughly prepared by a pretreatment step for cutting and cleaning the substrate, a carrying-in step for feeding the substrate into a deposited film forming apparatus, a heating step for heating the substrate, and a deposited film on the substrate. The deposition film forming process for forming the film, the unloading process for removing the substrate after the formation of the deposited film, and the post-processing process for cleaning the deposited film forming apparatus are performed in this order.
[0037]
First, in the charging step, the cylindrical substrate 105 is set on the substrate support 106 in the reaction vessel 101, and the reaction vessel 101 is evacuated by the vacuum pump 104. After the cylindrical substrate 105 is installed, the vacuum pump 104 exhausts the air to a desired pressure. However, after exhausting the dust in the reaction vessel 101 to a predetermined pressure at a slower exhaust speed than normal, Exhaust to desired pressure at speed. Adjustment of the exhaust speed includes adjustment of exhaust conductance by the conductance valve 113, switching of the vacuum pump, change of the rotation frequency of the vacuum pump, and the like.
[0038]
In the subsequent heating step, the heating gas is introduced into the reaction vessel 101 from the gas supply system 102 through the gas supply port 109, and the heating gas is also introduced into the space inside the cylindrical substrate 105 or the substrate support 106. Note that the heating gas has a low reactivity, and does not adversely affect the components in the cylindrical substrate 105 or the reaction vessel 101, and must be a gas type that does not affect the deposited film forming process after the heating process. And since it is preferable that heating gas is a gas with high thermal conductivity and low cost, H 2 , He, N 2 , Ar is preferably used.
[0039]
When the heating gas reaches a predetermined flow rate, the opening of the conductance valve 113 is adjusted to set the inside of the reaction vessel 101 to a predetermined pressure. Alternatively, the inside of the reaction vessel 101 is set to a predetermined pressure by adjusting the exhaust speed of the vacuum pump 104. The predetermined pressure is preferably optimized by the heating value of the heating element 115, the heated gas type, the heating set temperature, etc., but the thermal conductivity of the gas atmosphere hardly depends on the pressure in the range of several hundred Pa to several MPa. If the pressure is set to several kPa or less, sufficient thermal conductivity can be obtained. Further, the cylindrical base 105 is heated and controlled to the set temperature of the first heating step by the heating element 115. The heating element 115 is not particularly limited as long as it can heat the cylindrical substrate 105 and the substrate support 106. For example, an electric resistance heating element such as a sheathed heater, a plate heater, a ceramic heater, a halogen lamp, Examples include a heat radiation lamp heating element such as an infrared lamp, and a heating element by a heat exchange means using a liquid, a substrate or the like as a medium. In this example, a sheath-like winding heater is used.
[0040]
When the cylindrical substrate 105 can be heated and controlled to a desired temperature, the supply of the heating gas is stopped, and the Ar gas in the reaction vessel 101 is sufficiently exhausted by the vacuum pump 104. After the exhaust of the heated gas is completed, the gas type used for forming the charge injection blocking layer is supplied from the gas supply system 102 through the gas supply port 109 into the reaction vessel 101 at a predetermined flow rate, and the opening of the conductance valve 113 is adjusted. Then, the inside of the reaction vessel 101 is set to a predetermined pressure.
[0041]
When the pressure in the reaction vessel 101 is stabilized, high-frequency power is applied from the high-frequency power source 103 to the plurality of high-frequency electrodes 112 via the matching circuit 111 and the power branch plate 110 to generate plasma of the source gas in the reaction vessel 101, A charge injection blocking layer is formed on the cylindrical substrate 105. During the formation of the charge injection blocking layer, the substrate temperature is controlled within a predetermined temperature range. The substrate temperature during the formation of the charge injection blocking layer is preferably in the range of 150 to 300 ° C, more preferably in the range of 150 to 250 ° C.
[0042]
When the charge injection blocking layer reaches the desired film thickness, the gas type, gas flow rate, applied power, reaction pressure, etc. are changed to the photoconductive layer formation conditions simultaneously or separately to form a change region of the charge injection blocking layer. To do. Each change may be continuous or may be a stepwise discontinuous change.
[0043]
When the inside of the reaction vessel 101 can be set to the photoconductive layer formation conditions, the photoconductive layer is continuously formed. When the photoconductive layer reaches a desired film thickness, the supply of high-frequency power is stopped and the photoconductive layer is formed. finish. During the formation of the photoconductive layer, the substrate temperature is controlled within a predetermined temperature range. The substrate temperature when forming the photoconductive layer is preferably in the range of 150 to 300 ° C, more preferably in the range of 200 to 300 ° C.
[0044]
Thereafter, the inside of the reaction vessel 101 is subjected to surface layer formation conditions, and high-frequency power is applied to the high-frequency electrode 112 from the high-frequency power source 103 via the matching circuit 111 to generate source gas plasma, and the surface layer is formed on the photoconductive layer. Form. When the surface layer reaches a desired film thickness, the supply of high-frequency power is stopped, the supply of source gas is also stopped, and the formation of the a-Si: H photoconductor is completed. The electrophotographic photosensitive member of FIG. 1 has an interface between the photoconductive layer and the surface layer. However, a continuous region is formed by providing a change region as if the charge injection blocking layer and the photoconductive layer were formed in the change region. May be.
[0045]
After the formation of the a-Si: H photoconductor, the inside of the reaction vessel 101 is purged a plurality of times by introducing a purge gas from the gas supply system 102 through the gas supply port 109 and evacuating by the vacuum pump 104, and an inert gas for cooling gas For example, He gas is filled in the reaction vessel 101 at a predetermined pressure and cooled. When the temperature of the cylindrical substrate 105 is sufficiently cooled, the cooling gas is exhausted by the vacuum pump 104, and then a vent gas is introduced from the gas supply port 109 to bring the inside of the reaction vessel 101 to atmospheric pressure, and the cylindrical substrate 105 is removed from the reaction vessel 101. Take out.
[0046]
【Example】
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
[0047]
(Example 1)
In this example, an a-Si: H photoconductor having a layer structure shown in FIG. 7 was prepared using the apparatus shown in FIG. In this embodiment, the plasma leakage preventing body 120 shown in FIG. The opening 122 of the plasma leakage prevention body 120 of FIG. 3 is 7.1 mm. 2 A stainless punching metal (hole diameter: 3.0 mm, pitch: 4.0 mm) having a thickness of 1.0 mm with round holes having an opening area of 50.9% was used. Further, the surface of the plasma leakage preventing body 120 was subjected to blasting so that the ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) was in the range of 10 nm to 20 nm. The ten-point average roughness Rz (JIS) was measured using a surf test SJ-400 (manufactured by Mitutoyo Corporation) with a cutoff of 2.5 mm and a measurement length of 12.5 mm. The transmission frequency of the high frequency power supply 103 was selected to be 105 MHz.
[0048]
The procedure for producing the a-Si: H photoconductor will be described below. First, in the carrying-in process, a cylindrical base body 105 made of aluminum having a diameter of 80 mm and a length of 358 mm, which was cut and degreased and washed, was loaded on the base body support 106 and evacuated to 50 Pa or less by the vacuum pump 104.
[0049]
In the heating process, the substrate support 106 and the cylindrical substrate 105 loaded on the substrate support 106 were rotated and rotated at 200 ° C. in 120 minutes while rotating at 1 rpm by the driving device 114 via the rotary shaft 107.
[0050]
After completion of the heating process, in the film forming process, the supply of the heating gas is stopped, the inside of the reaction vessel 101 is depressurized to 1 Pa or less, and then the charge injection blocking layer is formed using the inside of the reaction vessel 101 as the charge injection blocking layer conditions shown in Table 1. After that, a deposited film was formed in the order of the change region of the charge injection layer, the photoconductive layer, and the surface layer to produce an a-Si: H photoconductor.
[0051]
Note that when the a-Si: H photoconductor was produced, the plasma emission intensity was measured by the photometer 126, and a model 550-1 Radiometer / Photometer manufactured by EG & G was used as the photometer 126.
[0052]
[Table 1]
Figure 2005002435
[0053]
Note) The unit of flow rate is ml / min. (Normal)
In the unloading step, the inside of the reaction vessel 101 is once depressurized to 1 Pa or less, Ar gas is supplied from the gas supply port 109 and purged a plurality of times, and then He gas is supplied as a cooling gas from the gas supply port 109 to the reaction vessel 101. The internal pressure of the reaction vessel 101 is 1 × 10 3 The cylindrical substrate 105 was naturally cooled as Pa. When the temperature of the cylindrical substrate 105 is sufficiently lowered, the He gas for cooling is once exhausted and then N is supplied from the gas supply port 109. 2 Gas was supplied, the reaction vessel 101 was returned to atmospheric pressure, and the cylindrical substrate 105 was taken out from the reaction vessel 101.
[0054]
(Comparative Example 1)
In this comparative example, an a-Si: H photoconductor having the same procedure and the same layer configuration as in Example 1 was manufactured using the apparatus shown in FIG. The apparatus shown in FIG. 8 is different from the first embodiment in that the plasma leakage preventing body 120 shown in FIG. 9 is installed in the exhaust pipe 118 so as to be a blind spot from the cylindrical base body 106 that is the object to be processed. The opening 125 is 7.1 mm. 2 A stainless punching metal (hole diameter: 3.0 mm, pitch: 4.0 mm) having a thickness of 1.0 mm with round holes having an opening area of 50.9% was used. Further, the surface of the plasma leakage preventing body 120 was subjected to blasting so that the ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) was in the range of 10 nm to 20 nm.
[0055]
Also in this comparative example, when the a-Si: H photoconductor was produced, the plasma emission intensity was measured by the photometer 126, and a model 550-1 Radiometer / Photometer manufactured by EG & G was used as the photometer 126.
[0056]
Regarding the a-Si: H photoconductors produced in Example 1 and Comparative Example 1, “spherical protrusions”, “image defects”, “charging line irregularities”, and “ The “plasma stability” was evaluated by the following specific methods and criteria.
[0057]
`` Spherical protrusion ''
The surface of the electrophotographic photosensitive member is observed with a microscope, and the number of spherical protrusions having a diameter of 10 μm or more is counted. Therefore, the smaller the value, the better.
[0058]
Based on the number of spherical protrusions of the electrophotographic photosensitive member produced in Comparative Example 1, the spherical protrusions thus obtained were evaluated as x for a case of 120% or more, Δ for a case of 90% or more and less than 120%, and 50% or more and 90%. The evaluation was made with ○ as the case of less than 、 and ◎ as the case of less than 50%.
[0059]
"Image defects"
The electrophotographic photosensitive member is installed in a Canon copier iR5000, and a Canon full black chart (part number: FY9-9073) is placed on the document table and copied, and the copy image obtained has a diameter of 0 within the same area. Count the number of white spots greater than 1 mm. Therefore, the smaller the value, the better.
[0060]
Based on the number of image defects of the electrophotographic photosensitive member produced in Comparative Example 1, the image defects thus obtained are indicated as x when it is 120% or more, Δ when it is 90% or more and less than 120%, and 50% or more and 90%. Evaluation was made with ○ less than% and ◎ less than 50%.
[0061]
"Electricity bus irregularity"
The characteristic unevenness of the electrophotographic photosensitive member was evaluated by charging ability. The charging ability is determined by placing the electrophotographic photosensitive member on a Canon copying machine iR5000 modified for this test, and applying a constant current to the main charging device of the copying machine. Measure the dark potential. The charging ability was measured over the entire region in the photosensitive member bus direction, and the difference between the highest dark portion potential and the lowest dark portion potential in the entire region in the photosensitive member bus direction was determined.
With respect to the bus power irregularity of the charging ability thus obtained with reference to the bus power irregularity of the electrophotographic photosensitive member produced in Comparative Example 1, the case of 120% or more is x, the case of 90% or more and less than 120% is Δ, The evaluation was made with a case of 50% or more and less than 90% as % and a case of less than 50% as ◎.
[0062]
"Plasma stability"
During the production of the a-Si: H photoconductor, the light emission intensity of the plasma is measured by the photometer 126, the relationship between the change in applied power and the change in plasma light emission intensity is determined in the change region of the charge injection blocking layer, and the stability of the plasma is obtained. Evaluated. Plotting the plasma emission intensity against the applied power, obtaining an approximate line by the least square method, ◎ if the error between all data and approximate line is less than 20%, ◯ if it is less than 20% and less than 50%, 50 The evaluation was made with a case of% or more and less than 100% as Δ and a case of 100% or more as x.
[0063]
[Table 2]
Figure 2005002435
[0064]
As a result of the evaluation, compared with Comparative Example 1 in which no plasma leakage prevention body was installed, the photoreceptor of Example 1 in which the plasma leakage prevention body was installed provided the best results in all items. “Stability” was also good, and the excellent effect of the present invention was confirmed.
[0065]
(Example 2 and Comparative Example 2)
In this example, an a-Si: H photoconductor having the same procedure and the same layer structure as in Example 1 was produced using the apparatus shown in FIG. However, the punching metal used for the opening of the plasma leakage prevention body was changed variously (see Table 3). Further, the surface of the plasma leakage prevention body 120 was made into a range of 15 nm to 30 nm in ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) by stainless steel spraying treatment.
[0066]
The “spherical protrusions”, “image defects”, and “charging line unevenness” of the produced electrophotographic photosensitive member were evaluated by the same criteria and method as in Example 1. Further, “plasma stability” was also evaluated by the same standard and method as in Example 1. The results are shown in Table 3.
[0067]
[Table 3]
Figure 2005002435
[0068]
In the apparatus of Example 2-1 to Example 2-5, good results were obtained for all items, and the excellent effects of the present invention were confirmed. On the other hand, in Comparative Example 2-1, the area of each hole in the opening was too small to obtain a sufficient exhaust capacity, and the treatment could not be performed under the same conditions. Moreover, in Comparative Example 2-2 and Comparative Example 2-3, the plasma leakage preventing ability was insufficient, there was a slight instability of plasma, and sufficient effects were not obtained.
[0069]
(Example 3 and Comparative Example 3)
In this example, an a-Si: H photoconductor having the same layer structure was produced using the apparatus of FIG. However, various types of metal mesh used for the opening of the plasma leakage prevention body were changed (see Table 4). Further, the surface of the plasma leakage preventing body 120 was subjected to nickel spraying treatment so that the ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) was in the range of 15 nm to 30 nm.
[0070]
The “spherical protrusions”, “image defects”, and “charging line irregularities” of the produced electrophotographic photosensitive member were evaluated by the same criteria and method as in Example 1. Further, “plasma stability” was also evaluated by the same standard and method as in Example 1. The results are shown in Table 4.
[0071]
[Table 4]
Figure 2005002435
[0072]
In the apparatus of Example 3-1 to Example 3-5, good results were obtained for all items, and the excellent effects of the present invention were confirmed. On the other hand, in Comparative Example 3-1, since the metal mesh was too coarse, the plasma leakage preventing ability was insufficient, and the sufficient effect of the present invention could not be obtained due to slight instability of plasma. Moreover, in the apparatus of Comparative Example 3-2 and Comparative Example 3-3, the metal mesh was too fine to obtain sufficient exhaust capacity, and the treatment could not be performed under the same conditions.
[0073]
(Example 4)
In this example, in the apparatus shown in FIG. 1, the cross-sectional shape of the cylindrical portion of the plasma leakage prevention body and the shape of the upper flat plate were variously changed to produce an a-Si: H photoconductor having the same layer structure as in Example 1. . FIGS. 5 and 6 are cross-sectional views of the apparatus AB when the respective plasma leakage prevention bodies are installed in the apparatus of FIG. The cross section of the cylinder part is similar to the upper plane part, and its area is 80% of the cross sectional area with respect to the upper plane part. The opening of the plasma leakage prevention body is 7.07 mm. 2 A stainless punching metal (hole diameter: 3.0 mm, pitch: 4.0 mm) having a thickness of 1.0 mm with round holes having an opening area of 50.9% was used. The surface of any plasma leakage prevention body 120 was subjected to an aluminum spray treatment so that the ten-point average roughness Rz (JIS) measured according to JIS B0601 (1994) was in the range of 20 nm to 40 nm.
[0074]
The “spherical protrusions”, “image defects”, and “charging line irregularities” of the produced electrophotographic photosensitive member were evaluated by the same criteria and method as in Example 1. Further, “plasma stability” was also evaluated by the same standard and method as in Example 1. The results are shown in Table 5.
[0075]
[Table 5]
Figure 2005002435
[0076]
The excellent effect of the present invention was confirmed in all apparatuses regardless of the shape of the plasma leakage prevention body. In particular, in the apparatus shown in FIG. 6 in which the area of the upper surface of the plasma leakage prevention body is widened, improvement of spherical protrusions and image defects was observed as the plasma stability was improved.
[0077]
【The invention's effect】
As described above, the present invention provides an exhaust pipe by providing a plasma leakage prevention body at the exhaust port of the reaction vessel of the plasma processing apparatus, and forming the plasma leakage prevention body into a convex shape on the discharge space side of the reaction vessel. It is possible to prevent discharge leakage to the side, and to suppress unstable discharge in the exhaust pipe, thereby improving plasma stability. Furthermore, by making the opening of the plasma leakage preventing body a blind spot from the object to be processed, the influence of dust generated near the opening of the plasma leakage preventing body on the object to be processed can be extremely suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a plasma processing apparatus of the present invention capable of forming an a-Si: H-based photoreceptor.
FIG. 2 is a cross-sectional view of a plasma processing apparatus of the present invention capable of forming an a-Si: H-based photoreceptor.
FIG. 3 shows an example of a plasma leakage preventer according to the present invention.
FIG. 4 shows an example of a plasma leakage preventer according to the present invention.
FIG. 5 is a cross-sectional view of the plasma processing apparatus of the present invention using another plasma leakage prevention body.
FIG. 6 is a cross-sectional view of the plasma processing apparatus of the present invention using another plasma leakage prevention body.
FIG. 7 is a schematic diagram of a cross section of a layer structure of an a-Si: H photoconductor.
FIG. 8 is a longitudinal sectional view of a conventional plasma processing apparatus capable of forming an a-Si: H photoconductor.
FIG. 9 shows an example of a conventional plasma leakage prevention body.
[Explanation of symbols]
100 Plasma processing equipment
101 reaction vessel
102 Gas supply system
103 high frequency power supply
104 vacuum pump
105 Cylindrical substrate
106 Substrate support
107 Rotating shaft
108 Shield container
109 Gas supply port
110 Power distribution board
111 Matching circuit
112 high frequency electrode
113 conductance valve
114 Rotation drive
115 Heating element
116 Reduction gear
117 Coaxial cable
118 Exhaust piping
119 Exhaust port
120 Plasma leakage prevention body
121 Flat part
122 Tube (opening)
123 Elastic metal member
124 Fixing screw
125 opening
126 photometer
201 substrate
202 Charge injection blocking layer
203 photoconductive layer
204 Surface layer
205 Change region of charge injection blocking layer

Claims (9)

少なくとも減圧可能な反応容器と、前記反応容器内に被処理物を保持する被処理物保持手段と、前記反応容器内に原料ガスを導入する原料ガス導入手段と、前記反応容器に附設される排気口に接続され前記反応容器内を排気する排気手段と、前記原料ガスをプラズマに励起するためのガス励起手段からなるプラズマ処理装置において、
前記反応容器の排気口にプラズマ漏れ防止体が設けられ、前記プラズマ漏れ防止体は反応容器の放電空間側に凸の形状であって、前記プラズマ漏れ防止体の開口部は前記被処理物から死角になる形状であることを特徴とするプラズマ処理装置。
At least a reaction vessel that can be depressurized, a workpiece holding means for holding a workpiece in the reaction vessel, a raw material gas introduction means for introducing a raw material gas into the reaction vessel, and an exhaust gas attached to the reaction vessel In a plasma processing apparatus comprising an exhaust means connected to an outlet and exhausting the inside of the reaction vessel, and a gas excitation means for exciting the source gas into plasma,
A plasma leakage prevention body is provided at the exhaust port of the reaction vessel, the plasma leakage prevention body has a convex shape on the discharge space side of the reaction vessel, and the opening of the plasma leakage prevention body is a blind spot from the workpiece. A plasma processing apparatus having a shape to become.
前記プラズマ漏れ防止体が導電性であって、接地されている請求項1に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein the plasma leakage prevention body is conductive and grounded. 前記プラズマ漏れ防止体の開口部がパンチングメタルからなる請求項1または2に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein an opening of the plasma leakage prevention body is made of a punching metal. 前記パンチングメタルは開口穴が等間隔に配列され、各穴の面積が0.8mm以上80mm以下であり、開口率が20%以上80%以下である請求項3に記載のプラズマ処理装置。4. The plasma processing apparatus according to claim 3, wherein the punching metal has opening holes arranged at equal intervals, an area of each hole is 0.8 mm 2 to 80 mm 2 , and an opening ratio is 20% to 80%. 前記プラズマ漏れ防止体の開口部が金属メッシュからなる請求項1または2に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein the opening of the plasma leakage preventing body is made of a metal mesh. 前記金属メッシュは、MESH2.5以上MESH60以下の範囲であり、その線径が0.14mm以上2.0mm以下の範囲である請求項5に記載のプラズマ処理装置。The plasma processing apparatus according to claim 5, wherein the metal mesh has a range of MESH 2.5 to MESH 60 and a wire diameter of 0.14 mm to 2.0 mm. 前記反応容器が円筒状であって、前記排気口が前記反応容器の底面および/または上面に附設され、前記プラズマ漏れ防止体が開口部を有する筒部と、前記筒部の端面に配置された開口部を有さない平面部を備え、前記平面部の面積が前記筒部の端面の面積よりも広い請求項1〜6に記載のプラズマ処理装置。The reaction vessel has a cylindrical shape, the exhaust port is attached to the bottom surface and / or the top surface of the reaction vessel, and the plasma leakage prevention body is disposed on a cylindrical portion having an opening and an end surface of the cylindrical portion. The plasma processing apparatus according to claim 1, further comprising a flat portion having no opening, wherein an area of the flat portion is wider than an area of an end surface of the cylindrical portion. 前記反応容器が円筒状であって、前記被処理物保持手段が前記反応容器内の底面または上面の同一円周上等間隔に複数設置されている請求項1〜7に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein the reaction container is cylindrical, and a plurality of the processing object holding means are installed at equal intervals on the same circumference of the bottom surface or the top surface in the reaction container. 前記ガス励起手段は高周波電力であって、前記高周波電力の発振周波数が50MHzから450MHzの範囲である請求項1〜8に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein the gas excitation unit is high-frequency power, and an oscillation frequency of the high-frequency power is in a range of 50 MHz to 450 MHz.
JP2003168717A 2003-06-13 2003-06-13 Plasma treatment system Withdrawn JP2005002435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168717A JP2005002435A (en) 2003-06-13 2003-06-13 Plasma treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168717A JP2005002435A (en) 2003-06-13 2003-06-13 Plasma treatment system

Publications (1)

Publication Number Publication Date
JP2005002435A true JP2005002435A (en) 2005-01-06

Family

ID=34094074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168717A Withdrawn JP2005002435A (en) 2003-06-13 2003-06-13 Plasma treatment system

Country Status (1)

Country Link
JP (1) JP2005002435A (en)

Similar Documents

Publication Publication Date Title
EP0717127A2 (en) Plasma processing method and apparatus
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4095205B2 (en) Deposited film forming method
JP2005002435A (en) Plasma treatment system
JP2005136027A (en) Plasma processing system
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP2004193419A (en) Vacuum processing method
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2004124150A (en) Plasma treatment system and the plasma treatment method
JP2004190079A (en) Vacuum treatment apparatus
JP2002285339A (en) Film depositing apparatus
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JP2006126473A (en) Method for forming deposited film and electrophotographic photoreceptor
JP2009102668A (en) Plasma treatment device
JP2006009041A (en) Plasma treatment device
JP2004126277A (en) Apparatus and method for forming deposited film
JP2005068454A (en) Method for forming deposition film
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP2005264232A (en) Plasma treatment apparatus
JPH09127714A (en) Production of light-accepting member and producing device therefor
JP2002322562A (en) Vacuum treatment method and vacuum treatment apparatus
JP2004204301A (en) Deposition film-forming apparatus
JP2004204300A (en) Deposition-film-forming apparatus with plasma cvd
JP2004191552A (en) Apparatus for manufacturing electrophotographic photoreceptor
JP2006009040A (en) Film deposition apparatus and film deposition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905