JP2005264232A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus Download PDF

Info

Publication number
JP2005264232A
JP2005264232A JP2004078533A JP2004078533A JP2005264232A JP 2005264232 A JP2005264232 A JP 2005264232A JP 2004078533 A JP2004078533 A JP 2004078533A JP 2004078533 A JP2004078533 A JP 2004078533A JP 2005264232 A JP2005264232 A JP 2005264232A
Authority
JP
Japan
Prior art keywords
reaction vessel
plasma
gas
opening
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004078533A
Other languages
Japanese (ja)
Inventor
Yoshio Seki
好雄 瀬木
Daisuke Tazawa
大介 田澤
Tomohito Ozawa
智仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004078533A priority Critical patent/JP2005264232A/en
Publication of JP2005264232A publication Critical patent/JP2005264232A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment apparatus which inhibits a defect in a deposited film from occurring due to the scattering of a film which has been once deposited on various members in a reaction vessel and then peeled off, onto a substrate to be film-formed, when forming a deposition film with the use of a plasma CVD method, and which improves the yield. <P>SOLUTION: A plasma treatment apparatus is provided with at least the reaction vessel capable of being depressurized, a means for storing a cylindrical substrate in the reaction vessel, a gas introduction means for introducing a gas into the reaction vessel, a power-feeding means for feeding a high-frequency power so as to generate plasma in the reaction vessel, and an exhaust means for exhausting the gas in the reaction vessel through an outlet of the reaction vessel. This plasma treatment apparatus further has a plasma-leakage-preventing means having a plurality of openings which have a larger diameter in the vicinity of the side face of the reaction vessel than in other portions and can pass the gas therethrough, installed between a plane having the outlet of the reaction vessel and the cylindrical substrate, so as to cover the whole plane having the outlet of the reaction vessel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラズマを用いた真空処理装置に関するもので、取り分けプラズマCVD法による堆積膜形成に適した装置に関するものである。   The present invention relates to a vacuum processing apparatus using plasma, and more particularly to an apparatus suitable for forming a deposited film by a plasma CVD method.

従来、半導体デバイス、電子写真用感光体、画像入力ラインセンサー、撮像デバイス、光起電力デバイス、又、その他各種エレクトロニクス素子等に用いる素子部材の製造法である堆積膜形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、光CVD法、プラズマCVD法等、多くの方法が知られている。また、これらの各種堆積膜形成方法に利用される堆積膜形成装置も実用に付されている。中でも、プラズマCVD法、即ち、直流又は高周波或はマイクロ波グロー放電により原料ガスを分解し、基板上に薄膜状の堆積膜を形成する方法は、例えば、水素化アモルファスシリコン(以下、a−Si:Hと表記する)堆積膜の形成等に適する方法として現在実用化が最も進んでいる。それに伴い、実際の用途に応じてプラズマCVD法による堆積膜形成に用いる装置も各種提案されている。   Conventionally, a deposited film forming method, which is a manufacturing method of element members used for semiconductor devices, electrophotographic photoreceptors, image input line sensors, imaging devices, photovoltaic devices, and other various electronic elements, is a vacuum deposition method. Many methods are known, such as sputtering, ion plating, thermal CVD, photo-CVD, and plasma CVD. Also, a deposited film forming apparatus used for these various deposited film forming methods has been put into practical use. Among them, a plasma CVD method, that is, a method of decomposing a source gas by direct current, high frequency or microwave glow discharge to form a thin deposited film on a substrate is, for example, hydrogenated amorphous silicon (hereinafter a-Si). The method is most practically used as a method suitable for forming a deposited film. Along with this, various apparatuses for forming a deposited film by the plasma CVD method have been proposed in accordance with actual applications.

図4に、a−Si:H膜形成に一般的に用いられている従来のプラズマCVD装置の一例を示す。図4(a)は堆積膜形成装置の縦断面図であり、図4(b)は堆積膜形成装置の横断面図を示す。   FIG. 4 shows an example of a conventional plasma CVD apparatus generally used for forming an a-Si: H film. 4A is a longitudinal sectional view of the deposited film forming apparatus, and FIG. 4B is a transverse sectional view of the deposited film forming apparatus.

図4(a)に示す堆積膜形成装置400は、高周波電源として、VHF帯の高周波を用いるVHFプラズマCVD法による装置であり、主として、円筒状基体上にa−Si:H膜の堆積を行い、電子写真用感光体を製造する装置である。   A deposited film forming apparatus 400 shown in FIG. 4A is an apparatus based on a VHF plasma CVD method using a high frequency in the VHF band as a high frequency power source, and mainly deposits an a-Si: H film on a cylindrical substrate. An apparatus for producing an electrophotographic photoreceptor.

図4(a)に示す堆積膜形成装置400では、減圧可能な反応容器403は、誘電体部材から成る円筒状の側壁と、側壁403の両端に密着した天板420及び底板417により構成されている。反応容器403の内部には、円筒状基体401が基体支持体406に設置され、回転軸410に取り付けられている。側壁403は、例えばセラミック材料で構成されている。回転軸410は、モータにより駆動される不図示の回転機構を介して底板417に設けられており、且つ、発熱体(図示せず)を有しているので、円筒状基体401を所定の温度に加熱し、又、回転させることができる。   In the deposited film forming apparatus 400 shown in FIG. 4A, the depressurized reaction vessel 403 includes a cylindrical side wall made of a dielectric member, and a top plate 420 and a bottom plate 417 that are in close contact with both ends of the side wall 403. Yes. Inside the reaction vessel 403, a cylindrical substrate 401 is installed on a substrate support 406 and attached to a rotating shaft 410. The side wall 403 is made of, for example, a ceramic material. The rotating shaft 410 is provided on the bottom plate 417 via a rotating mechanism (not shown) driven by a motor and has a heating element (not shown). Can be heated and rotated.

プラズマを発生させるためのカソード電極404は、金属製棒状電極を使用し、反応容器403の外部に設置されている。カソード電極404には、整合回路409、416を介して高周波電源408,415が接続されている。   The cathode electrode 404 for generating plasma uses a metal rod electrode and is installed outside the reaction vessel 403. High frequency power supplies 408 and 415 are connected to the cathode electrode 404 via matching circuits 409 and 416.

一方、底板417はアース電位であり、底板417に設けられた回転軸410が円筒状基体401を保持しているので、円筒状基体401が実質的にカソード電極の対向電極となる。底板417には反応容器403内の排気をするために開口部が設けられていて、開口部には排気管407が接続されている。排気管407の他端に真空排気手段(不図示)が接続されており、反応容器403内の真空排気を行う。   On the other hand, the bottom plate 417 is at ground potential, and the rotating shaft 410 provided on the bottom plate 417 holds the cylindrical base body 401, so that the cylindrical base body 401 is substantially the counter electrode of the cathode electrode. The bottom plate 417 is provided with an opening for exhausting the reaction vessel 403, and an exhaust pipe 407 is connected to the opening. A vacuum exhaust means (not shown) is connected to the other end of the exhaust pipe 407, and the reaction vessel 403 is evacuated.

底板417の開口部と円筒状基体401との間には、プラズマが排気管407側に漏れて放電空間のプラズマ密度が低下することを防止するために、プラズマ漏れ防止手段418を設置している。プラズマ漏れ防止手段418は、複数の開口部を有するパンチングメタルである。プラズマ漏れ防止手段418は、底板417に固定されている。これによって、プラズマ漏れ防止手段418はアース電位である底板417に密着する。そのため、プラズマ漏れ防止手段418もアース電位に保たれている。   Between the opening of the bottom plate 417 and the cylindrical base 401, plasma leakage prevention means 418 is installed to prevent plasma from leaking to the exhaust pipe 407 side and reducing the plasma density in the discharge space. . The plasma leakage prevention means 418 is a punching metal having a plurality of openings. The plasma leakage preventing means 418 is fixed to the bottom plate 417. As a result, the plasma leakage preventing means 418 is in close contact with the bottom plate 417 that is at the ground potential. Therefore, the plasma leakage prevention means 418 is also kept at the ground potential.

反応容器403へは、ガス供給手段402が取り付けられ、これより原料ガスを反応容器403内部に供給する。   A gas supply means 402 is attached to the reaction vessel 403, and the source gas is supplied into the reaction vessel 403 from this.

この図4に示すような従来の成膜装置を用いたa−Si:H膜の形成は、概略、以下のような手順により行われている。   The formation of the a-Si: H film using the conventional film forming apparatus as shown in FIG. 4 is generally performed by the following procedure.

先ず、排気管407の他端に接続された真空排気手段(不図示)によって反応容器403の内部を高真空まで排気する。その後、更に排気を行いつつ、ガス供給手段402によってシランガス(SiH4)、ジシランガス(Si26)、ジボランガス(B26)、メタンガス(CH4)、エタンガス(C26)等の原料ガスを導入して、反応容器403内部を所定の圧力に維持する。高周波電源408,415を所望の電力に設定して、整合回路409,416、カソード電極404を通じて、誘電体部材から成る反応容器403内にVHF電力を導入する。このVHF電力により、カソード電極404と対向電極となる円筒状基体401との間にプラズマを発生させ、プラズマにより原料ガスを分解する。そして、円筒状基体401は発熱体(図示せず)で200〜400℃の所定の温度に加熱されており、この円筒状基体401上にa−Si:H膜が堆積される。 First, the inside of the reaction vessel 403 is exhausted to a high vacuum by a vacuum exhaust means (not shown) connected to the other end of the exhaust pipe 407. Thereafter, while further evacuating, the gas supply means 402 uses silane gas (SiH 4 ), disilane gas (Si 2 H 6 ), diborane gas (B 2 H 6 ), methane gas (CH 4 ), ethane gas (C 2 H 6 ), etc. The source gas is introduced to maintain the inside of the reaction vessel 403 at a predetermined pressure. High frequency power supplies 408 and 415 are set to desired power, and VHF power is introduced into reaction vessel 403 made of a dielectric member through matching circuits 409 and 416 and cathode electrode 404. With this VHF power, plasma is generated between the cathode electrode 404 and the cylindrical substrate 401 serving as the counter electrode, and the source gas is decomposed by the plasma. The cylindrical substrate 401 is heated by a heating element (not shown) to a predetermined temperature of 200 to 400 ° C., and an a-Si: H film is deposited on the cylindrical substrate 401.

以上に説明した堆積膜形成装置400のように、反応容器からプラズマが漏洩するのを防ぐため、パンチングメタル等を用いたプラズマ漏れ防止手段を有する堆積膜形成装置は他にも提案されている(例えば、特許文献1参照)。   In order to prevent plasma from leaking from the reaction vessel as in the deposited film forming apparatus 400 described above, other deposited film forming apparatuses having plasma leakage preventing means using punching metal or the like have been proposed ( For example, see Patent Document 1).

従来の堆積膜形成装置により、良好な特性を持つa−Si:H系電子写真用感光体が形成され、実用にも供されている。   An a-Si: H-based electrophotographic photosensitive member having good characteristics is formed by a conventional deposited film forming apparatus and is put into practical use.

特開2001−335948号公報JP 2001-335948 A

しかしながら、総合的な特性の一層の向上を図る上では、尚改善の余地が残されているのが現状である。例えば、近年では複写機本体の高性能化が進み、デジタル機やカラー機の普及が進んでいる。これに伴い、電子写真用感光体は、これまで以上の高画質化、高品質化等、更なる画像特性の向上が求められるようになっている。このため、従来余り問題とならなかった微小な画像欠陥の発生を抑制することが必要となっている。   However, in order to further improve the overall characteristics, there is still room for improvement. For example, in recent years, the performance of copying machine bodies has been improved, and digital machines and color machines have become popular. Accordingly, electrophotographic photoreceptors are required to further improve image characteristics such as higher image quality and higher quality than ever. For this reason, it is necessary to suppress the occurrence of minute image defects that have not been a significant problem in the past.

上記の画像欠陥は、電子写真用感光体上の堆積膜の欠陥に起因している。この堆積膜の欠陥発生の主たる原因としては、以下のようなものが挙げられる。   The image defects are caused by defects in the deposited film on the electrophotographic photoreceptor. The main causes for the occurrence of defects in the deposited film are as follows.

即ち、成膜動作を繰り返すうちに反応容器内に配置されている種々の部材や内壁等へも堆積膜が積層する。このように堆積した膜は、その後の成膜動作において各部材から剥離して、縦型反応容器下部に設けた排気手段の排気方向に引かれるため、縦型反応容器の底面にあるプラズマ漏れ防止手段上に降り積もる。この降り積もった膜片が成膜ガスの供給や排気に伴うガスの流れにより滞留及び飛散が発生し、円筒状基体の下部に付着する場合がある。   That is, as the film forming operation is repeated, the deposited film is laminated on various members and inner walls arranged in the reaction vessel. Since the deposited film is peeled off from each member in the subsequent film forming operation and pulled in the exhaust direction of the exhaust means provided at the lower part of the vertical reaction vessel, plasma leakage prevention at the bottom of the vertical reaction vessel is prevented. Get down on the means. In some cases, the deposited film pieces may stay and scatter due to the gas flow accompanying the supply or exhaust of the film formation gas and adhere to the lower part of the cylindrical substrate.

従って、画像欠陥の発生原因となる膜破片が円筒状基体上に飛来するのを防止する方策が必要となる。   Therefore, it is necessary to take measures to prevent film fragments that cause image defects from flying on the cylindrical substrate.

本発明の目的は、プラズマCVD法を適用して堆積膜形成を行う際、反応容器内の種々の部材に堆積した膜が剥離して被成膜基体上に飛散することによる堆積膜の欠陥の発生を抑制し、歩留まりを飛躍的に向上させることができるプラズマ処理装置を提供することにある。   The object of the present invention is to prevent defects in the deposited film caused by peeling off the film deposited on various members in the reaction vessel and scattering on the deposition substrate when the deposited film is formed by applying the plasma CVD method. An object of the present invention is to provide a plasma processing apparatus capable of suppressing the generation and dramatically improving the yield.

上記目的を達成するため、請求項1記載の発明は、少なくとも減圧可能な反応容器と、前記反応容器内に円筒状基体を収納する手段と、前記反応容器内にガスを導入するガス導入手段と、前記反応容器内にプラズマを生成させるための高周波電力を供給する高周波電力供給手段と、前記反応容器の排気口を介して前記反応容器内のガスを排気する排気手段を備えたプラズマ処理装置において、前記反応容器の中央部側の第1の領域より前記反応容器側面側の第2の領域で開口径が大きくなっていて、前記反応容器内のガスの流通が可能な複数の開口部を有したプラズマ漏れ防止手段が、前記排気口を有する面と前記円筒状基体との間に、前記排気口を有する面全体を覆うように設けられていることを特徴とする。   In order to achieve the above object, the invention described in claim 1 includes at least a reaction vessel that can be depressurized, means for housing a cylindrical substrate in the reaction vessel, and gas introduction means for introducing gas into the reaction vessel. A plasma processing apparatus comprising: high-frequency power supply means for supplying high-frequency power for generating plasma in the reaction container; and exhaust means for exhausting the gas in the reaction container through an exhaust port of the reaction container. The opening diameter is larger in the second region on the side surface of the reaction vessel than the first region on the side of the central portion of the reaction vessel, and has a plurality of openings that allow the gas in the reaction vessel to flow. The plasma leakage prevention means is provided between the surface having the exhaust port and the cylindrical base so as to cover the entire surface having the exhaust port.

請求項2記載の発明は、請求項1記載の発明において、前記プラズマ漏れ防止手段の第2の領域は、前記反応容器側面と前記ガス導入手段までの間にあることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the second region of the plasma leakage prevention means is between the side surface of the reaction vessel and the gas introduction means.

請求項3記載の発明は、請求項1又は2記載の発明において、前記プラズマ漏れ防止手段の第1の領域の開口部の個々の開口面積は0.8mm2以上80mm2以下であることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the individual opening area of the opening of the first region of the plasma leakage preventing means is 0.8 mm 2 or more and 80 mm 2 or less. And

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記プラズマ漏れ防止手段の第2の領域の開口部の個々の開口面積は80mm2を超え140mm2以下であることを特徴とする。 The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the individual opening area of the opening of the second region of the plasma leakage preventing means is more than 80 mm 2 and 140 mm 2 or less. It is characterized by that.

請求項5記載の発明は、請求項1〜4の何れかに記載の発明において、前記プラズマ漏れ防止手段は、パンチングメタル又は金属メッシュから成ることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the plasma leakage preventing means is made of a punching metal or a metal mesh.

請求項6記載の発明は、請求項1〜5の何れかに記載の発明において、前記高周波電力供給手段は、少なくとも2つの異なる周波数の高周波を同一の高周波電極に同時に供給する手段であることを特徴とする。   According to a sixth aspect of the invention, in the invention according to any one of the first to fifth aspects, the high-frequency power supply means is means for simultaneously supplying at least two different high-frequency frequencies to the same high-frequency electrode. Features.

請求項7記載の発明は、請求項1〜6の何れかに記載の発明において、前記円筒状基体上に電子写真用感光体としての機能を有する少なくともシリコンを含む非単結晶材料から成る堆積膜を形成することを特徴とする。   The invention according to claim 7 is the deposited film of the invention according to any one of claims 1 to 6, which is made of a non-single crystal material containing at least silicon having a function as an electrophotographic photoreceptor on the cylindrical substrate. It is characterized by forming.

本発明者等は、従来の方法及び装置における前述の問題点を鋭意検討した結果、画像欠陥が倒立配置した円筒状基体の鉛直方向において該円筒状基体の下部に集中していることを確認した。この円筒状基体の下部に集中する画像欠陥に関して検討を行った結果、以下のような現象により画像欠陥の集中が発生すると推測された。   As a result of intensive studies on the above-described problems in the conventional method and apparatus, the present inventors have confirmed that image defects are concentrated in the vertical direction of the cylindrical base body arranged upside down in the lower part of the cylindrical base body. . As a result of examining the image defects concentrated on the lower part of the cylindrical substrate, it was estimated that the concentration of image defects occurred due to the following phenomenon.

円筒状基体に堆積膜を形成する場合、反応容器内の円筒状基体以外のプラズマと接する部位でも堆積膜が形成されるが、堆積膜の形成条件は円筒状基体に堆積する膜の膜質や応力を考慮して高周波電力の投入パワー及び円筒状基体の加熱設定が選択されている。そのため円筒状基体以外で堆積する膜の膜質や応力は円筒状基体に堆積する膜とは異なる。   When a deposited film is formed on a cylindrical substrate, the deposited film is also formed at a site in contact with plasma other than the cylindrical substrate in the reaction vessel. The conditions for forming the deposited film are the film quality and stress of the film deposited on the cylindrical substrate. In consideration of the above, the input power of the high frequency power and the heating setting of the cylindrical substrate are selected. Therefore, the film quality and stress of the film deposited on other than the cylindrical substrate are different from the film deposited on the cylindrical substrate.

その結果、堆積膜形成中の温度変化や積層条件、堆積膜の膜厚増加に伴い膜の応力により微小な膜剥れが発生する。この微小な膜剥れで発生した膜片が縦型反応容器下部に設けた排気手段の排気方向に引かれるため、反応容器の排気口面に設けられているプラズマ漏れ防止手段418上に降り積もる。この降り積もった膜片が成膜ガスの供給や排気に伴うガスの流れにより滞留及び飛散が発生し、円筒状基体の下部に付着する場合がある。特に、反応容器403の下部側の側面近傍やガス導入手段402下部側のプラズマ漏れ防止手段418上ではプラズマ漏れ防止手段418には複数の開口部が設けられているが、ガスの供給や排気に伴うガスの流れによりガスの滞留が生じ、そこに降り積もった膜片の量は多くなり易い。   As a result, minute film peeling occurs due to the stress of the film as the temperature changes during the formation of the deposited film, the lamination conditions, and the thickness of the deposited film increases. Since the film pieces generated by this minute film peeling are drawn in the exhaust direction of the exhaust means provided at the lower part of the vertical reaction vessel, they are deposited on the plasma leakage preventing means 418 provided on the exhaust port surface of the reaction vessel. In some cases, the deposited film pieces may stay and scatter due to the gas flow accompanying the supply or exhaust of the film formation gas and adhere to the lower part of the cylindrical substrate. In particular, the plasma leak prevention means 418 is provided with a plurality of openings in the vicinity of the side surface on the lower side of the reaction vessel 403 and on the plasma leak prevention means 418 on the lower side of the gas introduction means 402. The accompanying gas flow causes gas stagnation, and the amount of film pieces deposited on the gas tends to increase.

更に、反応容器の排気口面に設けられているプラズマ漏れ防止手段418上に降り積もった膜片の上にも堆積膜が形成されるが、微小な膜片に堆積する膜は更に膜剥れが発生し易い状態であり、より膜剥れが進行し、円筒状基体の下部に付着する微小な膜片が加速的に増加化してしまう場合があると推測された。   Further, a deposited film is also formed on the film piece that has fallen on the plasma leakage prevention means 418 provided on the exhaust port surface of the reaction vessel, but the film deposited on the minute film piece is further peeled off. It is presumed that the film is likely to occur, the film peeling further proceeds, and the minute film pieces adhering to the lower part of the cylindrical substrate may increase at an accelerated rate.

即ち、反応容器の排気口面に設けられているプラズマ漏れ防止手段418に降り積もる膜片を少なくすることが、円筒状基体表面に膜片を飛散し付着することを防止するものであり、特に反応容器403の下部側の側面側やガス導入手段402下部側に降り積もることを防ぐ必要があり、その手段を検討した結果、反応容器の排気口を有する面と円筒状基体との間に、反応容器側面側で開口径が大きくなっているガスの流通が可能な複数の開口部を有している領域を備えたプラズマ漏れ防止手段を、前記反応容器の排気口を有する面全体を覆うようにすることが効果的であることが判明した。   That is, reducing the number of film pieces that accumulate on the plasma leakage prevention means 418 provided on the exhaust port surface of the reaction vessel prevents the film pieces from scattering and adhering to the cylindrical substrate surface. It is necessary to prevent the container 403 from getting on the side of the lower side of the container 403 or the lower side of the gas introduction means 402. As a result of studying the means, the reaction container is provided between the surface having the exhaust port of the reaction container and the cylindrical substrate. The plasma leakage preventing means having a region having a plurality of openings through which gas can be circulated on the side surface side covers the entire surface having the exhaust port of the reaction vessel. Proved to be effective.

前記ガスの流通が可能な複数の開口部を有するプラズマ漏れ防止手段の開口部は、前記反応容器側面と前記ガス導入手段までの間において中央部より開口径を大きくすることによって、プラズマ漏れの防止と膜片の堆積の抑止が両立し、本発明の効果が顕著であった。   The opening of the plasma leakage preventing means having a plurality of openings through which the gas can flow is prevented by preventing the plasma leakage by making the opening diameter larger than the central portion between the side surface of the reaction vessel and the gas introducing means. And the suppression of the deposition of film pieces are compatible, and the effect of the present invention is remarkable.

前記ガスの流通が可能な複数の開口部を有するプラズマ漏れ防止手段の中央部の第1領域の開口部の個々の開口部面積は0.8mm2以上80mm2以下とすることでより本発明の効果が顕著であった。 The individual opening area of the opening in the first region at the center of the plasma leakage preventing means having a plurality of openings through which the gas can flow is 0.8 mm 2 or more and 80 mm 2 or less. The effect was remarkable.

プラズマ漏れ防止手段の中央部の第1領域の開口部の個々の開口部面積が0.8mm2よりも小さいと開口部に堆積した堆積膜によって開口部が塞がり、反応容器を所定の圧力に維持することが困難になる場合があり、堆積膜の膜質向上及び再現性向上、画像欠陥の防止という観点からプラズマ漏れ防止手段の個々の開口面積は0.8mm2以上とすることが望ましい。 If the area of each opening in the first region opening in the central portion of the plasma leakage prevention means is smaller than 0.8 mm 2 , the opening is closed by the deposited film deposited in the opening, and the reaction vessel is maintained at a predetermined pressure. In view of improving the quality and reproducibility of the deposited film and preventing image defects, the individual opening area of the plasma leakage preventing means is preferably 0.8 mm 2 or more.

又、第1領域の開口部の個々の開口面積が80mm2よりも大きい場合、反応容器の中央はプラズマ密度が高い状態であり、そのプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまう場合があり、この場合も堆積膜の膜質向上及び再現性向上、画像欠陥の防止という観点から遮蔽板の第1領域の開口部の個々の開口面積は80mm2以下とすることが望ましい。 In addition, when the individual opening area of the opening in the first region is larger than 80 mm 2 , the plasma density is high at the center of the reaction vessel, and the plasma leaks to the exhaust tube side, and the plasma density in the discharge space decreases. In this case as well, the individual opening area of the opening in the first region of the shielding plate is preferably 80 mm 2 or less from the viewpoint of improving the quality and reproducibility of the deposited film and preventing image defects. .

プラズマ漏れ防止手段の中央部の開口面積は、上述の0.8mm2以上80mm2以下の範囲内で適宜設定するものである。 Opening area of the central portion of the plasma leakage prevention means is to appropriately set within a range of 0.8 mm 2 or more 80 mm 2 or less as described above.

前記ガスの流通が可能な複数の開口部を有するプラズマ漏れ防止手段の反応容器側面側で開口径が大きくなっている第2の領域の開口部の個々の開口面積は80mm2を超え140mm2以下とすることでより本発明の効果が顕著であった。 The individual opening area of the opening in the second region where the opening diameter is large on the side surface of the reaction vessel of the plasma leakage prevention means having a plurality of openings through which the gas can flow is more than 80 mm 2 and 140 mm 2 or less. As a result, the effects of the present invention were more remarkable.

プラズマ漏れ防止手段の反応容器側面側で開口径が大きくなっている第2の領域の開口部の個々の開口面積が80mm2よりも小さいと、反応容器側面近傍やガス導入手段の下部側の開口部に降り積もった膜片を十分排出することができない、反対に開口部の個々の開口面積が140mm2より大きい場合は、反応容器側面近傍やガス導入手段の下部側は、装置構成上反応容器の中央に比べてプラズマ密度が小さい状態であるが、そのプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまう場合があり、堆積膜の膜質向上及び再現性向上、画像欠陥の防止という観点から、反応容器側面側で開口径が大きくなっている第2の領域開口部の個々の開口面積は、80mm2を超え140mm2以下の範囲内で適宜設定するものである。 When the individual opening area of the opening portion of the second region whose opening diameter is large on the side surface side of the reaction vessel of the plasma leakage prevention means is smaller than 80 mm 2, the opening in the vicinity of the side surface of the reaction vessel or on the lower side of the gas introduction means When the membrane pieces that have accumulated on the part cannot be sufficiently discharged, and the individual opening areas of the openings are larger than 140 mm 2 , the vicinity of the side of the reaction vessel and the lower side of the gas introduction means are Although the plasma density is lower than that at the center, the plasma may leak to the exhaust pipe and the plasma density in the discharge space may decrease, improving the quality and reproducibility of the deposited film and preventing image defects from the viewpoint of the individual opening area of the second region opening aperture diameter in a reaction vessel side surface is larger is to appropriately set within a range of 140 mm 2 or less than the 80 mm 2

又、プラズマ漏れ防止手段全体の面積に対する開口部全体の比率、即ち開口率が20%以上80%以下の範囲であることが好ましい。開口率20%よりも小さいと、コンダクタンスの低下が大きく、それに伴って排気能力は大幅に低下する。発明者等の実験においては、前記の理由により、原料ガス流量によっては、反応容器内の圧力を所望の値に維持できないため、良好な膜質を得られない場合もあった。   Moreover, it is preferable that the ratio of the whole opening to the area of the whole plasma leakage preventing means, that is, the opening ratio is in the range of 20% to 80%. When the aperture ratio is less than 20%, the decrease in conductance is large, and the exhaust capacity is greatly decreased accordingly. In the experiments conducted by the inventors, for the reasons described above, depending on the raw material gas flow rate, the pressure in the reaction vessel cannot be maintained at a desired value, and therefore, good film quality may not be obtained.

一方、開口率が80%より大きいと、各開口部(穴)の形状と開口面積(サイズ)にもよるが、プラズマ漏れ防止能力が低下し、所望の条件で反応容器内に生起したプラズマの漏洩が顕著となる。プラズマの漏洩が顕著であると、プラズマ密度と安定性が低下し、堆積膜速度の低下が見られる。加えて、しばしば、プラズマの不安定化に伴う堆積膜特性の低下が見られる場合もある。   On the other hand, when the aperture ratio is greater than 80%, the plasma leakage prevention capability is reduced depending on the shape and the opening area (size) of each opening (hole), and the plasma generated in the reaction vessel under the desired conditions. Leakage becomes significant. If the plasma leakage is significant, the plasma density and stability are lowered, and the deposited film speed is lowered. In addition, the deposited film characteristics often deteriorate with plasma destabilization.

以上の理由から、プラズマ漏れ防止手段の開口率を20〜80%の範囲に選択すると好適である。   For the above reasons, it is preferable to select the aperture ratio of the plasma leakage preventing means in the range of 20 to 80%.

又、前記プラズマ漏れ防止手段は、パンチングメタル又は金属メッシュとすることが本発明には好ましい。   Moreover, it is preferable for the present invention that the plasma leakage preventing means is a punching metal or a metal mesh.

プラズマ漏れ防止手段の材質としては、Al、Ni、Cr、Mo、Au、In、Nb、Te、V、Ti、Pt、Pd、Fe等の金属、並びにこれら合金、例えば、ステンレス等が挙げられるが、中でもAl、ステンレス、Ni、Crがパンチング加工の容易さやコストの点で適している。   Examples of the material for the plasma leakage prevention means include metals such as Al, Ni, Cr, Mo, Au, In, Nb, Te, V, Ti, Pt, Pd, and Fe, and alloys thereof such as stainless steel. Of these, Al, stainless steel, Ni, and Cr are suitable in terms of ease of punching and cost.

又、プラズマ漏れ防止手段の表面はブラスト加工又はニッケル、アルミ二ウム、ステンレス等で溶射加工することが好ましい。   The surface of the plasma leakage prevention means is preferably blasted or sprayed with nickel, aluminum, stainless steel or the like.

又、高周波電力供給手段は、少なくとも2つの異なる周波数の高周波を同一の高周波電極に同時に供給する手段であることが本発明には好ましい。   Moreover, it is preferable for the present invention that the high-frequency power supply means is means for simultaneously supplying at least two different high-frequency frequencies to the same high-frequency electrode.

本発明において、このような真空処理容器中への複数の高周波電力の供給は、同一の電極から行うことが必要である。異なる周波数の高周波電力を各々別の電極から供給した場合、電極毎に高周波電力の周波数に依存した定在波が生じてしまう。この結果、電極近傍のプラズマ特性は、この定在波に応じた分布形状を持ってしまい、生成活性種の種類・比率やイオンのエネルギーが位置によって異なってしまう。   In the present invention, it is necessary to supply a plurality of high-frequency powers into such a vacuum processing container from the same electrode. When high-frequency power having different frequencies is supplied from different electrodes, a standing wave depending on the frequency of the high-frequency power is generated for each electrode. As a result, the plasma characteristics in the vicinity of the electrode have a distribution shape corresponding to this standing wave, and the type / ratio of the generated active species and the energy of ions vary depending on the position.

本発明において、電極に供給する複数の高周波電力の関係、即ち、周波数並びに電力比率は実際に真空処理特性の均一性を確認しながら決定すれば良いが、それぞれの高周波の周波数の差が余りにも小さいと、実質的に同一周波数の高周波電力を印加した場合と同等となってしまい、各々の定在波の節位置、腹位置が近いために十分な定在波抑制効果が得られなくなってしまう。又、その差が大き過ぎると、周波数が小さい方の高周波電力の高周波電界定在波の波長が、周波数が大きい方の高周波電力の高周波電界定在波の波長に対して大き過ぎ、これも又十分な定在波抑制効果が得られない。   In the present invention, the relationship between the plurality of high frequency powers supplied to the electrodes, that is, the frequency and the power ratio may be determined while actually confirming the uniformity of the vacuum processing characteristics. If it is small, it becomes substantially the same as when high-frequency power of the same frequency is applied, and the standing wave suppression position cannot be obtained sufficiently because the node position and antinode position of each standing wave are close. . If the difference is too large, the wavelength of the high-frequency electric field standing wave of the high-frequency power having the smaller frequency is too large relative to the wavelength of the high-frequency electric field standing wave of the high-frequency power having the larger frequency. A sufficient standing wave suppression effect cannot be obtained.

本発明においては、電極に供給する複数の高周波波電力は、周波数が10MHz以上250MHz以下の高周波電力を少なくとも2つ含むことが本発明の効果を得る上で必要である。   In the present invention, it is necessary for obtaining the effect of the present invention that the plurality of high-frequency wave powers supplied to the electrodes include at least two high-frequency powers having a frequency of 10 MHz to 250 MHz.

上記周波数が10MHzより低くなると、高速な処理速度を得ることが困難になる。より好ましくは30MHz以上とすることが堆積速度の点で好ましい。   When the frequency is lower than 10 MHz, it is difficult to obtain a high processing speed. More preferably, it is 30 MHz or more from the viewpoint of the deposition rate.

一方、周波数が250MHzよりも高くなると、高周波電力の進行方向への減衰が顕著となって、周波数の異なる高周波電力との減衰率のずれが顕著となってしまい、十分な均一化効果が得られなくなってしまう。よって、250MHz以下にすることで重畳効果が有効に得られるために好ましい。   On the other hand, when the frequency is higher than 250 MHz, the attenuation of the high-frequency power in the traveling direction becomes significant, and the deviation of the attenuation rate from the high-frequency power having a different frequency becomes remarkable, so that a sufficient uniformity effect can be obtained. It will disappear. Therefore, it is preferable to set the frequency to 250 MHz or less because the superposition effect can be effectively obtained.

又、電極に供給する高周波電力の電力比率に関しては、上記周波数の2つの高周波電力を供給する場合、第1の高周波電力をP1、これより周波数の低い第2の高周波電力をP2としたときに、電力の総和(P1+P2)に対する第2の高周波電力P2の比率を0.1以上0.9以下の範囲とすることが、本発明の効果を得る上で好ましい。   In addition, regarding the power ratio of the high frequency power supplied to the electrodes, when supplying two high frequency powers of the above frequency, the first high frequency power is P1, and the second high frequency power having a frequency lower than this is P2. The ratio of the second high-frequency power P2 to the total power (P1 + P2) is preferably in the range of 0.1 to 0.9 in order to obtain the effects of the present invention.

第2の高周波電力が電力の総和に対してこの範囲よりも小さいと、高周波電界は第1の高周波電力に起因する成分が支配的となってしまい定在波抑制効果が得られない。   If the second high-frequency power is smaller than this range with respect to the total power, the component resulting from the first high-frequency power is dominant in the high-frequency electric field, and the standing wave suppressing effect cannot be obtained.

一方、第2の高周波電力を大きくするに従って、第2の高周波電力が反応容器中での原料ガス分解に及ぼす影響が高まり、第2の高周波電力を単独で用いた場合に近くなり、定在波抑制効果が小さくなる。従って、少なくとも一方の高周波電力が、2つの合計電力に対して10%以上にすることが定在波抑制効果を確実に得る上で必要である。   On the other hand, as the second high-frequency power is increased, the influence of the second high-frequency power on the raw material gas decomposition in the reaction vessel is increased, becoming closer to the case where the second high-frequency power is used alone. The suppression effect is reduced. Therefore, it is necessary for at least one of the high frequency powers to be 10% or more with respect to the two total powers in order to reliably obtain the standing wave suppressing effect.

本発明によれば、少なくとも減圧可能な反応容器と、前記反応容器内に円筒状基体を収納する手段と、前記反応容器内にガスを導入するガス導入手段と、前記反応容器内にプラズマを生成させるための高周波電力を供給する高周波電力供給手段と、前記反応容器の排気口を介して前記反応容器内のガスを排気する排気手段を備えた真空処理装置において、前記反応容器の排気口を有する面と前記円筒状基体との間に、前記反応容器の中央部側の第1の領域より前記反応容器側面側の第2の領域で開口径が大きくなっていて、前記反応容器内のガスの流通が可能な複数の開口部を有したプラズマ漏れ防止手段が、前記反応容器の排気口を有する面と前記円筒状基体との間に、前記排気口を有する面全体を覆うように設けられていることで、放電安定性、真空処理特性の均一性の高い装置構成での画像欠陥の低減が可能であり、電子写真特性の再現性及び生産性の向上を図ることができる。   According to the present invention, at least a pressure-reducible reaction vessel, a means for accommodating a cylindrical substrate in the reaction vessel, a gas introduction means for introducing a gas into the reaction vessel, and plasma generation in the reaction vessel A vacuum processing apparatus comprising a high-frequency power supply means for supplying high-frequency power to cause a gas in the reaction vessel to be exhausted through the exhaust port of the reaction vessel, and the exhaust port of the reaction vessel is provided The opening diameter is larger in the second region on the side surface of the reaction vessel than the first region on the center side of the reaction vessel between the surface and the cylindrical substrate, and the gas in the reaction vessel A plasma leakage prevention means having a plurality of openings that can be circulated is provided between the surface having the exhaust port of the reaction vessel and the cylindrical substrate so as to cover the entire surface having the exhaust port. Discharge Qualitative, it is possible to reduce image defects in high uniformity device configuration of vacuum processing characteristics, it can be improved reproducibility and productivity of the electrophotographic characteristics.

又、本発明は、多数本取りの量産装置においても電子写真用感光体のロット内或はロット間の膜厚、電子写真特性等においてもバラツキの無い高品質な電子写真用感光体を提供することが可能である。   In addition, the present invention provides a high-quality electrophotographic photosensitive member that does not vary in the film thickness, electrophotographic characteristics, etc. within or between lots of electrophotographic photosensitive members even in a mass production apparatus that takes many products. It is possible.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<実施の形態1>
本発明の実施の形態1を図1に示す。
<Embodiment 1>
Embodiment 1 of the present invention is shown in FIG.

図1は本発明を用いたアモルファスシリコン感光体製造装置の一例を示した概略図である。図1(a)は概略断面図、図1(b)は図1(a)の切断線A−A’に沿う概略断面図である。   FIG. 1 is a schematic view showing an example of an amorphous silicon photoconductor manufacturing apparatus using the present invention. FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic cross-sectional view taken along a cutting line A-A ′ in FIG.

円筒形の反応容器103の底面117には反応容器103内の排気をするために開口部が設けられていて、開口部には排気管107が設置されている。この排気管107の他端は、不図示の排気装置に接続されている。反応容器103の中心部に、堆積膜の形成される1本の円筒状基体101が基体支持体106に載置された状態で配置されている。   An opening is provided in the bottom surface 117 of the cylindrical reaction vessel 103 for exhausting the inside of the reaction vessel 103, and an exhaust pipe 107 is installed in the opening. The other end of the exhaust pipe 107 is connected to an exhaust device (not shown). At the center of the reaction vessel 103, a single cylindrical substrate 101 on which a deposited film is formed is arranged in a state of being placed on a substrate support 106.

それぞれ発振周波数f1,f2の2つのVHF電源108,115から高周波電力をマッチングボックス109,116を介した後、電力分岐板113の給電点に印加され、反応容器103の外部に設置された複数の高周波電極104から反応容器103内に電力を供給され、反応容器103内にプラズマを生起し堆積膜を形成する構成である。   A plurality of high frequency powers from two VHF power sources 108 and 115 having oscillation frequencies f1 and f2 are applied to feeding points of the power branch plate 113 after passing through the matching boxes 109 and 116, and are installed outside the reaction vessel 103. In this configuration, power is supplied from the high-frequency electrode 104 into the reaction vessel 103 to generate plasma in the reaction vessel 103 to form a deposited film.

円筒形の反応容器103の側壁には誘電体であるセラミックスが用いられている。   Ceramic that is a dielectric is used on the side wall of the cylindrical reaction vessel 103.

電力分岐板113は、実質的に電磁波を閉じ込めるシールド114内にシールド114とは電気的に絶縁された状態で設置されている。即ち、絶縁体を介して、反応装置に固定されている構成となっている。更に、放電初期の真空処理安定性を向上するために、電力分岐板113と高周波電極104の接続にはコンデンサーを介して接続しても良い。   The power branch plate 113 is installed in a shield 114 that substantially confines electromagnetic waves while being electrically insulated from the shield 114. That is, it has the structure fixed to the reaction apparatus through the insulator. Furthermore, in order to improve the vacuum processing stability in the initial stage of discharge, the power branch plate 113 and the high-frequency electrode 104 may be connected via a capacitor.

円筒状基体101の下端と底面117の間には複数の開口部を有するプラズマ漏れ防止手段118が設けられ、該プラズマ漏れ防止手段118は、底板117に固定されている。   Plasma leakage prevention means 118 having a plurality of openings is provided between the lower end of the cylindrical substrate 101 and the bottom surface 117, and the plasma leakage prevention means 118 is fixed to the bottom plate 117.

プラズマ漏れ防止手段118は開口径が小さい部分119aと大きい部分119bの組み合せで反応容器の排気口を有する面全体を覆うように設けられており、開口径は反応容器103側面近傍で開口径が大きくなっている。   The plasma leakage prevention means 118 is provided so as to cover the entire surface having the exhaust port of the reaction vessel by a combination of the small opening portion 119a and the large opening portion 119b, and the opening diameter is large near the side surface of the reaction vessel 103. It has become.

<実施の形態2>
次に、本発明の実施の形態2を図2に示す。
<Embodiment 2>
Next, Embodiment 2 of the present invention is shown in FIG.

図2はカソード電極を反応容器外に設置し、反応容器内に複数の円筒形基体を設置する構成としたアモルファスシリコン感光体製造装置である。尚、図2(b)は図2(a)のA−A’断面を示している。   FIG. 2 shows an amorphous silicon photoconductor manufacturing apparatus in which a cathode electrode is installed outside a reaction vessel and a plurality of cylindrical substrates are installed in the reaction vessel. FIG. 2B shows a cross section taken along the line A-A ′ of FIG.

図2に示す反応装置は反応容器203内に6本の円筒状基体201が同一円周上に等間隔に設置される構成となっている。ガスを導入するガス導入管202が円筒状基体の配置円外の同一円周上等間隔に6本設置されている。   The reaction apparatus shown in FIG. 2 has a configuration in which six cylindrical substrates 201 are installed in the reaction vessel 203 at equal intervals on the same circumference. Six gas introduction pipes 202 for introducing gas are installed at equal intervals on the same circumference outside the arrangement circle of the cylindrical base body.

発振周波数f1,f2の高周波電源208,215から発振された周波数の異なる高周波電力がそれぞれマッチングボックス209,216を介して電力分岐板213の給電点に印加され、反応容器203の外部に設置された複数の高周波電極204から反応容器203内に電力を供給され、反応容器203内にプラズマを生起して堆積膜を形成する構成である。   The high frequency powers having different frequencies oscillated from the high frequency power sources 208 and 215 having the oscillation frequencies f1 and f2 are applied to the feeding point of the power branch plate 213 through the matching boxes 209 and 216, respectively, and installed outside the reaction vessel 203. Electric power is supplied into the reaction vessel 203 from a plurality of high-frequency electrodes 204, and plasma is generated in the reaction vessel 203 to form a deposited film.

高周波電極204から放出される高周波電力を反応容器203に効率良く導入するために、円筒形の反応容器203の側壁には誘電体であるセラミックスが用いられている。   In order to efficiently introduce the high-frequency power emitted from the high-frequency electrode 204 into the reaction vessel 203, ceramic which is a dielectric is used on the side wall of the cylindrical reaction vessel 203.

円筒状基体201の下端と底面217の間には複数の開口部を有するプラズマ漏れ防止手段218が設けられ、該プラズマ漏れ防止手段218は、底板217に固定されている。   Plasma leakage prevention means 218 having a plurality of openings is provided between the lower end of the cylindrical base 201 and the bottom surface 217, and the plasma leakage prevention means 218 is fixed to the bottom plate 217.

プラズマ漏れ防止手段218は開口径が小さい部分219aと大きい部分219bの組み合せで反応容器の排気口を有する面全体を覆うように設けられており、開口径は反応容器203側面側で開口径が大きくなっている。   The plasma leakage prevention means 218 is provided so as to cover the entire surface having the exhaust port of the reaction vessel by a combination of a small opening portion 219a and a large opening portion 219b, and the opening diameter is large on the side surface side of the reaction vessel 203. It has become.

図1及び図2に用いられる円筒状の反応容器の具体的なセラミックス材料としては、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コージェライト、ジルコン−コージェライト、酸化珪素、酸化ベリリウムマイカ系セラミックス等が挙げられる。これらのうち、真空処理時の不純物混入抑制、耐熱性等の点からアルミナ、窒化アルミニウム、窒化ホウ素が好ましい。   Specific ceramic materials for the cylindrical reaction vessel used in FIG. 1 and FIG. 2 are alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, cordierite, zircon cordierite, silicon oxide, beryllium mica type Ceramics etc. are mentioned. Of these, alumina, aluminum nitride, and boron nitride are preferable from the viewpoint of suppression of impurity contamination during heat treatment and heat resistance.

図1及び図2に示す装置を用いた場合の堆積膜形成の概略を図1の装置を例として以下に説明する。   An outline of the formation of the deposited film when the apparatus shown in FIGS. 1 and 2 is used will be described below by taking the apparatus of FIG. 1 as an example.

反応容器103内に円筒状基体101を設置し、不図示の排気装置により基体支持体106の下端と底面117との間に設けたプラズマ漏れ防止手段118を介して排気管107へ排気が行われ、反応容器103内を排気する。続いて、不図示のヒーターにより円筒状基体101を200℃〜300℃程度の所定の温度に加熱・制御する。   A cylindrical base 101 is installed in the reaction vessel 103, and exhaust is performed to the exhaust pipe 107 via a plasma leakage prevention means 118 provided between the lower end and the bottom surface 117 of the base support 106 by an exhaust device (not shown). Then, the reaction vessel 103 is evacuated. Subsequently, the cylindrical substrate 101 is heated and controlled to a predetermined temperature of about 200 ° C. to 300 ° C. by a heater (not shown).

円筒状基体101が所定の温度となったところで、不図示の原料ガス供給手段102を介して原料ガスを反応容器103内に導入する。原料ガスの流量が設定流量となり、又、反応容器103内の圧力が安定したのを確認した後、2つの高周波電力を高周波電源108,115よりマッチングボックス109,116を介して高周波電極104へ供給する。   When the cylindrical substrate 101 reaches a predetermined temperature, a source gas is introduced into the reaction vessel 103 via a source gas supply means (not shown). After confirming that the flow rate of the source gas is the set flow rate and the pressure in the reaction vessel 103 is stable, two high frequency powers are supplied from the high frequency power sources 108 and 115 to the high frequency electrode 104 via the matching boxes 109 and 116. To do.

これにより、反応容器103内に2つの異なる周波数の高周波電力が導入され、反応容器103内にグロー放電が生起し、原料ガスは励起解離して円筒状基体上に堆積膜が形成される。   As a result, high-frequency power of two different frequencies is introduced into the reaction vessel 103, glow discharge occurs in the reaction vessel 103, the source gas is excited and dissociated, and a deposited film is formed on the cylindrical substrate.

所望の膜厚の形成が行われた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。同様の操作を複数回繰り返すことによって、所望の多層構造の光受容層が形成される。   After the formation of the desired film thickness, the supply of the high frequency power is stopped, and then the supply of the source gas is stopped to finish the formation of the deposited film. By repeating the same operation a plurality of times, a desired multilayered light-receiving layer is formed.

堆積膜形成中、回転軸110を介して円筒状基体101をモーター111により所定の速度で回転させることにより、円筒状基体101表面全周に亘って堆積膜が形成される。   During the formation of the deposited film, the cylindrical substrate 101 is rotated at a predetermined speed by the motor 111 via the rotation shaft 110, whereby a deposited film is formed over the entire surface of the cylindrical substrate 101.

図3(a)〜(c)は本発明によるプラズマ漏れ防止手段118,218の開口パターンの一例を模式的に示した図である。   FIGS. 3A to 3C are diagrams schematically showing an example of an opening pattern of the plasma leakage prevention means 118 and 218 according to the present invention.

尚、プラズマ漏れ防止手段118,218に設ける開口部の形状は一定のピッチで丸穴、角形等の各種形状の何れでも構わないが、加工性の点から丸型が好ましい。   Incidentally, the shape of the openings provided in the plasma leakage preventing means 118 and 218 may be any of various shapes such as round holes and squares at a constant pitch, but a round shape is preferable from the viewpoint of workability.

図5は本発明により作製される少なくともシリコンを含む非単結晶材料から成る電子写真用感光体の層構成を説明するための模式的構成図である。   FIG. 5 is a schematic configuration diagram for explaining a layer configuration of an electrophotographic photosensitive member made of a non-single crystal material containing at least silicon produced according to the present invention.

図5(a)は基体501の上に電荷注入阻止層502、少なくとも水素を含むa−Siから成る光導電層503、電子写真装置における顕像保持能力を持つ表面層504が順に積層された電子写真用感光体である。   FIG. 5A shows an electron in which a charge injection blocking layer 502, a photoconductive layer 503 made of a-Si containing at least hydrogen, and a surface layer 504 having a visible image holding capability in an electrophotographic apparatus are stacked in this order on a substrate 501. It is a photographic photoreceptor.

図5(b)は基体501の上に電荷注入阻止層502、光導電層503、表面層504が順に積層された電子写真用感光体であり、光導電層503が電荷輸送層505と電荷発生層506から成る構成の機能分離型とした電子写真用感光体である。この電子写真用感光体に光照射すると主として電荷発生層506で生成されたキャリアーが電荷輸送層505を通過して導電性基体501に至る。   FIG. 5B shows an electrophotographic photoreceptor in which a charge injection blocking layer 502, a photoconductive layer 503, and a surface layer 504 are sequentially laminated on a substrate 501, and the photoconductive layer 503 and the charge transport layer 505 generate charge. This is a function-separated electrophotographic photoreceptor having a configuration including a layer 506. When the electrophotographic photoreceptor is irradiated with light, carriers generated mainly in the charge generation layer 506 pass through the charge transport layer 505 and reach the conductive substrate 501.

以下、実施例により、本発明の堆積膜形成装置について更に詳細に説明する。但し、本発明は以下に述べる実施例によって何ら限定されるものではない。   Hereinafter, the deposited film forming apparatus of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples described below.

図1に示す構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119a部は80mmで開口率50%とし、119b部の開口部の個々の開口面積を表2に示した値に変化させた。このときの119b部の開口率も50%とした。   Using the apparatus having the configuration shown in FIG. 1, high-frequency power having two types of oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. An electrophotographic photoreceptor was prepared under the conditions shown in Table 1. In the present embodiment, the plasma leakage prevention means 118 is formed of the punching metal shown in FIG. 3A and has a portion 119b having a large opening diameter from the wall surface of the reaction vessel 103 to the gas introduction means 102, and the individual openings of the openings. The area of the 119a portion was 80 mm and the aperture ratio was 50%, and the individual opening area of the opening portion of the 119b portion was changed to the values shown in Table 2. At this time, the aperture ratio of the portion 119b was also set to 50%.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対して以下の評価を実施した。結果を表2に示した。
(剥がれ状況)
電子写真用感光体を作製した後、プラズマ漏れ防止手段に堆積した膜の付着状況を目視にて観察した。
The following evaluation was performed on the produced electrophotographic photoreceptor. The results are shown in Table 2.
(Peeling situation)
After producing the electrophotographic photoreceptor, the adhesion state of the film deposited on the plasma leakage preventing means was visually observed.

評価基準は以下の通りとした。   The evaluation criteria were as follows.

◎ … 全く剥れは見られず非常に良好
○ … やや毛羽立ちはあるが剥れは見られず良好
△ … 微かに剥れあり(実用上問題がでないレベル)
(画像欠陥)
作製した電子写真用感光体をキヤノン製複写機iR−5000の改造機に装着し、キヤノン製全面黒チャートを原稿台に置き、コピーした。得られたコピー画像の同一面積内にある直径0.2mm以上の白点を数え、その数により、画像欠陥の評価値とした。従って、数値が小さいほど、画像欠陥が少なく、良好であることを表わしている。
◎… Very good with no peeling at all ○… Slightly fuzzy but good with no peeling △… Slightly peeled off (a level that is not a problem in practical use)
(Image defect)
The produced electrophotographic photoconductor was mounted on a modified machine of Canon Copier iR-5000, and a Canon full black chart was placed on the document table and copied. The white spots having a diameter of 0.2 mm or more in the same area of the obtained copy image were counted, and the evaluation value of the image defect was determined by the number. Therefore, the smaller the numerical value, the fewer image defects and the better.

評価基準は以下の通りであるとした。   The evaluation criteria are as follows.

◎ … 3個未満で非常に良好
○ … 3個以上5未満で良好
△ … 5個以上10個未満で標準レベル
(帯電能)
作製した電子写真用感光体をキヤノン製複写機iR−5000の改造機に設置し、帯電器に+6kVの高電圧を印加してコロナ帯電を行った。そして、現像器位置に設置した表面電位計により電子写真用感光体の暗部表面電位を測定した。
◎… Very good with less than 3 ○… Good with 3 or more and less than 5 △… Standard level (chargeability) with 5 or more and less than 10
The produced electrophotographic photosensitive member was installed in a modified machine of Canon Copier iR-5000, and a high voltage of +6 kV was applied to the charger to perform corona charging. Then, the surface potential of the dark portion of the electrophotographic photoreceptor was measured with a surface potential meter installed at the developing device position.

評価基準は以下の通りとした。   The evaluation criteria were as follows.

◎ … 460V以上で良好
○ … 420V以上、460V未満で標準レベル
△ … 380V以上、420V未満でやや帯電能が低い
(残留電位)
電子写真用感光体を、一定の暗部表面電位(例えば400V)に帯電させた後、直ちに一定光量の比較的強い光(例えば1.5Lux・sec)を照射した。このとき、現像器位置に設置した表面電位計により電子写真用感光体の残留電位を測定した。
◎… Good at 460V or more ○… Standard level at 420V or more and less than 460V △… Slightly low chargeability at 380V or more and less than 420V (residual potential)
After the electrophotographic photosensitive member was charged to a constant dark portion surface potential (for example, 400 V), it was immediately irradiated with a relatively strong light (for example, 1.5 Lux · sec) of a certain amount of light. At this time, the residual potential of the electrophotographic photoreceptor was measured with a surface potential meter installed at the position of the developing device.

評価基準は以下の通りであるとした。   The evaluation criteria are as follows.

◎ … 20V未満で良好
○ … 20V以上、30V未満で標準レベル
△ … 30V以上、40V未満でやや残留電位が高い
<比較例1>
図4に示した装置構成で実施例1と同様にして表1に示した条件で電子写真用感光体を作製した。
◎… Less than 20V, good ○… 20V or more, less than 30V, standard level △… 30V or more, less than 40V, slightly higher residual potential <Comparative Example 1>
An electrophotographic photoreceptor was produced with the apparatus configuration shown in FIG. 4 under the conditions shown in Table 1 in the same manner as in Example 1.

Figure 2005264232
このとき、プラズマ漏れ防止手段418はパンチングメタルから成る形状で開口部の個々の開口面積を80mm2で開口率50%とした。
Figure 2005264232
At this time, the plasma leakage preventing means 418 is made of a punching metal, and each opening area of the opening is 80 mm 2 and the opening ratio is 50%.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor.

評価結果を実施例1と併せて表2に示した。   The evaluation results are shown in Table 2 together with Example 1.

Figure 2005264232
表2から明らかなように、プラズマ漏れ防止手段118の開口径が大きい第2の領域119bの開口部の個々の開口面積を中央部側の第1の領域119aの開口部の個々の開口面積より大きくすることで良好な結果が得られた。119bの開口部の個々の開口面積が140mm2を超えると反応容器内のプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまうことにより、帯電能、残留電位といった電気特性が悪化してしまった。
Figure 2005264232
As is clear from Table 2, the individual opening area of the opening of the second region 119b where the opening diameter of the plasma leakage preventing means 118 is large is larger than the individual opening area of the opening of the first region 119a on the center side. Good results were obtained by increasing the size. If the individual opening area of the opening portion of 119b exceeds 140 mm 2 , the plasma in the reaction vessel leaks to the exhaust pipe side, and the plasma density in the discharge space decreases, resulting in deterioration of electrical characteristics such as charging ability and residual potential. have done.

図1に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119a部は50mm2で開口率50%とし、119b部開口部の個々の開口面積を表3に示した値に変化させた。このときの119b部の開口率も50%とした。 Using the apparatus shown in FIG. 1, high-frequency power having two oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 1. In the present embodiment, the plasma leakage prevention means 118 is formed of the punching metal shown in FIG. 3A and has a portion 119b having a large opening diameter from the wall surface of the reaction vessel 103 to the gas introduction means 102, and the individual openings of the openings. The area of the 119a part was 50 mm 2 and the aperture ratio was 50%, and the individual opening area of the 119b part opening was changed to the values shown in Table 3. At this time, the aperture ratio of the portion 119b was also set to 50%.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor.

結果を表3に示した。   The results are shown in Table 3.

Figure 2005264232
<比較例2>
図4に示した装置構成で実施例2と同様にして表1に示した条件で電子写真用感光体を作製した。
Figure 2005264232
<Comparative example 2>
An electrophotographic photoreceptor was produced with the apparatus configuration shown in FIG. 4 under the conditions shown in Table 1 in the same manner as in Example 2.

このとき、プラズマ漏れ防止手段418はパンチングメタルから成る形状で開口部の個々の開口面積を50mm2で開口率50%とした。 At this time, the plasma leakage preventing means 418 is made of a punching metal, and each opening area of the opening is 50 mm 2 and the opening ratio is 50%.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor.

評価結果を実施例2と併せて表3に示した。   The evaluation results are shown in Table 3 together with Example 2.

表3から明らかなように、プラズマ漏れ防止手段118の開口径が大きい部分119bの個々の開口面積を中央部119aの個々の開口面積より大きくすることで良好な結果が得られた。又、11 9bの個々の開口面積が80mm2以下の場合であっても、プラズマ漏れ防止手段118の剥がれは良好であったが、プラズマ漏れ防止手段118上に降り積もる膜片が若干存在していた。このことから、プラズマ漏れ防止手段118の開口径が大きい部分119bの開口部の個々の開口面積は80mm2より大きくすることが本発明には適している。反面、119bの開口部の個々の開口面積が140mm2を超えると反応容器内のプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまうことにより、帯電能、残留電位といった電気特性が悪化してしまった。 As is clear from Table 3, good results were obtained by making the individual opening areas of the portions 119b where the opening diameter of the plasma leakage preventing means 118 is larger than the individual opening areas of the central portion 119a. Also, even when the individual opening area of 19 b was 80 mm 2 or less, the plasma leakage prevention means 118 was peeled off well, but there were some film pieces that fell on the plasma leakage prevention means 118. . Therefore, it is suitable for the present invention that the individual opening area of the opening portion of the portion 119b where the opening diameter of the plasma leakage preventing means 118 is large is larger than 80 mm 2 . On the other hand, if the individual opening area of the opening portion of 119b exceeds 140 mm 2 , the plasma in the reaction vessel leaks to the exhaust pipe side and the plasma density in the discharge space is lowered, so that electrical characteristics such as charging ability and residual potential are obtained. Has become worse.

以上、実施例1,2の結果から、プラズマ漏れ防止手段118の開口径が大きい部分119bの開口部の個々の開口面積は80mm2を超え140mm2以下が本発明には適した範囲である。 As described above, from the results of Examples 1 and 2, the individual opening area of the opening of the portion 119b where the opening diameter of the plasma leakage preventing means 118 is large is more than 80 mm 2 and 140 mm 2 or less is a suitable range for the present invention.

図1に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119b部は90mm2で開口率50%とし、119a部の開口部の個々の開口面積を表4に示す値に変化させた。このときの119a部の開口率も50%とした。 Using the apparatus shown in FIG. 1, high-frequency power having two oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 1. In the present embodiment, the plasma leakage prevention means 118 is formed of the punching metal shown in FIG. 3A and has a portion 119b having a large opening diameter from the wall surface of the reaction vessel 103 to the gas introduction means 102, and the individual openings of the openings. The area of the 119b part was 90 mm 2 and the aperture ratio was 50%, and the individual opening area of the opening part of the 119a part was changed to the values shown in Table 4. At this time, the aperture ratio of the portion 119a was also set to 50%.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。結果を比較例1の結果と合せて表4に示した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor. The results are shown in Table 4 together with the results of Comparative Example 1.

Figure 2005264232
表4の結果から明らかなように、プラズマ漏れ防止手段118の中央部119aの開口部の個々の開口面積を0. 8mm2以上80mm2以下とすることで良好な結果が得られた。
Figure 2005264232
As is clear from the results in Table 4, good results were obtained by setting the individual opening area of the opening of the central portion 119a of the plasma leakage preventing means 118 to be 0.8 mm 2 or more and 80 mm 2 or less.

尚、プラズマ漏れ防止手段118の中央部11 9aの個々の開口面積が0.8mm2を下回るより小さいと成膜途中でプラズマ漏れ防止手段118に堆積した膜による目詰まりが発生し、反応炉内の圧力が不安定となり、スパーク等の異常放電が発生したため、堆積膜が堆積途中で剥れてしまう場合があった。従って、中央部11 9a個々の開口面積が0.8mm2より小さい場合は必ずしも実用的とは言えなかった。又、開口部の個々の開口面積が80mm2を超えると、反応容器内のプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまうことにより、帯電能、残留電位といった電気特性が悪化してしまった。 If the individual opening area of the central portion 19a of the plasma leakage prevention means 118 is smaller than 0.8 mm 2 , clogging due to the film deposited on the plasma leakage prevention means 118 occurs during the film formation, and the inside of the reactor Since the pressure of the gas became unstable and abnormal discharge such as sparks occurred, the deposited film sometimes peeled off during the deposition. Therefore, it is not necessarily practical when the opening area of each of the central portions 19a is smaller than 0.8 mm 2 . In addition, if the individual opening area of the opening exceeds 80 mm 2 , the plasma in the reaction vessel leaks to the exhaust pipe side and the plasma density in the discharge space is reduced, so that electric characteristics such as charging ability and residual potential are reduced. It got worse.

以上、の結果から、プラズマ漏れ防止手段118の中央部119aの開口部の個々の開口面積は0.8mm2以上80mm2以下が本発明には適した範囲である。 From the above results, the individual opening area of the opening of the central portion 119a of the plasma leakage preventing means 118 is in a range suitable for the present invention from 0.8 mm 2 to 80 mm 2 .

図1に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は、図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119a部は50mm2、119b部は90mm2とし、双方とも同率で開口率を変化させた。 Using the apparatus shown in FIG. 1, high-frequency power having two oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 1. In the present embodiment, the plasma leakage prevention means 118 has a portion 119b having a large opening diameter in the shape made of the punching metal shown in FIG. 3A from the reaction vessel 103 wall surface to the gas introduction means 102, and each of the openings. 119a portion opening area 50 mm 2, 119b unit and 90 mm 2, was varied aperture ratio at the same rate both.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。結果を比較例1の結果と併せて表5に示した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor. The results are shown in Table 5 together with the results of Comparative Example 1.

Figure 2005264232
表5の結果から明らかなように、プラズマ漏れ防止手段全体の面積に対する開口部全体の比率、即ち、開口率が20%以上80%以下の範囲であることが好ましいことが分かった。又、開口率が20%よりも小さいと、コンダクタンスの低下が大きく、それに伴って排気能力は大幅に低下し、反応容器内の圧力を所望の値に維持できず、良好な膜質を得られないこともあった。
Figure 2005264232
As is clear from the results in Table 5, it was found that the ratio of the entire opening to the area of the entire plasma leakage preventing means, that is, the opening ratio is preferably in the range of 20% to 80%. On the other hand, if the aperture ratio is less than 20%, the decrease in conductance is large, and the exhaust capacity is greatly reduced accordingly, the pressure in the reaction vessel cannot be maintained at a desired value, and good film quality cannot be obtained. There was also.

一方、開口率が80%より大きいと、反応容器内のプラズマが排気管側に漏れて放電空間のプラズマ密度が低下してしまうことにより、帯電能、残留電位といった電気特性の低下がみられる場合もあった。   On the other hand, if the aperture ratio is larger than 80%, the plasma in the reaction vessel leaks to the exhaust pipe side, and the plasma density in the discharge space is reduced, so that electrical characteristics such as charging ability and residual potential are reduced. There was also.

以上の理由から、プラズマ漏れ防止手段の開口率を20〜80%の範囲とすることが好ましい。   For the above reasons, it is preferable to set the aperture ratio of the plasma leakage preventing means in the range of 20 to 80%.

図1に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119a部は40mm2、119b部は85mm2とし、開口率は双方とも55%とした。 Using the apparatus shown in FIG. 1, high-frequency power having two oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 1. In the present embodiment, the plasma leakage prevention means 118 is formed of the punching metal shown in FIG. 3A and has a portion 119b having a large opening diameter from the wall surface of the reaction vessel 103 to the gas introduction means 102, and the individual openings of the openings. 119a unit area is 40 mm 2, 119b unit and 85 mm 2, the aperture ratio was 55% both.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施した。   Evaluation similar to Example 1 was implemented with respect to the produced electrophotographic photoreceptor.

結果を表6に示した。   The results are shown in Table 6.

Figure 2005264232
表6から明らかなように、全ての項目について良好な結果が得られた。
Figure 2005264232
As is clear from Table 6, good results were obtained for all items.

図1に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極104に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表7に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段118は図3(a)に示したパンチングメタルから成る形状で開口径が大きい部分119bを反応容器103壁面からガス導入手段102までとし、開口部の個々の開口面積を119a部は30mm2、119b部は100mm2とし、開口率は双方とも60%とした。 A high frequency power having two types of oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 104 by using the apparatus having the configuration shown in FIG. 1, on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 7. In the present embodiment, the plasma leakage preventing means 118 is formed of a punching metal shown in FIG. 3A, and a portion 119b having a large opening diameter is formed from the wall surface of the reaction vessel 103 to the gas introducing means 102, and individual openings of the openings are formed. 119a unit area is 30 mm 2, 119b unit and 100 mm 2, the aperture ratio was 60% both.

又、プラズマ漏れ防止手段の表面にはブラスト加工を施した。   The surface of the plasma leakage prevention means was blasted.

作製した電子写真用感光体に対し実施例1と同様の評価を実施したところ、実施例5と同様に良好な結果が得られた。   The same evaluation as in Example 1 was performed on the produced electrophotographic photoreceptor, and good results were obtained as in Example 5.

Figure 2005264232
Figure 2005264232

図2に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極204に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表8に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段218は、図3(c)に示した正方形の格子形状で開口径が大きい部分219bを反応容器203壁面からガス導入手段202までとし、開口部の個々の開口面積を219a部は60mm2、219b部は105mm2とし、開口率は双方とも45%とした。 Using the apparatus having the configuration shown in FIG. 2, high-frequency power having two types of oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 204, on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 8. In the present embodiment, the plasma leakage preventing means 218 has a square lattice shape as shown in FIG. 3C and a portion 219b having a large opening diameter from the wall surface of the reaction vessel 203 to the gas introducing means 202, and the individual openings of the openings. 219a unit area is 60 mm 2, 219b unit and 105 mm 2, the aperture ratio was 45% both.

又、プラズマ漏れ防止手段の表面にはニッケル溶射加工を施した。   The surface of the plasma leakage prevention means was nickel sprayed.

作製した電子写真用感光体6本に対し実施例1と同様の評価を実施したところ、実施例5と同様に良好な結果が得られた。   The same evaluation as in Example 1 was performed on the six electrophotographic photoreceptors produced, and good results were obtained as in Example 5.

Figure 2005264232
Figure 2005264232

図2に示した構成の装置を用い、発振周波数が105MHz(f1)と60MHz(f2)の2種類の周波数の高周波電力を電極204に供給し、直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表8に示した条件で電子写真用感光体を作製した。本実施例では、プラズマ漏れ防止手段218は図3(c)に示した正方形の格子形状で開口径が大きい部分219bを反応容器203壁面からガス導入手段202までとし、開口部の個々の開口面積を219a部は50mm2、219b部は95mm2とし、開口率は219a部を55%、219b部を65%とした。このときのプラズマ漏れ防止手段218全体の開口率は60%であった。 Using the apparatus having the configuration shown in FIG. 2, high-frequency power having two types of oscillation frequencies of 105 MHz (f1) and 60 MHz (f2) is supplied to the electrode 204, on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. In addition, an electrophotographic photoreceptor was produced under the conditions shown in Table 8. In the present embodiment, the plasma leakage prevention means 218 has a square lattice shape as shown in FIG. 3C with a large opening 219b from the wall surface of the reaction vessel 203 to the gas introduction means 202, and each opening area of the opening. The 219a part was 50 mm 2 , the 219b part was 95 mm 2 , and the aperture ratio was 55% for the 219a part and 65% for the 219b part. At this time, the aperture ratio of the entire plasma leakage preventing means 218 was 60%.

又、プラズマ漏れ防止手段の表面にはニッケル溶射加工を施した。   The surface of the plasma leakage prevention means was nickel sprayed.

作製した電子写真用感光体6本に対し実施例1と同様の評価を実施したところ、実施例5と同様に良好な結果が得られた。   The same evaluation as in Example 1 was performed on the six electrophotographic photoreceptors produced, and good results were obtained as in Example 5.

本発明は、プラズマを用いた真空処理装置、特にプラズマCVD法による堆積膜形成に適した装置として有用である。   The present invention is useful as a vacuum processing apparatus using plasma, particularly as an apparatus suitable for forming a deposited film by a plasma CVD method.

本発明に係るプラズマ処理装置の一例を示す模式図であり、(a)はその縦断面図を、(b)はその横断面図をそれぞれ示す。It is a schematic diagram which shows an example of the plasma processing apparatus which concerns on this invention, (a) is the longitudinal cross-sectional view, (b) shows the cross-sectional view, respectively. 本発明のプラズマ処理装置の一例を示す模式図であり、(a)はその縦断面図を、(b)はその横断面図をそれぞれ示す。It is a schematic diagram which shows an example of the plasma processing apparatus of this invention, (a) shows the longitudinal cross-sectional view, (b) shows the cross-sectional view, respectively. プラズマ漏れ防止手段の一例を示す概略図である。It is the schematic which shows an example of a plasma leak prevention means. 従来の堆積膜形成装置の一例を示す模式図であり、(a)はその縦断面図を、(b)はその横断面図をそれぞれ示す。It is a schematic diagram which shows an example of the conventional deposited film formation apparatus, (a) is the longitudinal cross-sectional view, (b) shows the cross-sectional view, respectively. 電子写真用感光体の層構成を説明するための概略図である。It is the schematic for demonstrating the layer structure of the electrophotographic photoreceptor.

符号の説明Explanation of symbols

100,200,400 真空処理装置
101,201,401 円筒状基体
102,202,402 ガス導入管
103,203,403 反応容器
104,204,404 高周波電極
105,205,405 高周波電力供給システム
106,206,406 基体支持体
107,207,407 排気管
108,208,408 第1の高周波電源
109,209,409 第1のマッチングボックス
110,210,410 回転軸
111,211,411 モーター
112,212,412 減速ギア
113,213,413 電力分岐部
114,214,414 シールド
115,215,415 第2の高周波電源
116,216,416 第2のマッチングボックス
117,217,417 底面
118,218 プラズマ漏れ防止手段
119,219a プラズマ漏れ防止手段開口部(反応容器中央部側の第1の領域)
119b,219b プラズマ漏れ防止手段開口部(反応容器側面側の第2の領域近傍)
501 基体
502 電荷注入阻止層
503 光導電層
504 表面層
505 電荷輸送層
506 電荷発生層
100, 200, 400 Vacuum processing apparatus 101, 201, 401 Cylindrical substrate 102, 202, 402 Gas introduction pipe 103, 203, 403 Reaction vessel 104, 204, 404 High frequency electrode 105, 205, 405 High frequency power supply system 106, 206 , 406 Base support 107, 207, 407 Exhaust pipe 108, 208, 408 First high frequency power source 109, 209, 409 First matching box 110, 210, 410 Rotating shaft 111, 211, 411 Motor 112, 212, 412 Reduction gear 113, 213, 413 Power branch 114, 214, 414 Shield 115, 215, 415 Second high frequency power supply 116, 216, 416 Second matching box 117, 217, 417 Bottom surface 118, 218 Plasma leakage prevention means 119, 219a Plasma leak prevention means opening (first region on the reaction vessel central side)
119b, 219b Plasma leak prevention means opening (near second region on side surface of reaction vessel)
501 substrate 502 charge injection blocking layer 503 photoconductive layer 504 surface layer 505 charge transport layer 506 charge generation layer

Claims (7)

少なくとも減圧可能な反応容器と、前記反応容器内に円筒状基体を収納する手段と、前記反応容器内にガスを導入するガス導入手段と、前記反応容器内にプラズマを生成させるための高周波電力を供給する高周波電力供給手段と、前記反応容器の排気口を介して前記反応容器内のガスを排気する排気手段を備えたプラズマ処理装置において、
前記反応容器の中央部側の第1の領域より前記反応容器側面側の第2の領域で開口径が大きくなっていて、前記反応容器内のガスの流通が可能な複数の開口部を有したプラズマ漏れ防止手段が、前記排気口を有する面と前記円筒状基体との間に、前記排気口を有する面全体を覆うように設けられていることを特徴とするプラズマ処理装置。
A reaction vessel capable of at least depressurization; means for housing a cylindrical substrate in the reaction vessel; gas introduction means for introducing gas into the reaction vessel; and high-frequency power for generating plasma in the reaction vessel. In a plasma processing apparatus comprising high-frequency power supply means for supplying and exhaust means for exhausting the gas in the reaction vessel through the exhaust port of the reaction vessel,
The opening diameter is larger in the second region on the side surface of the reaction vessel than the first region on the side of the central portion of the reaction vessel, and has a plurality of openings that allow the gas in the reaction vessel to flow. A plasma processing apparatus, wherein plasma leakage prevention means is provided between the surface having the exhaust port and the cylindrical base so as to cover the entire surface having the exhaust port.

前記プラズマ漏れ防止手段の第2の領域は、前記反応容器側面と前記ガス導入手段までの間にあることを特徴とする請求項1 に記載のプラズマ処理装置。

2. The plasma processing apparatus according to claim 1, wherein the second region of the plasma leakage preventing means is between the side surface of the reaction vessel and the gas introducing means.

前記プラズマ漏れ防止手段の第1の領域の開口部の個々の開口面積は0.8mm2 以上80mm2 以下であることを特徴とする請求項1又は2記載のプラズマ処理装置。

3. The plasma processing apparatus according to claim 1, wherein the opening area of each opening portion of the first region of the plasma leakage preventing means is 0.8 mm 2 or more and 80 mm 2 or less.

前記プラズマ漏れ防止手段の第2の領域の開口部の個々の開口面積は80mm2 を超え140mm2 以下であることを特徴とする請求項1〜3の何れかに記載のプラズマ処理装置。

The plasma processing apparatus according to any one of claims 1 to 3, wherein an individual opening area of the opening in the second region of the plasma leakage preventing means is more than 80 mm2 and not more than 140 mm2.

前記プラズマ漏れ防止手段は、パンチングメタル又は金属メッシュから成ることを特徴とする請求項1〜4の何れかに記載のプラズマ処理装置。

The plasma processing apparatus according to claim 1, wherein the plasma leakage prevention means is made of a punching metal or a metal mesh.

前記高周波電力供給手段は、少なくとも2つの異なる周波数の高周波を同一の高周波電極に同時に供給する手段であることを特徴とする請求項1〜5の何れかに記載のプラズマ処理装置。

6. The plasma processing apparatus according to claim 1, wherein the high-frequency power supply means is means for simultaneously supplying at least two different high-frequency frequencies to the same high-frequency electrode.

前記円筒状基体上に電子写真用感光体としての機能を有する少なくともシリコンを含む非単結晶材料から成る堆積膜を形成することを特徴とする請求項1〜6の何れかに記載のプラズマ処理装置。


7. The plasma processing apparatus according to claim 1, wherein a deposited film made of a non-single crystal material containing at least silicon having a function as an electrophotographic photoreceptor is formed on the cylindrical substrate. .

JP2004078533A 2004-03-18 2004-03-18 Plasma treatment apparatus Withdrawn JP2005264232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078533A JP2005264232A (en) 2004-03-18 2004-03-18 Plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078533A JP2005264232A (en) 2004-03-18 2004-03-18 Plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005264232A true JP2005264232A (en) 2005-09-29

Family

ID=35089087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078533A Withdrawn JP2005264232A (en) 2004-03-18 2004-03-18 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005264232A (en)

Similar Documents

Publication Publication Date Title
EP0717127A2 (en) Plasma processing method and apparatus
JP4109861B2 (en) Vacuum processing method
JP2005264232A (en) Plasma treatment apparatus
JP5058511B2 (en) Deposited film forming equipment
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP2003024772A (en) Plasma processing apparatus and plasma processing method
JP2004124150A (en) Plasma treatment system and the plasma treatment method
JP2004191552A (en) Apparatus for manufacturing electrophotographic photoreceptor
JP2004190079A (en) Vacuum treatment apparatus
JP2004204301A (en) Deposition film-forming apparatus
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP2005136027A (en) Plasma processing system
JP2002322562A (en) Vacuum treatment method and vacuum treatment apparatus
JP2005002435A (en) Plasma treatment system
JP2008214659A (en) Method for forming deposition film
JP2005133128A (en) Apparatus and method for plasma treatment
JP2001335948A (en) Film deposition system and method by plasma cvd
JP2004124149A (en) Vacuum treatment apparatus, vacuum treatment method, and electrophotographic photoreceptor
JP2017009622A (en) Manufacturing method of electrophotographic photoreceptor
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JPH06302521A (en) Microwave plasma cvd apparatus and formation of amorphous silicon photosensitive substance for electrophotography by use of the apparatus
JP2005068455A (en) Method and apparatus for forming deposition film
JP2003034873A (en) Method and apparatus for plasma treatment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060201

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605